
A fast and simple stretch-minimizing mesh parameterization

Shin Yoshizawa Alexander Belyaev Hans-Peter Seidel

Computer Graphics Group, MPI Informatik, Saarbrücken, Germany
Phone: [+49](681)9325-414 Fax: [+49](681)9325-499

E-mails: {shin.yoshizawa |belyaev |hpseidel}@mpi-sb.mpg.de

(a) (b) (c) (d)
Figure 1: Texture mapping of the Mannequin Head model with three mesh parameterizations used in our method. (a) Texture and model.
(b) Floater’s shape preserving parameterization [6] is used as an initial mesh parameterization. (c) After a single optimization pass. (d)
Our optimal low-stretch parameterization.

Abstract
We propose a fast and simple method for generating a low-

stretch mesh parameterization. Given a triangle mesh, we start
from the Floater shape preserving parameterization and then im-
prove the parameterization gradually. At each improvement step,
we optimize the parameterization generated at the previous step
by minimizing a weighted quadratic energy where the weights are
chosen in order to minimize the parameterization stretch. This op-
timization procedure does not generate triangle flips if the bound-
ary of the parameter domain is a convex polygon. Moreover al-
ready the first optimization step produces a high-quality mesh pa-
rameterization. We compare our parameterization procedure with
several state-of-art mesh parameterization methods and demon-
strate its speed and high efficiency in parameterizing large and
geometrically complex models.

Keywords: mesh parameterization, stretch minimization, remesh-
ing

1 Introduction
Surface parameterization consists of a surface decompo-

sition into a set of patches, also referred to as an atlas of
charts, and establishing one-to-one mappings between the
patches and reference domains. Numerous applications of
surface parameterization in computer graphics and geomet-
ric modeling include texture mapping, shape morphing, sur-
face reconstruction and repairing, and grid generation.

In this paper, we deal with a planar parameterization for
a triangle mesh approximating a smooth surface, a bijective
mapping between the mesh and a triangulation of a planar
polygon. An excellent survey of recent advances in mesh
parameterization is given in [7], see also references therein.
While various algorithms are developed for mesh param-
eterization approaches based on solid mathematical the-
ories (e.g., conformal mappings), effective computational
schemes for generating practically important low-stretch
mesh parameterizations [15] have not yet been proposed.

Consider a surface S ∈ R
3 topologically equiva-

lent to a disk and given parametrically by r(s, t) =
[x(s, t), y(s, t), z(s, t)]. The Jacobian matrix correspond-
ing to the mapping r is given by J = [∂r/∂s, ∂r/∂t,]. The
Jacobian J determines all the first-order geometric proper-
ties of the parameterization r(s, t), including the area, an-
gle, and length distortions caused by the mapping r.

Denote by Γ(s, t) and γ(s, t) the maximal and minimal
singular values of J . Consider the first fundamental form of
S:

dl2 = E(s, t)ds2 + 2F (s, t)dsdt + G(s, t)dt2,

where E = r2
s, F = rs · rt, and G = r2

t . Then Γ2 and γ2

are the eigenvalues of the metric tensor

JT J =

[

E F
F G

]

.

1

It is convenient to use Γ and γ for measuring various prop-
erties of r. For example, if Γ(s, t) = γ(s, t), the parame-
terization is conformal and mapping r = r(s, t) preserves
angles.

Since the conformal mappings are well understood math-
ematically, discrete approximations of conformal mappings
are widely used for mesh parameterization purposes [9, 10,
4, 8]. However conformal mappings often produce high
stretch regions where texture mappings have severe under-
sampling artifacts.

It is natural to measure the local stretch of mapping r =
r(s, t) by

√

(Γ2 + γ2) /2 [15]. Stretch minimizing mesh
parameterizations were considered in [15, 14, 12]. See also
[16] where a similar stretch measure is proposed and [11,
19] where the Green-Lagrange tensor is used to measure
the stretch.

