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We establish non-trivial lower bounds for several prefix problems in the CRCW
PRAM model. The chaining problem is, given a binary input, for each 1 in the

input, to find the index of the nearest 1 to its left. Our main result is that for an
input of n bits, solving the chaining problem using O(n) processors requires

inverse-Ackerman time. This matches the previously known upper bound. We also
give a reduction to show that the same lower bound applies to a parenthesis

matching problem, again matching the previously known upper bound. We also
give reductions to show that similar lower bounds hold for the prefix maxima and

the range maxima problem. ] 1997 Academic Press

1. INTRODUCTION

Lower bounds in parallel computation often depend critically on the domain size
of the problem that is being solved. Typically, these lower bounds use Ramsey
theoretic arguments to force the algorithms to behave in a structured manner on
some subset of the inputs. It is then argued that this subset of inputs is rich enough
so that this structured behavior cannot find a quick solution. Examples of lower
bounds that use this method can be found in [Sn85, MW87, B89, BBG89].
However, applying Ramsey theoretic arguments necessitates assuming an unrealisti-
cally large domain size, often an iterated exponential in the size of the problem.
These lower bounds become invalid when considering smaller domains. Thus, a
major thrust of parallel complexity is to prove lower bounds for problems defined
on smaller domains.

The need for small domain lower bounds is further emphasized by the fact that
in recent years, algorithms have been presented that, on small domains, actually
beat the lower bounds proven for large domains. A good example is the problem
of finding the maximum of n integers using a CRCW PRAM with n processors. For
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a sufficiently large domain, the problem has a lower bound of 0(log log n)
[MW87]. However, if all the integers are drawn from [1, ..., nc], then it is possible
to find the maximum in O(c) time [FRW88].

In this paper, we investigate the complexity of some related problems defined on
small domains. Each problem is to be solved on a PRIORITY CRCW PRAM with
n processors. (See Ja� Ja� 's book [JaJa91] for information on the various models of
PRAMs.)

Unordered Chaining.Given (a1, a2 , ..., an) # [0, 1]n, compute values (b1, b2 , ..., bn),
such that there exist distinct integers i1 , i2 , ..., iq # [1, 2, ..., n] satisfying

1. ai=1 if and only if i=ij for some j ;

2. bi1
=0;

3. bij
=ij&1 , for j=2, 3, ..., q.

In other words, we link the non-zeros into a chain. The stronger ordered version
requires linking the 1s into a chain in the order in which they appear.

Ordered Chaining. Given values (a1 , a2 , ..., an) # [0, 1]n, compute (b1 , b2 , ..., bn),
such that

bi={0
max[ j | aj=1, j<i ]

if ai=0
otherwise,

where we define max[ ]=0.

Prefix Maxima. Given (a1 , a2 , ..., an) # [1, ..., nc]n, compute, for i=1, 2, ..., n,
the value bi=max[aj : 1� j �i].

Range Maxima. Given (a1 , a2 , ..., an) # [1, ..., nc]n, preprocess the data so that
one processor can quickly answer any question of the form ``What is the maximum
of [ai , ai+1, ..., aj]?'', for 1�i� j �n.

Parenthesis Matching with Nesting Level. Given a legal sequence of matched
parentheses and the nesting level of each, find the match of each parenthesis.

Results. Our main result is an 0(:(n)) lower bound on the running time of
every CRCW PRAM algorithm with n processors solving the unordered chaining
problem. (:(n) is the inverse of Ackerman's function and is a very slowly growing
function. See Section 3.1.) This implies the same lower bound for ordered chaining,
solving an open problem in [BJK90, R93, Rr90].

Using reductions, we show similar lower bounds for the other problems. By
reducing the ordered chaining problem to the prefix maxima problem, we obtain a
lower bound of 0(:(n)) even when the domain is [1, 2, ..., n]. Consequently, finding
prefix maxima is strictly harder than just finding the maximum. This aspect is
discussed further in Section 6. Prefix maxima can, in turn, be reduced to range
maxima. This shows that there exists a constant c>0 such that any algorithm that
preprocesses over the domain [1, 2, ..., n] with n processors so that a single pro-
cessor can answer a query in c:(n) steps, requires 0(:(n)) time. By reducing the
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ordered chaining problem to the parenthesis matching problem, we obtain a lower
bound of 0(:(n)) even when the depth of nesting is at most 2.

1.1. Relation to Previous Work

The problems considered in this paper appear frequently as subproblems in
parallel algorithms. Examples are integer sorting, merging, lowest common
ancestor, and compaction (see [BDH89, MV91, BJK90, GR86, R93]). Hence these
problems have received considerable attention, and, in recent years, there has
emerged a body of literature on very fast parallel algorithms [BV93, GMV91,
H92].

For the chaining problem, Berkman and Vishkin [BV93] and, independently,
Ragde [R93] gave ingenious parallel algorithms that run in O(:(n)) time. For a
restricted class of algorithms called oblivious algorithms, Chaudhuri [Cha94]
proved that ordered chaining requires 0(:(n)) time. However, in the general case,
no lower bound was previously known. Our bound is one of very few lower bounds
that hold for constant size domains. In fact, it appears that the only other such
bound for CRCW PRAMs is the 0(log n�log log n) lower bound for PARITY
shown by Beame and Ha# stad [BH89]. Also, the only other lower bound we are
aware of for a problem that can be solved in o(log log n) time is a lower bound of
0(log* n) for a load balancing problem, due to MacKenzie [Mac92].

For the prefix maxima problem, Gil and Rudolph [GR86] give an algorithm
that runs in O(log log n) time. Berkman et al. [BJK90] give an algorithm for prefix
maxima that is sensitive to the size of the domain. On the domain [1, ..., s], their
algorithm runs in O(log log log s) time with n processors. If s is small, this beats the
lower bound for large domains.

For the range maxima problem, Berkman et al. [BBG89] give a preprocessing
algorithm for range maxima that runs in O(log log n) time; answering a query then
takes constant time. Berkman and Vishkin [BV93] give a preprocessing algorithm
that runs in O(:(n)) time for a restricted class of inputs in which the difference
between two adjacent numbers is at most a constant. This implies a prefix maxima
algorithm with the same performance for this class of inputs.

