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Abstract

We consider a (d + 2)-dimensional class of Lorentzian geometries holographically dual to a rela-
tivistic fluid flow in (d+1) dimensions. The fluid is defined on a (d+1)-dimensional time-like surface
which is embedded in the (d + 2)-dimensional bulk space-time and equipped with a flat intrinsic
metric. We find two types of geometries that are solutions to the vacuum Einstein equations: the
Rindler metric and the Taub plane symmetric vacuum. These correspond to dual perfect fluids with
vanishing and negative energy densities respectively. While the Rindler geometry is characterized
by a causal horizon, the Taub geometry has a timelike naked singularity, indicating pathological
behavior. We construct the Rindler hydrodynamics up to the second viscous order and show the

positivity of its entropy current divergence.
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I. INTRODUCTION

The holographic principle proposes that (d + 2)-dimensional (quantum) gravitational
theories are equivalent to (d + 1)-dimensional field theories living on a boundary of the
higher dimensional spacetime. The most concrete examples of holography are the so-called
gauge/gravity correspondences, where quantum gravity with negative cosmological constant
is dual to certain flat spacetime gauge theories. The gauge theory can be thought of as living
on the timelike boundary at spatial infinity, in which the bulk spacetime is holographically
encoded. A particularly interesting consequence of this duality is that the hydrodynamics
of the gauge theory can be effectively described by the long time, long wavelength dynamics
of a black hole living in the bulk. In this fluid-gravity correspondence, [1, 2] the Navier-
Stokes equations of the fluid are equivalent to the subset of the General Relativity (GR) field
equations called the momentum constraints, which constrain data on the timelike boundary
surface.

However, by studying the dynamics of a Rindler acceleration horizon in flat spacetime [3—
5], two of the authors argued that the relationship between holography and hydrodynamics
is not limited to theories with negative cosmological constant. Recently [6, [7] it has been
shown that one can construct explicit bulk solutions to the vacuum Einstein equations
dual to a particular non-relativistic fluid by perturbing around the Rindler geometry. The
holographic fluid in this case is defined on an arbitrary timelike surface S. of fixed radial
coordinate r = 7. in the bulk geometry [8]. These are the hyperbolas associated with the
worldlines of accelerated observers. Working in a non-relativistic hydrodynamic expansion,
one can solve the field equations subject to the boundary conditions of a fixed flat induced
metric on S, and a regular event horizon. The momentum constraints on S, again are the
non-relativistic Navier-Stokes equations.

This result implies that there is an underlying duality between a field theory on S, and the
bulk interior Rindler space. The nature of holography in asymptotically flat spacetimes has
remained mysterious and it expected that the dual field theory will be nonlocal [9]. Indeed,
an intriguing aspect of these results is that the dual fluid thermodynamics is characterized
by zero equilibrium energy even though it has non-zero temperature. Similarly, one can also
show the entropy density of the fluid is independent of its temperature.

Therefore, studying the hydrodynamics of this fluid may yield valuable clues into the na-



ture of the microscopic duality. In [7] the authors showed that their results can be obtained
as the non-relativistic limit of an underlying relativistic fluid. In particular, they constructed
a general theory for a viscous relativistic fluid with zero energy density and by matching
to the non-relativistic solution were able to determine some of the viscous transport coef-
ficients. While shear viscosity to entropy density ratio saturates the Kovtun-Son-Starinets
bound of 1/47 [10], the bulk viscosity is not an independent transport coefficient even though
the fluid is non-conformal. In the second order viscous hydrodynamics, there are six inde-
pendent transport coefficients, but by matching to the non-relativistic solution one is only
able to determine four of these. Later, [11] studied how higher derivative corrections to
the gravitational field equations affect the properties of the dual fluid. In the AdS/CFET
correspondence, such terms are associated with quantum corrections or other deformations,
which modify the values of the transport coefficients |12]. Interestingly, in this case only the
second (and higher) order hydrodynamics is affected; the shear viscosity to entropy density
ratio and the first order Navier-Stokes equations are universal.

In this paper, our main goal is to expand upon the results of [7] by completely determining
the relativistic fluid dual to the Rindler spacetime. We start by considering a particular class
of (d+ 2)-dimensional Lorentzian geometries. These metrics are stationary and on the slices
S, the intrinsic metric is flat and the extrinsic curvature is such that the Brown-York quasi-
local stress tensor has a perfect fluid form. Thus, these metrics can, in principle, act as
the bulk gravitational dual to a fluid on S.. Solving the vacuum Einstein equations, we
find there are two possible branches of solutions. One is the Rindler solution described
above and the other is the known as Taub plane symmetric vacuum and is associated with a
fluid of negative energy density. The Taub metric has non-trivial curvature and, crucially, a
naked singularity, which indicates pathological behavior in the dual field theory. In contrast,
the Rindler solution is well-behaved, and using the formalism developed in [7] we find the
bulk solution and fluid stress tensor in a derivative expansion up to second order, fixing the
remaining two transport coefficients. In the fluid-gravity correspondence, the fluid entropy
current is mapped into the area current [13] of the evolving horizon surface. We compute
this current to second order and find that its divergence is positive definite, consistent with
Hawking’s area theorem.