While the stretch minimization approach proposed in
[15] and further developed in [14] and [19] leads to gen-
erating high-quality mesh parameterizations, the computa-
tional procedure used in [15, 14, 19] for stretch minimiza-
tion is time consuming. Besides the mesh parameteriza-
tion procedure of [15, 14] often generates regions of high
anisotropic stretch, consisting of slim triangles. Such the re-
gions on a parameterized and textured mesh look like cracks
and we call them parameter cracks. Fig. 2 demonstrates an
appearance of such parameter cracks on the textured Man-
nequin Head model parametrized by the stretch minimiza-
tion method from [15].

Parameterization
Parameter Crack

Texture Mapping

Figure 2: Parameter cracks on textured Mannequin Head model
parametrized by the stretch minimization method of Sander et al.
[15].

In [12] the authors propose to add a regularization term
to the stretch energy in order to avoid parameter cracks. The
term depends on two parameters. Besides minimizing the
resulting energy does not produce a minimal stretch param-
eterization.

In this paper, we develop a simple and fast method for
generating low-stretch mesh parameterizations. Given a tri-
angle mesh, we first construct the Floater shape preserving
mesh parameterization [6]. We improve the parameteriza-
tion gradually: at each improvement step we optimize the
parameterization generated at the previous step. The opti-
mization is achieved by minimizing a weighted quadratic
energy with positive weights chosen to minimize the pa-
rameterization stretch. Thus the single optimization step is
fast since it is based on solving a sparse system of linear
equations. Besides if the boundary of the parameterization
domain forms a convex polygon, triangle flips never happen
[6].

Roughly speaking, our method achieves a low-stretch
mesh parameterization via a redistribution (diffusion) of lo-
cal stretches. It also resembles quasi-Newton type optimiza-
tion procedures.

We compare our low-stretch mesh parameterization
procedure with several state-of-art mesh parameterization
methods and demonstrate its speed and high efficiency in
parameterizing large and geometrically complex models.
Besides we show how our mesh parameterization approach
can be combined with the interactive geometry remeshing
scheme of Alliez et al. [1] in order to achieve fast and high
quality remeshing.

Fig. 1 shows the three stages of our mesh parameteri-
zation method: generating an initial parameterization, our
single-pass low-stretch parameterization, and the optimal
low-stretch parameterization.

The rest or the paper is organized as follows. In Sec-
tion 2 we explain our low-stretch mesh parameterization
procedure and give a motivation behind it. We evaluate our
method and compare it with state-of-art mesh parameteriza-
tion techniques in Section 3. We conclude in Section 4.

2 Low stretch mesh parameterization
Given a parametrized triangle mesh M ∈ R

3, consider
a mesh triangle T = 〈p1,p2,p3〉 ∈ M and its corre-
sponding triangle U = 〈u1,u2,u3〉 in the parametric plane
R

2
s,t. Triangles {U} define a planar mesh U ∈ R

2
s,t and

the parameterization of M is given by one-to-one mapping
between meshes U and M. The correspondence between
the vertices of T and U uniquely defines an affine mapping
P : U → T . Let us denote by Γ(T) and γ(T) the maximal
and minimal eigenvalues of the metric tensor induced by the
mapping [15, 19]. As we mentioned above, quantity

σ(U) =
√

(Γ2 + γ2) /2

characterizes the stretch of mapping P .
For each vertex ui in the parameter domain let us define

its stretch σi = σ(ui) by

σi =

√

∑

A(Tj)σ(Uj)2
/

∑

A(Tj) (1)

2

where A(T) denotes the area of triangle T and the sums
are taken over all triangles Tj surrounding mesh vertex pi

corresponding to ui.
Our method to build a low stretch mesh parameteriza-

tion consists of several steps. First we construct an initial
mesh parameterization using the Floater approach [6]: the
boundary vertices of mesh M are mapped into the boundary
vertices of U which form a polygon in the parameter plane
R

2
s,t and for each inner vertex pi of M its corresponding

vertex ui inside the polygon is selected such that the fol-
lowing local quadratic energy

E(ui) =
∑

j
wij(uj − ui)

2, (2)

achieves its minimal value. Here {uj} are vertices corre-
sponding to the mesh one-link neighbors of pi ∈ M and
{wij} are positive weights. Now the optimal positions for
ui are found by solving a sparse system of linear equations

∑

j
wij (uj − ui) = 0. (3)

This computationally simple procedure produces a valid pa-
rameterization of mesh M and avoids triangle flips if the
boundary of U is a convex polygon [6].