Berkman and Vishkin [BV93] give an O(:(n)) algorithm for parenthesis
matching with nesting level. Without the nesting level information, PARITY can be
reduced to this problem; hence it requires 0(log n�log log n) time [BH89].

Our lower bound argument for chaining is based on the work of Dolev et al.
[DDPW83], who used a clever and versatile averaging argument to show that a
weak superconcentrator with a linear number of edges must have 0(:(n)) depth.
Chaudhuri [Cha94] adapted their method to obtain the lower bound in the
oblivious case. Our proof is a further extension of this method.

1.2. Organization of the Paper

In our lower bound argument, we fix parts of the input to limit the ability of the
algorithm to gather information. The computation graph, described in Section 2,
enables us to express these restrictions in graph theoretic terms; in particular, the
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degrees of the vertices in the graph reflect the power of the algorithm. In the
regularized computation graph, described in Section 2.1, the degrees of the vertices
are maintained below certain bounds, thereby limiting the power of the algorithm.
To get the desired result, we need to select these bounds carefully. This is accom-
plished using special sequences, called Ackerman sequences; these sequences are
described in Section 3. Using the properties of these sequences, our main result, the
lower bound for chaining, is derived in Section 4. The reductions leading to lower
bounds for the other problems are described in Section 5. Finally, in Section 6, the
consequences of the results in this paper and the problems left open are discussed.

2. PARTIAL INPUTS AND THE COMPUTATION GRAPH

In the following, A will be an algorithm solving the unordered chaining problem.
For inputs of size n, let A use P=P(n) processors and take k=k(n) steps. (A step
is defined as one round of reads followed by writes.)

A partial input is an element of [0, 1, V]n. For a partial input b, we denote by
X(b) the set of inputs consistent with b. That is, X(b)=[x # [0, 1]n : for i=1, ..., n,
bi {V � bi=xi ]. The positions with value 1 in b will be called the blockers of b and
the positions with value 0 will be called the passers of b. Let

Bl(b)=|[ j : bj=1] |; Pa(b)=|[ j : bj=0] |.

For partial inputs a and b, we say a is a refinement of b if X(a)�X(b).
It will be convenient to model the computation of A using a graph. Let b be a

partial input of size n. The computation graph of A on b, G(b), is defined as follows:

V(G(b))=[(c, i ): c is a cell of memory and 0�i�k].

That is, we have k+1 levels; in each level, we have one vertex for each cell in the
memory. The set of vertices in level i will be called Vi . The directed edges go from
vertices at one level to the vertices at the next level. Every edge is labeled by a pro-
cessor. If on some input in X(b), processor p reads cell c and writes to cell d in step
i+1, then we have the edge ((c, i ), (d, i+1)) with label p. When we say that a pro-
cessor p reads from cell (c, i ) and writes to cell (d, i+1), we mean that in step i+1
of the computation of the algorithm A, p reads cell c and writes to cell d. We use
fv(b) to denote the indegree of vertex v in the graph G(b). Initially, bit i of the input
is assumed to be in cell i ; finally, component i of the output is assumed to be in
cell i. We refer to vertex (i, 0) as :i (the input vertices) and vertex (i, k) as ;i (the
output vertices).

Let a # [0, 1]n. We shall associate with each vertex of G(a) a content. The con-
tent of cell (c, 0) is the value stored in cell c at the beginning of the algorithm. For
i�1, the content associated with (c, i ) is the content of the cell c after step i (which
is maintained until the write of step i+1 changes it) in the computation of A on
input a. We call this content content(a, (c, i )). Similarly, for a processor p and an
input a # [0, 1]n, state(a, ( p, i )) is the state in which processor p enters step i in the
computation of A on input a. Thus, state(a, ( p, i )) is the state the processor p
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assumes after the read of step i&1 and maintains until the read of step i. In par-
ticular, if G(a) has an edge ((c, i&1), (d, i )) with label p, then processor p enters
step i in state state(a, ( p, i )), reads the value content(a, (c, i&1)) from cell c,
assumes state state(a, ( p, i+1)) and writes a value to cell d ; thereafter it enters step
i+1 in state state(a, ( p, i+1)).

For a partial input b, let

contents(b, (c, i ))=[content(x, (c, i )): x # X(b)];

states(b, ( p, j ))=[state(x, ( p, i )): x # X(b)].

We say that (c, i ) is a fixed vertex if |contents(b, (c, i ))|=1; otherwise we say that
(c, i ) is a free vertex. Similarly, if |states(b, (c, i))|=1, we say the state of p at the
beginning of step i is fixed. Note that these terms depend on the algorithm A and
the partial input b. We will use these terms within the context of an algorithm and
a partial input. Which algorithm and which partial input are meant should be clear
from the context.

For an input x # [0, 1]n, we denote by x( j ) the input that differs from x only in
the j th coordinate. We will need the following fact.

Fact 2.1. Let ,: [0, 1]n � [0, 1] and b # [0, 1, V]n. If ,(x)=,(x( j )) for all j
and all x, x( j ) # X(b), then , is constant over X(b).

Proof. We can think of , as a two-colouring of the vertices of the n-dimensional
cube in a natural way��the colour of vertex x # [0, 1]n is ,(x). The vertices
corresponding to inputs in X(b) define a subcube of this cube. The condition
,(x)=,(x( j )) for all j and all x, x( j ) # X(b) is equivalent to saying that any two
adjacent vertices in this subcube have the same colour, which implies that , is
constant over the subcube, because the subcube is a connected graph. K

For a processor, p, let

affect(b, ( p, i ))=[ j : _x, x( j ) # X(b) state(x, ( p, i )){state(x( j ), ( p, i ))].

By Fact 2.1, we conclude that if in addition to the blockers and passers of b, all
input bits corresponding to positions in affect(b, ( p, i )) are set (to 0 or 1), then the
state in which p enters step i is fixed. Similarly, for a cell c, we define

affect(b, (c, i ))=[ j : _x, x( j ) # X(b) content(x, (c, i )){content(x( j ), (c, i ))].

