Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Lighting Details Preserving Photon Density Estimation

MPG-Autoren
/persons/resource/persons44618

Herzog,  Robert
Computer Graphics, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Herzog, R., & Seidel, H.-P. (2007). Lighting Details Preserving Photon Density Estimation. In M. Alexa, S. Gortler, & T. Ju (Eds.), Pacific Graphics 2007 (pp. 407-410). Los Alamitos, CA, USa: IEEE Computer Society.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-1FB3-3
Zusammenfassung
Standard density estimation approaches suffer from visible bias due to low-pass
filtering of the lighting function. Therefore, most photon density estimation
methods have been used primarily with inefficient Monte Carlo final gathering
to achieve high-quality results for the indirect illumination. We present a
density estimation technique for efficiently computing all-frequency global
illumination in diffuse and moderately glossy scenes. In particular, we compute
the direct, indirect, and caustics illumination during photon tracing from the
light sources. Since the high frequencies in the illumination often arise from
visibility changes and surface normal variations, we consider a kernel that
takes these factors into account. To efficiently detect visibility changes, we
introduce a hierarchical voxel data structure of the scene geometry, which is
generated on GPU. Further, we preserve the surface orientation by computing the
density estimation in ray space.