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Abstract 

The thickness problem on graphs is Jff~-hard and only few results concerning this graph 
invariant are known. Using a decomposition theorem of Truemper, we show that the thickness 
of the class of graphs without G12 minors is less than or equal to two (and therefore, the same 
is true for the more well-known class of the graphs without K5 minors). Consequently, the 
thickness of this class of graphs can be determined with a planarity testing algorithm in linear 
time. 
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I .  Introduction 

The thickness O(G) of  a graph G = ( V , E )  is the minimum number k such that G 

is the union of  k planar subgraphs (here, by 'union of  k planar subgraphs'  we mean 

that the edge-set E can be partitioned into k sets so that the graph induced by each 
set is planar). Therefore, the thickness is one measure of  the degree of  nonplanarity 

of  a graph. 
Clearly, O(G)=-1 if  and only if G is planar. The thickness problem, asking for 

the thickness of  a given graph G, is JV'~-hard [5], so there is little hope to find a 

polynomial-time algorithm for the thickness problem on general graphs. However, for 
some graph classes, the thickness can be determined in polynomial time. For example, 

the thickness is known for complete and complete bipartite graphs [1]. In some cases, 
there are (often relatively poor) bounds on the thickness of  a graph [2,3]. 
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Fig. 1. Graph G12. 

The thickness problem has applications in VLSI design. In electronic circuits, com- 
ponents are joined by means of conducting strips. These may not cross, since this 
would lead to undesirable signals. In this case, an insulated wire must be used. For 
that reason, circuits with a large number of crossings are decomposed into several 
layers without crossings, which are then pasted together. The goal is to use as few 
layers as possible. In this application it would be desirable to know the thickness of 
a hypergraph whose nodes are cells to be placed and whose hyperedges correspond to 
the nets connecting the cells. If the thickness problem could be solved for graphs, it 
would be a useful engineering tool in the layout of electronic circuits. 

We have restricted our attention to a minor-excluded class of graphs, the class of 
graphs without G12 minors (G12 is displayed in Fig. 1). Our method to determine the 
thickness of this class of graphs is based on a decomposition theorem of Truemper [6]. 
The paper is organized as follows. The concept of graph decomposition is introduced 
in Section 2. In Section 3 we prove the main result of this paper. Finally, in Section 4 
we give negative results on using our approach for the two graph invariants crossing 
number and skewness. 

2. Decomposition of graphs 

In this section, we present the 1-, 2- and A-sums of graphs. Furthermore, we describe 
a recursive construction process for graphs without G12 minors, based on Truemper's 
decomposition theorem. 

For that purpose, let G=(V,E) be a connected graph. G is called a 1-sum of the 

graphs GI=(V1,E1) and G2=(V2,E2), denoted G = G I ~ I G 2 ,  if the identification 
of an arbitrary node Vl of G1 with an arbitrary node v2 of G2 produces G. Analo- 
gously, G is called a 2-sum (respectively, A-sum) of G1 and G2, denoted G = G1 ~)z G2 
(G = GI ~ G2), if identification of an edge (resp., triangle) of GI with an edge (resp., 
triangle) of Gz and subsequent deletion of this edge (resp. triangle) produces G (see 

Fig. 2). Conversely, if G = G1 ~ 1  G2, G = G1 ~ 2  G2 or G = G1 ~)A G2, we say that 
G1 and G2 are a 1-, 2- or A-sum decomposition of G. Let ~ E {~)1, ~ z ,  ~)A }" If, for 
k>~2, G=(( (G1 ~ G 2 ) ~  G3)~) • - ' ) ~ )  Gk, we call the graphs Gi(l<.i<.k) buildin9 
blocks of G. 

