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Abstract

The Bentley Ottmann sweep line algorithm is a standard tool to compute the
arrangement of algebraic curves in the plane. If degenerate positions are not ex-
cluded from the input, variants of this algorithm must, among other things, handle
k ≥ 2 curves intersecting simultaneously in a single intersection point. In that sit-
uation, the algorithm knows the order of the curves immediately left of the inter-
section point and needs to compute the order immediately right of the intersection
point.

Segments and lines can be reordered efficiently in linear time by simply re-
versing their order, except for overlapping segments. Algebraic curves can be
sorted with O(k logk) geometric comparisons in their order immediately right of
the intersection point. A previous result shows that algebraic curves whose degree
is at most d can be reordered in O(d2k) time, which is for constant d better than
sorting.

In this paper, we improve the complexity of the reordering of algebraic curves
to O(k) time, i.e., independent of the degree of the algebraic curves. The maybe
surprising implication is that algebraic curves, even of unbounded algebraic de-
gree, cannot realize all possible permutations of their vertical order while passing
through a common intersection from left to right. We give a short example for an
infeasible permutation.

Both linear time algorithms require the knowledge of the intersection multi-
plicities of curves that are neighbors immediately left of the intersection point,
i.e., k−1 intersection multiplicities.



1 Introduction
The Bentley Ottmann sweep-line algorithm [BO79] is a standard tool to com-
pute the arrangement of segments, lines, or curves in the plane. In their original
paper, Bentley and Ottmann describe the algorithm for reporting and counting
segment intersections, but they exclude degeneracies, such as vertical segments
and points where more than two segments intersect. They explain later in their
paper how to handle vertical segments and that the algorithm extends immedi-
ately to x-monotone input curves. Since then, the sweep-line algorithm became
so commonplace over the decades that good descriptions, including how to han-
dle degeneracies and how to apply it to related problems, such as planar map or
segment overlay computation or boolean operations on polygons in the plane, ap-
pear in several text books [dBvKOS00, Chapter 2] [MN99, Sections 10.7 & 10.8]
[O’R98, Section 7.7].

In this paper we are specifically interested in how the degeneracy of several
segments intersecting at once in a single point can be handled. Two solutions are
commonly used: Perturbation methods report each pair of intersecting segments.
Exact methods report the intersection only once. It has been discussed by Burnikel
et al. [BMS94] that the exact method has various advantages, such as an indeed
simple implementation of the sweep-line algorithm and better runtime and output
size complexity in case of such degeneracies.

We study in this paper the exact method in the context of non-linear input
data [FHK+06], with the challenging example of algebraic curves of arbitrary
degree as input.

For the sweep-line algorithm, curves have to be split into so called sweepable
segments, which are (maximal) x-monotone segments that have no critical points
in their interior and that fulfill some additional criteria, which are of no particular
interest for the method we are studying in this paper. The details needed here are
presented in Section 2. Throughout this work, we always assume a segment to be
sweepable.

We continue with a short outline of the sweep-line algorithm and formulate
then the problem solved in this paper.

1.1 Sweep-Line Algorithm
The sweep-line algorithm conceptually sweeps a vertical line, the sweep line, from
left to right over the set of segments. We maintain three data structures with the
following invariants: (1) All intersections of segments left of the sweep line have
been reported and, depending of the application, used to build the output data
structure, such as an arrangement. (2) All segments intersecting the sweep line
are stored in sorted order in the y-structure. (3) All future segment intersection

1



points of segments that are adjacent in the y-structure are stored together with
all future segment endpoints in the x-structure sorted lexicographically accord-
ing to their x- and y-coordinates. Key observation for the sweep-line algorithm
is now that these invariants change only at discrete places, namely segment end-
points and intersection points, which are treated in a unified representation of an
event. Following Mehlhorn and Näher [MN99, Sections 10.7 & 10.8] this event
distinguishes simultaneously several segments ending in, several segments pass-
ing through, and several segments beginning in the event. We note that in general
a vertical segment requires special handling, but its discussion can be omitted for
our purposes.