That is, if b$ is obtained from b by setting all input bits corresponding to positions
in affect(b, (c, i )), then (c, i ) is a fixed vertex in G(b$).

The following lemma shows a lower bound on the number of different values that
the output vertices may have, based on how refined the partial input is.

Lemma 2.1. Let b be a partial input of size n. Let ;i , i=1, ..., n, be the output
vertices in the computation graph G(b). Then

:
n

i=1

|contents(b, ;i )|�
(n&Pa(b))2

2(Bl(b)+1)
.
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Proof. Construct a graph H with n&Pa(b) vertices corresponding to the
n&Pa(b) positions of the non-zero bits in the partial input b. Put the directed edge
(i, j ) in, if bj=V and j # contents(b, ;i ). For a vertex i of H, the different edges (i, j )
going out of i correspond to different contents of ;i . Note that, on the input
obtained by setting all the stars of b to 0, the content of an output vertex, ;i , is the
index of some blocker of b, or 0. The content of ;i on this input does not
correspond to any edge of H, since all edges of H point to stars. Suppose H had
S edges. Then, accounting for the content of each output cell not represented by
any edge of H, we get

:
n

i=1

|contents(b, ;i )|�S+n. (1)

We have thus related the quantity �n
i=1 |contents(b, ;i )| to the number of edges in

H. We will now show that if the number of blockers and passers is small, H must
have a large number of edges. The basic intuition behind this fact is as follows. The
graph H is the union of all the different chains that the algorithm may construct
on different inputs (omitting edges that point to blockers of b). Since different
inputs give rise to different chains, if the number of ways to extend b to a complete
input is large, then H cannot be sparse. In particular, we have the following claim.

Claim. H has no independent set of size Bl(b)+2.

Proof of Claim. Suppose H has an independent set of size Bl(b)+2. Consider
the input formed by setting these Bl(b)+2 positions to 1 and all other stars to 0.
When this input is chained by the algorithm, at least Bl(b)+1 of these positions
have a pointer to some 1 in the input. Since none has a pointer to another in the
independent set, these pointers may point only to blockers of b. But there are only
Bl(b) blockers. Hence, H has no independent set of size Bl(b)+2. K

Tura� n's theorem [AS92, p. 81] implies that a graph with v vertices and e edges
has an independent set of size v2�(v+2e). Using this, we can show that since H does
not have a large independent set, it must have many edges. H has n&Pa(b) vertices
and S edges; hence,

(n&Pa(b))2

n&Pa(b)+2S
�Bl(b)+1,

i.e.,
(n&Pa(b))2

Bl(b)+1
�n&Pa(b)+2S.

Using (1), we get

:
n

i=1

|contents(b, ;i )|�
(n&Pa(b))2

2(Bl(b)+1)
. K

The central idea of the proof is that we think of the quantity �n
i=1 |contents(b, ;i )|

as a measure of the difficulty of the task that the algorithm has to accomplish.
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Lemma 2.1 bounds this measure from below, relating it to the number of blockers
and passers in a partial input. Intuitively, Lemma 2.1 states that if the partial input
has few blockers and passers, then the algorithm still has a lot to do. When we
refine a partial input, we potentially reduce the set of contents of cells and states
of processors, thus restricting the algorithm. In Section 2.1 we describe a class of
partial inputs that strongly restrict the algorithm. In Section 3.3 we show how to
obtain such a partial input with a small number of blockers and passers. Such a
partial input has the property that although the algorithm is severely restricted, the
difficulty of the remaining task is still high. By carefully averaging over a number
of such partial inputs, in Section 4, we conclude that if the algorithm runs in few
steps, it must use many processors. We now make the idea of a restricted algorithm
precise by introducing the notion of a regularized computation graph. The treat-
ment below is taken from Chaudhuri [Cha96].

2.1. The Regularized Computation Graph

If a cell is written to by a small number of processors, then it can only have a
small number of contents. Similarly, if a processor reads from a cell whose possible
contents are limited, then the possible states it can attain after the read are also
limited. In our analysis, we shall, guided by this intuition, strive to maintain bounds
on the number of processors writing to cells, thus restricting the power of the
algorithm.

Definition 2.1. Let D=(d0 , d1 , ..., dk) be a sequence of positive integers and let
b be a partial input. We say that G(b) is D-regularized up to level l (l�k) if every
free vertex of G(b) at level i, i=0, 1, 2, ..., l, has indegree less than di . In this case,
we say that b is D-regularizing up to level l. If G(b) is D-regularized up to level k
then we say that G(b) is D-regularized and call b a D-regularizing partial input.

Let D=(d0 , d1 , ..., dk) satisfy d0�4 and, for i=1, 2, ..., k, di�d 4
i&1. Let 2i=

22 i > i
j=0 d 2 i&j

j . (We will also use 2i when i=&1: 2&1=- 2.) These quantities
will prove useful in bounding certain parameters of D-regularized graphs in the
remainder of this section. We will need the following estimates.

Fact 2.2. (a) For i=0, 2, ..., k, 2i=di22
i&1.

(b) For i=0, 1, ..., l, 22 i 2i�d 2
i .

Proof. Part (a) is easily verified using the definition.
To prove part (b), we use induction on i. The base case is trivial, because d0�4.

For i�1, we have, using the induction hypothesis and di�d 4
i&1 , that

22 i 2i=22 idi22
i&1=di (22 i&1 2i&1)2�did 4

i&1�d 2
i . K

For a partial input b, let

Maxcontentsi (b)=max[ |contents(b, (c, i ))|: c is a memory cell];

Maxstatesi (b)=max[ |states(b, ( p, i ))|: p is a processor].
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Lemma 2.2. Let D=(d0 , d1 , ..., dk) satisfy d0�4 and, for i=1, 2, ..., k, di�d 4
i&1.

Let b be a partial input such that G(b) is D-regularized up to level l.

(a) For i=1, 2, ..., l, Maxstatesi (b)�2i&2 .

(b) For i=0, 1, ..., l, Maxcontentsi (b)�di 2i&1.

Proof. We write G, Maxcontentsi , Maxstatesi instead of G(b), Maxcontentsi (b),
Maxstatesi (b), respectively.