A decomposition theorem by Truemper [6] allows us to restrict our attention to 
certain building blocks for all 2-connected graphs without G12 minors. 
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Fig. 2. 1-, 2- and A-sum. 
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Fig. 3. Graphs of  Theorem 2.1. 
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Theorem 2.1 (Truemper [6]). Any 2-connected graph without Gl2 minors is planar, 
or isomorphic to Ks, K3,3, Gs, G13, G~4, G24, G~ 5, G25, G~ 5, G45, or may be constructed 
recursively by 2-sums and A-sums. The building blocks of  such a construction are as 
follows: 
2-sums: planar graphs, and graphs isomorphic to Ks, K3,3, G8, GI3, G~4, G24 , G~5, 

G 5, G 5, or 
A-sums: planar graphs, and graphs isomorphic to Ks. 

The building blocks of Theorem 2.1 can be seen in Fig. 3. All graphs are not planar, 
but obviously their thickness equals 2. 

3. Thickness theorem 

Before we state the main result of this paper, we prove several lemmas. For notational 
convenience, we denote the planar graphs demonstrating thickness 2 for a given graph 
G as planar decomposition graphs of G. 

Lemma 3.1. Any 1- or 2-sum of  two planar graphs is planar. 

Proof. The sum operations cannot introduce g3, 3 o r  Ks-minors, hence must preserve 
planarity. [] 

Lemma 3.2. Any 1- or 2-sum G3 = G1 ~ 1  G2 or G3 = G1 ~ z  G2, where graph G1 has 
thickness 2, and graph G2 is planar has thickness 2. 

Proof. Let Gtl and G~ f be planar decomposition graphs of G1. The 1-sum of G~ and G2 
is planar by Lemma 3.1. Clearly, the obtained 1-sum and Gtl ~ are planar decomposition 
graphs of the 1-sum of G1 and G2. 

We can assume without loss of generality that the edge e to be identified in the 
2-sum is embedded in G~. Then the 2-sum of G~ and G2 is planar by Lemma 3.1, 
and hence the obtained 2-sum and G~ ~ are planar decomposition graphs of the 2-sum 
of G1 and G2. [] 

Lemma 3.3. Let G1 and G2 be two graphs with thickness 2, say with planar de- 
composition graphs G'1, Gf1 ' and G~, G~', respectively. Suppose G~ contains the edge 
e to be identified in a 2-sum together with all edges incident with e. Then the 2-sum 
G3 = G1 ~ 2  G2 has thickness 2. 

Proof. Again, we can assume, without loss of generality, that edge e is embedded in 
G~. Then the 2-sum of G' 1 and G~, and the union of G~' and G~' are planar decompo- 
sition graphs of G3. Note that there are no edges between G' 1' and G~ t. [] 

Lemma 3.4. Any A-sum G3 = G1 ~ G2 of  a graph G1 with thickness at most 2 and 
of  a planar graph G2 has thickness at most 2. 
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Proof. Let e = (u,v) be one of the edges of the triangle and let w be the vertex of 
the triangle that is not an endpoint of e. Since G2 is planar, we can decompose G2 
into a graph G~, containing e together with all edges incident to u or v, and a graph 
G~' consisting of all edges incident to w that do not go to any endpoint of e. The 

remaining edges can be distributed arbitrarily to G~ or G~'. 
If G1 has thickness 2, we have two planar decomposition graphs for Gl, say G~ and 

G'l'. Without loss of generality G' 1 may contain e. Define G~ to be the 2-sum of G' 1 
and G~, and G~' to be the 1-sum of G' 1' and G~'. Due to Lemma 3.1, G~ and G~' are 
planar decomposition graphs for G3. Note that after the sum operations, the remaining 
edges of the triangle, which connect u with w as well as v with w, are deleted. 

If G1 is planar, let G' l have all edges of G1, and G' 1' consist just of the nodes of 
Gl. Then define the planar decomposition graphs as above. [~ 

We are now prepared to prove the main result of this paper. 

Theorem 3.5. I f  G is a 9raph without G12 minors, then 0(G)~<2. 

Proof. According to Theorem 2.1, every 2-connected graph without G12-minors can 
be obtained by a sequence of 2- (respectively, A-)sums with special building blocks. 
The above lemmas show that the thickness stays at 2 under sum operations with these 
building blocks. All these graphs can be decomposed in such a way that one of their 
two planar decomposition graphs contains the edge to be identified together with all 
the edges incident with that edge. 