Now let us estimate local stretch σi = σ(ui) for each
inner vertex ui in the parametric plane. We redistribute the
local stretches by assigning

wnew
ij = wold

ij

/

σj (4)

in (2). The new positions of {ui} are now found by solving
(3).

We can think about vertices {ui} and corresponding en-
ergies (2) in terms of a mass-spring system. For an area pre-
serving parameterization, if a high (low) stretch is observed
at ui, that is σi > 1 (σi < 1), we relax (strengthen) the
springs connected with ui by solving (3) with new weights
(4). It works similarly for a general parameterization.

Our idea to diffuse the local stretches iteratively by (1),
(3), (4) can resemble the relaxation approach of Balmelli
et al. [2]. Notice however that in [2] the authors use a
gradient-descent minimization approach (an explicit mesh
evolution scheme) while our method is similar to quasi-
Newton type minimization algorithms and an implicit mesh
evolution scheme is used.

One can also find a similarity between (2), (4) and
Winslow’s variable diffusion method [18, 3] for adaptive
grid generation (see also [17] for a comprehensive analysis
of numerical methods used to minimize Winslow’s variable
diffusion functional).

We start from the shape preserving parameterization of
Floater [6, § 6] U0 =

{

u0
i

}

and then improve it gradually:
Uh+1 =

{

uh+1
i

}

is obtained from Uh =
{

uh
i

}

by solving

(3) with weights wh+1
ij defined by

wh+1
ij = wh

ij

/

σ
(

uh
j

)

.

Here w0
ij are the shape preserving weights proposed by

Floater. The boundary vertices of the evolving mesh Uh,
h = 0, 1, 2, . . . , remain fixed. When solving (3) with
wij = wh+1

ij numerically we use Uh as the initial guess
for the numerical solver we employ.

We use the L2 stretch metric of Sander et al. [15]

Eh
s = Es(U

h) =
√

∑

A(T)σ(Uh)2/
∑

A(T), (5)

where the sums are taken over all the triangles T of mesh
M, to define a stopping criterion. Namely, if Eh+1

s ≥ Eh
s

we consider Uopt =
{

uh
i

}

as an optimal low stretch mesh
parameterization.

Besides Uopt we also consider U1 =
{

u1
i

}

, the mesh
parameterization obtained after one step of our optimization
procedure since, according to our experiments, already the
first step dramatically improves the parameterization qual-
ity.

We also can vary the strength of stretch redistribution
(diffusion) step (4) by using the weights {ση

i }, 0 < η ≤ 1,
instead of {σi} in (4):

wnew
ij = wold

ij

/

ση
j . (6)

Using (6) with η < 1 slows down the stretch minimization
process but, on the other hand, often improves the mesh pa-
rameterization quality. The influence of exponent η in (6) is
demonstrated in Fig. 4 for our single-step parameterization
U1. Choosing smaller values for η leads to a less aggressive
stretch minimization.

In the next section, we compare U1 and Uopt with results
produced by conventional mesh parameterization schemes.

3 Results and comparisons
Computing. All the examples presented in this section
are computed using gcc 2.95 C++ compiler on a 1.7GHz
Pentium 4 computer with 512MB RAM. To solve a system
of linear equation Ax = b we use PCBCG [13] with the
maximum number of iterations equal to 104 and the approx-
imation error |Ax − b| /|b| set to 10−6.