The plan of this paper is as follows. In Section II, we review the general construction of

the solutions developed in [6-8] and describe the Rindler and Taub geometries. In Section



ITI, we present the earlier non-relativistic description of the Rindler fluid and use this to
develop and eventually calculate the fully relativistic metric and its corresponding stress
tensor. Section IV is devoted to the calculation of the holographic area entropy current and
its divergence.

Note added: The results in this paper overlap substantially with [14] which was posted

simultaneously on the ArXiv with this paper.

II. RICCI FLAT GEOMETRIES AND FLUIDS

In the following we will construct certain (d+ 2)-dimensional Lorentzian geometries holo-
graphically dual to a fluid flow in (d + 1) dimensions. The fluid is defined on a (d + 1)-
dimensional timelike surface S. embedded in the (d + 2)-dimensional bulk space-time. We
choose the timelike surface to be defined by fixed bulk radial coordinate, r = r.. Consider

the following metric ansatz for the bulk geometry [§]
ds? = gapdz?dz® = —h(r)dt® + 2dtdr + e*"daidx; (1)

where 24 = (t,2°,7), i = 1..d and d > 2. On surfaces of r = r., where r, is a constant, the

induced metric reads
ds? =y datde” = —h(r.)dt* + ") drdr’ . (2)

This metric is flat, as can be seen by the coordinate re-scaling £ = y/h(r.) and 7 = ") 7,

which leads to the Minkowskian form
ds® = yupd7tdz” = —dtf* + dz;d7" (3)

where 7# = (t, %)
The Brown-York stress-energy tensor [15] (in units where 167G = 1) associated with the

r = r, slice is
T,uz/ = 2(K7uu - K;w) ) (4>

where K, = %ﬁ ~NYuw and Ly is the Lie derivative along the normal to the slice N 4 Using
() we find that

T = p = —2dVht, T;=p= 2Vh ((d — D' + %) 05 (5)



where primes represent derivatives with respect to r and the expressions are evaluated at
r = r.. The stress-energy tensor has the form of a perfect fluid with energy density p and
pressure p.

We wish to determine whether there is a solution to the vacuum Einstein equations
Rap=0, (6)

of this general form. The Hamiltonian constraint, Ry N4 N, where N4 is the unit spacelike

normal to the r = r. slices, is
GapNANP =R - K, K" + K? (7)

where R is the Ricci scalar associated with the induced metric of the slice. Re-expressing
this equation in terms of the Brown-York stress tensor and using the fact that R = 0 for

r =7 we get
dT,,T" =T? . (8)

Inserting the general form of a perfect fluid stress tensor and (), one finds that this condition

is satisfied by two types of equations of state [7]

(i) p=0, (i) p= p- (9)

A. The ¢ =0 case: Rindler Geometry

Consider first the equation of state p = 0. Using Eqn. (fl), this condition implies that
t' = 0 and as a result, t = const.. The remaining field equations imply that h(r) = r, and
we get the metric

ds® = —rdt? + 2dtdr + dx;dz" | (10)

which describes a region of flat (d + 2)-dimensional Minkowski space-time in “ingoing
Rindler” coordinates. The null surface » = 0 acts as a causal horizon to accelerated ob-
servers, whose world-lines correspond to the surfaces of constant r = r.. Although the
Rindler metric is just a patch of flat space-time, the associated quantum field theory on this

background has many of the same properties as a black hole solution due to the existence



of the causal horizon. In particular, surfaces of r = r. have a local Unruh temperature (in

units where i =c=1)
1

T= (11)

Strictly speaking, a Rindler horizon does not have a Bekenstein-Hawking entropy density.

However, one can assign the Rindler horizon this entropy based on the holographic principle,
or, more concretely, take the entropy to be the thermal entanglement entropy of the quantum
fields in Rindler wedge [16]. This statistical entropy scales like an area, but is a UV divergent
quantity. If a Planck scale cutoff is chosen appropriately, the entanglement entropy agrees

with the Bekenstein-Hawking formula, i.e. in units where 167G = 1
s=4r . (12)

Given the existence of an equilibrium Unruh temperature and a Bekenstein-Hawking entropy
density, the metric (I0) may be considered as providing a dual geometrical description of
a perfect fluid with zero energy density in one lower space dimension. We will discuss the

hydrodynamics of this case in detail in section III.

