
Computational Geometry 15 (2000) 25–39

Progressive transmission of subdivision surfaces

U. Labsika, L. Kobbeltb,∗, R. Schneiderb, H.-P. Seidelb
a Computer Graphics Group, Universität Erlangen-Nürnberg, Erlangen, Germany

b Computer Graphics Group, Max-Planck-Institut für Informatik, Stadtwald, 66123 Saarbrücken, Germany

Abstract

Triangle meshes are a standard representation for surface geometry in computer graphics and virtual reality
applications. To achieve high realism of the modeled objects, the meshes typically consist of a very large number
of faces. For broadcasting virtual environments over low-bandwidth data connections like the Internet it is highly
important to develop efficient algorithms which enable the progressive transmission of such large meshes. In this
paper we introduce a special representation for storing and transmitting meshes with subdivision connectivity
which allows random access to the detail information. We present algorithms for the decomposition and the
reconstruction of subdivision surfaces. With this technique, the receiver can reconstruct smooth approximations of
the original surface from a rather small amount of data received. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Level of detail management; 3D shape simplifications; 3D geometric shape modeling

1. Introduction

In computer graphics and virtual reality applications, triangle meshes have emerged as a common
and most versatile free-form surface representation. For realistic objects it is often necessary that these
meshes consist of a large number of faces. Using distributed data bases and remote digital libraries for
archiving mesh models, it is getting highly important to be able to efficiently broadcast large meshes over
low-bandwidth data connections like the Internet. Therefore the development of algorithms for progres-
sively transmitting surface geometry is mandatory. The de facto standard for doing this in the case of
triangle meshes is the technique ofprogressive meshes[6], where an initial, coarse shape is transmitted
first and can be displayed immediately. With more detail information being received, the mesh can be
progressively refined until the complete model is recovered.

In this paper we explore an alternative method for the progressive transmission of special triangle
meshes which have the so-calledsubdivision connectivity. Meshes with subdivision connectivity are
generated by many different algorithms where a uniform splitting operator is used for the refinement of
an initial control mesh. By this refinement operator each triangle is divided into four by inserting one

∗Corresponding author.
E-mail address:kobbelt@mpi-sb.mpg.de (L. Kobbelt).

0925-7721/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(99)00045-0



26 U. Labsik et al. / Computational Geometry 15 (2000) 25–39

Fig. 1. Progressive meshes versus subdivision meshes. In the top row, a progressive mesh for the Stanford bunny
is shown. From left to right: initial base mesh, 1%, 3% and 10% of the detail information received. The bottom
row shows the progressive transmission of a (remeshed) subdivision representation of the bunny with the same
percentage of included detail information.

new vertex per edge. Any given mesh with arbitrary connectivity can be converted into a mesh with
subdivision connectivity within a prescribed approximation tolerance [4,8,9].

Besides the straight forward level of detail semantics, the use of subdivision meshes has several
advantages. First, it is easy to generate smooth approximations of the original surface by applying a
stationary subdivision rule on some coarser level of detail. In regions where no detail information is
available, the vertex positions can be predicted by the subdivision operator. This is not possible for
progressive meshes where onlycoarseapproximations of the original mesh can be displayed but not
smoothones (see Fig. 1). The superior approximation power of subdivision basis functions compared
to plain piecewise linear surfaces enables a significant reduction of the communication overhead while
preserving the visual quality of the displayed object.

Since subdivision surfaces are naturally equipped with a global parameterization it is easy to identify
the location of a detail coefficient by its dyadic barycentric coordinates within the associated base
triangle. This indexing enables random access to the detail features in arbitrary mesh regions and on
any level of detail. Notice that progressive meshes on the other hand are static in the sense that once the
sequence of detail coefficients is generated, its ordering is more or less fixed due to mutual dependencies.
Hence, a (real-time) multi-media communication protocol that cannot guarantee the correct ordering of
the data packages is not appropriate for progressive meshes. Since there is not sufficient redundancy in
the progressive mesh representation, one lost package during the transmission makes the reconstruction
of the remaining detail information impossible.

