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Abstract 

The performance attributes of a broad class of randomised algorithms can be described by 
a recurrence relation of the form 

T(r) = Q(X) + T(H(x)), 

where a is a function and H(x) is a random variable. For instance, T(x) may describe the 
running time of such an algorithm on a problem of size X. Then T(x) is a random variable, 
whose distribution depends on the distribution of H(x). To give high probability guarantees on 
the performance of such randomised algorithms, it suffices to obtain bounds on the tail of the 
distribution of T(x). Karp derived tight bounds on this tail distribution, when the distribution of 
H(x) satisfies certain restrictions. In this paper, we give a simple proof of bounds similar to that 
of Karp using standard tools from elementary probability theory, such as Markov’s inequality, 
stochastic dominance and a variant of Chemoff bounds applicable to unbounded geometrically 
distributed variables. Further, we extend the results, showing that similar bounds hold under 
weaker restrictions on H(n). As an application, we derive performance bounds for an interesting 
class of algorithms that was outside the scope of the previous results. 

1. Introduction and motivation 

Consider a randomised algorithm that works as follows: on an input of size x, it 

performs a(x) work to generate a subproblem of size H(x) (where H(x) is a random 

variable taking values in [0, x], whose distribution depends on the algorithm) and then 

solves the subproblem recursively. Then, the running time of the algorithm may be 

described by the (probabilistic) recurrence relation 

T(x) = a(x) + T(H(x)). (1) 
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Hence, T(x) is a random variable whose distribution depends on the distribution of 

H(x). The performance of the randomised algorithm can be described in terms of 

certain statements on the distribution of this random variable. For instance, one may 

compute the expected running time, or we may give more precise information on the 

tail of the distribution of this random variable. 

Such a recursion also describes succinctly, the size or structure of certain randomly 

generated combinatorial structures, for instance, the structure of random permutations 

of objects or the sizes of cliques generated by a random greedy process. 

In the literature, the analysis of many randomised algorithms fit this framework 

(see Section 2 below for some typical examples, or numerous ones exhibited in [3]). 

However, their analyses are frequently carried out by disparate ad hoc techniques. 

Karp [3] recognised that all these algorithms can be analysed uniformly in the above 

framework and gave general theorems which could be applied in the fashion of a “cook- 

book” substitution to give the desired performance guarantees on the algorithms. To 

state the hypothesis and results of Karp, we introduce some notations and definitions. 

In the following, T(x) satisfies Eq. (l), where a is a fixed function, H(x) is a 

random variable taking values in [0,x], and E[H(x)] <m(x), for a fixed function, m, 

satisfying 0 <m(x) <x. Also, a and m are non-decreasing functions. The equation 

z(x) = a(x) + z(m(x)) 

can be regarded as the deterministic counterpart of 

Intuitively, it is an equation governing the expected 

has a solution, it has a unique least non-negative 

(2) 

the probabilistic recurrence ( 1). 

values. Whenever this equation 

solution u(x), given by u(x)= 

ciao a(m”)(x)), where we define m(“)(x) := x and WZ(‘+‘)(X) := m(m@‘(x)) for i>O. 

Karp proved [3, Theorems 1 .l, 1.21. 

Theorem 1 (Karp [3]). Consider the probabilistic recurrence (1). Let m(x) and a(x) 

be continuous functions satisfying (1) m(x)/x is nondecreasing and (2) a(x) is strictly 

increasing on {x 1 a(x) > 0). 
l Let b be the terminating point of the recurrence with a(x) = 0, x < b and a(x) = 1, 

x 3 6. Let ct := min(x 1 u(x) > t). Then, for every real x and every I3 1, 

m(x) 
Pr[T(x)>u(x) + I] d __ 

I-’ m(x) 

( 1 
-. 

X Cu(x) 

l Then for every positive real x and every positive integer w, 

Pr[T(x) au(x) + wa(x)] <(m(x)/xY. 

This theorem gives very precise bounds on the performance attributes of algorithms. 

It also admits a fine-tuned tradeoff between the relaxation permitted in the running 

time and the high probability guarantee. However, the method used to prove the result, 

while ingenious, offers no intuition about why the result holds, and the proofs are 

somewhat difficult to follow. Further, the conditions (1) and (2) and continuity in the 
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theorem are technical artifices introduced by the methods of proof. In particular, for 

weaker conditions on m(x)/x, very similar bounds hold, as shown in Theorem 2, below. 