In the case of a A-sum with a planar graph, Lemma 3.4 applies directly. In the case 
of a A-sum with K5, we can decompose K5 into a graph G~ containing one edge e 
of the triangle together with all edges incident to both endpoints of e and a graph 
G~' consisting of the node w involved in the A-sum, which is not an endpoint of e, 
together with the edges incident at w that do not go to any endpoint of e. Clearly, G~ 
and G~' are planar and hence we can define the same sum graphs as in Lemma 3.4. 

Therefore, the theorem is proved for 2-connected graphs. If G is not 2-connected, 
the decomposition theorem applies for every 2-connected block of the graph and hence 
for the whole graph. [] 

As a corollary, we obtain that the thickness problem in the class of graphs without 
G12-minors is solvable in linear time. 

Corollary 3.6. The thickness of  a 9raph G without G12 minors can be determined in 
linear time in the number of  nodes of  G. 

Proof. Apply a linear time planarity testing algorithm [4] to G. If G is planar, then 
0 ( G ) =  1, otherwise O(G)=2. [] 

Since G12 contains a /(5 minor, the class of graphs without G12 minors contains 
the class of graphs without K5 minors, and hence, we have proved the result for the 
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more well-known class of graphs without/£5 minors as well. Wagner [7] produced for 
these graphs a decomposition theorem that has become a prototype for a number of 
decomposition results, including Theorem 2.1 used here. 

4. Other invariants 

One may think that applying certain sum operations might also be applicable to 
control other topological invariants of  graphs, such as the crossin# number v(G) or the 
skewness I~(G) of a graph G. The crossing-number v(G) of a given graph G is the 
minimum number of pairwise intersections of edges when G is drawn in the plane. 
The skewness is the minimum number of edges which have to be deleted from graph 
G to make it planar. 

Unfortunately, such a transfer is not possible, since by a 2-sum there is neither 
additivity of the crossing number resp. skewness of the building blocks nor a fixed 
value as for the thickness. We prove this by giving counterexamples. 

Theorem 4.1. For each n E ~ there exist 9raphs G1 and G2 such that, for any 9raph 
G -- G1 ~)2 G2, the followin9 holds: 

v(G) > v(Gl ) + v(G2) + n. 

Proof. For n E ~, denote by Mn+ 4 the planar graph shown in Fig. 4 with n + 4 ver- 
tices and 2n + 5 edges. Start with the graph K3,3 and take successively 2-sums with 
seven edges of the K3,3 and Mn+4 as shown in Fig. 5. The resulting graph H has 
crossing-number one. Take a further 2-sum of H and Mn+4 by identifying the edges e 

and f l .  
In every drawing of  the graph, the edge f2 crosses a complete subgraph Mn+4 - e 

and therefore at least n + 2 edges. Therefore, we have v(H ~)2 Mn+4) = n + 2 > v(H) + 

v(Mn+4) q- n. [] 

An example of the nonadditivity of the skewness can be obtained by a slight modi- 
fication of the proof of  Theorem 4.1. 

Fig. 4. Graph Mn+ 4. 
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Fig. 5. Graph H. 

Fig. 6. Graph F. 

Theorem 4.2. For each n E ~ there exist graphs G1 and G2 such that the following 

holds for  the graph G = G1 ~)2 G2: 

p(G) >p(G1)  + p(G2) + n. 

Proof. Take 2-sums of eight edges of K3, 3 with Mn+ 4. The skewness of  the resulting 
graph equals one. A further 2-sum of the remaining edge of K3,3 with Mn+4 gives the 

graph F of Fig. 6. In order to achieve planarity, a graph Mn+4 - e must be removed, 
i.e., the skewness is n + 2. [] 

Since we only used building blocks according to Theorem 2.1, the above theorems 
are valid even if we restrict ourselves to graphs without G12 minors. 
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