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Abstract

This paper proposes the use of neural network ensem-
bles to boost the performance of a neural network based
surface reconstruction algorithm. Ensemble is a very pop-
ular and powerful statistical technique based on the idea
of averaging several outputs of a probabilistic algorithm.
In the context of surface reconstruction, two main problems
arise. The first is finding an efficient way to average meshes
with different connectivity, and the second is tuning the pa-
rameters for surface reconstruction to maximize the perfor-
mance of the ensemble. We solve the first problem by vox-
elizing all the meshes on the same regular grid and taking
majority vote on each voxel. We tune the parameters exper-
imentally, borrowing ideas from weak learning methods.

1. Introduction

With the recent advances in 3D laser scanner technology,
large geometric data sets, consisting of millions of points,
are becoming the standard output of the acquisition stage
of the graphics pipeline. In order to process these data, we
need specialized algorithms that can cope with very large
and noisy point sets. Neural networks and learning algo-
rithms are good candidates for this task as demonstrated by
their numerous successful applications in problems involv-
ing the processing of voluminous noisy data. Several sur-
face reconstruction techniques have been developed based
on different kinds of neural networks [8, 28, 29, 3, 12, 13,
11, 10].

In this paper, we use the technique of neural network
ensembles to boost the performance of the surface recon-
struction algorithm described in [10], which we callNeural
Meshes. As it is usually the case with a learning algorithm,
there are two main areas where boosting the performance
of the basic algorithm is particularly needed. The first is

the speed and the second is avoiding convergence to a lo-
cal minimum, i.e., capturing correctly the global shape of
the input data. Here we deal with the second problem only.
The main idea is to exploit the probabilistic nature of the al-
gorithm. We run the algorithm many times on the same in-
put data set and then construct an average of the outputs.

Usually the speed and the accuracy of an algorithm are
related to each other, where higher accuracy comes at the
expense of speed and vice versa. Fortunately, in our case,
we can safely separate them. The problem with the local
minima arises at the early stages of the reconstruction while
the problem with the speed at much later stages. The reason
is that a neural mesh is only locally processed and quickly
gets refined enough so that no significant changes occur in
its global shape. For a typical model, the convergence to
a local minimum or not is already decided after the first
few thousand vertices. On the other hand, the problem with
the speed arises when the neural mesh is large and the in-
quiries on it, especially finding the most and the least ac-
tive vertices, becomes very costly. When the algorithm runs
on a commodity PC, the speed becomes a problem only af-
ter several tens of thousands of vertices.

1.1. Related Work

The basic surface reconstruction algorithm we use here
is described in [10]. It is based on an incrementally ex-
panding neural network known as Growing Cell Structures
(GCM’s) [6]. The latter is a special kind of Kohonen’s Self-
Organizing Maps (SOM’s) [16]. Similar surface reconstruc-
tion algorithms based on the same type of neural network
can be found in [12, 13, 11].

SOM’s and GCS’s have already found many applications
in geometric modeling and visualization problems. In [7],
SOM’s are used for the visualization of multi-dimensional
data. In [8], SOM’s are used for free-form surface recon-
struction and in [28], GCS’s are used for the same purpose.



SOM’s have been used in surface reconstruction [29] and
for grid fitting [3].

On the other hand, the majority of the other surface re-
construction techniques are based on a geometric construc-
tion, e.g., tangent plane fitting onk-neighborhoods [9],α-
shapes [2, 25], spline fitting [17], 3D Voronoi diagrams [1],
radial basis function fitting [4], and multi-level local fitting
[19]. A common characteristic of these methods is that they
are deterministic. For given input data, they always output
the same model which may or may not be satisfactory. The
latter case happens quite often because of the error con-
tained in the input, which has as main sources the optics
of the scanning procedure and the registration of the range
images. In fact, surface reconstruction from scanned data
is still a procedure requiring a considerable amount of hu-
man intervention, making it the bottleneck in the creation of
3D models.

In contrast, if a probabilistic algorithm fails in producing
a satisfactory model, we can always run it again and hope
that this time we obtain a better model or that we will be
able to combine several of the outputs to generate a satisfac-
tory model. The technique of combining several models to
obtain a better one has been studied extensively, especially
in the context of supervised learning, e.g., [22, 5, 20, 23].
We discuss the techniques in more details in Section 3.2.
Interestingly, their main result is counter-intuitive. The op-
timization of the combined model does not require the opti-
mization of each one of the constituent models.

1.2. Overview

The stages of the overall algorithm we propose here can
be summarized as follows;

Neural Mesh Ensemble Algorithm

Stage 1:Run the neural mesh algorithm many times and
create many coarse models.

Stage 2:Voxelize all the models on the same grid and find
an average model with majority vote on each voxel.