Specifically, condition (1) prevents the application of Theorem 1 whenever m(x) grows 

more slowly than x. For instance, it prevents a direct application of Karp’s results to 

an interesting class of randomized algorithms based on a probabilistic strategy called 

the Rddl Nibble [2]. 

We give an alternative analysis that yields comparable, although somewhat weaker, 

bounds. We essentially reduce the problem to the analysis of waiting times between 

successes in a sequence of Bernoulli trials. The reduction is obtained using three major 

components: Markov’s inequality, stochastic dominance and a variant of the Chernoff 

bound applicable to unbounded but geometrically distributed random variables. The 

structure of the proof is thus strongly intuitive, reflecting the behaviour of the ran- 

domised process. It is also quite general, in that when m(x)/x is non-decreasing, it 

yields bounds comparable to Theorem 1, and when m(x)/x satisfies a weaker condi- 

tion, the same proof yields exponentially decreasing bounds. In particular, it covers the 

case of the Rod1 Nibble algorithms mentioned above. Our results, by comparison with 

Theorem 1 above are: 

Theorem 2. Let A = A(x) := maxbGyGX(m(y)/y), w h ere b is the terminating point of 

the recurrence (1). Then, 

Pr[T(x)>u(x) + la(x)] <C(A(x))(‘-I)‘*, 

where C := C(a,m,x) is independent of 1. The exact form of C(a,m,x) is given in 

Corollary 5. 

Remark. Notice that there are no assumptions on a and m other than that they are 

non-decreasing. Further the case a(x) = [x 3 b] is covered by the same statement. 

In the case that m(x)/x is non-decreasing, A(x) = m(x)/x and we get the following 

bounds to compare with those of Theorem 1: 

Pr[T(x) 3 L(x)] < C(a, m,x)(m(x)/x)“-‘I/*. 

Our bounds are not quite as precise as Karp’s; ours are weaker by constant factors in 

the exponent. However, in many applications, these constants are not crucial. We do 

not have results for the case considered by Karp when more than one recursive call is 

made, e.g. Quicksort. 

2. An example application 

Our theorems can be applied in a “cook-book” fashion to yield high-probability 

statements about the running time of randomised algorithms or the size and structure 

of randomly generated combinatorial structures, as in the examples in Karp’s paper 
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[3, Section 21. Our bounds are somewhat weaker than those of Karp as is evident in 

the statement of the two bounds in the previous section. 

However, we now give an example of an application to a class of problems where 

Karp’s bound does not apply owing to the fact that the assumption that m(x)/x is 

non-decreasing in Karp’s Theorem does not apply. 

2.1. Edge colouring of graphs 

In [2], a randomised distributed edge-colouring algorithm is described, based on a 

probabilistic strategy called the Rddl Nibble. The algorithm proceeds in stages. At 

each stage, each vertex has available to it, a palette of colours. Each vertex then 

chooses a small subset (“nibble”) of incident edges to colour, and tentatively assigns 

them a colour chosen uniformly and independently at random from its current palettes. 

The colour becomes final if it is admissible at the other endpoint and there are no 

other edges whose tentative colours conflict with it. The edges which are successfully 

coloured are then deleted and the palettes are correspondingly updated. It can be shown 

in that the palette sizes (and hence the vertex degrees) obey the following decay law: 

If Ak denotes the (expected) palette size at stage k and A is the maximum degree of 

the input graph, then 

Ak+l d exp 

Hence, for the number of rounds of the distributed protocol, we have a recurrence of 

the form 

T(n) = 1 + T(H(n)) 

with E[H(n)] Gexp (-(a/A)n) n. In this example, the function m(x)/x = exp (-(cc/A)n) 
is a decreasing function and hence Karp’s Theorem 1 is inapplicable. Applying our 

theorem, and stopping the recurrence when Ak = LA, as is needed in the algorithm in 

[2], we get the tail probability bounds: 

< Cexp(-aL(l - 1)/2). 

