Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Worst-Case Efficient External-Memory Priority Queues

MPG-Autoren
/persons/resource/persons44187

Brodal,  Gerth Stølting
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Katajainen,  Jyrki
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Brodal, G. S., & Katajainen, J. (1998). Worst-Case Efficient External-Memory Priority Queues. In S. Arnborg, & L. Ivansson (Eds.), Proceedings of the 6th Scandinavian Workshop on Algorithm Theory (SWAT-98) (pp. 107-118). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-380E-9
Zusammenfassung
A priority queue $Q$ is a data structure that maintains a collection of elements, each element having an associated priority drawn from a totally ordered universe, under the operations {\sc Insert}, which inserts an element into $Q$, and {\sc DeleteMin}, which deletes an element with the minimum priority from $Q$. In this paper a priority-queue implementation is given which is efficient with respect to the number of block transfers or I/Os performed between the internal and external memories of a computer. Let $B$ and $M$ denote the respective capacity of a block and the internal memory measured in elements. The developed data structure handles any intermixed sequence of {\sc Insert} and {\sc DeleteMin} operations such that in every disjoint interval of $B$ consecutive priority-queue operations at most $c \log_{M/B} \frac{N}{M}$ I/Os are performed, for some positive constant $c$. These I/Os are divided evenly among the operations: if $B \geq c \log_{M/B} \frac{N}{M}$, one I/O is necessary for every $B/(c\log_{M/B} \frac{N}{M})$th operation and if $B < c \log_{M/B} \frac{N}{M}$, $\frac{c}{B}\log_{M/B} \frac{N}{M}$ I/Os are performed per every operation. Moreover, every operation requires $O(\log_2 N)$ comparisons in the worst case. The best earlier solutions can only handle a sequence of $S$ operations with $O(\sum_{i=1}^{S}\frac{1}{B}\log_{M/B}\frac{N_{i}}{M})$ I/Os, where $N_{i}$ denotes the number of elements stored in the data structure prior to the $i$th operation, without giving any guarantee for the performance of the individual operations.