Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Discovering a Term Taxonomy from Term Similarities Using Principal Component Analysis

MPG-Autoren
/persons/resource/persons44076

Bast,  Holger
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44356

Dupret,  Georges
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44972

Majumdar,  Debapriyo
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bast, H., Dupret, G., Majumdar, D., & Piwowarski, B. (2006). Discovering a Term Taxonomy from Term Similarities Using Principal Component Analysis. In Semantics, web and mining : Joint International Workshops, EWMF 2005 and KDO 2005 (pp. 103-120). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-2295-E
Zusammenfassung
We show that eigenvector decomposition can be used to extract a term taxonomy from a given collection of text documents. So far, methods based on eigenvector decomposition, such as latent semantic indexing (LSI) or principal component analysis (PCA), were only known to be useful for extracting symmetric relations between terms. We give a precise mathematical criterion for distinguishing between four kinds of relations of a given pair of terms of a given collection: unrelated (car - fruit), symmetrically related (car - automobile), asymmetrically related with the first term being more specific than the second (banana - fruit), and asymmetrically related in the other direction (fruit - banana). We give theoretical evidence for the soundness of our criterion, by showing that in a simplified mathematical model the criterion does the apparently right thing. We applied our scheme to the reconstruction of a selected part of the open directory project (ODP) hierarchy, with promising results.