An event is processed in three steps: The sweep-line algorithm first removes
all segments from the y-structure that end at the event, then reorders the passing
segments, and finally inserts the newly starting segments. In this work we focus
on the middle step, the reordering step.

1.2 Reordering Step in the Sweep-Line Algorithm
We begin with some notation to describe the reordering step more precisely.

Definition 1 Let p be a planar point that is the current event of the sweep-line al-
gorithm. The maximal subsequence of segments in the y-structure passing through
p is given by segments s1 . . .sk that are numbered according to their y-order just
left of p. The supporting algebraic curve of a segment si is called fi.

Our goal is to reorder segments s1 . . .sk to reflect their order just right of the
event, i.e., after the sweep line passed through the event and the segments have
intersected each other in the common intersection point p. For straight-line seg-
ments this is obviously just an order reversal (except for overlapping segments),
which can be implemented to require linear time in the number of reordered
segments for common search tree data structures that one would use for the y-
structure.

When we extend the sweep-line algorithm to handle curved input, we have, be-
sides the obvious need for new geometric computations, to reconsider this reorder-
ing step; in contrast to intersecting pairs of straight-line segments that cross each
other in the intersection point, intersecting segments of algebraic curves might
intersect tangentially and do not cross. The intersection multiplicity between two
segments of algebraic curves tells us whether the segments cross or do not cross
at an intersection point: If the intersection multiplicity is odd, the segments cross,
if it is even, the segments do not cross. We define the intersection multiplicity in
the following Section 2.

How complex can k algebraic curves behave in a common intersection point?
Can they achieve all possible permutations of their order? If so, the best runtime
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one could expect for reordering, without using additional information, is sorting
from scratch to the right of the event. Then, the known order of the input segments
to the left of the event cannot be used to any advantage.

But, Berberich et al. [BEH+02] showed that k segments of algebraic curves
with degree at most d can be reordered in O(d2k) time. Their algorithm assumes
that the intersection multiplicities mi between adjacent segments si,si+1 in the y-
structure are known. It makes M := maxi{mi} passes over the sequence of the
k segments and reverses subsequences so that finally all pairs of odd intersec-
tion multiplicity have changed order and those of even intersection multiplicity
have not changed order. Following Bézout’s theorem [Wal50, III-§3.1], it holds
M ≤ d2. This implies for constant d that algebraic curves cannot realize all per-
mutations while passing through a common intersection.

Our result now shows that also algebraic curves of unbounded degree cannot
realize all permutations while passing through a common intersection. In particu-
lar, Section 4 gives an algorithm for the reordering that runs in O(k) time, which
is independent of the degree of the involved algebraic curves. Similar to the work
of Berberich et al. [BEH+02] this algorithm assumes that the intersection mul-
tiplicity of neighboring segments is known. The key idea of the algorithm is a
specific tree representation of the input, called the multiplicity tree. Its definition
and construction is described in Section 3.

1.3 Generic Sweep-Line Implementations
Generic implementations of the sweep-line algorithm are, for example, available
in LEDA1 and CGAL’s Arrangement 2 package [WFZH07].2 The latter nicely
decouples the sweep-line algorithm from the actual construction of the desired
output using the visitor design pattern [GHJV95]. Usually, the desired output
consists of the induced arrangement which is reported as a doubly-connected edge
list (DCEL). Just reporting all intersection points may be another output. LEDA’s
output is the induced arrangement represented in LEDA’s graph type. Besides
this issue, the two implementations mainly differ in how to maintain segments
involved in a sweep event.

LEDA’s implementation follows the description from above that for each event
we deal with three lists of segments; those ending in, those passing through, and
those beginning in an event.