Error metrics. To evaluate the visual quality of a param-
eterization we use the checkerboard texture shown in the
bottom-left image of Fig. 2. For a quantitative evaluation
of various mesh parameterization methods we employ L2

stretch metric (5) and consider edge, angle, and area dis-
tortion error functions defined below. To measure the edge
distortion error we use

∑

∣

∣

∣

∣

|pi − pj |
∑

|pi − pj |
−

|ui − uj |
∑

|ui − uj |

∣

∣

∣

∣

,

3

where the sums are taken over all the edges of meshes M
and U . The angle distortion error is defined by

1

3F

∑

j

3
∑

i=1

|θj,i − φj,i| ,

where the sums are taken over all the angles θj,i and φj,i of
the triangles of meshes M and U , respectively, and F is the
total number of triangles (faces) of M. The area distortion
is measured by

∑

∣

∣

∣
A (Tj) /

∑

A (Tj) − A (Uj) /
∑

A (Uj)
∣

∣

∣
,

where the sums are taken over all the triangles of meshes
M and U .

Comparison and evaluation. We have implemented a
number of conventional mesh parameterization methods
and compared them with our low stretch technique:

(a) Eck et al. harmonic map [5]
(b) Floater’s shape preserving parameterization [6, § 6]
(c) Desbrun et al. intrinsic parameterization [4]
(d) Sander et al. stretch minimizing parameterization [15]
(e) Our single-step parameterization U1

(fh) Our optimal parameterization Uopt

The subindex h in (fh) in the bottom row of the above
table shows the total number of optimization steps (3), (4)
needed to generate Uopt.

Tables 1-12 and Figures 3 and 6 present qualitative and
visual comparisons of the above mesh parameterization
schemes tested on various models topologically equivalent
to a disk. The unit square is used as the parameter domain
and for each models its the boundary vertices are fixed on
the boundary of the square. The errors and computational
times measured in seconds (s) and sometimes in minutes
(m) and hours (h) are given.

For the intrinsic parameterization method [4], we use the
equal blending of the Dirichlet and Authalic energies for all
the models, except for the Fish model (Table 11) where we
use only the Dirichlet energy in order to avoid triangle flips.

Our single-step mesh parameterization procedure (gen-
erating U1) is only slightly slower than the fast Floater and
Eck et al. parameterization methods and faster than the in-
trinsic parameterization of Desbrun et al. [4]. Besides U 1

demonstrates competitive results in minimizing the stretch,
edge, area, and angle distortions.

Our optimal mesh parameterization procedure is also
fast enough and sometimes achieves better results in stretch
minimizing than the probabilistic minimization of Sander
et al. [15] which is very slow. Moreover, by contrast with
[15], Uopt does not generate parameter cracks (see Fig. 6)
because (3) acts like a diffusion process. Besides, if a very
low stretch parameterization is needed, U opt can be used as
an initial parameterization for [15].

Fig. 7 shows Uopt parameterization of the Mannequin
Head model when the parameter domain has boundaries
of various shapes. The left images show the parameteri-
zation and corresponding texture mapping results when the
boundary is the unit circle. The right images demonstrate
similar results when the boundary of the parameter domain
was obtained as the so-called natural boundary for the con-
formal parameterization of [4]. Notice that the stretch dis-
tortions near the boundary are substantially reduced in the
latter case.

In Fig. 8 mesh parameterizations U0, U1, and Uopt are
evaluated and compared using the checkerboard texture.
Sometimes Uopt does not produce the best visual result be-
cause of high anisotropy and U1 is preferable. Finally, in
Fig. 9 we analyze how the stretch distribution over a com-
plex geometry model is changing during the optimization
process U0 → U1 → Uopt. The top row of images presents
the model (a decimated Max-Planck bust model) and re-
sults of checkerboard texture mapping with U0, U1, and
Uopt. The four remaining images of the model show the
stretch distribution over the model for U0, U1, and Uopt

parameterizations. The images demonstrate how well our
stretch minimization procedures minimize and equalize the
stretch. It is interesting to notice that near the mesh bound-
ary the optimized meshes have large area and angle dis-
tortions (the same effect is observed in all the other tested
models) but relatively low stretch distortions. One can hope
that an appropriate relaxation of boundary conditions will
reduce those area and angle distortions while maintaining
low stretch.