Stage 3:Use the Marching Cube algorithm to find an av-
erage coarse mesh from the average voxelized model.

Stage 4:Run the neural mesh algorithm starting from the
average coarse mesh.

2. Neural Meshes

The neural mesh we use here is a learning algo-
rithm for surface reconstruction described in [10]. It
starts with an initial triangle meshM, usually a tetrahe-
dron, and learns from training data obtained from a point
cloudP with random sampling. It expands its connectiv-
ity by splitting its most active vertices and removing its least

active vertices. It creates boundaries by removing large tri-
angles and creates handles by merging two boundaries
that are near to each other. The algorithm can be summa-
rized as follows;

Basic step:

• Sample the target spaceP and return one points.

• Find the vertexvw of M which is nearest tos and
move it towardss.

• Smooth the 1-ring neighborhood ofvw.

Connectivity change:

• Vertex split:Split the most active vertex.

• Half-edge collapse:Remove the least active vertex.

Topology learning:

• Triangle removal:Remove triangles with large areas.

• Boundary merging:Merge two boundaries that are
close to each other.

The last topology learning part is not used when we gener-
ate the neural meshes for the inputs of the ensemble algo-
rithm. This enables us to have closed surfaces for the neu-
ral meshes, which makes the voxelization step easier and
more robust. However, the part is included to allow topol-
ogy changes when the neural mesh is refined in Stage 4 of
the ensemble algorithm.

Fig. 1 shows an example of neural mesh reconstruction.
The initial data from the Digital Michelangelo archive con-
tain 240 million points. The algorithm processed 4 mil-
lion points, with about 40 million iterations of the basic
step. The reconstruction consists of 0.5 million points. For
an analysis of the basic algorithm, we refer the reader to
[6, 12, 11, 13, 10].

3. Neural Mesh Ensembles

A neural mesh ensemble is a collection of neural meshes
created using the same input data set. We show that by run-
ning the neural mesh algorithm many times and averaging
the results we are able to recover the correct global shape
of the input point cloud with a higher probability than a sin-
gle run of the algorithm would allow.

3.1. Competing Features in Neural Mesh Recon-
struction

For a better understanding on how the ensembles boost
the neural mesh performance, we first discuss how the prob-
lems with convergence to local minima appear. A neural
mesh, as a special type of Growing Cell Structures, learns
the input data through acompetitive learningprocess. The
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Figure 1. A neural mesh reconstruction of the
atlas model with 500K vertices.

term competition is used in the literature to describe the fact
that only the vertex of the mesh which is nearest to the sam-
ple, the so calledwinner, will learn directly from it. The
problem of convergence to a local minimum arises from the
conflicting influence of the various features of the input data
set during the competitive learning process.

It is worth stressing that the convergence to a local mini-
mum does not come from the features themselves but from
the conflict between two or more of them. As an example,
Fig. 2 shows several stages of the reconstruction of the very
elongatedDrill model. In the early stages of the reconstruc-
tion, the two ends of the neural mesh are very active, con-
taining the winners for all the samples from the part of the
data set not covered yet by the mesh. Nevertheless, there is
no conflict between these two very active areas because one
expands upwards and the other downwards. As a result, the
drill model can be correctly reconstructed by a single neu-
ral mesh with a high probability.

A completely different situation arises when there is con-
flict between two or more features. Fig. 3 shows such an ex-
ample where four of the fingers are considered as competing
features. As a result of the conflict, the algorithm may fail
to properly distinguish between them. We notice that two
kinds of errors can appear, false bridges between two fin-
gers and false gaps on a finger. We also notice that there are
no local minima on the thumb because it is quite far away

Figure 2. Neural mesh reconstructions of the
Drill model with 20, 50, 100, 1K, 2K vertices.

from the other fingers.

On the other hand, it would be a mistake to think that
the probability for a correct reconstruction always decreases
with the distance between competing features. See for ex-
ample the eleven reconstructions of the hand model in
Fig. 8. We notice that the probability for a local minimum
between the pointer and the index fingers is higher than be-
tween the index and the ring, despite the larger distance be-
tween the pointer and the index. The reason is that the space
between the index and the ring fingers, rather than the fin-
gers themselves, is a single concave feature which is learned
relatively easily.

From the above discussion, it is clear that we should look
for a statistics based solution to the problem of local min-
ima, rather than try to investigate when this problem occurs
and find an ad hoc remedy for each case. The ensemble is
such a statistical approach, based on the observation that
even though false bridges and gaps may appear with high
probabilities in the reconstruction of a model, it is unlikely
that these false bridges or gaps will appear at the same place
in two different reconstructions. Moreover, it is highly un-
likely that false bridges and gaps will appear at the same
place in the majority of the runs of the algorithm, provided
that we run it sufficiently many times. After the voxeliza-
tion, the false bridges will correspond to misplaced voxels
and the gaps will give missing voxels. According to the sta-
tistical property of false bridges and gaps, a majority vote
on each voxel should iron out the local minima.
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Figure 3. Even if the creation of a false bridge
or gap is very likely, the probability that they
will appear at the same place in two different
reconstructions is low.