3. Some probabilistic lemmas 

A set of variables X 1,. . . ,X, is stochastically dominated by a set of variables 

Yi,...,Y, if 

for all non-decreasing fimctions f (that is, non-decreasing in each argument) [6]. We 

will use the following criterion for stochastic dominance [6, Section 17C]: 
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Proposition 3. Let Xl,. . . ,X, and Yl, . . . , Y,, be random variables such that for all 

real t, 

Pr[XI > t] <Pr[Y, > t], 

andfor each i>l andfor allxl<yl,...,xi<yi: 

Pr[Xi+l > t 1x1 =X1,..., X;=Xi]<Pr[fi+1 >tJYl=yl,...,Y,=yi]. 

Then the variables Xl,. . ,X,, are stochastically dominated by the variables Yl, . . . , Y,. 

The following lemma, gives Chemoff-like bounds for the sum of random variables 

with a geometric distribution. We note that a similar lemma with p = i was proved in 

[l], using generating functions. Before we extract the bounds that are actually useful 

to us in this paper, we give a direct simple proof of exact bounds on a somewhat 

more general version that may be useful in other applications. 

Lemma 4. Let Z := (Zl, . . . , Z,,) be a collection of independent random variables which 
are geometrically distributed in the following way: for each i, 1 <i <n, there exist 
non-negative reals zi such that for any positive integer I, 

Pr[Zi = lZi] = (1 - p)p’-’ 

for a real p, 0 < p < 1. Then, letting Z := Z1 + . . . + Z,,, and z := z1 + . . . + z,, 

1. Zf zi =z* for each i, then for any t 20, 

2. If z1 > zi for i > 1, then for any t > 0, 

Pr[Z2t]=F(p;n;zl,...,z,)p+I-‘, 

where 

F(p;n;zl,...,z,) := n 1-P 
,<i~n 1 _ pl-slzI p 

-4~1 
. 

Proof. We have that 

Pr[Z 2 t] = C Pr[Zl = tl] . . . Pr[Z, = t,] 
f,+...+r”Bt 

c Pr[Zl = llzl] . . . Pr[Z, = lnzn] 
Ilr,+...+l.z,3f 

= c I-I (1 - P)Pl’_’ 
[121+...+kBf lSi<n 

l-p n = ( > P 
c p’l+“‘+‘“. 

~Izl+~~~+r.r.>I 
(3) 
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1. If zi=z* for each 1 <i<n, then 

c P 
I~+~4 = 

c Pi’+“‘+‘” 
I,r,+...+l,z,>t (l,+...+l,)z* >t 

= c c p’lt”‘+l. 

k&t/z* I,+...+l.=k 

=kz pk(k+z- ‘). , z* 

Substituting this into Eq. (3) gives the first part. 

2. If zt > zi for i > 1, then we have 

= l”;, . *. c c P ~t(f-(~ZZZ+.~~tlnZ”))/Z,+l~t...+ln 

191 ma0 

1 _ p’-“lzl ’ . . 1 - pl-z21z1 1 - pp 
t/a 

. 

Substituting into Eq. (3) and simplifying gives the second part. 0 

The form actually useful to us here is obtained by substituting t := z + Zzl into the 

second part. 

Corollary 5. For the variables Z, Z, with z1 > z2 > . . . , we have for 12 1, 

Pr[Z>z + 1zi] < Cp’-‘, 

where C := C(zl )...) z,,p)= Hi>&1 - p)/(l - pl-=“-“). 

4. Proof of the main theorem 

4.1. Intuition 

The probabilistic recurrence (1) defines a sequence of random variables X0,X1,. . . 

with 

x0 :=x, 

Xi+, :=H(Xi), i>O. 

One can think of Xi is the current value of the problem size at stage i of the recurrence. 

Let x =: yo > yt > .. . > 1 be a sequence of reals to be specified shortly. Divide 

the process into phases, where phase i consists of those stages j, at which the ran- 

dom variable Xj lies between yi and yi+i, i 2 0. Define a “success” in phase i to be 
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a passage from the interval [vi, yi+l) to the next one, and denote by pi, the correspond- 

ing probability of success. Thus phase i consists of the stages between one “success” 

and the next one. If phase i lasts k stages, we have that the work done in phase i, 
Si:= C Y,+,<x,4Y a(Xi)dka(yi). If the experiments were independent, we would have 

that Pr[k 2 1]<( 1 - pi)‘-‘, hence also Pr[Si > la(yi)] <( 1 - pi)‘-‘. NOW, once again, 

assuming the experiments in different phases are independent, we can bound the proba- 

bility that the sum of the SiS exceeds any given value by employing Corollary 5 giving 

probability bounds for the sum of geometrically distributed random variables, to get 

the required tail probability bounds. 

In fact, the experiments are not necessarily independent. However, below, we show 

that the assumption of independence is unnecessary, and that one can obtain the same 

conclusions by considering a set of independent variables that stochastically dominate 

the sequence Xi, i > 0. 
For each phase i, think of starting an independent copy of the stochastic process 

described by (1) with the starting value yi. Keeping in mind that a “success” is a 

passage from the interval [ yi, yi+t ) to the next one, define a sequence of independent 

stochastic processes, one corresponding to each phase as follows: in phase i, start with 

the value yi and repeat the “experiment” corresponding to the original stochastic pro- 

cess. If we have “success”, terminate the process for this phase, otherwise reset to the 

starting value, yi. It is intuitively clear that the variables obtained by patching together 

these independent copies of the stochastic process stochastically dominate the original 

variables Xi, i>O. We shall give a simple proof of this assertion using Proposition 3. 

As to the independent process corresponding to phase i, this corresponds to a waiting 

time in a simple experiment consisting of repeated Bernoulli trials. Hence, we have 

a variable which is geometrically distributed that stochastically dominates the work in 

phase i. Finally, we put everything together using Lemma 4 for stochastic bounds on 

the sum of geometrically distributed variables. 

4.2. A generic bound 

Define a sequence of variables Zi, i > 0 as follows: 

zo := Yo, 

[Zj+l (Zj=Yi]=:= yi 
with probability 1 - p, 

yi+l with probability p. 

Lemma 6 (Stochastic Dominance). The sequence Zi, i 20 stochastically dominates 
the sequence Xi, i >, 0. 

Proof. Apply Proposition 3. Since Xc =x = Za, we merely verify that for any i 2 0 and 

for any X0 <zo,. . . ,X, <Zi, 

Pr[Xi+l > t 1x0 =X0 ,... ,Xi=Xi]dPr[Zi+r > tlZo=ZO ,..., Z[=Zi], 
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which, by the memory-less nature of the processes, amounts to verifying that 

Pr[Xi+t > t (Xi =Xi] <Pr[Zi+t > t (Zi =Zi]. 

This is easily seen to be the case by the definitions of the processes. 0 

Thus, for purposes of stochastic bounds, we can concentrate on the variables Zi, i > 0. 
For each phase i, let Ui := cz,_Y, a(yi). Then for 13 1, 

Pr [U1 = lyi] = ( 1 - p)‘-’ p. 

Moreover, the variables Ui are independent of each other. Hence, we can apply 

Lemma 4 or Corollary 5 to U := Ci Ui to get 

U > Ca(yi) + 1U(vs) 1 6 C(l - p)‘-l, 13 1. (4) 
i 

4.3. The parameters 

Now we shall specify the sequence yi, i 3 0. Given a function m : R + R such that 

m(x)<x, define an auxiliary function ti as follows: First, define A as in 

Theorem 2: 

A(x):= ,y~ya:*(m(yYy) , . 

and then set 

&t(x) := m(x)/m. 

The function & interpolates between the values x and m(x) in such a way that both 

of the following properties hold: (1) Applied twice, 6 drops below m and (2) there 

is a finite probability for the event “H(Xi+r) < ti(Xi)” via Markov’s inequality. The 

following proposition establishes (1). 

Proposition 7. For all x 2 0, 

&(2(x)) 6 m(x). 

Proof. We compute 

+X&(x)) = m(~(x))l&%S 

= m(x)dm/Jdo by definition of &(.) 

< m(x) as A(z) is non-decreasing. 0 
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Note that via Markov’s inequality on the third line below, 

pi := PrW(yi)dyi+ll 

= 1 - W?Wi) > Yi+ll 

, 1 _ m(Yi) / 
fi(Yi > 

=l-&G3 
>l- m=: p. (3 

4.4. The jinal step 

Let C(x) := xi a(C$i,(x)). Suppose a(x) is strictly increasing (an assumption that 

will be removed shortly). Then from (4), and (5), we have 

Pr[U > C(x) + la(x)] < CA(x)(‘-‘)I*, 

where C := C(a, m,x) is independent of 1. Note that 

G(x) := c a(&“‘(Xx>) 
i>O 

= i~oa(~'2')(x)) + a($zzc2’+l)(x)) 

d C 2a(m(‘)(x)) 
i>O 

= 2U(X). 