We have Maxstates1 = 1 � - 2 = 2&1 and Maxcontents0 = 2 � 20 . For the
remaining cases, we shall use induction. We will verify that for i=1, 2, ..., l,

Maxstatesi+1�2i&1

Maxcontentsi�di 2i&1.

First, we bound Maxstates i+1. The state of a processor at the beginning of step
i+1 is completely determined by its state at the beginning of step i and the content
of the cell it reads in step i. Now, there are Maxstatesi possibilities for its state at
the beginning of step i, and for each such state, there are Maxcontentsi&1

possibilities for the value it reads. Thus, using the induction hypothesis to bound
Maxstatesi and Maxcontentsi&1 , we have

Maxstatesi+1�Maxstatesi } Maxcontentsi&1�2i&2 } di&1 2i&2=2i&1.

(For the last equality we used Fact 2.2(a).)
Next, we bound Maxcontentsi . Consider a free vertex (c, i ) (0<i�l ) in the

graph G. Let the indegree of (c, i ) be d (note that d<di ). Let Sj be the number of
states in which the processor on the j th edge coming into (c, i ) writes to the cell.
The content of (c, i ) is determined by the state of the processor that succeeds in
writing to it, or, if no processor writes, by the content of (c, i&1). Thus, we have

|contents(b, (c, i ))|� :
d

j=1

Sj+|contents(b, (c, i&1))|.

Now Sj�Maxstatesi+1 , so Sj�2i&1. From the induction hypothesis, we have
|contents(b, (c, i&1))|�Maxcontentsi&1�di&12i&2. Thus, using Fact 2.2, we
have

Maxcontentsi�(di&1) 2i&1+di&1 2i&2�(di&1) 2i&1+2i&1�di2i&1. K

For a partial input b, let

Maxcellaffecti (b)=max[ |affect(b, (c, i ))|: c is a memory cell];

Maxprocaffecti (b)=max[ |affect(b, ( p, i ))|: p is a processor].

Lemma 2.3. Let D=(d0 , d1 , ..., dk) satisfy d0�4 and, for i=1, 2, ..., k, di�d 4
i&1.

Let b be a partial input such that G(b) is D-regularized up to level l.

8 CHAUDHURI AND RADHAKRISHNAN
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(a) For i=0, 1, ..., l, Maxcellaffecti (b)�d 2
i .

(b) For i=2, ..., l+1, Maxprocaffecti (b)�d 2
i&2.

Proof. We write G, Maxcellaffecti , Maxprocaffecti instead of G(b), Maxcellaf-
fecti (b), Maxprocaffecti (b), respectively.

Consider a free vertex (c, i ) (0<i�l ). Let W be the set of labels on the edges
coming into this vertex (i.e., W is the set of processors that write to cell c at the
end of step i for some input in X(b)); since G is D-regularized, |W |�di&1. Recall
that what the processor p writes at the end of step i is determined completely by
the state it assumes after the read of step i. This in turn is completely determined
by the input bits corresponding to positions in affect(b, ( p, i+1)) (by the remark
after Fact 2.1). Similarly, the content of cell (c, i&1) is determined completely by
the input bits corresponding to positions affect(b, (c, i&1)). Thus

affect(b, (c, i ))� .
p # W

affect(b, ( p, i+1)) _ affect(b, (c, i&1)).

It follows that

Maxcellaffecti�(di&1)Maxprocaffecti+1+Maxcellaffecti&1. (2)

Similarly, if all input bits that affect the state of the processor p before the read of
step i+1 are fixed and all the input bits that affect any of the cells that it could
read in step i+1 are fixed, then the state of processor p after the read of step i+1
is fixed. Since there are at most Maxstatesi+1 possible cells it could read in step i,
we have

Maxprocaffecti+2�Maxprocaffect i+1+Maxstates i+1 } Maxcellaffecti . (3)

We will now show that for i=0, 1, 2, ..., l, Maxcellaffecti�2i&1di2i&1 and
Maxprocaffecti+2�2i2i . The contents of a cell at the beginning of the first step
and the state of a processor after the first read are determined by at most one bit
of the input; hence Maxcellaffect0 , Maxprocaffect2�1. This shows that the claim
holds when i=0. For i�1, we shall use induction.

First, we consider Maxcellaffecti . Using Fact 2.2(a), we obtain from (2) and the
induction hypothesis that

Maxcellaffecti�(di&1) 2i&12i&1+2i&2di&12i&2

�(di&1) 2i&12i&1+2i&12i&1=2i&1di2i&1 .

Next, we consider Maxprocaffecti+2. From (3), the induction hypothesis and the
bound in Lemma 2.2 for Maxstatesi+1 , we obtain

Maxprocaffecti+2�2i&12i&1+2i&1 } 2i&1di2i&1=2i&12i+2i&12i=2i2i .

(For the second to last equality, we used Fact 2.2(a).)
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Thus, we have established that for i=0, 1, ..., l, Maxcellaffecti�2i&1di2i&1 and
Maxprocaffecti+2�2i2i . The lemma now follows from Fact 2.2. K

Recall that fv(b) is the indegree of vertex v in graph G(b).

Lemma 2.4. Let D=(d0 , d1 , ..., dk) satisfy d0�4 and, for i=1, 2, ..., k, di�d 4
i&1.

Let b be a partial input such that G(b) is D-regularized up to level l. If l�k&1, then

:
v # Vl+1

fv(b)�d 2
l P.

Proof. We observe that a processor after the read of step l+1 can be in at
most Maxstatesl+2(b) states, and can therefore appear as a label in at most
Maxstatesl+2(b) edges of G(b). The inequality follows from this since, by Lemma
2.2 and Fact 2.2(b), we have Maxstates l+2(b)�2l�d 2

l . K

3. THE ACKERMAN SEQUENCES

3.1. The Ackerman Functions

The Ackerman functions are defined as follows:

A1(x)=2x;

Ai+1(x)=A (x)
i (1).

We use the notation A (x)
i (1) to mean Ai applied x times to 1. That is, A2(x)=2x

and A3(x)=Tower(x). The kth inverse Ackerman function, Ik , is defined by

Ik(n)=max[i: Ak(i )�n].