B. The p <0 case: Taub Geometry

Consider next the second equation of state in (). In order to construct the background,
we plug-in the values of the energy density and pressure in terms of the metric functions

into the equation of state, which gives

1 W
'+ ———=0. 13
* d—1h (13)
Consider the equation R, = 0. It yields
t+t"=0, (14)
which is solved by ,
t(’f’) = ll’l(Cﬂ" + CQ) . (15)
Inserting this into (I3]), we find
&

h(r) = (16)

(Cl’l“ + Cg)d_l '



Therefore the dual gravitational solution is

ds* = dt* + 2dtdr + (Cyr + Cy)*dx;dx’ . (17)

3
B (017” + Cg)d_l

Redefining the radial coordinate © = Cyr+C5 and re-scaling the time coordinate, this metric

takes the form

ds?® = —Tdi_ldt2 + 2dtdF + P dxda’ (18)

where A is a constant.
In four-dimensions (d = 2) this metric was found by A. H. Taub in 1951 [17]. It can be
considered the vacuum solution exterior to an infinite plane-symmetric object with uniform

mass density. The Kretschmann scalar for this solution reads

1
ABCD

which implies that there is a curvature singularity at ¥ = 0 and the solution is asymptotically
flat at infinity 7 = co. The curvature singularity at ¥ = 0 is timelike and naked, consistent
with the fact that the energy density computed from the Brown-York stress tensor

_ —2dVA

- f(d+1)/2 (20)

is always negative. The global structure of this metric was analyzed in [18]. At infinity there
are two flat null surfaces, while the timelike naked singularity is located in the interior.
While it seems clear that this branch is problematic, let us nevertheless make a few
remarks.
(i) One can make a spatial boost and re-write the metric in terms of the energy density p.
This yields
272

ds® = —Zwuuu,,dx“dx” + 2u, dz"dF + 7 P, da"dz” . (21)

One could then formally allow the variables p(z*) and u*(z*) and solve the field equations
order by order in a derivative expansion in d,p and d,u, as is done in the fluid-gravity
correspondence [1]. However, unlike the Rindler solution, in this case there is no casual
horizon in the background zeroth order solution. Therefore, interpreting this geometry

as being dual to a finite temperature state of a field theory (and then perturbations of this



state as hydrodynamics) is problematic. For instance, imposing the thermodynamic identity

sT = <@> D (22)

p+ P = sT yields

1—d
Since p > 0, this equation implies formally a state of negative temperature (or negative
entropy). A related fact is that the squared speed of sound v? = % is negative, which
indicates the dual field theory is characterized by an instability. It would be interesting to
understand the role of this type of exotic solution in asymptotically flat holography. (ii)
Following [7] we can create a scalar field Lagrangian that mimics the equation of state for

the Taub metric. We consider

1= / I GF (X, 6) (23)

where X = —(1/2)¢""0,,¢0,¢. The stress-tensor is given by

OF
TMV = —QW + g;wF . (24)
This gives
OF
T;w = a—Xau¢aV¢ + g;wF : (25)

If we identify the four-velocity (of a potential flow)
_ 09

Uy, = , 26
N 20)
the stress-tensor has the form of a perfect fluid with pressure F' and
oF
=2X—-F. 27
p 3% (27)

Imposing the equation of state, we find the condition on F'(X), which leads to an action of
the form

1 d+1)

I= / ditte/—gx2leT) (28)

IIT. THE RINDLER/FLUID CORRESPONDENCE

A. General Setup and Non-relativistic regime

In order to study the hydrodynamics of the fluid living on the r = r. slices in Rindler

geometry, we have to perturb this background. The first step is to make a set of coordinate

9



transformations to obtain a new metric (or class of metrics). These transformations should
keep the induced metric at r. flat. The transformed metric should also preserve a perfect
fluid form of the Brown-York stress energy tensor associated to the slice, as well as the
timelike Killing vector and the homogeneity in the z* direction. It was shown in [7] that
these set of conditions uniquely identify the two diffeomorphisms, namely a boost and the
translation. The boost of the metric takes the form,

Vit = /et — B, ﬂ-+ﬂ—vﬁ¢ﬁﬁ+w—1)@ :

(29)

where v = (1 — 82)~Y/2 and f3; = r. "/?v; is the boost parameter.
One can also perform a linear shift of the radial coordinate and re-scaling of ¢, which

moves the horizon from r =0 to an r =r, < r,,
r—r—ry t— (l—rh/rc)_l/Qt ) (30)

The resulting metric for the flat space-time is

dt? r—rp 2y 2vv; ,
ds? = ———— (1)2 — ) + dtdr — —————dz'dr
1—v2/r. L—rp/re m rcm

2u; r—Te ; ViV; r—Te i 90
+ 1 N U2/Tc (Tc — Th) dI dt + <5Z] Tg(l _ '1}2/7’0) (1 _ /rh//rc)) d!L’ d:L’ . (31)

We now can investigate the hydrodynamic system dual to the above metric. To do that,
we need to consider the dynamics of the metric perturbations within a hydrodynamic limit.
One can perturb (31I) by promoting the spatial velocity and horizon radius to be functions of
space and time: v'(¢, 2') and ry,(t, 2°), while r, remains fixed. The metric is no longer flat and
no longer a solution of the vacuum Einstein equation. In previous works [6, [7] a particular
non-relativistic hydrodynamical expansion, first proposed in [2, [19], was introduced. In

terms of a small parameter e,
vt~ ev'(ext, €t) P~ e P(ex’, €'t) (32)

where the non-relativistic pressure P(t, z%) is defined as a small perturbation of the horizon
radius [22]

rn=0+2P + O(e) . (33)

Using (32)) one scales down the amplitudes (e can be thought of as the inverse of the

speed of light), while at the same time scaling to large times ¢ and spatial distances z°.