Application to remeshing. In the right column of Fig. 3
and in Fig. 5 we demonstrate how our mesh parameteriza-
tion technique can be used for fast and high quality remesh-
ing of complex surfaces. We have chosen the interactive
geometry remeshing scheme of Alliez et al. [1] and imple-
mented its main steps:

1. Create a mesh parameterization.
2. Compute area, curvature, and control maps using hard-

ware accelerated OpenGL commands.
3. Sample points by applying an error diffusion to the

control map.
4. Connect the points using the Delaunay triangulation.
5. Use the parameterization to map the points into 3D.

A conformal mesh parameterization is the best choice for
the described remeshing scheme.

It is clear that the remeshing quality depends on the size
of an image used for the hardware assisted acceleration: the
bigger size, the better result. On the other side, the image
size is restricted by the graphics card memory. It turns out
that a high quality remeshing can be obtained even for a rel-
atively small image size. Let us assume that we have two
parameterizations of a 3D mesh: a conformal parameter-

4

ization and an area-preserving one. Then let us the area-
preserving parameterization for computing the control map
and resampling the points via an error diffusion process. Fi-
nally, the points are mapped from the area-preserving pa-
rameterization to the conformal one and are connected us-
ing the Delaunay triangulation.

The above remeshing modification has one drawback:
it requires two parameterizations, conformal and area-
preserving. However since our low-stretch parameteriza-
tion Uopt has nice area-preserving properties and the ini-
tial Floater’s parameterization U0 is close to a conformal
one, we use Uopt and U0 instead of the conformal and area-
preserving parameterizations in the above modification of
the interactive geometry remeshing scheme of Alliez et al.

Right images (a)-(c) of Fig. 3 demonstrate results of the
single-parameterization remeshing scheme if the discrete
harmonic map parameterization [5], Floater’s shape pre-
serving parameterization [6], and intrinsic discrete confor-
mal parameterization are used, respectively. Right images
(d)-(f) of Fig. 3 present our experiments with the double-
parameterization remeshing scheme. We set Floater’s pa-
rameterization U0 as a substitute of a conformal param-
eterization and used U0 as an initial parameterization to
generate the stretch-minimizing parameterization of Sander
et al. [15] and U1 and Uopt. These low-stretch parame-
terizations were used as substitutes of an area-preserving
parameterization. Fig. 5 presents remeshed Max-Planck
bust and Stanford bunny models obtained by the remeshing
schemes based on (from left to right)

{

U0
}

,
{

U0,U1
}

, and
{

U0,Uopt
}

parameterizations (here using {U ′,U ′′} param-
eterizations means that we use U ′ as a substitute of a con-
formal parameterization and U ′′ as a substitute of an area
preserving one). Notice that the double-parameterization
remeshing scheme with

{

U0,Uopt
}

produces the best re-
sults.

4 Conclusion

We have presented a fast and powerful method for gen-
erating low-stretch mesh parameterizations and demon-
strate its applicability to high quality texture mapping and
remeshing. Our method is much faster than the stochas-
tic stretch minimization procedure of Sander et al. [15]
(note that their more recent coarse-to-fine stretch optimiza-
tion procedure [14] is significantly faster than that of [15]
but still slower than ours) and often produces better quality
results. In particular, it does not generate parameter cracks.

Our method is heuristic. At present we are not able to
support it by rigorous mathematical results.

In future we plan to extend our approach to spherical
parameterizations and use quadratic energies with matrix
weights for incorporating an anisotropy in our optimization
process.

Acknowledgments
The authors would like to thank Hugues Hoppe for a helpful

discussion and the anonymous reviewers of this paper for their
valuable and constructive comments. The models are courtesy
of the Stanford University (bunny and dragon), the University of
Washington (mannequin head and fish), Cyberware Inc. (Igea),
and MPI für Informatik (Max-Planck bust).

References
[1] P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remesh-

ing. In Proceedings of ACM SIGGRAPH 2002, pages 347–354, 2002.
[2] L. Balmelli, G. Taubin, and F. Bernardini. Space-optimized texture

maps. In Proceedings of EUROGRAPHICS 2002, pages 411–420,
2002.

