
Computational
Geometry

Theory and Applications
ELSEVIER Computational Geometry 6 (1996) 1-19

Algorithms for generalized halfspace range searching and other
intersection searching problems

Prosenjit Gupta a,l, Ravi Janardan a,,, Michiel Smid b,2

" Dept. of Computer Science, University of Minnesota, Minneapolis, MN 55455, USA
b Max-Planck-lnstitutfar Informatik, D-66123 Saarbriicken, Germany

Communicated by J.-R. Sack; submitted 1 December 1993; accepted 1 December 1994

Abstract

In a generalized intersection searching problem, a set S of colored geometric objects is to be preprocessed so
that, given a query object q, the distinct colors of the objects of S' that are intersected by q can be reported or
counted efficiently. These problems generalize the well-studied standard intersection searching problems and have
many applications. Unfortunately, the solutions known for the standard problems do not yield efficient solutions
to the generalized problems. Recently, efficient solutions have been given for generalized problems where the
input and query objects are iso-oriented (i.e., axes-parallel) or where the color classes satisfy additional properties
(e.g., connectedness). In this paper, efficient algorithms are given for several generalized problems involving
objects that are not necessarily iso-oriented. These problems include: generalized halfspace range searching in
R a, for any fixed d/> 2, and segment intersection searching, triangle stabbing, and triangle range searching in
lt~ 2 for certain classes of line segments and triangles. The techniques used include: computing suitable sparse
representations of the input, persistent data structures, and filtering search.

Keywords: Computational geometry; Data structures; Filtering search; Geometric duality; Intersection
searching; Persistence

~A preliminary version appears in Proc. 10th ACM Symp. on Computational Geometry (1994) under the title "Efficient
algorithms for generalized intersection searching on non-iso-oriented objects".

* Corresponding author. E-mail: janardan@cs.umn.edu. Research supported in part by NSF grant CCR-92-00270. Portions
of this work were done while RJ was visiting MS at the Max-Planck-Institut fur Informatik, in Saarb~cken, Germany, in
July 1993. RJ would like to thank the MPI for its generous support.

E-mail: pgupta@cs.umn.edu. Research supported in part by NSF grant CCR-92-00270.
2E-mail: michiel@mpi-sb.mpg.de. This author was supported by the ESPRIT Basic Research Actions Program, under

contract No. 7141 (project ALCOM II).

0925-7721/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0925-7721 (95)00012-7

2 P. Gupta et al. / Computational Geometry 6 (1996) 1-19

1. Introduction

Consider the following generic searching problem. Assume that we are given a set S of n geometric
objects in ~d. Moreover, assume that the objects come aggregated in disjoint groups, where the
grouping is dictated by the underlying application. (The number of groups can range from 1 to n.)
Our goal is to preprocess S into a data structure so that given any query object q, we can report or
count efficiently the groups that are intersected by q. (We say that q intersects a group iff q intersects
some object in the group.) Notice that we are not interested in reporting or counting the individual
objects intersected by q as is the case in a standard intersection searching problem. Indeed the standard
problem is a special case of the above formulation, where each group has cardinality 1. For this reason,
we call our version a generalized intersection searching problem. These generalized problems have
many applications--see [14,12,1,21] for some examples.

For our purposes, it will be convenient to associate with each group a different color and imagine
that all the objects in the group have that color. Suppose that q intersects i groups. Then, we can
restate our problem as: "Preprocess a set S of n colored geometric objects so that for any query object
q, the i distinct colors of the objects that are intersected by q can be reported or counted efficiently."
This is the version that we will consider in the paper.

One approach to solving a generalized problem is to take advantage of known solutions for the cor-
responding standard problem. For example, to solve a generalized reporting problem, we can determine
all the objects intersected by q (a standard problem) and then read off the distinct colors among these.
However, the query time can be very high since q could intersect Y2(n) objects but only O(1) distinct
colors. Thus, the challenge in the generalized reporting problem is to attain a query time that is sensitive
to the output size. Typically we seek query times of the form O(f(n) + i) or O(f(n) + ipolylog(n)),
where f (n) is "small" (e.g., polylog(n) or n p, where 0 < p < 1). For a generalized counting problem,
it is not even clear how one can use the solution for the corresponding standard problem (a mere
count) to determine how many distinct colors are intersected. Nevertheless, we seek here query times
of the form O(f(n)). Of course, in both cases, the solution should also be space-efficient.

1.1. Previous work

While the standard problems have been investigated extensively (see, for example, [4,6,2,15,16]),
their generalized counterparts have been less studied. The generalized problems were first considered
in [14], where efficient solutions were given for several problems defined on iso-oriented objects (i.e.,
the input and the query objects are axes-parallel), including intervals, points, orthogonal line segments,
and iso-oriented rectangles in two or more dimensions. A solution was also given for searching on
arbitrary (non-intersecting) colored line segments with an arbitrary line segment. In [12], efficient
solutions were given for the counting, reporting, and dynamic versions of some of the iso-oriented
problems mentioned above. In [13], solutions were given for generalized problems involving circular
and circle-like objects (among other results). In [1], Agarwal and van Kreveld considered the colored
line segment intersection searching problem for color classes consisting of line segments and satisfying
the property that each color class is a simple polygon or a connected component. The above results
from [1] can also be found in van Kreveld's Ph.D. thesis [21]. In [21], van Kreveld also gives a
general approach for such colored searching problems and illustrates this approach by deriving an
O(n2+E)-space and O(logn +/) -query time solution for searching on arbitrary colored line segments

P. Gupta et al. / Computational Geometry 6 (1996) 1-19 3

with a query line segment . (Here e > 0 is an arbitrarily small constant .) The same genera l approach
can also be used to solve the genera l ized ha l fspace (or even s implex) range report ing p r o b l e m for n
points in ~ d in O (l o g n + i) t ime us ing O(n d+c) space.

1.2. Summary o f results

In this paper, we present efficient solutions to several genera l ized intersect ion search ing p rob lems

that are def ined on objects that are not necessar i ly iso-oriented. Specifically, we cons ider the fo l lowing

Table 1
Summary of results for generalized problems. The information in the table is discussed in more detail in
Section 1.2

Input objects

Points

in ~d

2 Line segs.

in ~ 2

3 Lines in R 2

(or points in ~2)

4 Line segs.

in R 2

Line segs. of

length /> a

constant in

unit square

Fat-Wedges

Fat-Triangles

Query object

Halfspace

in]I~ d

Halfplane

Vertical ray

Vertical line seg.

(or non-vert, strip)

Vertical line

segment

Line

Point

Space

d = 2 n l o g n

n log 2 n

d = 3 n 2 + e

n log n

d >/4 ntd/ZJ/(logn)Lg/2]-l-~

n log n

no~(n) log n

n 2 log n

n 2 -u /2 log n

(n + X) log n

n l o g n

n l o g n

n l+l/c log 2 n

n log 2 n

Query time

log 2 n + i

nl/2

n l/2+e + i

log 2 n + i

n2/3+e

log n + i log 2 n

log 2 n + i

nl/2

log 2 n + i

log n + i

nO+i

log n + i

log 2 n + i

log 2 n + i

log 2 n + i

log 3 n + i log n

Points Fat-Triangle n log 3 n log 4 n + i log 2 n

4 P Gupta et al. / Computational Geometry 6 (1996) 1-19

problems: generalized halfspace range searching in]I~ d, for any fixed d/> 2, and generalized segment
intersection searching, triangle stabbing, and triangle range searching in R 2 for certain classes of line
segments and triangles. Our main results are summarized in Table 1.

We note the following about the table. Wherever the output size, i, is missing in a query time
bound, it is a counting problem. A fat-wedge orfaHriangle is one where each interior angle is greater
than or equal to a fixed constant. The meanings of the different symbols in the table are as follows:
n: input size; i: output size (number of distinct colors intersected); ¢: arbitrarily small constant > 0;
p: adjustable parameter, 0 < # < 1; X: number of pairwise-intersecting segments, 0 ~< X ~< (~);
a(n) : slow-growing inverse of Ackermann's function; c: constant > 1.

Also, wherever ~ appears in a query time or space bound in the table, the corresponding space
or query time bound contains a multiplicative factor which goes to cx~ as ¢ --+ 0. Moreover, the
constants implied in the definition of "long" segments (Problem 5) and "fat" wedges and triangles
(Problems 6 and 7) are present in the space and query time bounds for these problems.

Finally, we note that some additional results that follow immediately from the same techniques are
not shown in the table; these are mentioned in the text--see Remarks 3, 7, and 12.

Our results are based on a combination of several techniques: (1) Computing for each color class
a sparse representation which captures essential information about the color class and allows us to
reduce the generalized problem at hand to a standard problem; (2) The persistence-addition technique
of Driscoll et al. [9], which allows us to reduce a generalized query problem to a generalized query
problem one dimension lower; and (3) A version of filtering search which, in combination with
persistence, yields a space-query time tradeoff.

2. Generalized halfspace range searching in]~d

Let S be a set of n colored points in IR d, for any fixed d >~ 2. We show how to preprocess S so
that for any query hyperplane Q, the i distinct colors of the points lying in the halfspace Q - (i.e.,
below Q) can be reported or counted efficiently. 3 Without loss of generality, we may assume that Q
is nonvertical since vertical queries are easy to handle.

We denote the coordinate directions by xl, x2,.. . ,Xd. (For convenience, when discussing our so-
lution in R 2, we identify Xl and x 2 with x and y; similarly, in R 3, we use x, y, and z.) Let ~ denote
the well-known point-hyperplane duality transform: If p = (P t , . - . , Pd) is a point in]~d, then .T(p)
is the hyperplane Xd = p l X l q- " ' " + P d - l X d - l - - Pd . If H: Xd = a l X l q- " • + a d - l X d - l + ad is a
(nonvertical) hyperplane in R d, then iV(H) is the point (a l , . . . , a d - 1 , - - a d) . It is easily verified that
p is above (respectively on, below) H, in the Xd direction, iff .T(p) is below (respectively on, above)
.T'(H). Note also that ~'(.T(p)) = p and .T(~'(H)) = H.

Using .T we map S to a set S ~ of hyperplanes and map Q to the point q = .T(Q), both in IR d. Our
problem is now equivalent to: "Report or count the i distinct colors of the hyperplanes lying on or
above q, i.e., the hyperplanes that are intersected by the vertical ray r emanating upwards from q."

Let Sc be the set of hyperplanes of color c. For each color c, we compute the upper envelope Ec of
the hyperplanes in So. Ec is the locus of the points of Sc of maximum Xd-COordinate for each point

3 In general, if h is a nonvertical hyperplane, then h + (respectively h -) is the halfspace above (respectively below) h;
unless specified otherwise, these halfspaces are closed.

P Gupta et al. / Computational Geometry 6 (1996) 1-19 5

on the plane Xd = O. Ec is a d-dimensional convex polytope which is unbounded in the positive Xd
direction. Its boundary is composed of j-faces, 0 ~< j ~< d - 1, where each j-face is a j-dimensional
convex polytope. Of particular interest to us are the (d - 1)-faces of Ec, called facets. For instance,
in ~2, Ec is an unbounded convex chain and its facets are line segments; in IR 3, Ec is an unbounded
convex polytope whose facets are convex polygons.

For now, let us assume that r is well-behaved in the sense that for no color c does r intersect two or
more facets of Ec at a common boundary--for instance, a vertex in R 2 and an edge or a vertex in IR 3.
(In Section 2.3 we show how to remove this assumption.) Then, by definition of the upper envelope, it
follows that (i) r intersects a c-colored hyperplane iff r intersects Ec and, moreover, (ii) if r intersects
Ec, then r intersects a unique facet of Ec (in the interior of the facet). Let C be the collection of the
envelopes of the different colors. By the above discussion, our problem is equivalent to: "Report or
count the facets of C that are intersected by r", which is a standard intersection searching problem!
In Sections 2.1 and 2.2, we show how to solve efficiently this ray-envelope intersection problem in
11~ 2 and in ~3. This approach does not give an efficient solution to the generalized halfspace searching
problem in R d for d > 3; for this case, we give a different solution in Section 2.4.

2.1. Solving the ray-envelope intersection problem in]~2

We project the endpoints of the line segments of ~ on the x-axis, thus partitioning it into 2n ÷ 1
elementary intervals (some of which may b e empty). We build a segment tree T which stores these
elementary intervals at the leaves. Let v be any node of T. We associate with v an x-interval I(v),
which is the union of the elementary intervals stored at the leaves in v's subtree. Let Strip(v) be the
vertical strip defined by I(v). We say that a segment s C C is allocated to a node v E T iff I(v) ~
and s crosses Strip(v) but not Strip(parent(v)). Let E(v) be the set of segments allocated to v. Within
Strip(v), the segments of C(v) can be viewed as lines since they cross Strip(v) completely. Let E'(v)
be the set of points dual to these lines. We store C~(v) in an instance H(v) of the standard halfplane
reporting (respectively counting) structure for R 2 given in [5] (respectively [17]). This structure uses
O(m) space and has a query time of O(logm ÷ kv) (respectively O (m l / 2)) , where m = I£(v)[and
kv is the output size at v.

To answer a query, we search in T using q's x-coordinate. At each node v visited, we need to report
or count the lines intersected by r. But, by duality, this is equivalent to answering, in •2, a halfplane
query at v using the query 9r(q) - = Q - , which we do using H(v). For the reporting problem, we
simply output what is returned by the query at each visited node; for the counting problem, we return
the sum of the counts obtained at the visited nodes.

Theorem 1. A set S of n colored points in ~2 can be stored in a data structure of size O(n log n)
so that the ~ distinct colors of the points lying in any query halfplane can be reported (respectively
counted) in time O(log 2 n + i) (respectively o (n l / 2)) .

Proof. Correctness follows from the preceding discussion. As noted earlier, there are O(IScl) line
segments (facets) in Ec; thus IEI = o(c IScl) = o (n) and so ITI = O(n). Hence each segment of E
can get allocated to O(logn) nodes of T. Since the structure n(v) has size linear in m = IE(v)l, the
total space used is O(n log n). For the reporting problem, the query time at a node v is O(log m+kv) =
O(logn + kv). When summed over the O(logn) nodes visited, this gives O(log2 n + i). To see this,

6 P. Gupta et al. / Computational Geometry 6 (1996) 1-19

recall that the ray r can intersect at most one envelope segment of any color; thus the terms kv, taken
over all nodes v visited, sum to i.

For the counting problem, the query time at v is o (ml /2) . It can be shown that if v has depth j
in T, then m = IE(v)l = o (n /2 J) . (See, for instance, [6, p. 675].) Thus, the overall query time is

O~-'°(l°gn)tn/2 j~1/2~ which is O(nl/2). []
k Z..Jj = 0 k / J J ,

2.2. Solving the ray-envelope intersection problem in l~ 3

For each color c, we triangulate the facets of Ec. Let Tc be the set of resulting triangles and let
7- = Uc To. For any triangle t E 7-, let h(t) be the supporting plane of t and let t' be the projection
of t (also a triangle) on the zy-plane. Let T "~ be the set of such projected triangles. Let ql be the
projection of q (the origin of the vertical query ray r) on the zy-plane. Clearly, t is intersected by r
iff (a) tl's interior contains ql and (b) h(t) is on or above q.

Let us now consider how to find the triangles satisfying condition (a). We first divide each triangle
t I E 7-P that does not have a vertical side into at most two such triangles by drawing a vertical line
through its vertex of median z-coordinate. We store the resulting set of triangles (which we continue
to call 7"/) in a segment tree T according to their z-spans. Let v be any node of T and let A(v) be the
set of triangles of 7-1 allocated to v. Let m = IA(v)l. Note that if t I E A(v) then both its nonvertical
sides, call the upper one t~ and the lower one t I, cross Strip(v). If ql E Strip(v), then ql is in tl's
interior iff ql is above t~ and below t~. Since t~ and t~ behave like lines within Strip(v), by duality

I I we have that ql E t I iff in It~ 2 the line U(q~) intersects the segment Y:(tt)Yr(tu), i.e., iff one endpoint

of U(t~)U(t~) lies in the open halfplane U (q ') - and the other lies in the open halfplane ~'(q')+. Let
us denote these halfplane queries by J1 and ,/2, respectively.

Next, consider condition (b). By duality, h(t) is on or above q iff in I~ 3 the point U(h(t)) is in the
halfspace 5r(q)- . Denote this halfspace query by J3.

So, our problem at v is to report or count the triangles of A(v) that satisfy ,/1, J2, and J3. We can
do this by augmenting v with a 3-level data structure based on partition trees [16], as follows: Let
E be the set of endpoints {~'(tl), 5r(t~u) [t' E 7-1} in ~2. We build a partition tree Dl on E. Using
the space-reduction strategy of Dobkin and Edelsbrunner [8] (see also [2,21]), we consider a constant
number of levels of Dl and augment each node w at these levels with a partition tree D2(w), which is
built on the subset of E associated with w. Finally for each such w, again using the above-mentioned
space-reduction strategy, we consider a constant number of levels of D2(w) and augment each node
u at these levels with an instance D3 (u) of a data structure for halfspace range reporting or counting,
which is built on the subset of E associated with u. Let us denote this 3-level structure at v by 79(v).

To report or count the triangles of A(v) satisfying the queries J1, J2, and J3, we perform J1 on D1,
then perform J2 on D2(w), for each canonical node w of D1 identified by ,/1, and finally perform J3
on D3(u) for each canonical node u of D2(w) identified by ,/2.

Let us analyze the space and query time of the structure D(v). We discuss the reporting version
first. Let f3 (P) be the space used by an instance of the reporting version of D3 built on p points and let
93 (P) 3- k be its query time, where k is the output size. (Throughout, we will use the generic symbol k
to denote the output size of a query on some data structure.) If f3(P)/P is nondecreasing and 93(P)/P
is nonincreasing, then it can be shown (see [21, Theorem 5.8(ii), p. 69]) that D(v) uses O(m3- f3(m))
space and has a query time of O(m ~ (m 1/2 + 93 (m)) 3- k) , where e > 0 is an arbitrarily small constant.

P. Gupta et al. / Computational Geometry 6 (1996) 1-19 7

(Recall that m = IA(v)l.) We can use for D3 the structure given in [3] for which f3(P) = O(p logp)
and g3(P) = O(logp + k). Then 73(v) has size O (m l o g m) and query time O(m 1/2+E + k).

Instead of partition trees, we can also use 2-dimensional cutting trees [15] for the two outer levels
of D(v). Then 79(v) uses space O(mC(m 2 + f3(m))) and has query time O(logm + g3(m) + k) (see
[21, Theorem 5.8(i), p. 69]). For D3, we use the above-mentioned structure of [3]. Then 79(v) has
size O(m 2+~) and query time O(logm + k).

Now consider the counting problem. Let f3(P) be the space and g3 (P) be the query time for the
counting version of D3 built on p points. If we use partition trees and use for D3 the structure given
in [16], for which f3(P) = O(p) and g3(P) = O(p2/3), then 79(v) uses O(m) space and has query time
O(m2/3+e).

So, the overall data structure for the ray-envelope problem in I~ 3 consists of the segment tree T
where each node v is augmented with the above structure D(v), which is built on A(v). To answer a
query, we search down T and query D(v) at each node v visited.

Theorem 2. The reporting version of the generalized halfspace range searching problem for a set of
n coloredpoints in ~3 can be solved in O(nlog 2 n) (respectively O(n2+~)) space and O(n 1/2+s + i)
(respectively O(log 2 n + i)) query time, where i is the output size and E > 0 is an arbitrarily small
constant. The counting version is solvable in O(n log n) space and O(n 2/3+c) query time.

Proof. Correctness follows from the preceding discussion. Consider the space and query time for the
reporting problem. It is well known that Ec has O(IScl) facets. This implies that Tc contains O(IScl)
triangles. Thus] 7 I -- O(~-~ c IScl) -- O(n) and so the segment tree T has size O(n).

A triangle t / E 7 -I can get allocated to O(log n) nodes of T. Since the auxiliary structure ~D(v)
at a node v E T has size O (m l o g m) (respectively O(m2+~)), it follows that the overall space
is O(n log2n) (respectively O(n2+g)), for some e I > 0. The query time at v is O(m 1/2+E + kv)
(respectively O(logm + kv)), where kv is the output size at v. As in the proof of Theorem 1, taken
over all nodes v visited, this sums to O(n 1/2+~ + i) (respectively O(log 2 n + i)).

The analysis for the counting problem is similar. []

Application. Consider the generalized disk range searching problem: "Given a set S of n colored
points in I~ 2, report or count the i distinct colors of the points lying inside a variable-radius query
disk q." Using the well-known lifting transformation [10], this problem can be transformed to the
generalized halfspace range searching problem in I~ 3 and hence can be solved within the bounds of
Theorem 2.

R e m a r k 3. In addition to the bounds given in Theorem 2, other bounds are also possible. For instance,
the reporting problem is solvable using partition trees and a version of D3 from [17]; the bounds are
O(n log n) space and O(n 2/3+~ + i) query time. Also, by using a combination of partition trees and cut-
ting trees [21, Theorem 5.8(iii), p. 69], we can obtain a space-query time tradeoff. We have omitted a de-
tailed discussion of these results since they can be derived in the same way as the bounds in Theorem 2.

2.3. Handling query rays that are not well-behaved

So far we have assumed that the vertical ray r is well-behaved in the sense that it does not meet
two or more facets of Ec at a common boundary, for any color c. Let us consider what happens if this

8 P. Gupta et al. / Computational Geometry 6 (1996) 1-19

is not true in ~2. Thus, r meets Ec at a vertex p. Let a and b be the line segments of Ec having p as
endpoint. At first sight it would appear that the solution returned to the standard counting problem is
not valid for the generalized counting problem since the count would include c twice- -and we would
not be aware of this. (Of course, this is not an issue for the reporting problem.) Fortunately, however,
the solution given in Section 2.1 carries over unchanged even if r is not well-behaved. The argument
is as follows.

Let v be the node of T, with left child u and right child w, such that p lies on the common boundary
of Strip(u) and Strip(w). Thus, during the search down T with q (r 's origin), when q falls on this
common boundary, we are faced with the question of which child of v to visit. (Clearly, this situation
will not arise at any other node.) The answer is that we can arbitrarily pick either u or w to visit
without affecting the correctness of the query. To see why, notice that since Ec is an unbounded
convex chain, in both Strip(u) and in Strip(w) there will be exactly one c-colored line segment on
or above q (namely, a and b, respectively, assuming that a is to the left of p and b is to the right).
Thus, regardless of whether u or w is visited, color c will be reported or counted when the auxiliary
structure of the visited node is queried.

In I~ 3 the situation is more subtle. Here r can intersect an edge shared by triangles s and t of Tc
or the common vertex of several triangles s, t , . . . of To. (The latter case is bad even for the reporting
problem since the query time will be high if the common vertex has many triangles incident with it.)
Consider the first case. It follows that ql lies on the common edge of triangles s t and t t of "F t. This
implies that one endpoint of U(sl)J~(s~u) touches U(q') while the other is (say) below U(q') and a

symmetric situation exists w.r.t..~(tl)Yr(Vu). If we use open halfplanes in doing the queries J l and
J2 (as we do in Section 2.2), then c will be missed. If we use closed halfplanes then c will be found
twice, which is unacceptable for the counting problem. The solution is to use an open halfplane in
doing (say) Jl and a closed halfplane in doing J2; with this approach c will be found exactly once.

Suppose instead that r meets the common vertex of several c-colored triangles s, t, From the
properties of ~-, it follows that the line segments .~(s~).Tr(s~),,~(t~).~(t~u),... are all contained in
5t'(q/). Thus, with the modified queries Jl and J2, c will be missed. The solution is to identify such
colors c separately, as follows. In preprocessing, we project all envelope vertices onto the plane z = 0.
Let p~ be the projection of vertex p. We check if q~ coincides with any p~ and, if it does, then we
report or count its color if p is on or above q. (If several differently-colored vertices P l , P 2 , - . . all
project to the same point p~, then we store them with pl in sorted z-order and do a binary search on
them to determine the ones that are on or above q.) Clearly, all this can be done in O(n) space and
O(log n + i) (respectively O(log n)) query time for the reporting (respectively counting) case and so
the bounds of Theorem 2 are unaffected.

2.4. Generalized halfspace range searching in d >/4 dimensions

The approach of Section 2.2 can be extended, with some modifications, to any fixed d ~> 4 also.
However, the bounds are not satisfactory---O(n a[d/21+~) space and logarithmic query time (using
cutting trees) or near-linear space and superlinear query time (using partition trees). Intuitively, the
latter is because the input to the ray-envelope problem is large--i t is a collection of O(n [d/2j) (d - 1)-
dimensional simplices.

We now describe a different approach for the reporting problem in IR d, d >~ 4. In preprocessing,
we store the distinct colors in the input point-set S at the leaves of a balanced binary tree CT (in no

P. Gupta et aL / Computational Geometry 6 (1996) 1-19 9

particular order). For any node v of CT, let C(v) be the colors stored in the leaves of v's subtree and
let S(v) be the points of S colored with the colors in C(v). At v, we store a data structure HSE(v)
to solve the halfspace emptiness problem on S(v), i.e., "Does a query halfspace contain any points
of S(v)?" HSE(v) returns "true" if the query halfspace is empty and "false" otherwise. If ISv l = nv,

then HSE(v) uses O(n[v d/2j/(log nv) [d/2j-e) space and has query time O(log nv) [18].
We answer a generalized halfspace reporting query for a halfspace Q - as follows: We do a depth-

first search in CT and query HSE(v) at each node v visited. If v is a nonleaf then we continue searching
below v iff the query returns "false"; if v is a leaf, then we output the color stored there iff the query
returns "false".

Theorem 4. For any fixed d >~ 2, a set S o f n colored points in ~d can be stored in a data structure
o f size O(n [d/2j / (log n) [d/2j-l-e) such that the i distinct colors o f the points contained in a query
halfspace Q - can be reported in time O(log n + i log 2 n). Here ~ > 0 is an arbitrarily small constant.

Proof. We argue that a color c is reported iff there is a c-colored point in Q - . Suppose that c is
reported. This implies that a leaf v is reached in the search such that v stores c and the query on
HSE(v) returns "false". Thus, some point in S(v) is in Q - . Since v is a leaf, all points in S(v) have
the same color c and the claim follows.

For the converse, suppose that Q - contains a c-colored point p. Let v be the leaf storing c. Thus,
p E S(v ~) for every node v t on the root-to-v path in CT. Thus, for each v', the query on HSE(v') will
return "false", which implies that v will be visited and c will be output.

CT uses O(n[d/2J/(logn) [d/2]-c) space per level and there are O(logn) levels, which gives the
stated space bound. The query time can be upper-bounded as follows: If i = 0, then the query on
HSE(root) returns "true" and we abandon the search at the root itself; in this case, the query time
is just O(log n). Suppose that i ¢ 0. Call a visited node v fruitful if the query on HSE(v) returns
"false" and fruitless otherwise. Each fruitful node can be charged to some color in its subtree that gets
reported. Since the number of times any reported color can be charged is O(log n) (the height of CT)
and since i colors are reported, the number of fruitful nodes is O(i log n). Since each fruitless node
has a fruitful parent and CT is a binary tree, it follows that there are only O(i log n) fruitless nodes.
Hence the number of nodes visited by the search is O(i log n), which implies that the total time spent
at these nodes is O(i log 2 n). The claimed query time follows. []

2.5. Extensions

We can extend the approach of Section 2.1 to also obtain the following result.

Theorem 5. Let S' = {sl, 8 2 , - - - , 8n} be n colored line segments in the plane. The i distinct colors o f
the segments that are contained completely in a query halfplane Q - be reported (respectively counted)
in O(log 2 n + i) (respectively O(nl/2)) time, using O(n log n) space. Similarly, the i distinct colors o f
the segments that are intersected by a vertical query ray r can be reported (respectively counted) in
time O(log2 n + i) (respectively O((n~(n))l /2)) , using O(na(n) log n) space.

Briefly, the approach is as follows. By duality, the first problem becomes: "Count or report the
distinct colors of the double-wedges wi = ~-(si) that lie above the point .T(Q)." Let Ai be the lower

10 P. Gupta et al. / Computational Geometry 6 (1996) 1-19

envelope of wi; Ai consists of two rays emanating from a common point. Let r be the upward-directed
vertical ray emanating from .T'(Q). Clearly, wi is above .T'(Q) iff r intersects Ai. Let Ee be the upper
envelope of the Ai's that have color c. Ee consists of line segments (some of which are rays) and
it is well known that [Eel = O(ne), where ne is the number of c-colored A~'s (see [10, p. 377,
Problem 15.6]). Moreover, for any color c, we have: (i) r intersects a c-colored Ai iff r intersects Ee
and (ii) if r intersects Ec, then it intersects a unique line segment of Ee. Let E be the set of upper
envelopes of all colors. Our problem now is: "Count or report the segments of g that are intersected
by r", which we can solve as in Section 2.1.

As for the second problem, let Se be the set of c-colored segments of S. We compute the upper
envelope Ee of Se. If ISel = me, then IEel = O(mec~(me)) [20]. Also, properties analogous to (i) and
(ii) above hold and so we can proceed as in Section 2.1.

3. Generalized intersection searching on lines and line segments

3.1. Querying colored lines with a vertical line segment 4

We give a simple approach based on persistence [9], which has query time O(log n + i) and uses
O(n21ogn) space. In Section 3.1.1, we show how to modify this solution to get a query time of
O(n u + i) using O(n 2-/z/2 logn) space, for any # in the range 0 < # < 1, thus getting a (nearly)
continuous trade-off between query time and space.

Let ~4 be the arrangement of the n lines of S (the input set). We divide the plane into t + 1 strips,
V1, V2,. • •, Vt+l, by drawing vertical lines through the t = O(n 2) vertices of ~4. Within any strip, Vk,
the lines can be totally ordered from top to bottom, as Ek: gl,g2, . . . ,gn. We store Ek in a balanced
search tree Tk. Suppose that the vertical query segment q is in Vk and let ga and gb be the highest
and lowest lines of Ek intersected by q. Our problem is now equivalent to the following generalized
1-dimensional range searching problem: Given colored integers 1 , 2 , . . . , n (where integer j gets the
color of gj), report the distinct colors in the query interval [a, b]. In [12], this problem is solved using
a structure Dk of size O(n) and a query time O (l o g n + i) . Dk supports updates in O(logn) time with
O(log n) memory modifications. It is now clear that we can report the i distinct colors of the lines
intersected by q in O(logn + i) time using O(n 3) space.

We can reduce the space to O (n 2 log n) by sweeping over the strips and applying persistence.
Specifically, if Vk is the current strip, then we update Dk-1 in a partially-persistent way to get Dk.
This update involves interchanging in Dk- l the colors of the two integers corresponding to the two
lines l' and l" that intersect on the boundary between Vk-t and Vk, which can be done via two
insertions and two deletions. Similarly, we also update Tk-l by interchanging l' and l" to get Tk.
Since both the D-structure and the T-structure have constant in-degree (see [9] for the definition of
"in-degree"), the space used per update is O(log n) for a D-structure and O(1) for a T-structure, which
implies the claimed space bound. Let 79 and 7- denote the D- and T-structures, respectively. Given

4 Note that, by duality, this problem is equivalent to searching in a planar set of colored points for the distinct colors
contained in the nonvertical strip enclosed by two parallel straight lines. Indeed, this was the original motivation for studying
the problem since it is a natural generalization of the colored halfplane range searching problem considered earlier.

P Gupta et al. / Computational Geometry 6 (1996) 1-19 11

q, we locate VE, then query the kth version of T to find [a, b], and then query the kth version of 79
with this.

Theorem 6. A set S of n colored lines in 1~2 can be stored in a data structure of s&e O(n 2 log n)
such that the i distinct colors of the lines that are intersected by a vertical query segment q can be
reported in O(log n + i) time.

R e m a r k 7. Similarly, we can solve the counting problem in O(n 2 log 2 n) space and O(log 2 n) query
time by using the counting version of DE from [12].

3.1.1. A space-query time trade-off
In a nutshell, the idea is as follows. We extract from the sequence £ = (E l , . . . , Et+l) a smaller

subsequence £ ' = (E ~ , . . . , Etm) such that (i) E j and E j + 1 differ in just two (not necessarily adjacent)
positions, (ii) for each Ek E £ there is an Ej C £1 which "approximates" Ei in a sense that we

will elaborate upon later, and (iii) m = 0(n2-~/2) . Properties (i) and (iii) suggest that we can apply
persistence to £; and get a scheme with space bound o(n2); property (ii) suggests that instead of
querying Ek, as we might in the simple scheme, we can query E j in the new scheme and still be
assured of correctness.

We remark that except for two key differences, this approach is similar to one used in [2,21] for
a different (standard) problem. (These differences have to do with the "swap criterion" we use to
construct £/ and with our choice of so-called "borders" (see below).) Therefore, we will describe our
solution only briefly here. The interested reader can find a full discussion in [1 1].

Formally, we define a sequence b l , b 2 , . . . , bB of B : 69(n l -u) distinguished list positions called
borders, where bl = I, bB : n, and, for i = 2 , . . . , B - 1, bi = bi-i + L n;' + lJ. To construct £/
we scan £ from left to right. Let Ei be the currently-scanned list of £. Let E j be the most recently

constructed list of £/ and suppose that we constructed Ej when we reached E6j E £. If E i+l is
obtained from Ei by swapping lines across some border bk, i.e., by swapping the bkth line a with
either the (bk - 1)th line /3 or the (bk + 1)th line % then we create E~+~ from E~ by swapping a

wi th /3 or % as appropriate, set 6j+l = i + l, and move on to Ei+l. The following properties of £ '
are easily shown.

Lemma 8. Suppose that £1 = (E ; l , . . . , E~m) has been constructed as described above from £ =
(E l , . . . ,Et+l) . Then (i) Ej approximates any list Ek E {E63,E6j+l , . . . ,E6 j+, -1} in the follow-
ing sense: for any two successive borders bl and bl+b the (unordered) set o f lines at positions
bl + 1 , . . . , b l + l in Ej is the same as the (unordered) set of lines in Ek at these same positions.

And (ii) The border-lines in E~. and Ek are the same and this implies that the border-lines in
{E6j, E 6 j + I , . . . , E6j+l-1} are the same and can be totally ordered.

Lemma 9. m = I£11 : o (T t2 -1 t /2) .

Proof . We add a new list to £1 whenever a bE-swap occurs for some bE, i.e., whenever we encounter
in the arrangement ,,4 a vertex v such that there are b/c - 1 or bE - 2 lines above v. Let S '~ be the
set of n planar points that are dual to the lines of S. By duality, the bE - 1 (or bk - 2) lines above
v correspond to a (bk - 1)-set (or a (bE - 2)-set) [10] of S'. Let f j (n) be the maximum number of

12 P Gupta et al. / Computational Geometry 6 (1996) 1-19

j-sets realized by a set of n points in the plane, 0 ~< j ~< n. Then the number of bk-swaps that occur
during the construction of g ' is O(fbk_l(n) + fbk_2(n)). Thus,

m = O (~-2~'fbk-'(n)+k=, fbk-2(n)) .

We will show that EkB=I fbk_ 1 (n) : O(n2-/z /2) . (A similar proof applies to EkB=I fbk-2(n).) Let

B
T = U { b k - 1 } = {O,t, 2 t , . . . , (B - 1) t , n } ,

k=l

where t = Ln u + lJ. Let T1 = {t, 2 t , . . . , r t} and T2 = {(r + 1) t , . . . ,n}, where rt is the largest
integer in T that is no more than n/2. Thus,

B

Z fb -l(n) = 1+ }2 fj(n) + fn-j(n)
k=l jETI jeT2

(since fo(n) = 1 and f j (n) = fn - j (n)) . By a result of Welzl [22, Theorem 1], we have (()l ')
E f j (n) = 0 n j~cr~ j = O(n21tl12) = O(n2-U12)"
j E Ti

Similarly,

fn- j (n) = O(n2-"/2),
jeT2

which completes the proof. []

The data structure consists of (1) a red-black tree Tj storing the total order of the border lines of
E3, (2) an instance D 3 of the generalized 1-dimensional range searching structure built on the colored
integers l j : (1 , 2 , . . . ,n) , where integer p gets the color of the pth line of Ej , and (3) a red-black
tree 13 storing l j . We make all these structures partially-persistent using the method of [9]. The space

used by the overall structure can be shown to be O(n 2-u/2 log n).
Given q, suppose we need to query E 3. We search in ~ and find the smallest border bs on or above

q's upper endpoint and, symmetrically the greatest border bg. We query D 3 with [bs + 1, bg]. Then we
scan all the integers bs, bs - 1 , . . . ,bs-i + 1 in 13 and report the distinct colors of the lines of E 3 at
these positions that are intersected by q; an almost symmetric discussion applies to bg. The correctness
of the query follows from Lemma 8 and the correctness of D 3 [12]. The query time is upper-bounded
by the time to search in D 3 (which is O(logn ÷ i)) and the time to scan 13 (which is O(nU)).

Theorem 10. A set S of n colored lines in IR 2 can be stored in a data structure of size O(n 2-u/2 log n)
such that the i distinct colors of the lines that are intersected by a vertical query line segment can be
reported in O(nU + i) time. Here # is an adjustable parameter in the range 0 < t z < 1.

P Gupta et al. / Computational Geometry 6 (1996) 1-19 13

3.2. Querying colored line segments with a vertical line segment

We can use an approach similar to the one underlying Theorem 6. However, since we are now
dealing with line segments rather than lines, we must overcome a subtle problem that can arise. We
discuss this later. We draw vertical lines through the endpoints and the X <~ (2) intersection points
of the segments of S. Within any strip, the segments that cross it can be totally ordered. We sweep
over the strips starting at the leftmost non-empty strip. Let Sl, s 2 , . . . , Sm be the segments that cross
this strip, sorted from bottom to top. For 1 ~< i ~< m, we give si a label l(si) = i and give this label
the color of si. We store the segments S l , . . . , Sm in this order in a partially persistent red-black tree
Ts. We also store the colored labels l(s~), 1 <<. i <<, m, in a partially persistent version Tl of the data
structure of [! 2] for the generalized 1-dimensional range reporting problem.

Suppose we sweep from the ith to the (i + 1)th strip. There are three cases: (i) We encounter the
left endpoint of segment s. In the current version of Ts, we locate s. Let t and u be the segments
that are immediately below and above s in the (i + 1)th strip. We insert s into the current version of
Ts and store with it a label l(s) that lies between l(t) and l(u). Moreover, we give the label l(s) the
same color as s and insert this colored number into the current version of 7). (ii) We encounter the
right endpoint of segment s. We delete s from the current version of Ts and delete the colored label
l(s) from the current version of ~ . (iii) We encounter the intersection point of the segments s and t.
In the current version of Ts, we interchange the order of s and t and also interchange their labels. In
the current version of Tz we interchange the colors of s and t.

In this scheme, we need to assign special labels to the segments as we encounter them because
all the segments are not present in each strip. However, we must be careful in choosing the labels
since otherwise we may end up getting labels consisting of O(n) bits. Towards this end, we use
a labeling scheme due to Dietz and Sleator [7]. Using their approach we take integer labels in the
range [0 . . . O(n2)], i.e., labels consisting of only O(logn) bits. We need to give segment s a label
that lies in between l(t) and l(u). Using the scheme of [7], this may result in the relabeling of other
segments. Dietz and Sleator show how to choose the labels such that only O(1) amortized relabelings
are necessary per update. If we relabel segment s from l(s) to ll(s), then we just delete the colored
number l(s) from 7~ and insert the number l'(s), having the same color as l(s), into it.

It follows from the given algorithm that the labels of the segments that cross any strip increase if
we visit these segments from bottom to top within the strip. Moreover, the total number of updates
done in Ts and Tz is O(n + X), which implies that the total space is O((n + X)logn) .

Now let q be a vertical query segment. We locate the strip containing q and then search in the
version of Ts corresponding to this strip for the lowest and highest segments s and t that intersect q.
Finally, we search in the version of Tt corresponding to this strip for the distinct colors of all labels
that are contained in the interval [l(s), l(t)]. The query time is clearly O(logn + i).

Theorem 11. A set S of n colored line segments in the plane can be preprocessed into a data structure
of size O((n + X) log n) such that the i distinct colors of the segments intersected by a vertical query
line segment q can be reported in O(log n + i) time. Here X, 0 <<, X <~ (~), is the number of pairwise
intersections among the segments in S.

Remark 12. Similarly, by using the counting version of Tl from [12], we can solve the counting
problem in O((n + X) log 2 n) space and O(log 2 n) query time.

14 P. Gupta et al. / Computational Geometry 6 (1996) 1-19

3.3. Querying "long" colored line segments in the unit square with a line

In this section, we consider the case where the segments of S all lie in the unit square/g and each
segment is "long" in the sense that it has length at least a constant/~ > 0, The query object, q, is a line.
These assumptions are reasonable for practical applications and they allow a very efficient solution.

We first give a solution for the case where all the segments intersect the y-axis Y. (For this problem,
S need not satisfy the above-mentioned assumptions.) For now assume that each segment s E S truly
intersects Y rather than merely touching it or being contained in it. Thus, one endpoint of s has
negative x-coordinate and the other has positive x-coordinate. By the definition of ~- in R 2, this
implies that in the corresponding dual double-wedge one of the bounding lines has positive slope and
the other has negative slope.

We split each double-wedge into a left-facing wedge (or left-wedge for short) and a right-facing
wedge (or right-wedge) in the obvious way. Note that each wedge is y-monotone. Let us consider how
to store the right-wedges. (Left-wedges are symmetric.) Because of y-monotonicity, the query point
q~ = U(q) is contained in a right-wedge w iff the horizontal, leftward-directed ray r emanating from q~
intersects the boundary of w. This suggests the following approach. For each color c, we compute the
left-envelope of the boundaries of all c-colored fight wedges, i.e., the portions of the boundaries visible
from (- c~ , 0). This left-envelope is a y-monotone chain of line segments; we give each segment the
color c. If there are nc c-colored fight wedges, then the c-colored left-envelope has size O(nc) (see
[10, p. 377, Problem 15.6]).

In this way, we obtain a collection S ~ of colored line segments in the plane. Note that (i) r intersects
the boundary of a c-colored right-wedge iff r intersects a c-colored left-envelope and (ii) if r intersects
a c-colored left-envelope then it intersects a unique line segment of this envelope. Thus we have
transformed our generalized problem into a standard one and we can solve the latter by storing S ~ in
a segment tree as in Section 2.1.

Lemma 13. A set S of n colored line segments in the plane, where all the segments intersect the
y-axis Y, can be stored in a data structure of size O(n log n) such that the i distinct colors of the
segments that are intersected by a query line can be reported in time O(log 2 n + i).

We now discuss the two special cases mentioned before. If a segment s C S merely touches Y, then
in the dual double-wedge one of the bounding lines is parallel to the x-axis. Consider the right-wedge
w of this double-wedge. The claim that q~ is in w iff r intersects the boundary of w is still true.
Moreover, when we compute the left-envelope, properties (i) and (ii) above still hold. Thus the given
algorithm applies unchanged.

We can handle segments that are completely contained in Y as follows. Let S be the set of such
segments (intervals on Y) and let p be the point where the query line q intersects Y. Clearly, q intersects
a segment of S iff p is contained in the corresponding interval on Y. Thus our problem reduces to a
generalized l-dimensional point enclosure searching problem. This problem has been solved in [14]
in O(n) space and O(logn + i) query time. Thus the bounds of Lemma 13 are unaffected.

What if the segments of S do not all intersect Y? Suppose that there is a constant K such that each
segment intersects one of K fixed lines Y1, . - . , YK. We extend the above approach as follows. Let
Si C_ S be the set of segments intersecting Y/, 1 ~< i ~< K. If a segment intersects more than one Yi,
we put it in any one of the Si's; thus the Si's partition S. For 1 ~< i <~ K, we create a coordinate

P. Gupta et al. / Computational Geometry 6 (1996) 1-19 15

system Ci, where 1/i is the y-axis and any line perpendicular to Y/is taken as the x-axis. We give the
segments of Si coordinates in Ci and store them in an instance of the data structure of Lemma 13. To
answer a query, we query each of the K structures separately. Since K is a constant, each intersected
color is reported only O(1) times and so the query time remains O(log2 n + i). Similarly, the space
remains O(n log n).

We are now ready to solve the problem where S consists of colored line segments each of length
at least A and all lying in M. Without loss of generality, assume that the origin is at the bottom-left
comer of /4 (otherwise re-position the origin). Consider the K = 2 + 2IvY/A] lines x = i A / v ~ and
y = iA/x/~, where 0 ~< i ~< [v'~/A~. Since each segment has length at least A, either its x-span or its
y-span is at least A/x/2. Thus each segment intersects one of the K lines. We now use the structure
discussed earlier.

Theorem 14. Let A > 0 be a constant and let H be the unit square. A set S of n colored line segments
in N 2, where each segment has length at least A and all segments lie in Lt, can be stored in a structure
of size O (n l o g n) such that the i distinct colors of the segments that are intersected by a query line
q can be reported in time O(tog 2 n + i).

4. Generalized fat-wedge and fat-triangle stabbing

Call a wedge a fat-wedge if the internal angle at its vertex is at least a constant -y > 0. Similarly, call
a triangle a fat-triangle if each internal angle is at least 7. In this section we consider the following
problem: "Preprocess a set S of n colored fat-wedges (respectively fat-triangles) in R 2, so that the
i distinct colors of the fat-wedges (respectively fat-triangles) stabbed by any query point q can be
reported efficiently."

4.1. Querying fat-wedges

In preprocessing, we select t = [27r/7] coordinate systems C~ = (x~y~), where all the C~ share the
same origin and Ci+l is offset from Ci by an angle 7, 0 ~< i ~< t - 1 (indices are taken modulo t).
Each fat-wedge w E S is yi-monotone for at least one i. Specifically, if the bounding rays r t and r"
of w make angles oJ and o~ '~ with the positive x0-axis (our frame of reference is Co), where a" < a '
and a ' - a " ~> 7, then w is yi-monotone for i = [a"/7].

Let Si be the fat-wedges of S that are yi-monotone. If a fat-wedge is yi-monotone for more than one
i, then we put it in only one of the Si; thus the Si's partition S. Suppose that w E Si is a right-wedge.
A query point q is contained in w iff the ray r which emanates from q in the negative xi-direction
intersects w's boundary. Symmetrically if w is a left-wedge. For each Si, we build two instances of
the data structure of Section 3.3 for y-monotone wedges, with y = yi, one for the right-wedges of Si
and the other for the left-wedges of Si. Given a query point q, we simply query the 2t data structures
and output the distinct colors returned.

Lemma 15. A set S of n colored fat-wedges in ~2 can be stored in a data structure of size O (n l o g n)
such that the i distinct colors of the fat-wedges that are stabbed by a query point can be reported in
O(log 2 n + i) time.

16 P. Gupta et al. / Computational Geometry 6 (1996) 1-19

4.2. Querying fat-triangles

We split each fat-triangle that does not have a vertical side into two such triangles. We then store
these triangles in a segment tree T according to their z-spans. Let C(v) be the triangles allocated
to v. Each triangle t E C(v) has exactly two sides, sl(t) and sz(t), that cross Strip(v). The wedge
w(t) supporting sl(t) and s2(t) is a fat-wedge. Call it a left-wedge (respectively right-wedge) if the
common vertex of Sl (t) and sz(t) is on or to the left (respectively on or to the right) of Strip(v).

At v, we build two structures L(v) and R(v): L(v) is the fat-wedge stabbing structure of Lemma 15
and is built on the left-wedges determined by C(v). R(v) is symmetric. Given q, we search down T
with q's z-coordinate and query L(v) and R(v) at each node visited.

It is easy to see that for any triangle t C C(v), where v is a node visited by the search, q E tnStrip(v)
iff q ~ w(t). This shows that the method is correct. Since each triangle is stored in O(logn) nodes of
T, from Lemma 15 it follows that the space is O(n log 2 n). Since O(log n) nodes v are queried, the
query time is O(log 3 n + i log n).

We now show how to reduce the query time to O(logZn + i) while increasing the space to
O(n l+l/c log 2 n), where c > 1 is a constant. 5 Let T be the segment tree in the previous solu-
tion. Assume that T is a complete binary tree and that the height, h, of T is a multiple of c. (This
simplifies the discussion; the extension to the general case is not difficult.) Let k = h/c. The idea is
to store all the triangles only at nodes of height jk, where 0 ~< j ~< c. Specifically, let t be a triangle
which is stored at a node v in the previous solution. If v's height lies between j k + 1 and (j + 1) k - 1,
where 0 ~< j < c, then instead of storing t at v, we store t at all descendants of v of height jk . If
v's height is jk , 0 <~ j <<, c, then we store t at v itself. At each node v where triangles get stored, we
build the structures L(v) and R(v) described above on these triangles.

What is the space used by this structure? A node v whose height lies between j k + 1 and (j + 1) k - 1
has O(2 k) = O(nUc) descendants of height jk. Therefore, each triangle t gets stored at O(n l/c log n)
nodes and it follows that the structure uses O(n 1+1/c log 2 n) space.

To answer a stabbing query, we search down T as before and query the auxiliary structures stored
at the height j k nodes on the search path, where 0 ~< j ~< c. The correctness of the query algorithm
follows from the fact that the set of triangles stored at a node v of height j k is exactly the set of
triangles that "belong" to nodes of height j k through (j + 1)k - 1 on the search path to v.

We can now conclude.

Theorem 16. A set 5; of n colored fat-triangles in]I~ 2 c a n be stored in a data structure of s&e
O(n l+l/c log 2 n) (respectively O(n log 2 n)) such that the ~ distinct colors of the fat-triangles that are
stabbed by a query point can be reported in O(log 2 n + i) (respectively O(log 3 n + i log n)) time. Here
c > 1 is a constant.

5. Generalized fat-wedge and fat-triangle range searching

We consider the following problem. "Preprocess a set S of n colored points in 11~ 2 SO that given
any query fat-wedge or fat-triangle q, the i distinct colors of the points lying inside q can be reported
efficiently."

5 We thank one of the referees for suggesting this approach.

P. Gupta et al. / Computational Geometry 6 (1996) 1-19 17

Querying with a fat-wedge

Let vq be the vertex of q. For now assume that q is y-monotone, i.e., any horizontal line intersects q
exactly once. We store the points of S at the leaves of a balanced binary search tree T by nondecreasing
y-coordinates from left to right. We augment each node v of T with an instance HP(v) of the structure
of Theorem 1 for generalized halfplane range reporting; HP(v) is built on the points in v's descendant
leaves.

Given q, we divide it into two wedges qa and qb, each with a horizontal side, by drawing a horizontal
line L through Vq. This is always possible because q is y-monotone. Here qa (respectively qb) lies
above (respectively below) L. Let ra (respectively rb) be the ray of qa (respectively qb) that also
belongs to q and let la (respectively lb) be the line supporting ra (respectively rb). We search in
T using the y-coordinate of Vq and determine sets Va and Vb of nodes, where Va (respectively Vb)
consists of the nodes of T that are fight (respectively left) children of nodes on the search path but
are not themselves on the search path. We query HP(v) at each v EVa (respectively v E ~) with the
halfplane l~ (respectively l~-).

We now discuss correctness. For each v E V~, the points in the descendant leaves of v are all above
L. Moreover, each point of S that is above L is stored in a leaf of the subtree of exactly one node
v E Va. Of these points, the ones in qa (hence in q) are those lying in l~-. By Theorem 1, the query
on HP(v) with l~- returns the colors of these points. Symmetrically for qb.

Each level of T uses O(n log n) space by Theorem 1 and so the total space is O(n log 2 n). The query
time at each node visited is O(log 2 n + i), which implies an overall query time of O(log 3 n + i log n).

What if q is not y-monotone? In preprocessing, we select t = [27r/7] coordinate systems Ci = (xiyi)
as in Section 4.1. Within each C~ we build an instance of the above data structure for yi-monotone
fat-wedges. Given a query fat-wedge q, we locate a Ci such that q is yi-monotone and then query the
associated structure.

L e m m a 17, A set S o f n colored points in I~ 2 can be stored in a data structure of size O(n log 2 n)
such that the i distinct colors of the points that are contained in a query fat-wedge q can be reported
in time O(log 3 n + i log n).

Querying with a fat-triangle

We store the points by nondecreasing x-coordinates from left to fight in a balanced search tree
T ~ and augment each node v with an instance FW(v) of the structure of Lemma 17 for fat-wedges.
FW(v) is built on the points in v's descendant leaves.

Given q, we divide it into at most two triangles ql and qr, each with a vertical side s, with qt to
the left of s and qr to the right. We search in T ~ with the x-coordinate of s and identify sets ~ and
Vr of nodes that lie to the left and to the fight of the search path, respectively. For each node v E
(respectively v E Vr), we query FW(v) with the wedge supporting qt (respectively qr), which is a
fat-wedge.

Theorem 18. A set S of n colored points in]i~ 2 c a n be stored in a data structure of size O(n log 3 n)
such that the i distinct colors o f the points that are contained in a query fat-triangle q can be reported
in time O(log 4 n + i log 2 n).

18 P. Gupta et al. / Computational Geometry 6 (1996) 1-19

6. Conclusions and further work

We have presented efficient solutions to several generalized intersection searching problems involv-
ing objects that are not necessarily iso-oriented. Our methods have included sparse representations,
persistence, and filtering search.

Besides improving upon our bounds, two other problems are of particular interest, namely: (i)
obtaining linear space or near-linear space solutions with output-sensitive query times (of the form
O (n p + i) or O(n p + i polylog(n)), 0 < p < 1) for the generalized halfspace range searching problem
in d >~ 4 dimensions, for the generalized simplex range searching problem in d >/2 dimensions, and
for triangle range searching, triangle stabbing, and segment intersection searching in the plane; and
(ii) obtaining dynamic data structures for the generalized problems considered here.

Acknowledgements

The authors thank the three referees for many helpful suggestions that strengthened the paper and
for pointing out errors in an earlier version.

References

[1] EK. Agarwal and M. van Kreveld, Connected component and simple polygon intersection searching, in:
Proceedings of the 3rd Workshop on Algorithms and Data Structures (August 1993) 36-47.

[2] EK. Agarwal, M. van Kreveld and M. Overmars, Intersection queries for curved objects, Journal of
Algorithms 15 (1993) 229-266.

[3] A. Aggarwal, M. Hansen and T. Leighton, Solving query-retrieval problems by compacting Voronoi
diagrams, in: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (1990) 331-340.

[4] B. Chazelle, Filtering search: A new approach to query-answering, SIAM Journal on Computing 15 (1986)
703-724.

[5] B. Chazelle, L.J. Guibas and D.T. Lee, The power of geometric duality, BIT 25 (1985) 76-90.
[6] S.W. Cheng and R. Janardan, Algorithms for ray-shooting and intersection searching, Journal of Algorithms

13 (1992) 670-692.
[7] EE Dietz and D.D. Sleator, Two algorithms for maintaining order in a list, in: Proceedings of the 19th

Annual ACM Symposium on Theory of Computing (1987) 365-372.
[8] D.E Dobkin and H. Edelsbrunner, Space searching for intersecting objects, Journal of Algorithms 8 (1987)

348-361.
[9] J.R. Driscoll, N. Sarnak, D.D. Sleator and R.E. Tarjan, Making data structures persistent, Journal of

Computer and System Sciences 38 (1989) 86-124.
[10] H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, New York, 1987).
[11] E Gupta, R. Janardan and M. Smid, Efficient algorithms for generalized intersection searching on non-

iso-oriented objects, Technical Report TR-93-73, Dept. of Computer Science, University of Minnesota,
1993.

[12] E Gupta, R. Janardan and M. Smid, Further results on generalized intersection searching problems: Counting,
reporting, and dynamization, Journal of Algorithms 19 (1995) 282-317.

[13] P. Gupta, R. Janardan and M. Smid, On intersection searching problems involving curved objects, in:
Proceedings of the 4th Scandinavian Workshop on Algorithm Theory, Aarhus, Denmark, LNCS 824, 183-
194.

P. Gupta et al. / Computational Geometry 6 (1996) 1-19 19

[14] R. Janardan and M. Lopez, Generalized intersection searching problems, International Journal of
Computational Geometry & Applications 3 (1993) 39-69.

[15] J. Matougek, Cutting hyperplane arrangements, Discrete & Computational Geometry 6 (1991) 385406.
[16] J. Matou~ek, Efficient partition trees, Discrete & Computational Geometry 8 (1992) 315-334.
[17] J. Matou~ek, Range searching with efficient hierarchical cuttings, Discrete & Computational Geometry 10

(1992) 157-182.
[18] J. Matou~ek and O. Schwarzkopf, On ray shooting in convex polytopes, Discrete & Computational Geometry

10 (1993) 215-232.
[19] M.H. Overmars and C.K. Yap, New upper bounds in Klee's measure problem, SIAM Journal on Computing

20 (1991) 1034--1045.
[20] M. Sharir, Davenport-Schinzel sequences and their geometric applications, in: R.A. Earnshaw, ed.,

Theoretical Foundations of Computer Graphics and CAD (Springer, New York, 1988) 253-278.
[21] M. van Kreveld, New results on data structures in computational geometry, PhD thesis, University of

Utrecht, Utrecht, the Netherlands (1992).
[22] E. Welzl, More on k-sets of finite sets in the plane, Discrete & Computational Geometry 1 (1986) 95-100.

