Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reconstruction of Volume Data with Quadratic Super Splines

MPG-Autoren
/persons/resource/persons45303

Rössl,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45792

Zeilfelder,  Frank
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rössl, C., Zeilfelder, F., Nürnberger, G., & Seidel, H.-P. (2004). Reconstruction of Volume Data with Quadratic Super Splines. IEEE Transactions on Visualization and Computer Graphics, 10(4), 397-409. doi:10.1109/TVCG.2004.16.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-2B18-2
Zusammenfassung
We propose a new approach to reconstruct nondiscrete models from gridded volume
samples. As a model, we use quadratic trivariate super splines on a uniform
tetrahedral partition. We discuss the smoothness and approximation properties
of our model and compare to alternative piecewise polynomial constructions. We
observe as a non-standard phenomenon that the derivatives of our splines yield
optimal approximation order for smooth data, while the theoretical error of the
values is nearly optimal due to the averaging rules. Our approach enables
efficient reconstruction and visualization of the data. As the piecewise
polynomials are of the lowest possible total degree two, we can efficiently
determine exact ray intersections with an iso-surface for ray-casting.
Moreover, the optimal approximation properties of the derivatives allow to
simply sample the necessary gradients directly from the polynomial pieces of
the splines. Our results confirm the efficiency of the quasi-interpolating
method and demonstrate high visual quality for rendered isosurfaces.