On the other hand, CGAL’s design maintains only two, but sorted, lists, namely
segments adjacent to the left and segments adjacent to the right of an event. This

1LEDA homepage: http://www.algorithmic-solutions.com/leda.htm
2CGAL homepage: http://www.cgal.org/Manual/3.3/doc html/cgal manual/

Arrangement 2/Chapter main.html

3



s1

s2

s3

s5
4s3

1

2
∞

Figure 1: Segments changing their y-order in an intersection point. The numbers
on the left are the intersection multiplicities of adjacent segments.

choice has implications for the sweep-line algorithm on how to process a single
event. CGAL’s implementation first removes all segments to the left of the event
from the y-structure and inserts at the stored position all segments to the right of
the event that have been kept sorted in the event. This sorting can be easy in some
suitable situations, but in general, its worst case running time is O((k + l) log(k +
l)), where k is the number of passing segments and l is the number of starting
segments at the event, which is in theory inferior to the linear time reordering
presented here.

2 Intersection Multiplicity of Algebraic Curves
To define the multiplicity of intersection of two sweepable segments si,s j we have
to define the multiplicity of intersection for their supporting algebraic curves fi, f j
first. This section mainly follows corresponding parts in [EKSW06].

Consider a square-free and y-regular algebraic curve f over the field R. Its
vanishing locus is a closed subset f ⊆ R2. Since the set f ∩ fy of critical points
is finite, f \ fy is an open subset of f . From the Implicit Function Theorem, it
follows that every connected component of f \ fy is a parameterized curve

γi : ]li,ri[→ R
2 (1)

x 7→ (x,ϕi(x))

with some analytic function ϕi (called the implicit function) and interval bound-
aries li,ri ∈ R∪ {±∞}. In particular, every connected component of f \ fy is a
1-dimensional C∞-submanifold of R2 which is homeomorphic to an open inter-
val. The topological closure Ai := cl(γi(]li,ri[)) in R2 of each such component is
called an arc of f . Since f is closed, Ai⊆ f . The arcs of f form the set of maximal
sweepable segments of f .
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A generic change of coordinates makes fy(p) 6= 0 for a regular point p, demon-
strating that f is a manifold around a critical point p that is not a singular point
of f . A singular point p, however, is singular and hence critical in any coordinate
system.

The parameterization (1) involves a function ϕi which can be expressed as a
convergent power series locally around any x in its domain. Such a power series
is a special case of the more general notion of Puiseux series (a kind of series in-
volving fractional powers of x) that allow parameterizations even at critical points,
see [Wal50, IV.] and [BK86].

The intersection multiplicity of two curves f and g at a point p, defined as
multiplicity of the corresponding root of the resultant of f and g in a generic
coordinate system [BK86, p. 231], measures the similarity of these implicit power
series.

Proposition 1 Let f ,g ∈ C[x,y] be two coprime y-regular algebraic curves. Let
p = (p1, p2) ∈ C2 be an intersection point of f and g that is critical on neither of
them. Then the intersection multiplicity of f and g at p is the smallest exponent
d for which the coefficients of (x− p1)

d in the implicit power series of f and g
around p disagree.

Proof : (Sketch only.) Choose a generic coordinate system in which p = (0,0).
Consider f and g as univariate polynomials in y whose zeroes can be written
as power series αi(x) and β j(x), respectively. Choose indices such that the arcs
intersecting at (0,0) are α1 and β1. Recall that

res( f ,g,y)(x) = `( f )deg(g)`(g)deg( f )∏
i, j

(αi(x)−β j(x)).

By choice of generic coordinates, αi(0)−β j(0) 6= 0 for (i, j) 6= (1,1). Hence the
multiplicity d of x = 0 as a root of α1(x)−β1(x) is the multiplicity of x = 0 as a
root of res( f ,g,y)(x).

A full proof is given by Walker [Wal50, Thm. IV-5.2]. The following corollary is
immediate.

Corollary 1 In the situation of Proposition 1 for f ,g ∈ R[x,y], the two arcs of f
and g intersecting at a point p ∈R2 change sides iff their intersection multiplicity
is odd.