It can be verified that Ak(1)=2 and Ak(2)=4, for all k; in contrast, Ak(3) is a very
fast growing function of k. The Ackerman inverse of n is given by

:(n)=min[k: Ak(3)�n].

3.2. The Ackerman Tree

We now construct certain sequences that we call Ackerman sequences. These
sequences play a central role in our analysis of the computation graph. To help
picture these sequences we first introduce a tree called the Ackerman tree. The
Ackerman sequences will then be obtained from the labels on the paths of this tree.

The tree Ti (x) is an ordered rooted tree defined inductively. Each edge of the tree
has a label. We denote by Bi (x) the largest label appearing in Ti (x).

v T1(x) is a tree of depth 2. The root has one outgoing edge with label x, and
the child of the root has x5 edges, each with label x10. Thus B1(x)=x10.

10 CHAUDHURI AND RADHAKRISHNAN
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v Ti+1(x) has depth i+2. The root has one outgoing edge with label x. The
child of the root is formed by merging the roots of the following x5 trees of depth
i+1.

Ti (x10), Ti (Bi (x10)), ..., Ti (B (x 5&1)
i (x10)).

Thus Bi+1(x)=B (x 5)
i (x10), since the largest label in Ti (B (x 5&1)

i (x10)) has value
Bi (B (x5&1)

i (x10))=B (x 5)
i (x10). (Note that the function Bi (x) has the same doubly

recursive character as the Ackerman function, albeit with different values of the
parameters.)

The Ackerman tree 1(k, l ) has depth k+1. It is obtained by merging the roots of
the following l trees:

Tk(256), Tk(Bk(256)), ..., Tk(B (l&1)
k (256)).

The tree 1(k, l ) may alternatively be described as follows.

T1. All leaves of the tree are at distance k+1 from the root.

T2. The outdegree of the root is l.

T3. The label on the leftmost edge of the root is 256.

T4. If the label on the edge coming into a non-leaf node # is d, then # has d 5

children.

T5. If the label on the edge coming into the node # is d and e is the leftmost
edge coming out of #, then the label on e is d 10.

T6. If f=(#, #$) is not the leftmost edge coming out of #, then its label is
obtained as follows. Let e be the edge coming out of # immediately to the left of
f. Then the label of f is the largest label that appears on an edge of a path starting
with e and ending at a leaf.

We now show the properties of 1(k, l ) that we use in the proof of our lower
bound. These properties will be used in Section 3.3 while constructing a regularized
computation graph and in Section 4 while proving the lower bound.

Let H be the set of leaves of the tree 1(k, l ). For h # H, and i=1, 2, ..., k+1,
di (h) is the label on the i th edge from the root on the path connecting the root with
the leaf h. We set d0(h)=4 and define D(h)=(d0(h), d1(h), d2(h), ..., dk(h)). The
sequences D(h) play a central role in our analysis. For each leaf h, we construct a
D(h)-regularized computation graph and derive the lower bound by averaging over
the leaves of the tree. Note that dk+1(h) is not part of D(h). Thus, several leaves
give rise to the same D(h); the last level of vertices in the tree are used just to
provide weights to the sequences while averaging.

The next two lemmas shows how the d values increase when one travels from top
to bottom or from left to right in the tree.

Lemma 3.1. For h # H and i=1, 2, ..., k+1, di (h)�(di&1(h))4.
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Proof. If i�2, then from parts T5 and T6 of the alternative definition of the
tree we have di (h)�(di&1(h))10 and the claim follows easily. For i=1, we have
d1(h)�256 and d0(h)=4, and again the claim holds.

Let d +
i (h) be the next largest value of di after di (h); that is,

d +
i (h)=min[di (h$): di (h$)>di (h)].

(min[ ]=�.)

Lemma 3.2. For i=1, ..., k&1, d +
i (h)�(dk(h))10.

Proof. If d +
i (h)=�, then we are done immediately. Otherwise, from part T6 of

the alternate definition of the tree, we have that d +
i (h)�dk+1(h), and from parts

T5 and T6, we have dk+1(h)�(dk(h))10. K

The set of children of the node # is denoted by succ(#). T(#) denotes the subtree
rooted at # and H(#) the leaves in T(#); thus, if # is not a leaf, then H(#)=
�#$ # succ(#) H(#$). We denote by 1i the set of nodes of 1(k, l ) at distance i from the
root. Observe that if # # 1i , then the values d0(h), d1(h), ..., di (h), and d +

i (h) are the
same for all leaves h # H(#). We refer to these values as d0(#), d1(#), ..., di (#), and
d+

i (#), respectively.

Lemma 3.3. The number of leaves up to h (h and those to the left of h) is at most
(dk(h))6.

Proof. For # # 1k , the number of children of # is exactly (dk(#))5. Let #$ # 1k be
the parent of h. By Lemma 3.2, d +

k (#)>dk(#), i.e., at the kth level, the labels on the
edges strictly increase from left to right. Hence the number of the nodes in 1k up
to #$ is at most dk(#$)=dk(h). Since each of these nodes has at most as many
children as #$, i.e., dk(h)5, the total number of leaves up to h is at most dk(h)(dk(h))5

=(dk(h))6. K

Lemma 3.4. For i=1, ..., k, �# # 1i
1�di (#)�2&(i+1).

Proof. It follows from Lemma 3.1 that min[di (#): # # 1i]�2i+2. Then, using
Lemma 3.2, we have d +

i (#)�(di (#))10�2di (#). Thus the sum is at most the sum of
a decreasing geometric series starting with the value 2&(i+2). K

For h # H, define E[a, b](h)=>b
i=a (di (h))5 and E(h)=E[1, k](h). (E[a, b]=1

if a>b.) If # # 1i and a, b�i, then E[a, b](h) is constant over H(#); we refer to this
value as E[a, b](#).

Lemma 3.5.Suppose i�1 and # # 1i . Then �h # H(#) 1�E[1, k](h)=1�E[1, i&1](#).