The paper is organized as follows. After surveying the used subdivision schemes in Section 2 and
discussing some related work in Section 3, we present a method for the decomposition of a given mesh by
using inverse subdivision in Section 4. In Section 5 we define our representation for the detail coefficients
during the progressive transmission of the mesh and in Section 6 we show an algorithm by which the
receiver reconstructs the mesh from the transmitted data.



U. Labsik et al. / Computational Geometry 15 (2000) 25–39 27

Fig. 2. Subdivision of an octahedron. Each face of the mesh is split into four triangles and the resulting mesh is
smoothed by shifting the vertices. Even vertices in the refined mesh are marked by solid bullets.

2. Subdivision schemes

Subdivision schemes generate a sequence of successively refined meshes which converge to a smooth
surface in the limit [13]. A uniform subdivision operatorS refines a given meshMk to a new meshMk+1.
Each refinement step can be considered as the application of a topological 1-to-4 split operation followed
by a smoothing operation that shifts the mesh vertices (cf. Fig. 2). Splitting each triangular face into four
new triangles by inserting new vertices at the midpoints of the edges, increases the resolution and hence
switches the geometry representation to the next level of detail. The smoothing operation computes the
new vertex positions by fixed linear combinations of the neighboring vertices, which is called the stencil.

The subdivision process starts with an initial meshM0. The set of vertices on thekth level of detail
Mk are denoted byPk . By applying the subdivision operator

S :Mk→Mk+1 (1)

refined meshes are generated. The meshMk+1 has verticesPk+1 which can be classified in two different
sets: theevenverticesPk+1

even= Pk which correspond to vertices of the unrefined meshMk , and theodd
verticesPk+1

odd = Pk+1\Pk which are added in the current refinement step. The refined meshesMk have
subdivision connectivity generated by the uniform splitting operator.

For our implementation we use two different subdivision schemes, the Butterfly scheme [3,18] and
Loop’s scheme [10]. The two schemes differ in the way they compute the positions of the vertices on the
next refinement level.

2.1. The Butterfly scheme

The Butterfly scheme is an interpolatory subdivision scheme. This means that the vertices of all
refinement levels lie on the limit surface. Hence, when refining a triangle mesh, the even vertices do not
change their position, i.e., the smoothing rule for the even vertices is simply the identity. The positions
of the odd verticesqk+1 are computed by the following linear combination of neighboring vertices:

qk+1= 1
2

(
pk1+pk2

)+ 1
8

(
pk3+ pk4

)− 1
16

(
pk5+ pk6+ pk7+pk8

)
. (2)

The location of the verticespi in Eq. (2) can be found in Fig. 3. The vertices in such a configuration used
for subdivision schemes are called stencil points.



28 U. Labsik et al. / Computational Geometry 15 (2000) 25–39

Fig. 3. Configuration of the stencil points in the Butterfly scheme.

2.2. Loop

In contrast to the Butterfly scheme, the Loop scheme is non-interpolatory, i.e., the even vertices
change their position in the smoothing step. The positionpk+1 is computed as a weighted sum of the
corresponding vertexpk from the coarser mesh and its direct neighborspki :

pk+1= α(v)

α(v)+ vp
k + 1

α(v)+ v
∑
i

pki . (3)

Here,v is the valence ofpk . By the term valence we understand the number of neighbors connected to a
vertex. The weight coefficientsα(v) can be found in [10,19]. In the regular casev = 6 the value ofα(v)
is 10. In the general case,v 6= 6, the weight coefficient is defined as

α(v)= v1− β(v)
β(v)

, β(v)= 5

8
− (3+ 2cos(2π/k))2

64
. (4)

The positions for the odd vertices are calculated by

qk+1= 3
8

(
pk1+pk2

)+ 1
8

(
pk3+ pk4

)
. (5)

2.3. Adaptive subdivision

Under uniform subdivision the number of faces grows exponentially with the refinement level.
Although the iterative refinement always leads to a mesh with globally improved smoothness, in some
areas with low curvature no significant improvement of the mesh quality is achieved by additional
subdivision steps. Hence, subdivision should only be applied to faces which do not satisfy some
prescribedflatness criterion; the other faces can remain coarse. This technique is called adaptive
subdivision. It reduces the number of triangles in the resulting mesh and improves the rendering
performance.

