Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Hardness of Set Cover with Intersection 1

MPG-Autoren
/persons/resource/persons44863

Kumar,  V. S. Anil
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44034

Arya,  Sunil
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44586

Hariharan,  Ramesh
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kumar, V. S. A., Arya, S., & Hariharan, R. (2000). Hardness of Set Cover with Intersection 1. In U. Montanari, J. D. P. Rolim, & E. Welzl (Eds.), Automata, Languages and Programming, Proceedings of the 27th International Colloquium (ICALP-00) (pp. 624-635). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-33B7-F
Zusammenfassung
We consider a restricted version of the general Set Covering problem in which each set in the given set system intersects with any other s et in at most 1 element. We show that the Set Covering problem with intersection 1 cannot be approximated within a $o(\log n)$ factor in random polynomial time unless $NP \subseteq ZTIME(n^{O(\log\log n)})$. We also observe that the main challenge in derandomizing this reduction lies in find a hitting set for large volume combinatorial rectangles satisfying certain intersection properties. These properties are not satisfied by current methods of hitting set construction.