Proof. We use reverse induction on i. For i=k+1, the claim is obvious. For
1�i�k, we split the sum by #$ # succ(#) and use induction to obtain
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:
#$ # succ(#)

:
h # H(#$)

1
E[1, k](h)

= :
#$ # succ(#)

1
E[1, i](#$)

=
|succ(#)|

E[1, i&1](#)(di (#))5

=
1

E[1, i&1](#)
,

where the last equation holds since |succ(#)|=(di (#))5. K

Lemma 3.9. �h # H 1�E[1, k](h)=l.

Proof. Using Lemma 3.5, we have

:
h # H

1
E(h)

= :
# # 11

:
h # H(#)

1
E[1, k](h)

= :
# # 11

1
E[1, 0](#)

=|11 |=l. K

Lemma 3.7. H(1(k, l ))�A4k(l ).

Proof. We first show by induction that, for x�5, Bi (x)�A3i (x). For the base
case, we have B1(x)=x10 and A3(x)=Tower(x), and Tower(x)�x10, for x�5.

For the induction step, we have the following routine derivation:

A3(i+1)(x)=A (x)
3i+2(1)=A3i+2(A (x&1)

3i+2 (1))=A3i+2(A (x&1)
8 (1))

�A3i+2(Tower(x&1))�A3i+2(x5+x)

�A (x 5+x)
3i+1 (1)=A (x 5 )

3i+1(A (x)
3i+1(1))

�A (x 5 )
3i+1(x)�B (x 5 )

3i (x)

�Bi+1(x).

To obtain the second line from the first, we used A8( y)�Tower( y) and
Tower(x&1)(1)=Tower(x&1); the second to last step was obtained by induction.

It follows from Lemma 3.3 that the number of leaves in 1(k, l ) is at most the
largest label appearing in 1(k, l ), raised to the sixth power, i.e., (B(l )

k (256))6. We
show that for l�5, (B (l)

k (256))6�A4k(l ). For k=1, we have (B (l )
1 (256))6=(25610 l

)6

�A4(l ).
For k�2, we have another routine derivation:

A4k(l )=A (l )
4k&1(1)=A4k&1(A (l&1)

4k&1(1))

�A4k&1(256+l+1) since l�5

�A (256+l+1)
4k&2 (1)=A(l+1)

4k&2(A (256)
4k&2(1))

�A (l+1)
4k&2(256)�(A (l )

3k(256))6

�(B (l )
k (256))6.

The last step follows from the previous derivation. K
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3.3. Obtaining a D(h)-Regularizing Partial Input

We now analyze the computation graph of algorithm A. Let h be a leaf of the
tree 1(k, l ), and consider the sequence D(h) defined in Section 3.2. We shall
associate with h a D(h)-regularizing partial input b(h) with a small number of
blockers and passers. This will enable us to apply Lemma 2.1.

The partial input b(h) is produced in stages. The intermediate partial inputs
produced will be called b0(h), b1(h), ..., bk(h). The partial input bi (h) will be
D(h)-regularizing up to level i. At the end we set b(h)=bk(h). From now on we will
omit the parameter h when referring to b(h), the intermediate partial inputs bi (h),
or the values di (h), if the value of h is clear from the context.

Initially, we set b0=Vn. Trivially, b0 is D(h)-regularizing up to level 0. Now, in
the graph G(b0), there may be free vertices at level 1 that have indegree d1 or
higher. In Stage 1 of our procedure, we refine b0 to obtain b1 so that, in G(b1), the
indegree of every free vertex at level 1 will be less than d1 ; that is, b1 will be
D(h)-regularizing up to level 1. In general, when we come to Stage i, we already
have a partial input bi&1 that is D(h)-regularizing up to level i&1. Our task in
Stage i is to obtain a refinement bi of bi&1 so that, in G(bi), every free vertex at level
i has indegree less than di . The indegree of a vertex cannot increase when the
partial input is refined; hence, bi is D(h)-regularizing up to level i.

Stage i. Consider the graph G(bi&1). Recall that a free vertex is one which has
more than one possible content. A free vertex v at level i will be called a high degree
vertex if di� fv<d +

i ; it will be called a very high degree vertex if fv�d +
i . To obtain

bi we consider these high and very high degree vertices one by one, and, if
necessary, refine the partial input to eliminate them. The temporary partial input
produced will be denoted by b$; at the beginning of Stage i, b$=bi&1.

(A) High Degree Vertices. Consider a vertex v that has high degree in G(bi&1).
If v is not high degree in G(b$), then we do nothing. Otherwise, for each processor
p that writes to v, we fix all input bits corresponding to affect(b$, ( p, i+1)) to 0.
Recall that the state of processor p while writing in step i is determined completely
by the values of these bits. Thus, for the resulting partial input b$, if any of these
processors writes to v, then v is fixed; otherwise, v has indegree 0 in G(b$). Note
that we created only passers in this case.

(B) Very High Degree Vertices. Assume that all the high degree vertices of
bi&1 have been processed in Step A, and the resulting partial input is b$. Next, con-
sider a vertex v that had very high degree in G(bi&1). If the indegree of v in G(b$)
is less than di , then we do nothing. Otherwise, let p be the processor of highest
priority that writes to cell v. There is some input x # X(b$) on which p writes to v.
We set all inputs in affect(b$, ( p, i+1)) to the value they have in x. This fixes the
state of processor p in step i so that it writes to v. Since we are in the PRIORITY
model, p will override any other processor that tries to write, and v is a fixed vertex
in the graph of the resulting partial input. Note that we may create both passers
and blockers in this case.
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At the end of this process, all the free vertices at level i have indegree less than di .
We call the resulting partial input bi (h). Let the number of inputs set in step A of
Stage i be S i

A (h), and let the number of inputs in step B of Stage i be S i
B (h).

Lemma 3.8. S i
A(h)��v # Vi : di�fv(bi&1(h))<d i

+ fv(bi&1(h))(di&1(h))2.