For the problem of progressive transmission we can use adaptive subdivision to refine the mesh only
where detail information is inserted. Hence, the number of triangles stays as small as possible and the
receiver achieves a higher performance when reconstructing and displaying the mesh.

Using adaptive subdivision is more difficult than uniform refinement since we have to avoid cracks in
the mesh where faces from different refinement levels meet. In order to minimize the number of special



U. Labsik et al. / Computational Geometry 15 (2000) 25–39 29

Fig. 4. Configuration of the stencil points in the Loop scheme.

Fig. 5. In adaptively refined meshes, red splits fix the cracks where different refinement levels meet. If two
neighbors of a triangle are split then the cracks are fixed by a green split.

configurations we restrict the adaptivity tobalancedmeshes, i.e., the refinement level of two neighboring
triangles may only differ by one.

For adaptive subdivision with a primal scheme like Loop or Butterfly, a special technique applies, the
so-calledred–green triangulation[16,17]. The ordinary 1-to-4 split of a face is called green split. To
fix cracks, triangle bisection (red split) is applied if only one neighbor of a triangle is refined. If two or
three neighbors are refined, a green split is applied which may cause further red splits of neighboring
triangles. The red splits are only temporary. If a red split triangle is to be split further in a subsequent
refinement step then the red split is undone first and then the green split is applied to the original
triangle.

Another difficulty is the computation of the new vertices’ position in an adaptively refined mesh
because it can happen that some vertices in the stencil of the subdivision scheme have not been computed
yet and that its computation requires further triangle splits.

In our adaptive refinement implementation we guarantee the balance of the refinement by requiring
that the vertex which is associated with the midpoint of a certain edge can only be computed after both
triangles adjacent to this edge (on the same refinement level) have already been generated. If one of the
adjacent triangles is too coarse, an upward recursive splitting procedure is called.

If both adjacent triangles exist, the stencil vertices can be collected by using the neighborhood
information stored in the mesh data structure. If a vertex is missing, it can be computed by recursively
calling the same vertex evaluation procedure.



30 U. Labsik et al. / Computational Geometry 15 (2000) 25–39

(a) (b)

Fig. 6. Adaptive subdivision. (a) The Butterfly scheme is used, (b) the Loop scheme is applied. Non-conforming
cracks in the mesh are fixed by red–green triangulation.

ComputeEdgeVertex(face1, face2)
if face2.level< face1.level then

Refine (face2)
face2= face2.child[i] with face2.child[i] is neighbor offace1
∀pj ∈ stencil

if pj does not exist then
ComputeEdgeVertex(facex, facey) with facex , facey
adjacent to the edge whose midpoint ispj

q = S(p0, . . . ,pn)
return(q )

This procedure is called with the two faces defining the edge. The level offace1 has to be higher or equal
than the level offace2. Otherwise the vertex which is to be computed would already exist. The vertices
pj are the vertices in the stencil of the applied subdivision schemeS. In our implementation we store
one odd vertex for every edge of a triangle. Hence if just the vertex position is needed, no split has to
be performed. In Fig. 6 the differences between the Butterfly scheme and the Loop scheme can be seen.
Because of the larger stencil of the Butterfly rule, more triangle splits are initiated by the evaluation
procedure.

3. Previous work

The contributions in the area of level of detail management for triangle meshes can be divided into two
major categories, depending on the topology and connectivity of the regarded mesh.

For arbitrary connectivity meshes, Hoppe proposed in [6] a mesh representation which enables the
progressive transmission of surface geometry. The idea is to store the sequence of edge collapses
performed by a mesh decimation algorithm. If executed in reverse order, the corresponding vertex split
operations progressively recover the original mesh. Starting with the coarsest meshM0, each vertex
split generates a refined approximationMi+1 from its predecessorMi . This hierarchical representation



U. Labsik et al. / Computational Geometry 15 (2000) 25–39 31

allows anylevel of detailto be retrieved by iteratively increasing the accuracy of the mesh with an
appropriate number of vertex split operations.