10



Expanding the metric (1)) out to O(€®) in this manner yields the “seed metric” solution

originally found by [6]

ds? = —rdt? + 2dtdr + dz;dz

_9 (1 _ 1) vdzidt — 2 daidr

Te Te

w1 (02 2P
+ <1 - 1) (02 +2P)ar? + " daida?] + <”— ) dtdr . (34)

Te Te Te Te
The seed metric is the unique singularity-free solution to the vacuum Einstein equations up

to O(€?), provided d;v" = 0. As required, the induced metric on the slice r = 7. is flat.

The Brown-York stress-tensor for the seed metric is [6]

dz? v o
v Ui dridt + — dt2 +r, —3/2 [Pém + vv; — 27"082-%] dz'dz’ + O(€?) .

T, dxtdx” =
' e

(35)

In [7] it was noticed that this result can be obtained as a non-relativistic expansion of a
relativistic viscous fluid stress tensor. To see this, we work in the relativistic hydrodynamic
expansion in the derivatives d,. This is equivalent physically to an expansion in a small,
dimensionless Knudsen number, A = ’”pr, where £,, ¢, is the mean free path of the underlying

system and L the characteristic scale of the perturbations to this system. The stress tensor

has the form of a perfect fluid plus viscous terms which are first order in derivatives,
T = puystty + PPy — 20Ky — EF(0xu’) . (36)

Here K\, = P;\Plf’ gy is the fluid shear, n the shear viscosity, and ¢ the bulk viscosity
[23]. The viscous terms above are written in the Landau or transverse frame [20], which can

be defined as a condition on the first order part of the relativistic stress tensor
(1),,0 —
T,/u”=0. (37)

This frame is usually constructed so that the viscous fluid velocity is defined as the velocity

of energy transport. The seed stress tensor in (35]) follows from the e expansion if we identify

1 - 1 P
I i 0] 3
! Te U2(17U>7 P O (6 )7 p \/Fc 7”3/27 n

This is consistent with the earlier equilibrium calculation of p and p. Note that the bulk

—1. (38)

viscosity term in (B actually drops out and bulk viscosity is not an independent transport

11



coefficient. This is due to the fact that at viscous order we can impose the ideal order
equation g,u” = 0, which follows from p = 0.
In GR, the momentum constraint equations on the surface S, can be expressed in terms

of the Brown-York stress tensor
R AN =0T} =0, (39)
At second and third order in €, momentum constraint equations are
RZINA = v V2REY 4 r12PRED = 0., (40)

At second order, this is equivalent to the incompressibility condition 9;v* = 0 we discussed
above. At third order one finds the Navier-Stokes equations with a particular kinematic
viscosity
Opv; + v 0;v; + ;P — r.0%v; =0 . (41)
Therefore, imposing the incompressible Navier-Stokes equations on the fluid variables guar-
antees the dual metric is a solution to the field equations.
In [7] the higher order corrections to the seed metric ([B4]) and the corresponding correc-
tions to the Navier-Stokes equations and the stress tensor were determined. As before, these
corrections match the non-relativistic expansion of some relativistic fluid hydrodynamics.

For example, to second order, in the Knudsen number, O()\?), the general stress tensor for

the Rindler fluid has the form

T/f{fl = puyuy, + pP,, — 20k,
+ a1l + K3, Q) + 639, 0y + 4P} PI DDy Inp

+¢5K, DInp + C6Di' Inp D Inp , (42)

where D = ut0,, Di = P/0,, and Q,,, = P:Plj’ OiaUug). There are also viscous corrections to

the energy density p at this order, which can be parameterized very generally as
p = b1 K, KM + b0, Q" + bsDInp DInp + byD*Inp + b5Di_ Inp D 1np . (43)

The ¢;, i = 1..6, and b;, j = 1..5, are the possible new transport coefficients. The form of the
Brown-York stress tensor at O(e*) and O(€®) matches the expansion of [#2) at these orders,

with
bl = _2\/70_07 bg = O,Cl = —2\/7’70, C3 — —4\/7’70, Cy = Cqy = —4\/7"_6 . (44)

12



To fix the remaining second order transport coefficients one has to work to even higher

orders in the e expansion.