Proof. First observe, using Lemma 3.1, that the sequence D(h) satisfies the
conditions in Lemma 2.3. Now consider the processing of a high vertex v. Let the
partial input when v is processed be b$. Since b$ is a refinement of bi&1(h), we have
that G(b$) is D(h)-regularized up to level i&1, fv(b$)�fv(bi&1(h)), and, for all pro-
cessors p, affect(b$, ( p, i+1))�affect(bi&1(h), ( p, i+1)). It follows that

S i
A(h)� :

di�fv(bi&1 (h))<di
+

v # Vi :

fv(bi&1(h)) Maxprocaffecti+1(bi&1(h)).

The lemma follows from this because Maxprocaffecti+1(bi&1(h))�(di&1(h))2 by
Lemma 2.3(b). K

Similarly, we can show

Lemma 3.9. S i
B(h)��v # Vi : di

+�fv (bi&1 (h)) (di&1(h))2.

We will use the following observation.

Observation 3.1. The partial input bi (h) constructed by the above procedure
depends only on d1(h), d2(h), ..., di (h). Therefore, if # # 1i , then for all leaves
h # H(#), bi (h) is the same. We denote this common value of bi by bi (#).

4. THE LOWER BOUND

In this section, we will show that no algorithm can solve the unordered chaining
problem in constant time using a linear number of processors. We will use the par-
tial input b(h) described in the previous section. In fact, we will select roughly n dif-
ferent partial inputs, one for each leaf of a tree, 1(k, l ), and use an averaging argu-
ment. In our calculations the number of passers and blockers in b(h) will play an
important role; for brevity, we denote them by Pa(h) and Bl(h) instead of Pa(b(h))
and Bl(b(h)).

Theorem 4.1. Let A be an algorithm that solves the unordered chaining problem
for inputs of length n in k steps using P processors. Suppose A4k(5)�n. Then
P=0(nI4k(n)).

Proof. Consider the tree 1(k, l ) with l=I4k(n). We have l�5, and by Lemma
3.7, the number of leaves in 1(k, l ) is at most A4k(I(4k, n))�n.

Consider the partial input b(h) associated with the leaf h. By Lemma 2.2, for
each output vertex ;i , |contents(b(h), ;i )|�(dk(h))2. Using Lemma 2.1 and
E(h)�(dk(h))2, we then get

nE(h)�
(n&Pa(h))2

2(Bl(h)+1)
,
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implying

2 \Bl(h)+
Pa(h)
E(h)

+1+�
n

E(h)
.

Summing over all leaves h and using Lemma 3.6, we get

2 \:
h

(Bl(h)+
Pa(h)
E(h)

+1++�:
h

n
E(h)

=nl�nI4k(n).

We shall show (Lemma 4.1(b) and Lemma 4.2) that

:
h

Bl(h)�P and :
h

Pa(h)
E(h)

�2P.

Therefore, we have 6P+2n�nI4k(n), that is, P=0(nI4k(n)). K

Corollary 4.1. If A is an algorithm solving the unordered chaining problem
with a linear number of processors, then A needs 0(:(n)) time. K

Lemma 4.1.

(a) For i=1, 2, ..., k, �h Si
B(h)�P�2i.

(b) �h Bl(h)�P.

Proof. As observed earlier, blockers are created only in step B of the procedure
described in Section 3.3. Hence,

:
h

Bl(h)�:
h

:
k

i=1

S i
B(h)= :

k

i=1

:
h

S i
B (h).

Thus, Part (b) of the lemma follows easily from Part (a).
We now show part (a). By Lemma 3.9,

:
h

S i
B(h)�:

h

:

d i
+(h)�fv (bi&1 (h))

v # Vi :

(di&1(h))2� :
v # Vi

:

d i
+(h)�fv (bi&1 (h))

h:

(di&1(h))2.

By Observation 3.1, for # # 1i&1 , bi&1(h) is constant over H(#). Therefore, we
may group the different h by the value of # and obtain

:
h

S i
B(h)� :

v # Vi

:
# # 1i&1

:

di
+ (h)�fv(bi&1 (h))

h # H(#) 7

(di&1(h))2.
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Since (di&1 (h))2 is constant for the innermost sum, it can be moved out. The sum
then reduces to

:
v # Vi

:
# # 1i&1

(di&1(#))2 |R(v, #)|,

where R(v, #)=[h # H(#): d +
i (h)�fv(bi&1(h))]. Let h$ be the rightmost leaf in

R(v, #). Then by Lemma 3.3,

|R(v, #)|�(dk(h$))6.

Using Lemmas 3.2 and 3.1, we have

fv(bi&1(h$))�d +
i (h$)�(dk(h$))10�(dk(h$))4 |R(v, #)|

�(di&1(#)16 |R(v, #)|�(di&1(#))5 |R(v, #)|.

Therefore, (di&1(#))2 |R(v, #)|�fv(bi&1(#))�(di&1(#))3, and

:
h

S i
B(h)� :

v # Vi

:
# # 1i&1

fv(bi&1(#))
(di&1(#))3 = :

# # 1i&1

1
(di&1(#))3 :

v # Vi

fv(bi&1(#)).

Now, by Lemma 2.4, �v # Vi
fv(bi&1(#))�P(di&1(#))2. Therefore,

:
h

S i
B(h)�P :

# # 1i&1

1
di&1(#)

.

Using Lemma 3.4, we then get the required bound �h S i
B(h)�P�2i. K

Lemma 4.2. �h (Pa(h)�E(h))�2P.

Proof. From the definitions in Section 3.3, we have

Pa(h)� :
k

i=1

(S i
A(h)+S i

B (h)).

It follows from Lemma 4.1(a) that

:
h

:
k

i=1

S i
B(h)

E(h)
�P. (4)

We shall show that, for i=1, 2, ..., k,

:
h

S i
A (h)

E(h)
�

P
2i (5)
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It follows that

:
k

i=1

:
h

S i
A (h)

E(h)
�P. (6)

The lemma then follows by combining (4) and (6).
To prove (5), we use Lemma 3.8 and write

:
h

S i
A(h)

E(h)
�:

h

:

di (h)�fv (bi&1 (h))<d i
+ (h)

v # Vi :

(di&1 (h))2 fv(bi&1(h))
E(h)

� :
v # Vi

:

di (h)�fv (bi&1 (h))<di
+ (h)

h:

(di&1(h))2 fv(bi&1(h))
E(h)

.