The big advantage of the progressive mesh representation is that it provides level of detail semantics for
meshes with arbitrary connectivity. In [7] this hierarchy is even used for multi-resolution modifications of
meshed surfaces. A disadvantage is that the coarse approximations may have severe artifacts due to bad
tesselations and popping effects may be visible when inserting detail coefficients without the geomorph
technique proposed in [6].

For progressive mesh compression other multi-resolution representations have been developed [2,14].
With these techniques an arbitrary connectivity mesh can be decomposed into a level-of-detail hierarchy.
In contrast to the progressive meshes technique the information necessary to switch to a finer level can be
stored more efficiently. This is done by using more complex refinement operations. The great advantage
of progressive mesh compression techniques is the reduction of total data to be transferred. However,
these methods share the disadvantages that only coarse approximations can be shown initially and there
is no random access to detail information.

A completely different approach to the multi-resolution representation of triangle meshes is possible,
when some restrictions on the mesh structure are imposed.Subdivision connectivityof parametric meshes
enables the adaption of 2-dimensional wavelet techniques originally defined for the functional setting.
Such wavelet based methods provide the hierarchical decomposition which is necessary for level of detail
management. The adaption to meshes with subdivision connectivity was first proposed by Lounsbery
et al. [11], where an algorithm to construct a multi-resolution analysis for subdivision surfaces is
presented. The authors use the fact that there always exist hierarchical scaling functions which provide a
representation of the limit surface. Since these hierarchical scaling functions satisfy a two-scale relation,
the nested sequence needed in a multi-resolution decomposition is defined by using linear combinations
of the subdivision scaling functions at each level. Since the resulting orthogonal wavelets would have
global support, they give up the orthogonality and use pseudo-orthogonal wavelets, whose support can
be prescribed in advance.

Based on such decompositions, the progressive transmission of surfaces is possible. After transmitting
the base mesh of the subdivision connectivity mesh, the detail information is sent in the form of detail
vectors. The actual geometry encoded by such detail vectorsd is obtained by shifting points in a certain
region of the mesh by some scalar multiple ofd . The modified region is determined by the support of the
corresponding wavelet function. The scalar multiple is obtained by evaluating the wavelet function at the
corresponding parameter value.

Using piecewise linear hat functions as scaling functions, this wavelet based approach is applied in [1],
where the hierarchical representation is used for progressive transmission of colored meshes and viewing
with constant frame rates. The influence of the wavelet support is investigated with the conclusion that
increasing the size of the support does not significantly improve the approximation quality, but decreases
the numerical stability and the performance. Hence, the authors recommend to chose the wavelet support
as small as possible.

Another important step in the wavelet framework is done by [12], where the authors construct a multi-
resolution analysis for data defined over the sphere. As in [11] they improve the properties of the wavelets,
but instead of choosing pseudo-orthogonality they increase the smoothness and vanishing moments of
the wavelet functions by applying the lifting scheme.

The multi-resolution analysis used for the progressive transmission in this paper is not based on explicit
wavelet functions. Instead of investigating the theoretic approximation power of certain functional



32 U. Labsik et al. / Computational Geometry 15 (2000) 25–39

bases, it is more important in our application to associate an intuitive geometric shape with each detail
coefficient. Since the wavelet functions on leveli are given by a linear combination of scaling functions
from the next refinement level, we can express the detail information in terms of the coefficients for
these scaling functions as well. The advantage of this representation is that the (difference) geometry
associated with each coefficient inherits the intuitive bell-shaped distribution of the scaling functions.
A disadvantage is that exact error measures like theL2 norm are no longer available since orthogonality is
lost. Hence, we have to find an alternative geometric criterion for sorting the detail coefficients according
to their significance. As we will show in Sections 4 and 8, feature size and local approximation error
provide good measures.

4. Decomposition

The first task for the progressive transmission of a given subdivision meshMn is the decomposition
into a small base meshM0 and a set of detail vectors which encode the geometric difference between
the different refinement levels. The difference vectors can be sorted according some criterion which rates
their significance. Simple heuristics which use the length of the vectors or the local approximation error
with respect to the original mesh lead to feasible results.