We now switch to two adjacent segments si,si+1 in the y-structure supported
by algebraic curves fi and fi+1. This step requires the precondition that sweepable
segments do not contain critical points of their supporting algebraic curves in
their interior. Why is this the case? First, the sweep-line algorithm originally
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allows to deal only with x-monotone parts. Second, the sweep-line algorithm
will detect this special point anyhow, and it seems combinatorially better to split
curves at singular points instead of creating segments that were found to intersect
anyhow, beside the issue of a more sophisticated algebraic analysis to define the
corresponding multiplicity of intersection. Note that splitting an algebraic curve
into its sweepable segments at all critical points does not harm the sweep-line
paradigm, and especially not the reordering step. Segments with critical points at
their end, are either removed from the y-structure before the reordering step, or
will be inserted right after it. Only segments’ intersections at non-critical points
are considered during the reordering steps.

This allows us to write a segment si, that is involved in the reordering, locally
as an analytic implicit function

y = ϕi(x) =
∞

∑
d=1

a(i)
d xd (2)

after translating the event to (0,0). The coefficients of the implicit functions de-
termine the y-order of segments just left and just right of the intersection.

Proposition 2 With notation as above:
Segment si lies below segment si+1 right of the intersection iff

(a(i)
1 ,a(i)

2 , . . . ,a(i)
d , . . .) <lex (a(I+1)

1 ,a(i+1)
2 , . . . ,a(i+1)

d , . . .).

Segment si lies below segment si+1 left of the intersection iff

(−a(i)
1 ,a(i)

2 , . . . ,(−1)da(i)
d , . . .) <lex (−a(i+1)

1 ,a(i+1)
2 , . . . ,(−1)da(i+1)

d , . . .).

(Here <lex is the lexicographic order relation on sequences of real numbers.)
Proof : It suffices to demonstrate the first part; the second part follows by substi-
tuting−x for x. Iff the segments overlap, they coincide around the intersection and
have equal coefficient sequences. Otherwise, a finite m = min{d | a(i)

d 6= a(i+1)
d }

exists, and ϕi(x)−ϕi+1(x) = (a(i)
m − a(i+1)

m )xm + . . . is negative for small positive
x iff a(i)

m < a(i+1)
m .

By Proposition 1, the quantity m considered in the proof for non-overlapping
segments is precisely the intersection multiplicity of the segments’ supporting
algebraic curves. Incorporating the case of overlap, we define the intersection
multiplicity of segments si and si+1 as min({d | a(i)

d 6= a(i+1)
d }∪{∞}). For reasons

that come into sight later, we define ∞ to be an even number.
We do not explain how to compute the intersection multiplicity for a particular

pair of segments si,si+1. If a generic coordinate system is given, locating intersec-
tion points of si,si+1 by resultant computations produces the required intersection
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multiplicity as a by-product for free; for details see [Wal50, Thm. IV-5.2], or the
proof of Proposition 1. We do not discuss the effort required in a non-generic co-
ordinate system. The computation of such intersection multiplicities may heavily
depend on the algebraic degree of the involved curves and is discussed elsewhere.

We next show that the multiplicity of intersection for an arbitrary pair of seg-
ments si,s j in the given sequence can be obtained from the sequence of intersec-
tion multiplicities for adjacent pairs si,si+1 only.

Proposition 3 With notation as above, the intersection multiplicity of two seg-
ments si and s j, 1≤ i < j ≤ k, is min{mi, . . . ,m j−1}.

Proof : By induction on j. The base case j = i+1 is clear. For the inductive step
from j to j + 1, let m = min{mi, . . . ,m j−1} be the intersection multiplicity of si
and s j. For m j = ∞, the claim is clear. Otherwise, distinguish three cases:

The first case is m > m j. It holds that a( j+1)
d = a( j)

d = a(i)
d for d < m j and

a( j+1)
d 6= a( j)

d = a(i)
d for d = m j, so that the intersection multiplicity of si and s j+1

is m j = min{m,m j}.
For m < m j, we have equality for d < m and inequality a( j+1)

d = a( j)
d 6= a(i)

d for
d = m, demonstrating the intersection multiplicity m = min{m,m j}.

However, if m = m j, then only a double inequality a( j+1)
d 6= a( j)

d 6= a(i)
d holds

for d = m, but we need a( j+1)
m 6= a(i)

m . Proposition 2 helps: Since s j+1 lies above
s j and intersects with multiplicity m j = m, we know (−1)ma( j+1)

m > (−1)ma( j)
m .