[3] W. Cao, W. Huang, and R. D. Russell. Approaches for generating
moving adaptive meshes: location versus velocity. Appl. Numer.
Math., 47:121–138, 2003.

[4] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of
surface meshes. In Proceedings of EUROGRAPHICS 2002, pages
209–218, 2002.

[5] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzl. Multiresolution analysis of arbitrary meshes. In Pro-
ceedings of ACM SIGGRAPH 1995, pages 173–182, 1995.

[6] M. S. Floater. Parametrization and smooth approximation of surface
triangulations. Computer Aided Geometric Design, 14(3):231–250,
1997.

[7] M. S. Floater and K. Hormann. Recent advances in surface param-
eterization. In Multiresolution in Geometric Modelling, pages 259–
284, 2003.

[8] X. Gu and S.-T. Yau. Global conformal surface parameterization. In
Proceedings of Eurographics Symposium on Geometry Processing
2003, pages 135–146, 2003.

[9] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and
M. Halle. Conformal surface parameterization for texture map-
ping. IEEE Transactions on Visualization and Computer Graphics,
6(2):181–189, 2000.

[10] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal
maps for automatic texture atlas generations. In Proceedings of ACM
SIGGRAPH 2002, pages 362–371, 2002.

[11] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In
Proceedings of ACM SIGGRAPH 1993, pages 27–34, 1993.

[12] E. Praun and H. Hoppe. Spherical parametrization and remeshing.
In Proceedings of ACM SIGGRAPH 2003, pages 340–349, 2003.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipies in C. Cambridge University Press, 1988.

[14] P. V. Sander, S. J. Gortler, J. Snyder, and H. Hoppe. Signal-
specialized parametrization. In Proceedings of Eurographics Work-
shop on Rendering 2002, pages 87–98, 2002.

[15] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping
progressive meshes. In Proceedings of ACM SIGGRAPH 2001, pages
409–416, 2001.

[16] O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski.
Bounded-distortion piecewise mesh parameterization. In Proceed-
ings of IEEE Visualization, pages 355–362, 2002.

[17] A. M. Winslow. Numerical solution of the quasilinear poisson equa-
tion in a nonuniform. J. Comput. Phys., 2:149–172, 1967.

[18] A. M. Winslow. Adaptive mesh zoning by equipotential method.
Technical report, Lawrence Livermore Laboratory, 1981. Report
UCID-19062.

[19] E. Zhang, K. Mischaikow, and G. Turk. Feature-based surface pa-
rameterization and texture mapping. Technical report, Georgia Insti-
tute of Technology, 2003. GVU Tech Report 03-29.

5

PARAMETERIZATION CURVATURE MAP TEXTURE MAPPING PARAMETER CRACKS? REMESHING [1]

(a) Harmonic map of Eck et al. [5]: time 0.37 s, Stretch: 6.661, Edge: 0.997, Angle: 0.068, Area: 1.403

(b) Floater shape preserving weights [6]: time 0.32 s, Stretch: 5.792, Edge: 0.959, Angle: 0.18, Area: 1.373

(c) Intrinsic parameterization of Desbrun et al. [4]: time 0.76 s, Stretch: 6.129, Edge: 0.978, Angle: 0.12, Area: 1.388

(d) Stretch minimization of Sander et al. [15]: time 23 m, Stretch: 1.327, Edge: 0.539, Angle: 0.274, Area: 0.495

(e) Our U1 parameterization: time 0.5 s, Stretch: 1.642, Edge: 0.507, Angle: 0.383, Area: 0.871

(f) Our Uopt = U3 parameterization: time 1.09 s, Stretch: 1.382, Edge: 0.4748, Angle: 0.4132, Area: 0.3832

Figure 3: Comparison of various mesh parameterization schemes on the Mannequin Head model (V = 2732, F = 5420).

6

time Stretch Edge Angle Area
(a) 0.06 s 6.6507 0.9918 0.125 1.4032
(b) 0.06 s 5.9171 0.9635 0.1995 1.3801
(c) 0.12 s 6.2751 0.9778 0.1619 1.3931
(d) 80.91 s 1.375 0.5162 0.2952 0.5232
(e) 0.08 s 1.6691 0.5084 0.3717 0.8836
(f3) 0.16 s 1.4084 0.4814 0.4479 0.4165

Table 1: Mannequin Head model: V = 689, F = 1355

time Stretch Edge Angle Area
(a) 0.21 s 1.9708 0.4935 0.0969 0.8455
(b) 0.17 s 1.8084 0.4648 0.1568 0.8409
(c) 0.33 s 1.8511 0.4753 0.1189 0.84
(d) 213 s 1.172 0.2996 0.2239 0.3043
(e=f1) 0.3 s 1.2057 0.2862 0.2881 0.3179

Table 2: Cat Head model: V = 1856, F = 3660

time Stretch Edge Angle Area
(a) 0.37 s 6.6617 0.9971 0.0685 1.4036
(b) 0.32 s 5.7921 0.9599 0.1807 1.3733
(c) 0.76 s 6.1295 0.9784 0.1209 1.3886
(d) 23 m 1.3279 0.5393 0.2744 0.4956
(e) 0.5 s 1.6425 0.5073 0.3838 0.8717
(f3) 1.09 s 1.382 0.4748 0.4132 0.3832

Table 3: Refined Mannequin Head model: V = 2732, F = 5420

time Stretch Edge Angle Area
(a) 1.23 s 13.306 0.7563 0.1041 1.0207
(b) 0.87 s 11.729 0.6976 0.2545 0.9526
(c) 1.81 s 12.266 0.7232 0.176 0.9795
(d) 1 h 1.3408 0.4955 0.3477 0.4227
(e) 1.5 s 1.7643 0.4551 0.3735 0.4676
(f3) 3.44 s 1.4791 0.4661 0.5226 0.3613

Table 4: Cat model: V = 5649, F = 11168

time Stretch Edge Angle Area
(a) 3.16 s 18.027 1.2288 0.0361 1.692
(b) 2.29 s 15.941 1.2074 0.1441 1.6373
(c) 17.4 s 16.933 1.2157 0.0857 1.6618
(d) 57.5h 1.3257 0.7021 0.2501 0.5436
(e) 4.18 s 2.2037 0.6249 0.372 1.1899
(f3) 9.22 s 1.5392 0.5623 0.4905 0.6217

Table 5: Decimated Max-Planck bust model: V = 9462, F = 18866

time Stretch Edge Angle Area
(a) 12.9 s 1.5348 0.3025 0.1313 0.5063
(b) 6.21 s 1.485 0.3412 0.1748 0.5651
(c) 25.8 s 43.947 0.7602 0.3622 1.0085
(d) 4.5 h 1.2226 0.2833 0.1934 0.4338
(e) 17.9 s 1.2105 0.2477 0.2112 0.3876
(f3) 42.6 s 1.1718 0.24 0.2636 0.2375

Table 6: Fandisk model: V = 9919, F = 19617

time Stretch Edge Angle Area
(a) 5.55 s 9179549 1.6037 0.0915 1.7599
(b) 4.24 s 1120318 1.5049 0.3491 1.7175
(c) 21.1 s 231989 1.5494 0.2707 1.7387
(d) 39.7 h 7635.3 1.1442 0.3544 0.8435
(e) 6.99 s 313.64 0.9883 0.6341 1.4739
(f8) 33.2 s 3.5688 0.8522 0.8253 0.7897

Table 7: Half-of-Dragon model: V = 13927, F = 27782

time Stretch Edge Angle Area
(a) 12.4 s 9462.1 0.9729 0.0704 1.5132
(b) 8.95 s 181.05 0.9983 0.3852 1.5725
(c) 90.7 s 320.53 0.9845 0.2281 1.5425
(d) 43.4 h 1.6816 0.7193 0.2917 0.6665
(e) 14.7 s 3.3929 0.5041 0.6184 0.8078
(f3) 32.3 s 2.884 0.6399 0.7747 0.5344