3.2. Weak Learning

The combination of several probabilistic models to ob-
tain one with better properties is an intuitively appealing
technique which has been applied in a variety of prob-
lems, achieving many times spectacular results. In super-
vised learning, where it has been studied more widely, the
technique is known under the general termboosting[23].
There, the main problem one has to deal with is how to
construct new models and append them on the ensemble,
so that under certain assumptions its performance is prov-
ably boosted. In the unsupervised learning, which the neu-
ral meshes belong to, the situation is more difficult as we
cannot incorporate in the procedure any feedback from test-
ing the previous models. Nevertheless, in both cases, the
same central question arises; what should be the properties
of the constituent models in order to maximize the perfor-
mance of the ensemble.

One may assume that the better the properties of each
constituent model, the better the performance of the ensem-
ble. However, usually this is not the case. To see this with a
simple example, consider a categorical model with two cat-
egories, e.g., a YES or NO output, which in our case can
represent the existence of a voxel or not. On one extreme, if
we have a deterministic algorithm outputting models with
correct answers in the same 90% of the voxels, then ob-
viously any averaging cannot improve on this 90% rate of
success. On the other extreme, if we have a probabilistic al-
gorithm such that foreveryoutput model the probability of
a correct answer is 51% forany given voxel, then in the
limit, i.e., after averaging many models, the success ratio
will converge to 1 for all voxels. This general idea of com-
bining slightly better than random answers to make a highly
accurate prediction comes in the literature under the name
of weak learning[22].

In the setting of neural meshes, assume that we can tune
their parameters to achieve one of the following objectives:

• The probability for the existence of local minima is as
low as possible.

• The expected number of local minima is as low as pos-
sible.

• The places where local minima appear are as random
as possible.

From the above discussion, it is clear that although the
first two criteria are more reasonable to measure the per-
formance of a single neural mesh, an ensemble would work
better when applied to the meshes generated with the third
criterion. This means that we should not be interested in
lowering the probability for a local minimum to occur but
in avoiding convergence to the same local minimum as we
run the algorithm repeatedly.

In the neural meshes, the first two criteria and the third
are many times conflicting. Indeed, for a usual 3D model, to
minimize the probability for a local minimum to occur, one
has to adopt a conservative strategy for the expansion of the
neural mesh. The strategy includes many iterations of the
Basic Step before each vertex split, repeated smoothing for
a winner vertex movement, and a well-balanced frequency
of half-edge collapses. However, such a conservative strat-
egy is more prone to fail at the exactly same places every
time, which makes the outcome more deterministic. In con-
trast, to satisfy the third criterion for a good member of an
ensemble, we have to increase the flexibility of each neu-
ral mesh, which usually has a cost at the accuracy of the in-
dividual reconstruction.

Note that this conflict between accuracy and the disper-
sion of errors is a common problem in many applications
and partly explains the popularity of weak learning meth-
ods.

3.3. Parameter Tuning

To have a better input for the ensemble, we tune the pa-
rameters of neural mesh reconstruction. For simplicity, we
have all the neural meshes of the ensemble running with the
same set of parameters, although, according to the above
discussion, it is probably a better strategy to run the meshes
with different parameters.

In an analogy between flexible neural networks like the
Growing Cell Structures and theactive surfaces[26, 27,
21], we can see the evolution of the neural mesh as con-
trolled by some physical forces. For example, the move-
ment of the winner towards the sample and the subsequent
smoothing can be respectively considered as an external and
an internal force applied on the mesh. Nevertheless, as they
act locally on the mesh, they are not suitable for tuning the
ensembles.
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Figure 4. As the frequency of half-edge col-
lapses increases, the surface becomes more
flexible and several twists may appear.

Instead, to increase the global flexibility of the mesh, we
increase the ratioCvs/Cec of the two parametersCvs and
Cec. These parameters control how often we split the most
active vertex of the mesh and how often we remove the least
active vertex. In particular, we setCvs = 50 as in [10],
meaning that we split the most active vertex of the mesh af-
ter 50 iterations of the Basic Step. But we useCec = 100
instead ofCec = 250 in [10], meaning that we remove
the least active vertex and further check for other under-
performing vertices every 100 iterations of the Basic Step.