By the analogous argument for s j and si, we know (−1)ma( j)
m > (−1)ma(i)

m . Hence
(−1)ma( j+1)

m > (−1)ma(i)
m , as required.

3 Multiplicity Tree
We next define an ordered tree T , the multiplicity tree. Its leaves represent the seg-
ments si in their order left of the intersection point. Its nodes represent intersection
multiplicities mi. The construction of the tree is defined recursively:

• Pick the smallest multiplicity and create a root node with its value. Partition
the sequence into subsequences that end wherever two adjacent segments
are separated by this smallest multiplicity.

• Recursively create a subtree under the root node for each subsequence.

• The recursion stops with the trivial subsequence that represents a single
segment for which we create a leaf.
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Some observations on the resulting tree T . It has linear size in the number of
segments. The multiplicity value in a node is strictly smaller than all multiplicity
values in nodes of its subtrees. The leaf for segment si is linked to a node that
has the multiplicity max(mi−1,mi). Each subtree S of T defines a maximal sub-
sequence sq,sq+1, . . . ,sr with the property m = min{mq, . . . ,mr−1 }, where m is
the multiplicity of the root node of S. We call s the defining multiplicity of the
subsequence.

We now give an algorithm that builds the multiplicity tree in linear time. The
algorithm maintains a stack of subtrees while it reads the sequence m1, . . . ,mk−1
from “bottom to top”. After we have processed m1, . . . ,mi−1 and come to read mi,
the following invariant holds:

(I1) The root nodes of the stack elements have strictly increasing multiplicities.
(I2) Each subtree in the stack represents an unfinished maximal subsequence.

The multiplicity of its root node is the defining multiplicity for the subse-
quence.

(I3) If a maximal subsequence is completed, then its representing subtree is a
descendant of a stack element.

(I4) s1, . . . ,si−1 are leaves of the respective subtrees in the stack.

At the bottom of the stack we place a dummy node with multiplicity m0 = 0
as a sentinel. We also add a sentinel mk = 0 to the sequence of multiplicities. The
pseudo-code MAKETREE explains in detail how to create the tree.

We now underline its key steps. Pushing a new node onto the stack in line (11)
corresponds to the opening of a new subsequence with defining multiplicity mi.
The extensions of vtop by v in lines (13) and (20) is an order-preserving concatena-
tion of their stored sequences. Observe that these sequences can be made of linked
subtrees. Reaching line (15) identifies that mi closes those subsequences whose
defining multiplicity is larger than the current mi. It follows that all subtrees on
the stack for these multiplicities have been completed. We therefore merge them
into one subtree and attach it to the current node v.

Let us now consider the special case of two overlapping segments si and s j.
They belong to a sequence of pairwise overlapping segments sq,sq+1, . . . ,q j, so
that mi = mq+1 = . . . = mr−1 = ∞. As overlapping segments do not change their
order when passing a common point, we only have to define ∞ to be a (very large)
even number, to see that the multiplicity tree still stores the correct order to the
left of p. After the sentinel mk = 0 has been processed, we end up with the final
tree T rooted by an extra node with “multiplicity” 0 as the only node on the stack.
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Algorithm: MAKETREE

INPUT: segments of algebraic curves s1 to sk
intersection multiplicities m1 to mk−1 between segments s1 to sk

OUTPUT: multiplicity tree T
(01) m0← 0
(02) mk← 0
(03) for i = 0 . . .k do
(04) Create new node v representing mi
(05) if mi−1 < mi
(06) Attach si as leaf to v
(07) endif
(08) vtop← top element of stack
(09) mtop← stored multiplicity of vtop
(10) if mi > mtop do
(11) Push v onto stack
(12) else if mi = mtop do
(13) Extend vtop by v
(14) else if mi < mtop do
(15) Pop all stack elements with multiplicities > mi and

join them into one subtree S by making each element,
except for the lowest, a child of the element below.