To find the coarser approximationsMn−1, . . . ,M0 we apply inverse subdivision, i.e., we undo the
1-to-4 splits onMk+1 and shift the remaining vertices ofMk in order to reduce the approximation error.
Applying the stationary subdivision operator to the coarsified meshMk yields a smooth approximation
M̃k+1 ofMk+1. The difference between the corresponding vertex positions is used for the detail vectors.

4.1. Inverse subdivision

The task of inverse subdivision is to transform a given meshMk+1 into a coarser meshMk

approximating the original. Obviously, inverse subdivision can only be applied ifMk+1 has subdivision
connectivity. LetS be a primal subdivision operator. Then a coarse approximationMk of a meshMk+1

has to satisfy

Mk+1≈ SMk. (6)

In the classical wavelet setting, the approximation is with respect to theL2 norm defined over the
base meshM0 as the parameter domain. Since we want to encode the detail information in terms of
displacement vectors multiplied by (scalar valued) scaling functions of the next refinement level, it makes
more sense to rate the approximation according to the interpolation error at the even vertices ofMk+1.

Hence, we have to assign positions to the vertices of the coarse mesh such that when refining the mesh
again these vertices are mapped onto the even vertices of the original mesh, i.e.,

Pk+1∣∣
even=

(
SPk

)∣∣
even. (7)

Due to the finite size of the subdivision rule’s stencil, this is a sparse linear system which can be solved
easily by some iterative scheme like Jacobi or Gauß–Seidel. In the case of the Butterfly scheme the
solution is trivial since the even-rule for interpolatory schemes is the identity and hencepkj = pk+1

j .
For Loop’s scheme each row of the matrix has valence plus one non-zero entries (mostly 7) which

can be read off from the even rule (3). The weak diagonal dominance of the resulting matrix guarantees
stable convergence of any iterative solving algorithm.



U. Labsik et al. / Computational Geometry 15 (2000) 25–39 33

Fig. 7. The solid line below represents the original fine meshMk+1, the solid line above the coarsified meshMk.
Applying the subdivision operatorS toMk yields the dashed line which interpolatesMk+1 at the even vertices.
By eventually adding the detail vectors to the odd vertices, the original mesh can be reconstructed.

When applying the subdivision operatorS to the solution of (7), the even vertices ofMk+1 are
recovered but the predicted positions for the odd vertices have to be corrected in order to exactly
reproduce the original data. Hence, we have to store a detail vector

Dk := Pk+1∣∣
odd−

(
SPk

)∣∣
odd (8)

for every odd vertex. During the reconstruction, these detail vectors are added after each subdivision step.
The whole decomposition/reconstruction process is depicted in Fig. 7.

5. Representation

For the progressive transmission, we define a special encoding of the detail vectors. Each coefficient
has to contain enough information such that the receiver can find the corresponding location in the
mesh where the detail has to be included. Since we do not rely on some implicit information stored
in the ordering of the detail coefficients, the sender can arbitrarily re-order the sequence of detail vectors
without affecting the consistency of the surface reconstructed by the receiver.

The simplest way to represent the geometry of a plain polygonal mesh is to store a tuple(V ,F ), where
V is a set of vertex positions andF is a set of faces, each defined by a list of references to the vertex
list V . This is called theshared vertexrepresentation.

After the decomposition of the given meshMn, we use this representation for the base meshM0. The
progressive transmission ofMn starts by sending the base mesh encoded in shared vertex representation.
The base mesh is followed by an appropriately sorted sequence of detail records.

Each record is given as a tuple{d, n,p} whered = [x, y, z] is the actual detail vector by which the
corresponding vertex has to be shifted.n is the index of the base triangleTn over which the detail is
located. Each base triangle is the root node of an associated quad-tree that is generated by the topological
1-to-4 splits of the subdivision operator. The stringp describes the path in the quad-tree that leads to the
leaf where the detail vectord has to be included.

This path is build up as a sequence of symbols ‘0’, ‘1’, ‘2’ and ‘3’ defining the route within the quad-
tree. The last symbol is a letter ‘A’, ‘B’ or ‘C’ indicating the particular corner vertex that has to be shifted
by d. Cf. Fig. 8 for an explanation of the symbol’s meaning. The circulant indexing is used to simplify



34 U. Labsik et al. / Computational Geometry 15 (2000) 25–39

(a) (b)

Fig. 8. (a) Indexing of the vertices and child triangles. (b) Geometric position of the vertices given in the example.

the implementation code since most special cases can be treated automatically by index computations
modulo3.