As in the proof of Lemma 4.1 we compute the inner sum by grouping the leaves by
# # 1i&1 . Then

:
h

S i
A(h)

E(h)
� :

v # Vi

:
# # 1i&1

:

di (h)�fv (bi&1 (h))<di
+ (h)

h # H(#):

(di&1 (h))2 fv(bi&1(h))
E(h)

� :
v # Vi

:
# # 1i&1

(di&1(#))2 fv(bi&1(#)) \ :

di(h)�fv (bi&1 (h))<d i
+(h)

h # H(#):

1
E(h)+ . (7)

Fix v # Vi and # # 1i&1 , and consider the inner sum

:

di (h)�fv (bi&1 (h))<d i
+(h)

h # H(#):

1
E(h)

.

Note that the condition, di (h)�fv(bi&1(h))<d +
i (h), now depends only on di (h)

and d +
i (h), which are constant over H(#$), for each #$ # succ(#). Therefore, this time

we group the different h based on #$ and obtain

:

di (h)�fv (bi&1 (h))<d i
+(h)

h # H(#):

1
E(h)

� :
#$ # succ(#)

_$(v, #$) :
h # H(#$)

1
E(h)& ,

where

$(v, #$)={1
0

if di (#$)�fv(bi&1(#$))<d +
i (#$)

otherwise.
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By Lemma 3.5, �h # H(#$) 1�E(h)=1�E[1, i&1](#). Observe that $(v, #$)=1 for at
most one #$ # succ(#), since the intervals [di (#$), d +

i (#$)&1] are disjoint for dif-
ferent #$. Therefore

:

di (h)�fv (bi&1 (h))<d i
+(h)

h # H(#):

1
E(h)

�
1

E[1, i&1](#)
.

Returning to (7), we now have

:
h

S i
A(h)

E(h)
� :

v # Vi

:
# # 1i

(di&1(#))2 fv(bi&1(#))
E[1, i&1](#)

� :
# # 1i&1

_ (di&1(#))2

E[1, i&1](#) \ :
v # Vi

fv(bi&1(#))+& .

Using Lemma 2.4, �v # Vi
fv(bi&1(#))�(di&1(#))2 P. Thus,

:
h

S i
A(h)

E(h)
� :

# # 1i&1

(di&1 (#))4 P
E[1, i&1](#)

� :
# # 1i&1

P
di&1 (#)

.

The inequality (5) follows from this by using Lemma 3.4. K

5. REDUCTIONS

We now give easy reductions to obtain lower bounds for related problems.

Theorem 5.1. Every algorithm that solves prefix maxima on domain [1, ..., n]
with n processors requires time 0(:(n)).

Proof. We reduce the ordered chaining problem to a prefix maxima problem on
domain [1, ..., n]. On input a1 , ..., an , compute c1 , ..., cn , where ci=0 if ai=0 and
ci=i if ai=1. Then, solve prefix maxima for c1 , ..., cn . Let d1 , ..., dn be the prefix
maxima. The solution to the ordered chaining problem is given by b1=0 and for
2�i�n, bi=0 if di&1 # [0, di], and bi=di&1 otherwise. K

Theorem 5.2. There exists a constant c>0 such that every algorithm that pre-
processes for range maximum on domain [1, ..., n] with n processors, so that a single
processor can answer a query in c:(n) steps, requires 0(:(n)) time for preprocessing.

Proof. We reduce the prefix maxima problem to the range maxima problem. On
input a1 , ..., an , first preprocess for range maxima and then assign n processors, one
to find the maximum of [1, i ], 1�i�n. K

Theorem 5.3. Parenthesis matching with nesting level using n processors requires
0(:(n)) time, even when the depth of nesting is at most 2.

Proof. Given an n-bit input to the ordered chaining problem, we will produce
an input to the parenthesis matching problem with 2n+2 symbols. We replace each
0 with ``( )'' and assign a nesting level of 2 to both parentheses; replace each 1 with
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``)('' and assign a nesting level of 1 to both parentheses. Add a ``('' before and a ``)''
after the whole sequence, both with nesting level 1. Note that every ``)'' with nesting
level 1 corresponds to some 1 in the original input. The ``('' that matches it
corresponds to the 1 preceding it in the original input. Thus, after solving the
parenthesis matching problem, it is easy to recover the solution to the ordered
chaining problem in constant time. K

6. CONCLUDING REMARKS

We have presented lower bounds for chaining, prefix maxima, range maxima,
and parenthesis matching on small domains. The bounds are tight for the chaining
problem and parenthesis matching, but we do not know about the other two
problems. Our work extends the techniques developed in Dolev et al. [DDPW83]
and Chaudhuri [Cha94]. The techniques used in this paper have since been
sharpened and applied to several other problems. In Chaudhuri [Cha93a], they
have been used to obtain 0(log log n) lower bounds for the problem of approximate
compaction, which is the problem of relocating a distinguished subset of the input
values into an initial segment of approximately the same size. In Chaudhuri
[Cha96], these methods have been placed in a general setting and shown to be
applicable to an entire class of sensitive functions rather than just isolated cases, as
in earlier works.

In the literature, several fast randomized solutions have been proposed for the
problems considered in this paper. Berkman et al. [BMV92] give randomized
preprocessing algorithms for the range maxima problem that run in O(log* n) time;
each query can then be answered in constant time. Raman [Rr90] gives a constant
time randomized chaining algorithm that works if the number of 1s in the input is
not too large. However, no non-trivial lower bounds have been reported for any of
these problems. Is there an 0(:(n)) lower bound for chaining, even if randomiza-
tion is permitted? We have not succeeded in extending our methods to obtain such
a lower bound.

We intuitively expect prefix maxima to be harder than just finding the maximum;
however, the two problems often have the same complexity. For example, with one
processor the complexity is 3(n), and with n processors and a sufficiently large
domain, 3(log log n). Our lower bound is the only instance known to us where the
two are shown to have different complexities. This suggests that the difference arises
because of restricting the domain size. However, if we restrict the domain size
further, to a constant, then both have complexity O(1). It is an interesting open
question to determine when the two problems have different complexities.
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