(16) Attach S to v.
(17) vtop← new top element of stack
(18) mtop← stored multiplicity of vtop
(19) if mi = mtop do
(20) Extend vtop by v
(21) else
(22) Push v onto the stack
(23) endif
(24) endif
(25) if (mi ≥ mi+1) do
(26) Attach si+1 as a leaf to vtop
(27) endif
(28) end
(29) return top element of stack
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4 Linear-time Reordering
The following observation allows us to use T for the reordering of segments just
to the right of p. The first common ancestor of two segments si and s j in the
multiplicity tree represents the intersection multiplicity of si and s j. Thus we
obtain the order just right of p, if we reverse the order in all nodes with odd
multiplicity.

Lemma 1 The MAKETREE algorithm computes the multiplicity tree of the seg-
ments s1 to sk in time O(k).

Proof : Correctness: We show by induction over i that the invariants (I1)-(I4)
hold. Let i = 0. The invariants hold trivially. Now assume that the invariants are
met after mi−1 is inserted. We now show that they still hold after we inserted mi.
Invariant (I1): Only pushing a new node on the stack can destroy this invariant.
New nodes are pushed in lines 11 and 22. In the former case, it is ensured that
mi is greater than the current top element of the stack. In the latter case, all stack
elements with value > mi are removed first in line 15. Therefore, in both cases
we have mtop < mi which cannot destroy invariant (I1). Invariant (I2): Remember
that a subsequence can finish only if mi < mi−1. In this case, we can conclude
that mtop > mi, as by induction mi−1 = mtop. As subsequences remain open until
reaching line 15, it is shown that all subtrees defined by stack elements represent
unfinished sequences. The same argument shows invariant (I3). For invariant (I4)
we have to show that si is a leaf of an (unfinished) subtree. To do so one needs to
consider lines 5 and 6 in the current iteration together with lines 25 and 26 in the
previous iteration. Let us start with the latter where we had for the current mi the
condition mi ≤ mi−1, i.e., handling mi will extend or close a subsequence in the
current iteration. So si must be a leaf of the tree of that subsequence and therefore
it already has been added in line 26 of the previous iteration. Otherwise, mi just
started a new subsequence (line 11) in this iteration and we added si as a leaf to
the new subtree defined by v in line 06.

After we have processed mk, the tree stored in the only remaining stack el-
ement has the additional root node with multiplicity 0. We claim that its only
subtree represents the multiplicity tree as recursively defined above. Following
invariant (I4) all si are contained in the subtree. Due to invariant (I3) all its sub-
sequences, represented by its subtrees, are finished that are rooted by nodes with
the defining multiplicity of the subsequence (invariant I2). Finally, invariant (I1)
together with the subtree construction in line 15 of the algorithm show that the
node multiplicities increase on each path from the root to a leaf.

Runtime: The tree size and the tree construction examines linearly many new
nodes. Each node is pushed once on the stack and is removed once from the stack.
At most a linear number of constant time merges between nodes can happen.
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The REORDERSEGMENTS algorithm consists of three steps: (i) It calls the
MAKETREE algorithm to build a multiplicity tree T . (ii) It traverses T in a suitable
depth-first-search leaf-traversal, where inner nodes with odd stored multiplicity
are traversed in reversed order. (iii) It updates the y-structure corresponding to the
new order read off T in the traversal. The algorithm can also return a sequence
si0, . . . ,sik such that i0, . . . , ik is the desired permutation of 1, . . . ,k.

Note that we will have to argue about concrete implementations for the y-
structure to analyze the runtime of step (iii). A y-structure is, in an abstract data
type sense, a sorted sequence, and can be realized for example with a balanced
tree, a heap, or LEDA’s skiplist. We will make a conservative assumption about
their runtimes in the proof below.

Theorem 1 The REORDERSEGMENTS algorithm computes the y-order of seg-
ments of algebraic curves s1 to sk passing through a common point p immediately
to the right of p from the order immediately to the left of p in time O(k).

