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It is well known that integrable charges for short-range (e.g. nearest-neighbor) spin chains with periodic

boundary conditions can be recursively generated by a so-called boost operator. In the past, this iterative

construction has been generalized to periodic long-range spin chains as they appear in the context of the

gauge/gravity correspondence. Here we introduce recursion relations for open long-range spin chain

charges converting a short-range into a long-range integrable model.
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I. INTRODUCTION

Integrable spin chains provide a universal tool for a
variety of different physical problems. They are a natural
concept in condensed matter physics and of great impor-
tance for the most prominent examples of the gauge/
gravity duality, where a long-range generalization of the
Heisenberg spin chain led to impressive progress [1]. The
interaction range of the commuting charges of this inte-
grable chain increases with the perturbative order of the
quantum field theory coupling constant which gives a
beautiful example of a fruitful marriage between different
areas of physics.

While the integrable spin chains employed for the spec-
tral problem of the gauge/gravity duality typically have
periodic boundaries, open boundary conditions arise in
different important contexts: They describe so-called giant
graviton states [2,3], addition of fundamental matter to
superconformal theories [4], or operator insertions into
Wilson loops [5]. In each case their discovery tremen-
dously simplifies the solution of the underlying problem.

For most periodic short-range spin chains the character-
istic integrable charges may be obtained from the
Hamiltonian Q2 via a master symmetry of the form [6,7]

Q rþ1 ¼ i

r
½B½Q2�;Qr�; r ¼ 2; 3; . . . : (1)

The so-called boost operator B½Q2� is discussed below.
While the short-range recursion (1) for periodic chains was
generalized to long-range chains in [8,9], neither short- nor
long-range recursions are known for open spin chains
where only the even half Q2r of the charges is conserved;
cf. [10]. In this work we introduce recursions for open
long-range integrable spin chains based on a given set of
short-range integrable charges. Motivated by the gauge/
gravity duality, we study a model based on [11,12] with
local operators L ¼ P

aLðaÞ that act homogeneously on
the spin chain sites a (cf. Fig. 1) and are invariant under a

Lie (super)algebra g. The symmetry g is assumed not to be
broken by the boundary conditions. The derivations below
were accompanied by computer verifications at the ex-
ample of a glðNÞ spin chain.

II. RECURSION FOR PERIODIC CHAINS

Let us briefly review the recursive construction of peri-
odic long-range spin chains [8,9]: The boost operator in (1)
is usually written as B½L� ¼ P

aaLðaÞ. While it is not
well-defined on periodic (but on infinite) spin chains, the
commutator ½B½Q2�;Qr� is. Interestingly, the boost is
merely a special case of a more general class of bilocal
operators which are defined as compositions of two local
operators L1 and L2 (cf. Figure 2):

½L1jL2� ¼
X

aþjL1j<b

L1ðaÞL2ðbÞ: (2)

Here jLj denotes the interaction range of L. In fact, the
boost can be written as the composition of the identity I
and a local operator in the form B½L� ¼ ½I jL� such that
the indentity counts the number of sites in front ofL. This
generalization leads to a set of generators X that may be
applied to the Hamiltonian Q2 and the higher integrable
charges Qr. These are local (Xloc ¼ L), boost (Xboost ¼
½I jQr�) and bilocal (Xbi ¼ ½QrjQs�) generators which
are distinguished from other candidates by the fact that
they preserve locality and homogeneity. This locality is
guaranteed since both legs of the bilocal generators indi-
vidually commute with the charges Qr.
We deform a set of short-range integrable charges de-

fined for instance through (1) by a differential equation:

FIG. 1. Local operator of range 2 acting on a spin chain.*loebbert@nbi.dk
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d

d�
Qrð�Þ ¼ i½Xð�Þ;Qrð�Þ�; r; s ¼ 2; 3; . . . : (3)

If the initial condition to this equation is given by a short-
range integrable system with charges obeying
½Qrð0Þ;Qsð0Þ� ¼ 0, the solutions to (3) furnish a so-called
perturbatively long-range integrable model [13]:

½Qrð�Þ;Qsð�Þ� ¼ 0; r; s ¼ 2; 3; . . . : (4)

Here the charges are a perturbative series in the small
parameters �ðXÞ associated with the generators X,

Q rð�Þ ¼
X1
k¼0

�kQðkÞ
r : (5)

In fact, multiple deformation generators X‘ can be com-
bined, resulting in charges depending on multiple parame-
ters �‘. In the context of the gauge/gravity duality the
deformation parameters become specific functions of
the coupling constant �‘ ¼ �‘ð�Þ. With higher orders of
the parameters �‘ or the coupling �, respectively, the
interaction range of the charge operators typically in-
creases. This implies that for a given chain, the interaction
range necessarily exceeds the number of spin chain sites at
a certain perturbative order. Beyond this so-called wrap-
ping order, it is not known how to define a nontrivial long-
range spin chain model of gauge/gravity type. Also this
paper will not go beyond this asymptotic regime.

Non-Triviality.—Without specifying the operator X in
(3), the induced deformations a priori look like similarity
transformations with no impact on the spectrum. The key
point is that X can be well-defined on infinite but not on
periodic chains, while ½X;Qr� is well-defined on both.
This is the case for boost and bilocal charges, which
require an ordering of the spin chain sites. Hence, Eq. (3)
does not constitute a similarity transformation on the peri-
odic chain if X is chosen to be a bilocal operator. Local
operators X, well-defined on infinite and periodic chains,
induce similarity transformations on both. Details on the
periodic construction as well as explicit expressions for the
recursively generated long-range deformations of an suð2Þ
symmetric Heisenberg spin chain are given in [8,9]. This
example corresponds to higher-loop deformations of the
dilatation generator in the suð2Þ sector of N ¼ 4 super
Yang-Mills theory.

III. RECURSION FOR OPEN CHAINS

Open boundary conditions only allow for half of the
conserved charges Q2r. The odd charges defined on a
periodic chain commute only up to boundary terms

½Q2rþ1;Qs� ¼ Lbdr
L þLbdr

R ; r ¼ 1; 2; . . . ;

s ¼ 2; 3; . . . :
(6)

The local boundary operators Lbdr
L=R are nonvanishing only

at the left or right boundary of the open chain, respectively,
and vanish on a chain without boundaries. For the left side
acting at site a they take the form

where

contains a spectator leg. Another important class of opera-
tors are spanning terms:

They vanish on all spin chains except for those of length
jLj where they act on both boundaries at the same time. In
the asymptotic regime considered here, the spin chain
length is assumed to exceed the range of the operators.
Hence, these contributions vanish.
If we want to define recursion relations for chains with

open boundaries, two main puzzles arise: First, bilocal
operators with odd charges cannot induce local deforma-
tions in the above way, since the odd charges do not
commute anymore. Still the respective parameters appear
in the open chain’s perturbative spectrum [12]. Second, the
even charges acquire additional boundary terms on the
open chain that cannot be generated on an infinite chain
without boundaries.
In order to overcome these problems, we introduce the

notion of semi-infinite spin chains. These are chains with
an open boundary on one side of the chain and infinite
extent on the other side. They will allow us to insert the odd
charges on the bulk leg of a bilocal operator shielded from
the boundary by the leg towards the boundary. In what
follows we will mainly discuss left-open chains, i.e. chains
with an open boundary on the left and infinite extent on the
right side. All quantities for the right-open case can be
obtained using the parity transformation.
The crucial idea is to generate charge deformations on

the left- and right-open chain and to combine these defor-
mations to operators commuting on a finite open chain. We
therefore modify Eq. (3) according to

d

d�
Qr;L=Rð�Þ ¼ i½XL=Rð�Þ;Qr;L=Rð�Þ�jL=R; (9)

where jL=R denotes the application of open boundary con-

ditions, i.e. elimination of terms like (7) for the left or right

FIG. 2. Bilocal operator acting close to the left boundary.
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side, respectively. Boost generators BL½Q2sþ1� ¼
½I jQ2sþ1� or BR½Q2sþ1� ¼ ½Q2sþ1jI� may now be used
on the left- or right-open chain, respectively. By definition
of the bilocal operator, the charge Q2sþ1 will not see the
boundary of the chain since it is shielded by the identity
operator. Hence, the odd charges, which commute with the
even charges in the bulk of the chain, may be used for
deformation. Similarly we can use the even charges in-
serted into a bilocal operator ½Q2rjQ2sþ1� or ½Q2sþ1jQ2r�
as a buffer towards the boundaries, cf. Figure 2. In this
construction the odd charges defined modulo boundary
terms thus only live in the bulk of the chain.

We will now explain how to combine the charge struc-
tures generated on the semi-infinite chains in order to
obtain commuting long-range charges on a finite open
chain. Consider an arbitrary charge term on the left- or
right-open spin chain composed of a bulk and boundary
contribution and commuting on the respective chain:

Q 2r;L=R ¼ Qbulk
2r þQbdr

2r;L=R: (10)

Here the bulk part is defined to contain no spectator legs
and the boundary term vanishes in the bulk. The following
argument applies to all pairs of charge terms which have
the same bulk structure Qbulk

2r in the left- and right-open
case. For the left-open semi-infinite spin chain, we can
expand the vanishing commutator

½Q2r;L;Q2s;L�jL ¼ Lbdr
R jL ¼ 0 (11)

in terms of the summands in (10) to find

½Qbulk
2r ;Qbulk

2s � ¼ Lbdr
L þLbdr

R ;

½Qbulk
2r ;Qbdr

2s;L� þ ½Qbdr
2r;L;Q

bulk
2s � þ ½Qbdr

2r;L;Q
bdr
2s;L� ¼ �Lbdr

L :

(12)

Here Lbdr
L=R are boundary terms acting on the left or right

boundary only. In order to promote the charges (10) to an
integrable model on a finite open chain, we define

Q 2r ¼ Qbulk
2r þQbdr

2r;L þQbdr
2r;R: (13)

This definition implies

½Q2r;Q2s� ¼ ½Qbdr
2r;L;Q

bdr
2s;R� þ ½Qbdr

2r;R;Q
bdr
2s;L� ¼Lbdr

L&R ’ 0:

(14)

The commutators on the right hand side of (14) represent
spanning terms (8) and vanish in the regime of asymptotic
spin chains discussed here. The so-defined charges Q2r

thus commute on the finite open chain. Equation (14)
explicitly demonstrates how the definition of long-range
integrable spin chains breaks down at the order where the
charge operators span the whole state. This is a character-
istic feature of open and periodic gauge/gravity long-range
spin chains.

As mentioned above, for these arguments to work it
is important that the left- and right-open charge defor-

mations in (10) have the same bulk structure. To guar-
antee this for all deformations, we modify the definition
of the bilocal generator by adding a local contribution
to (2):

½L1jL2� ¼ � � � þ hL1jL2i: (15)

Here the local overlap of L1 and L2 is defined as [14]

hL1jL2i ¼
XaþjL1j

b�a�‘12

�
1� 1

2�a�b;‘12

�
1
2fL1ðaÞ;L2ðbÞg; (16)

with ‘12 ¼ ð1=2ÞðjL2j � jL1jÞ. The regularized opera-
tors obey

½QrjQs� þ ½QsjQr� ¼ QrQs; (17)

which implies that ½QrjQs� and �½QsjQr� induce the
same bulk structure on the left- and right-open chain.
The same applies to the boost charges; cf. Table I.
Furthermore the dispersion relation of hQrjQsi equals
the dispersion relation of ½QrjQs�. Local odd charges
Q2rþ1 generate pure boundary terms (6), i.e. the bulk
part on the left- and right-open chain is trivially equal.
For the local charges the relative minus sign in Table I
implies the nontriviality of the deformation. A plus
results in a similarity transformation.
Let us give a brief example for illustration: The inte-

grable charges of an suð2Þ symmetric Heisenberg spin
chain with open boundaries can be written in terms of
permutation symbols. In particular, the Hamiltonian takes
the form [15]

Now we choose one of the generatorsX in Table I, e.g. the
first odd charge

of the periodic Heisenberg chain, and plug it into (9). This
yields deformations for the left- and right-open case, e.g. at
first order

Adding the left- and right-open contributions according to
(13), we thus find

TABLE I. Generators on the left- and right-open spin chain.

Generator X Left-open Right-open Parameter

Boost charge ½I jQ2rþ1� �½Q2rþ1jI� �
Bilocal charge ½Q2rjQ2sþ1� �½Q2sþ1jQ2r� �
Basis change Gr;s Gr;s �
Local charge Q2rþ1 �Q2rþ1 �
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Similarly we can deform all short-range chargesQð0Þ
2r using

any generator X in Table I. The resulting charges pertur-
batively commute on the finite open spin chain up to
wrapping order.

Non-Triviality.—Bilocal operators require an ordering of
the spin chain sites. Consequently, they are in general not
compatible with periodic boundaries and this incompati-
bility rendered the periodic deformations induced by (3)
nontrivial. On the other hand, bilocal operators are com-
patible with open boundary conditions. Why are the defor-
mations defined by (9) still nontrivial? In the open case the
nontriviality stems from the fact that we deform the
charges by adding two contributions on which either left-
or right-open boundary conditions were applied; cf. (13).
In general, a corresponding transformation cannot be per-
formed on a finite open chain which has boundaries on both
sides. It is thus nontrivial. The construction with left- and
right-open spin chains is necessary for deformation gen-
erators including the odd charges. Deformations induced
by even charges can be equally well performed on a finite
open chain. Thus, even local (Q2r), boost (B½Q2r�) or
bilocal (½Q2rjQ2s�) charges indeed correspond to similar-
ity transformations [16].

IV. DEFORMATIONS AND BETHE ANSATZ

We now derive the open long-range Bethe ansatz. We
discuss on the left-open chain how the different deforma-
tions modify one- and two-magnon eigenstates of the
charges and their one-magnon eigenvalues qrðpÞ. Here
we consider an suð2Þ spin chain with spin t=2 representa-
tion on all sites. The generalization to higher rank algebras
follows in analogy to the periodic case given in [8,9].

Boost operators ð�Þ of odd charges serve as generators
of long-range deformations via the equation [cf. (9)]

d

d�2kþ1

Qr ¼ i½BL½Q2kþ1�;Qr�jL: (21)

If we evaluate a boosted charge on a one-magnon state jpi
in the bulk of the spin chain [9]

½BL½Q2kþ1�;Qr�jpi ¼ iq2kþ1ðpÞ@qrðpÞ@p
jpi; (22)

we find that boost deformations (21) imply a differential
equation for the one-magnon charge eigenvalues

dqrðpÞ
d�2kþ1

¼ �q2kþ1ðpÞ@qrðpÞ@p
: (23)

Introducing an integration constant t typically labeling the
spin representation, this equation is solved by

qrðu; tÞ ¼ i

r� 1

�
1

ðuþ i
2 tÞr�1

� 1

ðu� i
2 tÞr�1

�
: (24)

Here we implicitly define the rapidity u and the rapidity
map xðuÞ associated with the momentum p by [17]

eipðt;uÞ ¼ xðuþ i
2 tÞ

xðu� i
2 tÞ

; xðuÞ ¼ u exp

�
�X1

k¼1

�2kþ1

2ku2k

�
:

(25)

Bilocal deformations ð�Þ are generated by

d

d�2r;2sþ1
Qt ¼ i½½Q2rjQ2sþ1�;Qt�jL: (26)

In the bulk, the action of a bilocal charge on an ordered
two-magnon state is given by ½QrjQs�ju < u0i ¼
qrðuÞqsðu0Þju < u0i, where we neglect local contributions
(2) whose impact is discussed below. To build an asymp-
totic two-particle eigenstate, we define

ju; u0i ¼ ju0 < ui þ Sðu; u0Þju < u0i: (27)

Then (26) induces a differential equation on Sðu; u0Þ [9]
dSðu; u0Þ
d�2r;2sþ1

ju < u0i ¼ i½Q2rjQ2sþ1�ju < u0i; (28)

which is solved by the two-particle scattering factor

Sðu; u0Þ ¼ e�2i�2r;2sþ1ðu;u0ÞS0ðu� u0Þ: (29)