Table 8: Dragon Head model: V = 23929, F = 47783

time Stretch Edge Angle Area
(a) 11.2 s 3.4799 0.7924 0.0542 1.3399
(b) 8.46 s 4.676 0.8678 0.1627 1.3664
(c) 93.8 s 34.621 0.8104 0.1831 1.3525
(d) 18.6 h 1.3092 0.4603 0.2265 0.5492
(e) 15.2 s 1.4373 0.4166 0.3446 0.6868
(f2) 27.2 s 1.304 0.385 0.3923 0.4123

Table 9: Igea model: V = 24720, F = 49301

time Stretch Edge Angle Area
(a) 17.9 s 712.33 0.7097 0.0797 1.098
(b) 13.2 s 85.181 0.7241 0.1522 1.0861
(c) 231 s 672.45 0.7062 0.2866 1.0957
(d) 55.6 h 1.5159 0.4982 0.3109 0.4868
(e) 22.5 s 4.7926 0.4582 0.387 0.5632
(f6) 79.8 s 1.8755 0.6143 0.6065 0.5241

Table 10: Stanford Bunny model: V = 31272, F = 62247

time Stretch Edge Angle Area
(a) 92.4 s 6.3061 0.8241 0.0445 1.3021
(b) 66.3 s 6.092 0.7752 0.1782 1.2613
(c′) 486 s 6.306 0.8241 0.0445 1.3021
(d) 120 h 2.5689 0.6481 0.2444 0.926
(e) 125 s 1.5683 0.4252 0.3476 0.6387
(f2) 206 s 1.5041 0.4414 0.4678 0.3946

Table 11: Fish model: V = 64982, F = 129664

time Stretch Edge Angle Area
(a) 250 s 18.207 1.2578 0.03 1.6936
(b) 204 s 18.1025 1.25 0.0512 1.6912
(c) 52.1 m 2.8434 1.2341 0.3068 1.6924
(e) 384 s 2.2094 0.6598 0.3698 1.2017
(f3) 848 s 1.4926 0.5939 0.4865 0.4812

Table 12: Max-Planck bust model: V = 199169, F = 398043

7

Figure 4: Choosing smaller values for η leads to a less aggressive stretch minimization. From left to right: U 1 parameterization of
Mannequin Head with η = {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1}.

Figure 5: Remeshing of Max-Planck bust model (three left images) and Stanford bunny (three right images) models. For each model
remeshings according to U0,

{

U0,U1
}

, and
{

U0,Uopt
}

are shown. See the text for details.

Figure 6: Parameter cracks on various models textured with checkerboard texture. The images of the upper row demonstrate parameter
cracks generated by the stretch-minimization method of Sander et al. [15]. The images of the bottom row show the same parts of the
models parameterized by our Uopt.

Uopt = U5 with circular parameter domain. Time: 1.51 s,
Stretch: 1.34, Edge: 0.43, Angle: 0.47, Area: 0.4.

Uopt = U1 with natural boundary [4]. Time:1.67 s,
Stretch: 1.68, Edge: 0.5, Angle: 0.37, Area: 0.9.

Figure 7: Using various parameter domains for Uopt.

8

Figure 8: Checkerboard texture mapping with U 0 (left), U1 (mid-
dle), and Uopt (right).

U0 U1

Min:0.17 Ave:11.12 Max:37.96

U1 Uopt

Min:0.21 Ave:2.11 Max:4.51

Figure 9: Top row: a decimated Max-Planck bust model and re-
sults of checkerboard texture mapping with U0, U1, and Uopt pa-
rameterizations. The four remaining images of the model show the
distribution of the vertex stretches over the model for U 0, U1, and
Uopt. Firstly coloring by stretch σ ∈ [0.17, 37.96] is used to com-
pare U0 and U1. Then the same coloring scheme on the stretch
interval [0.21, 4.51] is employed to compare the stretch distribu-
tions for U1, and Uopt. Here the bounds of the interval are equal
to the maximal and minimal stretch values.

9