B. The relativistic fluid

The non-relativistic results of [7] suggest that there is underlying relativistic description
of the fluid dual to Rindler space-time. In this section we develop an approach to the
hydrodynamics of this system which is entirely relativistic. The first step is to write the

metric ([B1) in a manifestly boost covariant form. This metric is
ds? = gapdrdz® = —(1 + p*(r — r.))u,u,datds” — 2pu,datdr + P, dz"dz” . (45)

In this line element we replaced r;, with the relativistic pressure p using the formula

1
b=

The coordinates x# = (t,2%). The fluid velocity is defined as u* = v(1,v%), where v =

(46)

(r2 —v?) Y2 and P,, = v, + u,u,. If one expands this metric in powers of v* and defines

1 P

then up to O(e?) (@H) reproduces the seed metric. An additional check is to compute the

p= (47)

Brown-York stress tensor for this metric at » = r.. The space-like unit normal to this surface

is

T
W= VT o= (48)

Therefore, we need to find the inverse metric (this is also needed in the our calculations later

on). Using the formula ¢4¢gcp = 64, we find

gr=p70; gt =put g =P, (49)
where we have defined ® = 1 + p*(r — r.) for convenience. Thus, we find n” = p~! and
n* = u#. Using

K o 1 A a A 8 A
wo— 5 (n VAV;LV + YurOp T + YawOun ) ; (5O>

13



@) gives
T, ds"dx" = pP,, dz"dx" | (51)

which is the ideal part of (B8] with p = 0.

With these basic criteria satisfied, we can consider perturbations of this metric. At
this point (@) is simply a boosted form of the flat Rindler metric. To perturb, we now
treat ut(x*) and p(x*), but leave 7. fixed. This follows the standard approach used in the
fluid-gravity correspondence [1]. The metric is no longer a solution to the vacuum Einstein
equations, but one can expand and work order by order in derivatives of the relativistic

fields u* and p. Now
ds* = gﬁ%dxAde = —Qu, (2")u, (z")dz"dz” — 2p(2")u,datdr + P, (x")dz"dz”  (52)

is the solution at zeroth order, i.e. Rap =04 O(\). The strategy for solving the equations

is as follows. One introduces a first order correction to the metric 6g",
g=9"9+dg" . (53)

The corrected metric at first order induces a & RS}B at the same order (necessarily involving

only radial derivatives). We want to solve for the metric 5g(*) so that
SRY, + Ry =0, (54)

where J%S}B comes from the zeroth order metric. This method can be generalized to solve
for the metrics at higher order in . If we have a solution to (n — 1) order g"~Y, then one

introduces a correction d¢™ so that
() | pln) _
R s+ Ryp=0. (55)
The first step is to compute the general form of 5Rg%. The Christoffel symbols are

1 = n = n = n
S s = 5007 (Vedalh + Vedafih — Vodgsl) (56)

where V4 is covariant derivative with respect to the background Rindler metric. Hence, we

need the Christoffel symbols for the Rindler metric. These have the form

— 1 _ 1 _
I, = §(I>uuu,,; Iy = P I'*,\ = ipu“u,,u)\ (57)

14



with the rest being zero.

In our solution, we will choose the gauge so that at all orders

Grr = 0; Gry = —DPUy - (58>

This implies that ¢ g,(f) =0and ¢ gﬁﬁ) = 0. Expanding out (B6]) gives the following results:

5T, =0 (59)
5Ty = %p_lu)‘ﬁr(égfg\)) (60)
oI = —%p‘zq)ﬁr(égfb’;)) — %uuuyu’\u"égf\? (61)
ST =0 (62)
ST, = %P‘Mﬁr(ég,(f;)) (63)
3% = 5 (=0 w0.00(3) — PP w042 (64)

Now we use the formula

SRY) = =V 40T 5 + Vel ap . (65)
The final result is
5R(n) _ 182 P)\J(S (n)
rr T _5 r( g)\a) (66)
) _ 1 ros my L L 1020 ae ()
SR = Jpudh (P0g0) + 5 02 (w5) (67)
n 1 n n 1 n 1 - n
ORG) = =5 (a0, (wdg5) + w0, (w3g(5)) ) = 50-(0(2)) — 502002 (0g()
1 n 1 n
— §uuu,,8r(u)‘ugégf\a) + Z@uuuyar(P’\"ég/(\ N, (68)
Notice that these satisfy
SRIn" =0. (69)

Using (B5) we can now obtain the general solution for 591(4",%. This solution needs to be
consistent with the following boundary conditions: (i) no singularity appearing at r = 0
and (ii) induced metric remains flat on r = r.. The second implies that all the n > 1 order

corrections must vanish at r = r.. Projecting into components normal and transverse to u*

15



we find

Tl

mm@%ﬂﬁjéw%}wWWWg (70)

unfaﬁ?:(ua(1—rﬁgmer—ap/%dw/de7ﬁégh (71)

u)‘u"égf\z_) = (1 —7r/rs) A (z) +p/rc dr’ /ITC dr"” (pP’\"RE\Z) —pt®RM — 2]%7(3)11)‘) .
(72)

where Vu(") (V,f")u“ =0) and A™ are free, undetermined functions at this stage.

C. The first viscous order

With this general solution for any n, we now consider the first order solution, which
requires the J%S}B computed from the zeroth order equilibrium Rindler metric. To start, we
need the Christoffel symbols to first order in A. These can be read off from the second order
connection presented in Appendix A.