Here S0ðu� u0Þ ¼ ðu� u0 � iÞ=ðu� u0 þ iÞ denotes the
undeformed scattering factor and the so-called dressing
phase is given by [11,18]

�r;sðu; u0Þ ¼ �r;sðqrðuÞqsðu0Þ � qsðuÞqrðu0ÞÞ: (30)

Basis changes ð�Þ of the charges are important to adjust
the interaction range of higher order charge terms [9]. They
are implemented by introduction of an associated parame-
ter class � and a rotation generator Gr;s:

d

d�r;s
Qr ¼ ½Gs;r;Qr�; (31)

with ½Gs;r;Qr� ¼ Qs and �even;odd ¼ 0. We do not discuss

the range of higher order deformations and assume � ¼ 0.
Local Operators ð�Þ can deform the spectrum of open as

opposed to periodic chains nontrivially. When a magnon is
reflected at a boundary, its momentum or rapidity flips
sign, i.e. u ! �u ¼ �u [19]. In analogy to (27) we define
an asymptotic boundary scattering state ju; �ui ¼
j �ui þ SLðuÞjui and rephrase the statement that local opera-
tors LA;L induce a phase in form of a differential equation

dSLðuÞ
d�A;L

jui ¼ iLA;Ljui; (32)

where in the bulk LA;Ljui ¼ ‘A;LðuÞjui. Equation (32) is

solved by the boundary scattering factor

SLðuÞ ¼ e2i�LðuÞS0;LðuÞ; (33)
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with �LðuÞ ¼ �A;Lð‘A;LðuÞ � ‘A;Lð �uÞÞ. The only local op-

erators LA;L contributing to the integrable deformations

above are the odd charges Q2tþ1, i.e. the regulator (16) of
the boosts, as well as via (26) the local regulator of the
bilocal charges hQ2rjQ2sþ1i. Using q2tþ1ð �uÞ ¼
�q2tþ1ðuÞ, the boundary phase takes the form

�LðuÞ ¼ �2tþ1;Lq2tþ1ðuÞ � �2r;2sþ1ðu; �uÞ; (34)

including a boundary part of the dressing phase (30).
The Bethe equations have to be satisfied by roots uk, k ¼

1; . . . ;M describing eigenstates of the finite chain:

eiðpk� �pkÞL ¼ SLðukÞSRð �ukÞ
YM
j¼1
j�k

Sðuk; ujÞS�1ð �uk; ujÞ:

Above, we have derived the corresponding deformations of
the bulk and boundary scattering factors according to

Sðu; u0ÞS�1ð �u; u0Þ ¼ S0ðu; u0ÞS�1
0 ð �u; u0Þe2ið�ðu;u0Þ��ð �u;u0ÞÞ;

SLðuÞSRð �uÞ ¼ SL;0ðuÞSR;0ð �uÞe2ið�LðuÞ��Rð �uÞÞ: (35)

Because of integrability multimagnon eigenvalues are
given by sums over one-magnon eigenvalues.
Importantly, these Bethe equations for the finite open
spin chain are merely asymptotic, i.e. valid for chains
longer than the range of the charges.

V. CONCLUSIONS

Here we have shown how to generate long-range inte-
grable charge operators as deformations of short-range
models defined on open spin chains. All deformations
presented above can be combined yielding expansions in

multiple moduli, e.g.Q2r ¼ Qð0Þ
2r þ �3�2;3Q

ð3;2j3Þ
2r þ � � � .

Different choices of the parameters �, �, �, and � corre-
spond to different integrable systems covering the whole
moduli space found in [12]. The existence of this long-
range recursion is remarkable since so far neither for short-
nor for long-range open spin chains an iterative construc-
tion was known. While the long-range formalism for peri-
odic and open chains is based on (3) or (9), respectively, the
periodic short-range recursion (1) relies on the transfer
matrix formalism which significantly differs for the open
chain [10]. It would be highly desirable to find a way of
extending the presented open long-range recursion to the
short-range case. This could eventually unveil how long-
range integrable spin chains fit into the framework of
standard integrable models. A study of the interaction
range of the charges at higher orders including a detailed
investigation of the flatness of moduli space would be
important to reproduce the range patterns found in [12].
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