Here are some examples for the detail record encoding, the geometric positions of the addressed
vertices can be found in Fig. 8.

0.1 0.2 0.3 12 01B
0.0 0.1 0.0 12 223C

It is obvious that there is some redundancy in this representation. There are many different paths
to access the same vertex in the quad-tree structure. The memory requirements for storing a path is
O(n)=O(log(m)) with n the number of refinement levels of the meshMn andm the number of vertices
inMn. From the mesh compression point of view, this is rather inefficient [2,5,14,15] but therefore the
encoding allows random access to any detail vector. This is important for the progressive transmission
since the receiver cannot make any assumptions on the order by which the server sends the detail records.

6. Reconstruction

The second task for the progressive transmission is the reconstruction of the mesh by the receiver. The
detail records have to be inserted into the current approximation of the original mesh until it is completely
reconstructed. During this process the viewer can display the progressively improving mesh. If the
transmission is rather slow, it is reasonable to redraw the mesh after every newly received detail vector.
If the transmission is sufficiently fast, blockwise redrawing with a fixed frame rate is more appropriate
since it prevents another bottle-neck in the graphics pipeline.

The biggest problem for the mesh data structure underlying the reconstruction algorithm is to enable
the processing of the detail records in any order. When starting with the coarse meshM0 the vertices for
which detail information is to be added may not exist and have to be created on the fly by applying the
subdivision operatorS to the mesh.

In our implementation the subdivision scheme is used adaptively. Hence the splitting of triangular
faces is only performed where it is necessary. To improve the visual appearance of the mesh, subdivision



U. Labsik et al. / Computational Geometry 15 (2000) 25–39 35

is always performed two levels finer than the current level of detail in that area. This means that the base
mesh is initially subdivided two times before any detail is received. By this the user sees a smooth initial
surface instead of a coarse initial mesh (cf. Fig. 1).

When a detail vector of levelk is received, a small area around the corresponding vertex is subdivided
to levelk+ 2. Certainly, this is only done up to the maximum refinement level of the original meshMn.
Hence, when all detail records are processed, the original mesh is exactly reconstructed.

The justification for the constant refinement offset is that every feature is displayed by the same number
of triangular faces. For high frequency detail from some higher level of detail these faces are smaller since
the support of the associated subdivision basis function is smaller as well.

6.1. Inserting detail

The basic algorithm for inserting a detail vector is

InsertDetail (detail, face,path)
vk =GetVertex (face,path)
RefineOneRing(vk, k)
vk = vk + detail
UpdateVertices (vk, k)

Hence the first thing to do when inserting a detail record{d, n,p} into the mesh is to find the
corresponding vertex addressed by the pathp. Starting with the base triangleTn, the algorithm recursively
descends to the child triangle indicated by the next symbol in the path. If an addressed triangle does not
exist (a leaf node of the quad-tree is reached), it is created by using adaptive subdivision. If the correct
triangle is reached the requested vertex is chosen by the last symbol ofp. The algorithm looks like this:

GetVertex(face,path)
k = path.length
f = face
for (i = 0; i < k − 1; i ++)

if f.leaf then Subdivide(f )
f = f.child[path[i]]

returnf.vertex(path[k − 1])
Once the correct vertexvk on levelk is found, we refine the 1-ring around this vertex twice. This is done
by first enumerating all triangles around vertexvk and storing them in a listT . All faces in this list are
refined twice if their children do not already exist and the maximum refinement levelmaxdepthis not
exceeded.

RefineOneRing(v, k)
T =GetOneRing(v, k)
∀f ∈ T

if k <maxdepththen Refinef
if k <maxdepth− 1 then Refine children off

As mentioned earlier, this procedure guarantees a constant refinement offset, i.e., every detail feature is
displayed with the same number of triangles no matter on which level the detail is inserted. After refining



36 U. Labsik et al. / Computational Geometry 15 (2000) 25–39

the triangles in the 1-ring, the detail vectord is added to the chosen vertexvk . It is necessary to store
the detail vector explicitly with the vertex because otherwise the information would get lost during an
updating process triggered by the detail insertion to a neighboring vertex.

The local update process changes the position of all vertices within the support of the subdivision basis
function associated with the vertexvk . Since this support differs for Loop and Butterfly subdivision, a
case distinction has to be made for the implementation.

UpdateVertices(v, k)
if BUTTERFLY thenT =GetThreeRing(v, k)
if LOOP thenT =GetTwoRing(v, k)
while T 6= {}
f = T .head()
RecomputeVertices(f )
Add detail to vertices
if not f.leaf then
T .append(f.child[i], i = 0, . . . ,3)

In this update process all vertices belonging to children of faces inT are recomputed. This means that
the positions of these vertices are recomputed with the subdivision operatorS applied to the already
updated positions of the ancestors. In order not to loose the detail information added previously on higher
refinement levels, these vectors must be added again to the associated vertices. The procedure updates the
vertices level-wise by storing the children of a face at the end of the listT and fetching the first element
from the list (FIFO-queue).

After all detail records are received and inserted the original mesh is reconstructed exactly, because no
information got lost. However, it turns out that even with very few detail records received, a very good
approximation of the original mesh is already given (cf. Section 9).

7. Progressive transmission

In the last sections we explained how to decompose and reconstruct a given mesh with subdivision
connectivity and we specified a representation for storing that decomposition. Now we want to explain
how to integrate these techniques for the progressive transmission of triangle meshes into a distributed
system using general purpose computer networks like the Internet.

The progressive transmission is based on a client/server model (Fig. 9). The server task is to provide
the clients with meshes stored in the progressive representation of Section 5. If a mesh has no subdivision
connectivity it has to be remeshed first, i.e., the mesh is restructured and resampled in order to generate
a subdivision connectivity mesh which approximates the originally given geometry up to a prescribed
approximation tolerance [4,8,9].

The server acts like a remote library for geometric models which is accessed by distributed local
clients. If the server receives a request from a client, it first transmits the base mesh of the requested
model and after that the sequence of detail records is sent. The client task is to progressively reconstruct
and display the mesh as explained in Section 6. The reconstruction algorithm is robust against packet loss
during the transmission because of the random access to the mesh vertices and the independent indexing.



U. Labsik et al. / Computational Geometry 15 (2000) 25–39 37

Fig. 9. Progressive transmission over the Internet.

When broadcasting animation sequences of polygonal models, the progressive transmission can be
used to guarantee a constant frame rate. Every frame of the animation is offered by the server only for
a certain period of time (determined by the target frame rate). After that period, the client displays the
currently received model on the local screen and the transmission of the next frame is started. By this
protocol the frames are broadcasted synchronously and varying load on the network results in varying
geometric quality of the displayed model. This schedule enables the display of very complex animation
sequences (like they are generated in simulation of mechanical deformation processes) on low cost client
computers.

8. Results

We have applied our algorithm to a number of meshes. In Fig. 10 we show the progressive transmission
of a brain model. The original model consists of 81920 triangles which can be reduced by decomposition
to a base mesh of 20 triangles. The decomposition and reconstruction is done based on Loop’s scheme.
The other examples in Figs. 11 and 12 are produced by using the Butterfly scheme. The bust model
consists of 73,728 triangles and is reduced down to a base mesh of 72 triangles. The well-known Spock-
model has 32,768 triangles resulting from subdividing an octahedron.

Fig. 10. Progressive transmission of the brain model. From left to right: 0%, 1%, 3% and 10% of the detail
coefficients are included.



38 U. Labsik et al. / Computational Geometry 15 (2000) 25–39

Fig. 11. Progressive transmission of the bust model. From left to right: 0%, 1%, 3% and 10% of the detail
coefficients are included.

Fig. 12. Progressive transmission of the Spock model. From left to right: 0%, 1%, 3% and 10% of the detail
coefficients are included.

9. Conclusions

We presented a very effective method for the progressive transmission of triangular meshes with
subdivision connectivity. With our method it is possible to transform the representation of the given
mesh into a progressive form with a small base mesh and a sequence of detail records. The detail
records provide the information for the exact reconstruction of the original mesh. The advantage of
our method is that these detail records can be processed in any given order. In contrast to other wavelet-
based mesh compression schemes, we use only the coefficients of the scaling functions which provides
an intuitive geometric interpretation for every detail vector. It turns out that already after a small amount
of transmitted detail records is received, a very good approximation of the original data can be obtained.
The number of triangles in the mesh during the reconstruction is reduced by using adaptive subdivision.



U. Labsik et al. / Computational Geometry 15 (2000) 25–39 39

References

[1] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, W. Stuetzle, Interactive multiresolution surface
viewing, in: Computer Graphics (SIGGRAPH 96 Proceedings), 1996, pp. 91–98.

[2] D. Cohen-Or, D. Levin, O. Remez, Progressive compression of arbitrary triangular meshes, in: IEEE
Visualization 99, 1999.

[3] N. Dyn, D. Levin, J. Gregory, A Butterfly subdivision scheme for surface interpolation with tension control,
ACM Trans. Graphics 9 (1990) 160–169.

[4] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle, Multiresolution analysis of arbitrary
meshes, in: Computer Graphics (SIGGRAPH 95 Proceedings), 1995, pp. 173–182.

[5] S. Gumhold, W. Straßer, Real time compression of triangle mesh connectivity, in: Computer Graphics
(SIGGRAPH 98 Proceedings), 1998, pp. 133–140.

[6] H. Hoppe, Progressive meshes, in: Computer Graphics (SIGGRAPH 96 Proceedings), 1996, pp. 99–108.
[7] L. Kobbelt, S. Campagna, J. Vorsatz, H.-P. Seidel, Interactive multi-resolution modeling on arbitrary meshes,

in: Computer Graphics (SIGGRAPH 98 Proceedings), 1998, pp. 105–114.
[8] L. Kobbelt, J. Vorsatz, U. Labsik, H.-P. Seidel, A shrink wrapping approach to remeshing polygonal surfaces,

1999, submitted.
[9] A. Lee, W. Sweldens, P. Schröder, L. Coswar, D. Dobkin, Multiresolution adaptive parametrization of surfaces,

in: Computer Graphics (SIGGRAPH 98 Proceedings), 1998, pp. 95–104.
[10] C. Loop, Smooth subdivision surfaces based on triangles, Master’s Thesis, Utah University, 1987.
[11] M. Lounsbery, T. DeRose, J. Warren, Multiresolution analysis for surfaces of arbitrary topological type,

Technical Report 93-10-05, University of Washington, Department of Computer Science and Engineering,
1993.

[12] P. Schröder, W. Sweldens, Spherical wavelets: Efficiently representing functions on the sphere, in: Computer
Graphics (SIGGRAPH 95 Proceedings), 1995, pp. 161–172.

[13] P. Schröder, D. Zorin, Subdivision for modeling and animation, in: Siggraph Course Notes 98, 1998.
[14] G. Taubin, A. Guéziec, W. Horn, F. Lazarus, Progressive forest split compression, in: Computer Graphics

(SIGGRAPH 98 Proceedings), 1998, pp. 123–132.
[15] C. Touma, C. Gotsman, Triangle mesh compression, in: W. Davis, K. Booth, A. Fourier (Eds.), Proceedings

of the 24th Conference on Graphics Interface (GI-98), San Francisco, 18–20 June 1998, Morgan Kaufmann,
1998, pp. 26–34.

[16] M. Vasilescu, D. Terzopoulus, Adaptive meshes and shells: Irregular triangulation, discontinuities, and
hierarchical subdivision, in: Proceedings of Computer Vision and Pattern Recognition Conference, 1992,
pp. 829–832.

[17] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques,
Wiley/Teubner, 1996.

[18] D. Zorin, P. Schröder, W. Sweldens, Interpolating subdivision for meshes with arbitrary topology, in:
Computer Graphics (SIGGRAPH 96 Proceedings), 1996, pp. 189–192.

[19] D.N. Zorin, Subdivision and multiresolution surface representations, Ph.D. Thesis, Caltech, Pasadena, CA,
1997.