Therefore, 

Pr[U > U(X) + la(x)] d Pr U > i(n) + 
[ ( a(x)) I 

1 - * a(x) 

(,-w,-, 

< C(A(x))+- 

Finally, by Lemma 6, we can transfer this bound to our original variables Xi, i>O 

which are stochastically dominated by the variables Zi, i>O, to get our final result: 

Theorem 2. Let A= A(x):= maxbGyGX(m(y)/y), where b is the terminating point of 

the recurrence (1). Then, 

Pr[T(x) > u(x) + la(x)] < C(A(x))(‘-I)‘*, 

where C := C(a,m,x) is independent of 1. 

Proof. We need an additional technical comment for the case when a(x) is not strictly 

increasing. Since the generic bound (4) does not apply directly in that case. We employ 
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the following limiting argument: let a > 0 be arbitrary and consider a’(x) := a(x) + ax. 

This is strictly increasing and so one can apply the bound (4) to a’. Now pass to the 

limit s -+ 0. 0 

Remark 1. The theorem (and also Karp’s Theorem) are essentially tight upto constants 

in the exponent under the weak hypothesis on only the expectation as the following 

example demonstrates. Let a(x) := x, and suppose the r.v. has the “two-point” distribu- 

tion Pr[H(X) = 0] = i = Pr[H(X) =X]. So, &H(X) 1 X] =X/2. One can easily com- 

pute that Pr[T(x) = Ix] =2-l for any positive integer I, hence Pr[T(x) 3 Ix] = 2-(‘-‘). 

Our theorem gives Pr[T(x) 2 Ix] = Pr[T(x) 3 (Z/2)2x] < C2-(‘-1)/2. Of course, with more 

information on the distribution, one can improve the probability bound, as the trivial 

example Pr[H(x) = m(x)] = 1 indicates. 

Remark 2. One might consider fine-tuning the parameters. Thus, we could define for 

an arbitrary k 2 1, 

4x1 
kf(x) := (d(x))*-,,~~ 

Then one can show analogously that &(x)G( l/k)u(x) and that p3 1 - (A(X))‘-‘lk. 

Then the probability bound would be 

(1 I/~)(r-(1-l/~)t;~(x,/a(x)-l) 
Pr[U > u(x) + la(x)] <(d(x)) - 

It turns out that k := 2 is a fairly good choice and one cannot significantly improve 

the analysis in this way. 

Remark 3. Normally, one would like to see a large deviation result of the form 

Pr[T(x) > @T(x)] + . . .] < . . . . So the natural question is: how is the solution to 

the deterministic Eq. (2) related to E[T(x)]. We can give the following partial answer: 

Proposition 8. Let a and m both be concave functions. Then E[T(x)] <u(x). 

Proof. The stochastic process described by the probabilistic recurrence (1 ), determines 

a sequence of non-increasing random variables 

x =:X&X,,. ..,Xj )... 

such that 

E[X+l IX1 <m(4) 

for each i 80. Hence, we have 

E[Xi+ll = E[EL%+I I &II 
d E[m(Xi)] using (6) 

< m(E[Xi]) since m is concave, using Jensen’s inequality. 

(6) 
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By induction then 

E[XJ <m(‘)(x) (7) 

for each i 3 0. 

Finally then, since 

T(X) = C @(xi>, 
i>O 

we have 

E[T(x)l = c E[@G)l 
i>O 

< C a(E[Xi]) since a is concave 
i>O 

< C a(w~[~(x)) using (7) 
i>O 

= u(x). II 

Hence, in this situation (a,m concave), Theorem 1 yields the large deviation bounds 

in the usual form. However it would be nice to replace these conditions on a,m by 

more natural ones or perhaps to remove them altogether. We note that Proposition 8 

was independently observed by Prabhakar Ragde (private communication). 

5. Conclusion 

We have shown that by applying standard tools from Probability Theory, namely 

Markov’s Inequality, Stochastic Dominance and a Chernoff Bound for unbounded vari- 

ables, we can obtain tail probability bounds on the performance of randomised algo- 

rithms comparable to those derived by Karp. 

It is likely that the same techniques can be applied to probabilistic recurrence rela- 

tions describing algorithms that generate more than one subproblem, and to versions 

of the recurrences describing the performance of parallel algorithms. 
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