Using these results, we find ultimately for Ricci tensor components

R =0

(1)

RM =0

A 1

R;(,L:E/) = a(Hpul/) + Dp Uy Uy + §p(a)\u)\)uuuu +pu(uau) ) (73)

where the operator D = u*d) and a, = 1”0, u,.

The equation R,4n? = 0 is the momentum constraint. However, as we saw earlier (6J)
the 0R, 4 piece satisfies this condition automatically. Therefore we must have u”f%“,, =0.
Projecting along u* and orthogonal to u* with the projector, one finds the relativistic ideal

hydro equations

Dt =0, (74)
a, + Plj\a,\ Inp=0. (75)

So, as expected, the momentum constraints are the relativistic Navier-Stokes equations.

16



Inserting (73)) into (TOHZ2) yields the solution

W P)ogly = (1/2)(1 = r/ro) VD (") | (76)
P)PZog\) =0, (77)
u”u”égfj} = (1 —7r/rs) AW (a1 . (78)

To determine these functions, we need to impose “gauge” conditions on the 1st order, viscous
part of the Brown-York stress tensor. Using (d]) we find the first order part of the stress

tensor is

T3 = ((rep) ™ AN + 27" Dp) v + (rep) ™ (AW uu, — U(MVV()l))

- 28(Hu,j) — 2p_IU(Ha,,)p, (79)

where we have imposed d,u* = 0. We now require the stress tensor satisfies a Landau-like

condition (37). This yields an equation for Vil):
Vu(l) = —2r.P;0,p + 2rcpa, . (80)

The second condition we demand is for p to be the pressure at all viscous orders. Thus the

term proportional to 7y, must vanish. This implies
AW = —2r.pD(Inp) . (81)
Feeding these results back into the stress tensor, we find simply
T3) = —2K,, . (82)

So, as we expected, the shear viscosity n = 1. The complete solution for the metric to first

order is (imposing the ideal hydrodynamics equations)

ds* = —(1 + p*(r — r.))u,u,datde” — 2pu,datdr + P,,dx"dx”

+ 2p(r — 7o) D(In p)u,u, dat dz” — 4p(r — rc)u(uPy)‘)@A In pda*dz” . (83)

D. The second viscous order

In order to solve to second order in A, we need to find Rf)g. The first step is to compute

the connections out to second order. Then it’s a matter of grinding though the calculations
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of the Ricci tensor, determining the solution, and then computing the Brown-York stress
tensor. This will fix all of the second order ¢; transport coefficients. The connections and the

Ricci tensor that come from metric (83]) are complicated, so we present them in Appendix

A.

We find that at second order the momentum constraint equations RuAnA = 0 projected

once on ut and once on P* are:

O ut — p o, ut O\’ — p_le(’@pu”&,uV =0 (84)

a, + P:‘@,\ Inp — p_lP”"&,&,uM + p_luMP””&,u)‘&,u,\ + 2p_1P”"8,,uM801np =0. (85)

Solving the equations (THZZ) for dgl we get:

1
w'Psg® = P = 1) (=2PL0,u’d,lnp + 2P0z, d,lnp — PP 9,0, + u, PP 9,,0,u")
+ (r— TC)VV@)(ZL'M) (86)

P:P,fég/(\i) =(r— rc)Pﬁ‘Pf (—0uInpdslnp + 20,0sInp + 20 aug)u’d,Inp — 2u” 0,0 up)

3 1
+2u” Oy u(30u)Inp — agaq — §0au’\05u,\ + §P°p00u58pua + &,u(aag)u")

1
+ sz (7‘ — T’C)2P5Pf (—280u(a85)u" + P"A&,uﬁawa + 8auA85uA) (87)
1
u”u”égfg) = ipz(r —7.)? (8Uu°‘0au" + P79, u” Oyu,, + 4P"’\861np8,\lnp)
1
+ Zp4(7’ —r.)? (—d,uaaaug + PU’\aguB@Auﬁ) + (r — T’C)A(2) (xH). (88)

The corresponding Brown-York stress energy tensor is:

Tow =Y (p+p7" (—A(z) + 0,ur0\u” + PP 0,u"Oyu,)) + puyu,
+ (—28(M)u,,) + 2u, 0,y Inp + 2uuu,,u’\8,\lnp)
— p tuu, AP+ 2p_1u(uPIf)V;)(2)
— p_lPﬁPf (—48a1np851np + 20,08Inp + 20(qugyu’d,Inp — 2u” 0,0 ug)

3 1
—§0au’\05u,\ + §P”p00u58pua + 0Ju(a8ﬁ)u") ) (89)

As before, we impose the gauge condition that the pressure be unchanged from its equilib-
rium value. This condition eliminates the derivative parts of first term proportional to 7,
in (89 and fixes A® to a non-zero value. Note however that the stress tensor now has a

term proportional to u,u, (in the third line above). Hence the traditional Landau gauge
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T, ,E?)u“ = 0 will be inconsistent. To fix VM@) we instead require
2
TP u" Pl =0. (90)
With these values fixed, the stress tensor can be put in a more conventional form:

Ty = pPu — 2K = 2p iy, KogK = 2p7 C,, K0 — 4p™ L, Q) — 49712,
— 4p_1P3Pf80051np —4p™ 'K, Dlnp + 4p_1D/flnpD,f1np (91)

Due to the u,u, tern, one can see that the energy density is no longer zero. It gets following

correction in the second order:
W, v -1 A o —1 ppo v 2 %
p=Tuut'u" = —p  O,u o u’ —p P 0,u"0yu, = —EICWIC ) (92)

We can also read of from the stress tensor the transport coefficients. In the notation of |7,

we get:
c=-2p"', c=ci=c=c=—4Apt, cg=4p . (93)

which is in agreement with [7], who found the first four transport coefficients and the energy
density.

Finally for the metric solution g,(fy) we get:
1
59;(3,) = U,Uy, <§p2(r —70)? (ICaglCo‘B + QPUA&,lnpﬁ)\lnp)
+ =p'(r = ro)? (QpQ®) +2(r — re) (lCaglCo‘B))

1
§p2(r —70)? (4Qp"0(,lnp + Pkaaxﬁaup)

1
2
+ 2U(MPVP) <
—(r = 1) (=P 0\0,u,, + 2K 0, Inp — 2Qp"801np))
(= 1) (2KCuphCE + KL ) + 42, Y, + AP B0, Oplnp + 4K, Dinp
—4D/flnlef1np)

+ p2 (r— Tc)z (QupQup) . (94)

For reference, the inverse metric of (@4)) is presented in Appendix B.
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IV. THE ENTROPY CURRENT

In [13] it was shown that in the fluid-gravity correspondence the entropy current of the
dual fluid on the boundary can be mapped into the area current of the black hole event
horizon. Thus the second law of thermodynamics is equivalent on a geometrical level to
Hawking’s area theorem. Here we will follow this general prescription to calculate the
entropy current for the Rindler fluid to second order in the gradient expansion. Given the
exotic properties of the Rindler fluid, it is clearly of interest to determine whether it behaves
consistently with the second law.

First, since metric solution is no longer stationary, the event horizon is dynamical and its
location varies in time and space. In order to find rj(z*) we will need to solve the following

equation in the derivative expansion
g Pou(r — ru(z")0p(r — rp(a™)) =0 . (95)

Using our previous results for the metric, it is straightforward to show at second order

12 3 1
_ af af
Th =T — E + ];u“aulnp — 2—p4]Caglc — Q—pZ’LQaﬁQ
8 1 4
—5gmmmm+EDwmmﬁw+Epumm. (96)

We can define a co-dimension 2 hyper-surface by two null normals to the hyper-surface. The

ingoing null geodesics n? and the outgoing null geodesics ¢4 are:
t=A" ("=B, n"=-1, n'=0. (97)
The unknown functions A* and B can be found from the following relations:
(=0, n'ng=0, ln*=-1. (98)

From these conditions we see that there is another freedom in determining ¢* in any order
except from the zeroth order. Therefore, we impose the requirement that the vector ¢4 will
be the normal vector to foliations of hyper-surfaces that do not intersect with each other.

This requirement is called the Frobenius condition and is expressed by the equation:

vAdv, va = gapl? . (99)
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This gives us, on the event horizon (putting r = r(z*)) , the same null normal vector that
we get by calculating the normal to the event horizon directly from the equation that defines
the normal to the event horizon: ¢4 = g4Bdg(r —13,).

To second order, the vector ¢4 on the horizon is:

2 6 2 2
0" = 0"0yry, = u"0,lnp — —u"9,Inpu”d,lnp — — P*°0,,Inpd,Inp + —u"u’0,0,Inp (100)
p p p p
1

1 2 2 2
0 = —ut — — P P 9,0,u, — W 0\Inp + — P9, Inpufd,lnp — — P*uld,0,lnp .
D 2p j% D D

(101)
In order to compute the entropy current we will employ horizon expansion 6 along the

horizon generator ¢4
1
Oy = (g™ + 0P + (Pn?) Valp = ];au (Vapt ¥ + fgpt™r + Jgpe®H) . (102)

We can identify the entropy current as the term in the brackets up to a overall factor of
1/4G (which in our units of 167G =1 is 4m) |21].

In order to compute the entropy current we therefore need two ingredients: The square root
of the metric determinant, and the null generator ¢#. We explained how to get the latter.
The former can be derived by computing the expansion of the null normal Ej“, where (7 = (7
and (v = (©r then we will get only the first term in the brackets of (I02) and we can
identify immediately the square root of the determinant of the metric.

Combining all the ingredients we get the following result for entropy current:

St = % ( — ]% (lcaﬁicaﬁ — gQaﬁQaﬁ + 2P §,05Inp + 2K Dlnp — QPO‘ﬁﬁalnpaglnp)) :
(103)

Taking the divergence and imposing the Navier-Stokes equations gives

9,5" = QLGp </Ca5 + 2ip (=5 aput 0y Inp + 40, Inpdslnp — 40,05lnp — 3KEK .5 — 49(1”(2,,5)) 2 :
(104)

which is clearly non-negative, just as expected from the area increase theorem applied to

the Rindler horizon.

21



Appendix A: The Connections and Ricci Tensor
The connections up to 2nd order from the first order metric (&3]) are:

1
'y = 5(38“1np + puy, + u,uO\np + ud,u,,)

+ (1 — 1) (0, urOxInp + u, P9, InpdyInp — P 9,u,,05Inp) (A1)
I, = %(—@uu,,) + 1,0, lnp + %puuu,, + uuuuu’\&\lnp)
+ p(r — r¢) (Buu0,ylnp + %pu“u,, + %UA(%\(UHU,,) + u“u,,u)ﬁ)\lnp)
+ p*(r — rc)2(2u(u0,,)up0plnp — P’\pa\(uuuu)aplnp)
+ (r—re) (28ulnp8,,lnp + 20,0,Inp + 2u,0,)u”d,Inp + 20,1, u”0,Inp
— uuu,,u’\a,\lnpupﬁplnp + utdy, (uuu,)u?0,Inp + u“u,,uAﬁAupﬁplnp
+uuuyupu’\0p0,\lnp + QuAGAu(H&,) Inp + 2u(uu’\8,\8,,)1np) (A2)
I, = %p (=0,u” — u, P"0\Inp + P*70,u,,) (A3)
I o % (pu”uuu(7 — 2u" 0, ey + 2u"Uu(,0p)lnp + Qu,‘uau)‘axlnp)
+ %pz(r —re) (—2u(08u)u” + P”)‘a,\(uguu))
+ p(r —r.)P"?0,lnp (28wu0) — 20,00y Inp — 2uuuou)‘8)\lnp)
+ p(r — re) P <2u(00“)uxup8plnp — 28(Hu,\P(f)8plnp — 20, (pus) Py 0,lnp)
(Ad)

— O\ (uou,u’0yInp — 2u(HPCf) 8plnp))
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The Ricci tensor calculated from the 1st order metric (83) up to 2nd order is:

R® = —p* (—0,u"d,u” + P D,u”d,u,)

— N =

f%g) = §p(2uuup0plnp — 2P 0,u,,0,Inp + uuP”)‘ﬁplnp&,lnp —0,0,u” — uuﬁyu”u)‘ﬁxlnp
— uuP”’\&,@Alnp + O, u”u’ Opuy, + P77 0,0,u,,)
1
+ §p3(r —re)(—u,0,u”0,u’ + u“P”’\&,ugﬁ)\uo) (A5)
. 1 3
Rffy) = —iﬁulnp&,lnp + 20,0, Inp + 2u,0,yu”0,Inp + O, uyu’0,Inp + §u’\8(uuu,,)up8plnp
+ Qu,‘uyu’\ﬁ,\u”@plnp + 2uuu,,upu)‘8,\8plnp + 2u(uu)‘8>\0y)lnp — 0,7 Oty — u” 0y 0y
+ O,u”u(, 0,y Inp + u(,u’ 050,)Inp + v Oy (,0,)Inp + uuuyagu”u’\a,\lnp — 0,0,Inp
1 1 1
- u(u&,)lnpu’\ﬁxlnp - §uuu,,up0plnpu)‘0,\lnp — §up0puuu)‘8AuV — §8uu"8,,ua
1 1 1
+ §P"p80u,,8puu — iP"pap(uuu,,)ﬁolnp + §uuuyP"A801np8,\lnp
1
+p*(r — 7. (—d,u(uau)u” — U0y Opt” + §8ou"u)‘8,\(uuu,,) + 1,0,y u’ O,Inp

1 1
— §P"p8p(uuuy)8olnp + uuu,,u)‘&\u"&,lnp + 58“11)‘8,,1@\ — P””E?pu,,aguu)

1
+ §p4(r —7¢)? (=, 0007 Opu™ + wyu, P7PO,utdyu, ) - (A6)

Appendix B: Inverse metric

The inverse metric of (04)) to the 2nd order is:

g = ]% (14 p2(r — 1)) - ]%(r — r)u*dxlnp

— %(r —7.)? (lCaﬁlCo‘B — 6P”’\8,\lnp8plnp) — %p2(r —7¢)3 0507

_ ]%(r Kk (B1)
gt = %u“ —2(r — r.) P*05Inp + %p(r —1¢)? (49" 0,Inp + P** P 9\0,u,)

— %(r —Te) (—P“pP’\"&\@Jup + 2K 9,Inp — 20779, 1np) (B2)

g = P (216‘;16”” + 4K ) 40" QP+ APPPYP9,05lnp + 4K Dlnp

—4Dl“lnle”lnp) (r—re) —p*(r — Tc)2Q”prV (B3)
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