As one intuitively expects, the global flexibility of the
neural mesh increases considerably with a larger number of
vertex removals. This property can be verified experimen-
tally as shown Fig. 4. The extra flexibility may appear in
the form of “twists” of the surface which usually do not ap-
pear when we follow a more conservative strategy for the
expansion of the neural mesh.

3.4. Voxelization and Majority Vote

To average meshes with different connectivity, we first
voxelize them on the same regular grid. We used the Depth-
Buffer-Based voxelization algorithm [14], which is simple
and does not take into account the orientation of a sur-
face. The latter property means that twists similar to the one
shown in Fig. 4 or an orientation change of the initial tetra-
hedron, as shown in some examples in Fig. 8, do not create
any particular problem. We used the source code made pub-
licly available by the authors with some modifications.

In the experiments, we used 7 bits for each dimension
of voxelization, i.e., a1283 cubic grid. Although it is im-
portant to use a fine grid so that a voxelized model contains
enough shape information, a very fine grid would unneces-
sarily complicate the situation by preserving details which

Figure 5. In the top row, the voxelization fil-
ters out the false bridge between the pointer
and the index fingers. This does not happen
in the bottom row.

can easily be captured at Stage 4 of the ensemble algorithm.
In particular, a very fine grid would reproduce in details all
the local minima we want to smooth out. Instead, Fig. 5
shows that the voxelization process, by its own, can filter
out some of the local minima.

After the voxelization process, each voxel has a value of
0 or 1, depending on whether it belongs to the voxelized
model or not. A voxel has the value of 1 in the average vox-
elized model if it belongs to the majority of the correspond-
ing voxels in the models of the ensemble.

3.5. Meshing

The average voxelized model can be considered itself as
the output of the ensemble. However, as our aim is to con-
struct a detailed triangle mesh rather than a coarse vox-
elized model, we mesh this average voxelized model us-
ing the marching cube algorithm [18]. The obtained triangle
mesh is used as the initial coarse mesh input for single neu-
ral mesh reconstruction and gets refined into a detailed tri-
angle mesh.

4. Results

As we mentioned in Introduction, the convergence to a
local minimum is determined at an early stage of the recon-
struction. All operations on the neural mesh are local and
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Figure 6. The moving average Md of the
distance between the sample and the best
matching vertex. After few thousands ver-
tices have been created, the learning process
stabilizes.

thus, when the mesh is refined enough, only small changes
occur in its global shape. This can be verified by the learn-
ing curve in Fig. 6, which depicts the moving average of the
distance between the sample and the winner.

From the learning curve, it is clear that the neural mesh
stabilizes after few thousand vertices. In our implementa-
tion, all the meshes of the ensemble have 10K vertices. The
relatively small sizes of the meshes used for the ensemble
reduces the computational cost, allowing the creation of en-
sembles with many meshes and thus increasing the likeli-
hood of a reconstruction free of local minima. As it is the
case with all neural network ensembles, the approach pro-
posed here is ideally suited for parallelization, where each
mesh of the ensemble can be constructed independently on
a different machine. Nevertheless, due to the small cost of
the reconstruction (about 3 minutes for each mesh), we did
not attempt the parallelization.

Fig. 7 shows some neural mesh ensemble reconstruc-
tions. In Fig. 8, we show the eleven meshes of the ensemble
for each of the Hand, Horse, Armadillo and David models.
In the case of the Hand model, all of the eleven reconstruc-
tions contain local minima at some places but the ensemble
of them generates a model without a local minimum. In the
Horse model, the fifth reconstruction is free of local min-
ima. In the Armadillo model, there is less conflict between
the features, thus the second, fifth, seventh, ninth, and tenth
reconstructions are free of local minima. The reconstruc-
tion of the David shows that the ensemble can capture the
global topology of the reconstructed model.

Note that the Hand and the David models can also be
reconstructed by a single neural mesh, as demonstrated in
[11], provided that we optimize the parameters of the neu-
ral mesh.

Figure 7. The neural mesh ensemble recon-
structions of the Hand, Horse, Armadillo and
David models with 100K, 50K, 100K, 100K
vertices, respectively.

5. Conclusion and Future Work

We experimented with the use of the ensemble technique
to boost the performance of a probabilistic surface recon-
struction algorithm. Our results show that we can recon-
struct a surface free of local minima through averaging,
even when all the individual reconstructions have one or
more local minima.

In the future, we plan to experiment with different vox-
elization methods (e.g., [24]), and meshing methods (e.g.,
[15]), and analyze the influence on Stages 2 and 3 of the en-
semble algorithm. We also plan to test the suitability of the
boosting technique on deterministic surface reconstruction
algorithms, after using random subsampling of the input to
put them in a probabilistic setting.
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Figure 8. Neural mesh ensembles for the Hand, Horse, Armadillo and David models.
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