Proof : Correctness of reordering: Consider two arbitrary segments si and s j
with i < j. Their y-order right of p differs from their y-order left of p iff s =
min{mi, . . . ,m j−1 } is odd. The first common ancestor of si and s j in the multi-
plicity tree represents this multiplicity s. The order is reversed in this node iff s is
odd, and no other reordering of tree nodes affects the order of si with respect to
s j.

Runtime: The tree size is linear, it is built in linear time, and its modified
traversal requires linear time as well. The necessary update operations on a sorted
sequence data structure representing the y-structure fall into two categories; we
expect at most O(logk) time for locating and O(k) time for removing the old
subsequence, and (k) time for the k insertions (at known position). 3

5 An Example of an Infeasible Reordering
A direct implication of Theorem 1 is that the order of algebraic curves cannot
realize all permutations when passing through a common point p. We illustrate an
impossible permutation with a minimal number of segments in Figure 2, which is
due to A. Eigenwillig4. To the left we have four segments, s1, s2, s3, and s4, and
we assume that we can assign multiplicities m1, m2, and m3 such that the given
permutation to the right of the event, namely s2, s4, s1, and s3, is attained.

3Observe the localized setting, i.e., in a particular implementation a single update operation
might take more time, e.g., due to balancing issues. We do not this discuss this problem, as, e.g.,
operations on LEDA’s skiplist satisfies the given bounds.

4Personal communication, July 2007.
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Figure 2: The order of segments s1, . . . ,s4 shown on the right cannot be obtained
by assigning odd or even multiplicities m1, m2, and m3.

To do so, let us first have a closer look at the required parities of m1, m2, and
m3.

• s1 and s2 do not change order⇒ m1 must be even.

• s2 and s3 do change order⇒ m2 must be odd.

• s3 and s4 do not change order⇒ m3 must be even.

• s1 and s3 do change order⇒min{m1,m2} is odd⇒m2 < m1.

• s2 and s4 do change order⇒min{m2,m3} is odd⇒m2 < m3.

It follows that min{m1,m2,m3}= m2 must be odd, which implies that s1 and
s4 must change order. But s1 and s4 do not change their order, which is a con-
tradiction. Our assumption that the given permutation can be realized is false,
q.e.d.

6 Conclusions
We have shown how to reorder a set of segments s1, . . . ,sk passing through a com-
mon point p in a sweep-line setting in time O(k). Our result removes the former
dependency on the degree d of the algebraic curves and thus improves the com-
binatorial time complexity for the prevalent sweep-line paradigm in computing
arrangements of algebraic curves.
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However, the algorithm depends on the knowledge of intersection multiplici-
ties of adjacent curves. The cost for their computation would need to be consid-
ered in addition when comparing this approach in practice with other approaches,
such as the naive sorting to the right. Remember the situation of a generic coordi-
nate system as in Proposition 1 where the multiplicity of intersection is computed
as a by-product when two curves were checked to intersect using a resultant ap-
proach. As we require the intersections anyhow, these values come for free and
the proposed reordering step will surely outperform previously known methods. If
the computation of intersection multiplicities itself requires to call additional geo-
metric analyses, (e.g., applying a shear to obtain a generic coordinate system and
obtain the intersection multiplicities from it) the total runtime in practice, mea-
sured in seconds, will depend on different factors, like the degree of the involved
curves, their coefficient’s bitlength, et cetera. Experiments to obtain a better un-
derstanding for these differences are planned.

Therefore, our next goal is to implement the proposed algorithm in the SWEEPX
library of EXACUS [BEH+05] and in CGAL’s Arrangement 2 package. The
implementation is currently hindered by the fact that CGAL’s sweep-line algo-
rithm does not store passing segments of an event explicitly.

Last but not least, one may ask if the algorithm can be extended to cope with
some uncertainty, such as if some mi are not know.
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MPI-I-2004-4-004 R. Zayer, C. Rössl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel 3D Scattered Data Interpolation and Approximation with
Multilevel Compactly Supported RBFs

MPI-I-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel Quadric-Based Mesh Reconstruction from Scattered Data

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster, H. Seidel Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion


