
Theoretical
Computer Science

Theoretical Computer Science 168 (1996) 121-l 54

Hammock-on-ears decomposition:
A technique for the efficient parallel solution

of shortest paths and other problems’

Dimitris J. Kawadiasab, Grammati E. Pantziou’, Paul G. Spirakis a,d,

Christos D. Zaroliagis e,*

a Computer Technology Institute, P.O. Box 1122, 26110 Patras. Greece
b Department of Mathematics, University of Patras, 26500 Patras, Greece

’ Computer Science Department, Unitiersity of Central Florida, Orlando, FL 32516, USA
’ Department ?f Computer Engineering & Informatics, Uniarrsity of Patras, 26500 Patras, Greece

e Max-Planck-Institut fir Informatik, Im Stadtwald, 66123 Saarbriicken. Germany

Abstract

We show how to decompose efficiently in parallel any graph into a number, 3, of outerplanar

subgraphs (called hanzmocks) satisfying certain separator properties. Our work combines and
extends the sequential hammock decomposition technique introduced by Frederickson and the
parallel ear decomposition technique, thus we call it the hammock-on-ears decomposition. We
mention that hammock-on-ears decomposition also draws from techniques in computational geo-
metry and that an embedding of the graph does not need to be provided with the input. We
achicvc this decomposition in O(log n log log n) time using O(n + m) CREW PRAM processors,
for an n-vertex, m-edge graph or digraph. The hammock-on-ears decomposition implies a general
framework for solving graph problems efficiently. Its value is demonstrated by a variety of
applications on a significant class of graphs, namely that of sparse (di)yruphs. This class consists
of all (di)graphs which have a 7 between 1 and O(n), and includes planar graphs and graphs
with genus o(n). We improve previous bounds for certain instances of shortest paths and related
problems, in this class of graphs. These problems include all pairs shortest paths, all pairs
reachability, and detection of a negative cycle.

1. Introduction

The efficient parallel solution of many problems often requires the invention and

use of original, novel approaches radically different from those used to solve the same

* Corresponding author. E-mail: zaro@mpi-sb.mpg.de.
’ This work was partially supported by the EU ESPRIT Basic Research Action No. 7141 (ALCOM II) and
by the Ministry of Education of Greece. The work of the second author was also partially supported by the
NSF postdoctoral fellowship No. CDA-9211155.

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights rcscrved
PII SO304-3975(96)00065-5

122 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

problems sequentially. Notorious examples are list ranking [9], connected components

[5], etc.

In other cases, the novel parallel solution paradigm stems from a non-trivial parallel-

ization of a specific sequential method, e.g. merge-sort for EREW PRAM optimal sort-

ing [7]. This second paradigm is demonstrated in our paper. Specifically, we provide

an efficient parallel algorithm for decomposing any graph into a set of outerplanar

subgraphs (called hammocks). We call this technique the hammock-on-ears decom-

position. As the name indicates, our technique is based on the sequential hammock

decomposition method of Frederickson [16,17] and on the well-known ear decomposi-

tion technique [31], and non-trivially extends our previous work for planar graphs [36]

to any graph. We demonstrate its applicability by using it to improve the parallel (and

in one case the sequential) bounds for a variety of problems in a significant class of

graphs, namely that of sparse (di)graphs. This class consists of all n-vertex (di)graphs

which can be decomposed into a number of hammocks, p, ranging from 1 up to O(n)

(or alternatively have an O(n) number of edges). This class includes planar graphs and

graphs with genus o(n).

The hammock-on-ears decomposition (like the sequential hammock decomposition)

decomposes any (di)graph G into a number of outerplanar subgraphs (the hammocks)
that satisfy certain separator conditions. The decomposition has the following properties:

(i) each hammock has at most four vertices in common with any other hammock (and

therefore with the rest of the graph), called the attachment vertices; (ii) each edge

of the graph belongs to exactly one hammock; and (iii) the number of hammocks

produced is of the minimum possible order among all decompositions, and is bounded

by a function involving certain topological measures of G (genus, or crosscap number).

We achieve this decomposition in two major phases. In the first phase, whose out-

come are outerplanar portions of the input (di)graph G (called outerplanar outgrowths),

we transform an initial arbitrary ear decomposition into a new decomposition of G into

paths. These paths include with certainty the outerplanar outgrowths. Then, by em-

ploying techniques from parallel computational geometry, we identify in each path the

outerplanar outgrowths if they exist. In the second phase, we identify the hammocks

by using the output of phase one and by performing some local degree tests.

This decomposition allows us to partially reduce the solution of a given problem II

on G, to the solution of II in an outerplanar graph. The general scheme for solving

problems using the hammock-on-ears decomposition technique consists of the following

major steps:

1. Find a hammock-on-ears decomposition of the input (di)graph G, into a set of T

hammocks.

2. Solve the given problem II in each hammock separately.

3. Generate a compressed version of G of size O(F), and solve II in this compressed

(di)graph using an alternative method.

4. Combine the information computed in steps 2 and 3 above, in order to get the

solution of II for the initial (di)graph G.

D. J. Kavvadias et al. I Theoretical Computer Science 168 11996) 121-154 123

The above scheme was used in a specific way in many sequential [14, 16,171 and

parallel applications [14,36], but was not employed as a general framework for solving

problems. We apply this scheme to the following fundamental graph problems and

improve upon previous results in the case of sparse digraphs: all pairs shortest paths

(APSP), finding a negative cycle and all pairs reachability (APR). (For a definition of

these problems, see Section 2.)

1.1. Overview of previous work and motivation

In the following, let G = (V(G),E(G)) denote any (di)graph, and let n = 1 V(G)1

and m = IE(G)I. The sequential hammock decomposition technique was developed by

Frederickson in [16, 171. Let 7 be the minimum number of hammocks into which G

decomposes. It was shown in [161 that T = O(y(G’)) = O(y(G’)), where y(G’) and

y(G’) are the genus and crosscap number [24] of a graph G’, respectively. Here G’

is G with a new vertex v added and edges from v to every vertex of G. Moreover,

y(G’) d y(G) + q, where G is supposed to be cellularly embedded on an orientable

surface of genus y(G) such that all vertices are covered by at most q of the faces.’

Therefore, F(G) can range from 1 up to O(m) depending on the topology of the graph.

(Note that ;j = q, if G is planar, and F = 1 if G is outerplanar.) Frederickson showed

in [161 how to produce a decomposition of G into O(7) hammocks in O(n + m) time,

without an embedding of G into some topological surface to be provided with the input.

Hammock decomposition seems to be an important topological decomposition of

a graph which proved useful in solving efficiently APSP problems [16, 17,361, along

with the idea of storing shortest path information into compact routing tables (succinct

encoding) [19,421. (In this representation each edge (0,~) is associated with at most

y disjoint subintervals of [l,n] such that (v,w) is the first edge in a shortest path from

v to every vertex in these subintervals.) Compact routing tables are very useful in

space-efficient methods for message routing in distributed networks [19,42]. The main

benefit from this idea is the beating of the Q(n2) sequential lower bound for APSP (if

the output is required to be in the form of IZ shortest path trees or a distance matrix)

when 5 is small. Frederickson showed how to produce such an encoding in O(n F)

time for planar digraphs [17] and in O(n 9 + F2 log 7) time for sparse digraphs [161.

Alternative encodings of APSP information, with partial use of compact routing tables,

take O(n + 72) (resp. O(n + 72 log 7)) time for planar (resp. sparse) digraphs [16, 181.

Thus, efficient parallelization of this decomposition (along with other techniques)

may lead to a number of processors much less than M,(n) (i.e. the number required

by the best known parallel algorithm that uses the matrix powering method to solve

APSP in time O(log’n) on a CREW PRAM), and hence beat the so-called transitive

closure bottleneck [29]. Such a “beating”, for planar digraphs, was first achieved in

[36]. (The best value, up to now, for M,(n) is 0(n3(loglogn)1/3/(logn)7’6) [26].) If

2 We say that a face f covert a set S & V(G) of vertices, if every vertex in S is incident to j’. Here q is

the minimum number of faces that together cover all vertices of G and varies from 1 up to O(n).

124 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

the digraph is provided with a balanced O(np)-separator decomposition,3 0 < p < 1,

it has recently been shown by Cohen [6] that one can find APSP in 0(log3 n) time with

O((n2+ n2p+‘)/log3 n) processors on an EREW PRAM. For the case of planar digraphs,

where a balanced O(n’i2)-separator decomposition can be computed in O(log4 n) time

using O(n’+&) CREW PRAM processors for every 0 < E < 1 [20], the results in

[6] imply an O(log4 n)-time, 0(n2/log4 n)-processor CREW PRAM algorithm for the

APSP problem. (To the best of our knowledge, it is not known yet how to compute in

general balanced O(n”)-separators in NC.)

In the case where a digraph G has negative edge costs, it is well known [3,1 l]

that there is a shortest path from a vertex v to a vertex u in G iff no path from

v to u contains a negative cycle (i.e. a simple cycle for which the sum of its edge

costs is negative). Hence, detecting a negative cycle is an essential problem for finding

shortest paths in G. The best previous sequential algorithms for solving the negative

cycle problem in general digraphs run in O(nm) time [3, 11,391. In the case where

the digraph has a balanced O(np)-separator decomposition, the best previous algorithm

is due to Mehlhorn and Schmidt [34] and runs in O(n3fi + n’+fi log n) time. In paral-

lel computation, the main tool used was the matrix powering method (using e.g. the

approach described in [30]), which means that one needs O(log2 n) time and M,(n)

processors on a CREW PRAM. In the case where the digraph is provided with a bal-

anced O(n”)-separator decomposition, the best previous algorithm was given in [6] and

runs in the same resource bounds with the APSP algorithm presented there.

Concerning the APR problem, even in the case of sparse digraphs, the best previous

parallel algorithm uses the matrix powering method and hence needs 0(log2 n) time by

employing M,(n) CREW PRAM processors [28]. (The best value for M,(n) is O(n2.376)

[lo]. The best sequential algorithm runs in O(min{M,.(n),nm}) time [l I].) Also, if we

are provided with a balanced O(nfi)-separator decomposition, Cohen in [6] gives an

algorithm for the APR problem which runs in the same resource bounds with the one

for the APSP problem presented in that paper.

It is evident by the above discussion that all previous parallel algorithms, especially

in the case of non-planar sparse digraphs, perform considerably more work compared

to the best known sequential ones. Moreover, in all cases the lower bound of Q(n2)

- for the work - seems difficult to beat, even in the case where the digraph has nice

topological properties.

We should also note here that all the above problems, besides their own signifi-

cance, are frequently used as subroutines in many other applications. For example,

finding shortest path information in digraphs has applications to network optimization

problems [3], as well as to other areas like incremental computation for data flow

analysis and interactive systems design [41]. The negative cycle problem has also

3 A separator of a digraph G is a subset of vertices whose removal disconnects G into at least two compo-

nents If each component has size at most a constant fraction of 1 V(G)I, then the separator is called balanced.
A balanced f(n)-separator decomposition is a recursive decomposition of G using balanced separators, where

subgraphs of size n have separators of size O(f(n)).

D.J. Kavvadias et al. I Theoretical Computer Science 168 (I996) 121-154 125

applications to network optimization problems [3]. Moreover, in [39] applications to

two dimensional package placement and to checking constraints in VLSI layout, are

mentioned. Applications of the reachability problem can be found in [11,371. Therefore,

efficient solutions of the APSP, APR and negative cycle problems can also lead to efficient

solutions for other problems too.

1.2. Our results

Given a (di)graph G, we can generate a hammock-on-ears decomposition of G into

an asymptotically minimum number of O(F) hammocks in O(log n log log n) time using

O(n + m) CREW PRAM processors. We note here that an embedding of G on some

topological surface does not need to be provided with the input. The time bound can

be further reduced to O(log 12 log*n) if either a CRCW PRAM is used, or G belongs

to the class of linearly contractible graphs (see Section 4). Examples of this class

are planar graphs and graphs of constant genus. A sequential implementation of our

algorithm runs in O(n + m) time and matches the running time of [161.

We next apply the hammock-on-ears decomposition (along with other techniques

and the general scheme it implies) to the problems discussed earlier and achieve the

following on a CREW PRAM:

(1) We give an algorithm for computing an encoding of APSP information into com-

pact routing tables in any sparse digraph G with real-valued edge costs, but no negative

cycles, in 0(log2 n) time by employing O(n F + Ms(F)) processors and using O(n 7)

space. In the case of planar digraphs we can achieve further improvements; namely

O(log* n+log4 7) time and O(n F) processors, thus being away of optimality by a poly-

logarithmic factor only. Note that if we use alternative encodings for APSP information

(see Section 4) that need O(n + y2) p s ace, we can achieve further improvements on

the processor bounds. Namely, O(n+M,(F)) processors for the general case and if the

graph is planar, the processor bound can be further reduced to O(n + ,7*/log4 T).

(2) We overcome the negative cycle assumption mentioned above, by presenting an

algorithm which finds (if it exists) a negative cycle in any sparse digraph G with real-

valued edge costs. Our algorithm runs in O(log* n) time by employing O(n + M,(7))

processors and uses O(n+ 72) space. A sequential implementation of our algorithm runs

in O(n + min{ T3fi + Ti+p log y, y2}) time, where 0 < ~1 < 1 and G has a balanced

separator of size O(nfi). The algorithm is based on a novel optimal solution of the

same problem when the input digraph is outerplanar (thus tackling step 2 of the general

scheme), in O(log y1 log* n) time by employing O(n/log II log*n) processors. In the case

of planar digraphs, we can achieve further improvements; namely O(log’n + log4 T)

time and O(n + y2/log4 17) processors. Also, in this case our sequential implementation

runs in O(n + 71.5 log”?) time.

(3) We give an algorithm for providing a succinct encoding of APR information into

compact routing tables in any sparse digraph G, in 0(log2 n) time with O(n 7 +M,(7))

processors using O(nv) space. In the case of planar digraphs our algorithm runs in

the same bounds with those given above for the APSP problem. If we use alternative

126 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

encodings for APR information (see Section 4) that need O(n+ F2) space, we can achieve

further improvements on the processor bounds. Namely, O(n + M,(7)) processors for

the general case and if the graph is planar, the processor bound can be further reduced

to O(n + F2/log4 f).

We note that: (i) The hammock-on-ears decomposition fully extends the topological

characteristics of the input (di)graph and can be advantageously used in the design

of algorithms which are parameterized in terms of these characteristics. The better the

topological characteristics are (i.e. the smaller the y), the more efficient the algorithms

for the above applications become. (ii) The bounds of our parallel algorithms for

solving the APSP, APR and negative cycle problems match the previously best bounds

when F = O(n). However, in all cases where 7 = o(n), our bounds are significantly

smaller. Furthermore, we beat the M,(n) or M,(n) lower bound on the number of

processors, for the same problems, on any sparse digraph with F = o(n). (iii) Our

algorithms for all the above problems explicitly construct the graph decomposition. If

additionally a balanced separator decomposition is provided with the input, our general

scheme guarantees that the algorithms presented here will still provide better results for

all of these problems. Note that the bounds in this case are similar to the ones given

for planar digraphs and are discussed in Section 5. (iv) The sequential version of our

negative cycle algorithm is clearly an improvement over the algorithms of [3,34,39] (in

the case where y = o(n)) and moreover, overcomes the assumption of nonexistence of

a negative cycle for the APSP problem in the sequential results of Frederickson [16, 171.

The paper is organized as follows. In Section 2 we give some preliminaries and

define the hammocks. Our parallel algorithm for generating the hammock-on-ears de-

composition of a graph is presented in Section 3, while its applications to the problems

discussed earlier are presented in Section 4. Finally, in Section 5 we conclude and give

some further results.

2. Preliminaries

We assume familiarity with basic graph terminology. (For terms not defined in the

paper, the reader is referred to any standard textbook on the subject, e.g. [27].)

Let G = (V,E) be a graph. If G is directed, we will refer to E as the set of

arcs of G. Otherwise, we will refer to it as the set of edges of G. A graph is called

outerplanar if it can be embedded in the plane so that all vertices are on one face. A

tree is called convergent (resp. divergent) if the edges of the tree point from a node

to its parent (resp. children).

Let G = (V,E) be a digraph with real-valued arc costs. We will call the undirected

graph G, = (V,E,), where E, = {(u,w)~(u,w) E E or (w,v) E E}, the undirected

version of G. If there is a (directed) simple path in G from a vertex 21 to a vertex w,

we say that w is reachable by v. The length of a simple path P is the sum of the costs

of all arcs in P and the distance between two vertices u and w is the minimum length

of a path between v and w. Such a path of minimum length is called shortest path.

D.J. Kavvadias et al. I Theoretical Computer Science 168 11996) 121-154 127

A simple cycle C in G is a simple path starting and ending at the same vertex v. If the

length of C is smaller than zero, then C is called negative. The all pairs shortest paths
problem asks for finding shortest path information between every pair of vertices s and

t in G (provided that there are no negative cycles in G). The negative cycle problem
asks for detecting if there exists a simple cycle in G of negative length. If it exists, then

output such a cycle. The all pairs reachability problem asks for finding reachability

information for every pair of vertices s and t in G, i.e. if there is a directed path from

s to t. (Note that this problem is also known as the transitive closure problem [l 11.)

The notion of compact routing tables appeared in [19] and is based on the ideas

of [42]. Let the vertices of G be assigned names from 1 up to n (in a manner to be

discussed in Section 4). For each arc (v, w), let S(v, w) be the set of vertices such

that there is a shortest path from v to each vertex in S(u, w) with the first arc on

this path being (v, w). (In the event of ties, apply a tie-breaking rule so that for each

V,U, v # U, u is in just one set S(V, w).) Let each S(u,w) be described as a union of

a minimum number of subintervals of [1, n]. We allow a subinterval to wrap around

i.e. the set {ii + 1 , . . . , n, 1,2,. ,j} (where i > j + 1) is denoted as [i,j]. The set

S(v, w) will be called the compact label of (v, w). If G is outerplanar, then S(r, w) is

a single interval [19]. Otherwise, S(v, w) can consist of more than one subinterval. A

compact routing table will then have an entry for each of the subintervals contained

in a compact label at u.

An ear decomposition D = {PO, PI,. . , P,_ I } of an undirected biconnected graph

H = (V(H),_!?(H)) is a partition of E(H) into an ordered collection of edge-disjoint

simple paths PO,. . . , P,_l such that: (i) PO is an edge; (ii) PO U PI is a simple cycle;

(iii) each endpoint of Pi, i > 1, is contained in some P,, j < i; and (iv) none of

the internal vertices of Pi are contained in any P/, j < i. The paths in D are called

ears. An ear is open if it is acyclic and is closed otherwise. A trivial ear is an ear

containing only one edge. D is an open ear decomposition if all of its ears are open.

We define hammocks following [16]. (For basic notions concerning topological graph

theory, the reader is referred to [24].) Let G be a digraph whose undirected version is

biconnected. (Otherwise, we consider each biconnected component separately.) Let 2:

be a vertex not in G. Let G’ = (V(G’),E(G’)), where V(G’) = V(G)U{v}, v @ V(G),

and E(G’) = E(G) U {(v, w) : w E V(G)}. Let G’ be a cellular embedding of G’ on

a surface of Euler characteristic neither 1 nor 2. (These cases actually imply that G

is outerplanar and therefore lead to an easy decomposition of G into one hammock.

For details, see [16].) The hammocks of G will be defined with respect to G’. First,

find the undirected version of 6’. Next, triangulate each face that is bounded by more

than three edges in such a way that no additional edges incident on v are introduced.

Finally, delete z: and its adjacent edges yielding embedding Z(G). In I(G) one large

face is always created (the basic face) containing all the vertices. The remaining faces

are all triangles. The resulting I(G) is called a basic face embedded graph. Faces are

grouped together to yield certain outerplanar graphs called hammocks by using two

operations: absorption and sequencing. Absorption can be done by initially marking

each edge that borders the basic face. Let f,, f2 be two nonbasic faces sharing an edge.

128 D.J. Kavvadias et al. I Theoretical Computer Science I68 (1996) 121-154

Suppose f, contains two marked edges. Then absorb fi into f2. (This is equivalent to

first contracting one edge that fi shares with the basic face. The first face becomes a

face bounded by two parallel edges, one of which also belongs to f2. Then delete this

edge, merging fi and fi.) Repeat the absorption until it can no longer be applied.

After the end of absorptions, group remaining faces by sequencing. Identify maximal

sequences of faces such that each face in the sequence has a marked edge and each

pair of consecutive faces share an edge. Each sequence then comprises an outerplanar

graph. Expanding the faces that were absorbed into faces in the sequence yields a

graph that is still outer-planar. Each such graph is called a (major) hammock. The

first and last vertices on each face of the hammock are called attachment vertices.

Note that there are four attachment vertices per hammock that constitute the only

way of “communication” between the hammock and the rest of the graph. Any edge

not included in a major hammock is taken by itself to induce a (minor) hammock.

A hammock decomposition of I(G) is the set of all major and minor hammocks.

It follows by the sequencing operation (see also [16]) that each major hammock is

defined on a set of vertices which form two sequences on the basic face. Each such

vertex sequence starts and ends with an attachment vertex and determines a path of

marked edges.

Let F(G) be the minimum number of hammocks into which G can be decomposed.

It is not hard to see that the total size of a compact routing table T is O(nf(G)) by

constructing T through a decomposition of G into y(G) hammocks (see also [191).

Having APSP information encoded into compact routing tables, it follows from [17,361

that a convergent or divergent shortest path tree can be computed in O(n log y(G))

sequential time [171, or in O(log n log F(G)) time using O(n/ log n) EREW PRAM

processors [36]. (The latter computation can be alternatively accomplished in O(log n)

time with O(n) processors.)

Since the direct approach for decomposing G into a minimum number of hammocks

would involve finding an embedding of minimum genus (shown to be NP-complete

in [40]), Frederickson [161 used an alternative approach, the so called partial hammock

decomposition. (A partial hammock is a subgraph of a hammock in some basic face

embedding Z(G).) This decomposition decomposes G into 0(7(G)) partial hammocks

using two operations: pseudo-absorption and pseudo-sequencing. As their names indi-

cate these operations are analogous to absorption and sequencing (defined above) and

in general produce only partial hammocks. The interesting feature of these operations

is that they are applied to G without an embedding to work with.

3. The algorithm for the hammock-on-ears decomposition

Let G, be the undirected version of a digraph G. We assume that G, is biconnected.

(If not, we work on each biconnected component separately.)

Let vi, v2 be a separation pair of G, that separates Fj from V, = V - fi - { ~1, VZ},

where the subgraph induced on V, is connected. Let J1 be the subgraph of G, induced

D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154 129

on fi U { 01, ~2) and let J be 51 with the edge (vi, 212) added (if it is not already in

JI). Let Gt be the graph resulting from contracting all edges with both endpoints in

6. (The multiple edges, possibly created during the contractions, are also deleted.)

If vi and ~12 are chosen such that J is outerplanar and V, is maximal subject to J

being outerplanar, then Jl is called an outerplanar outgrowth of G, and (Cl, J) an

outerplanar trim of G,. The following lemma has been proved in [16].

Lemma 3.1 ([16]). Let (Gl, J) be an outerplanar trim of a hiconnected graph G,.

Then, *y(Gl) = y(G,) and a basic face embedded graph for G1 of minimum hammock

number can be extended to a basic face embedded graph for G, of minimum hammock

number.

The above lemma actually says that we may remove all outerplanar outgrowths

of the graph G,, find a minimum decomposition of the remaining graph in outer-

planar subgraphs (hammocks) and then reinsert the removed outerplanar outgrowths of

G,. The resulting decomposition still consists of outerplanar subgraphs and moreover,

the number of hammocks of the decomposition is minimum. This procedure is called

pseudo-absorption [16]. The first phase of our parallel decomposition algorithm is to

efficiently parallelize the pseudo-absorption procedure. Because of the sequential nature

of this procedure, we had to employ different techniques specifically suited for parallel

computation such as the ear decomposition search.

After all outerplanar outgrowths have been identified, they are removed from the

graph leaving an edge connecting the separation points of the outgrowth, labeled with

sufficient information to rebuild the outgrowth after the decomposition. A second pro-

cedure, called pseudo-sequencing [16] is then applied, in order to identify sufficiently

long sequences of faces from each hammock. The second phase of our algorithm is to

parallelize the pseudo-sequencing procedure.

3.1. Pseudo-absorption

The first step in our pseudo-absorption algorithm, is to create an open ear decom-

position of the graph. The key observation is that the first (lower numbered) ear that

involves an outerplanar outgrowth enters the outgrowth from one of the separation ver-

tices and exits from the other. Moreover, all ears of the outerplanar outgrowth whose

endpoints are vertices of this first ear, have endpoints that are consecutive vertices of

this ear, otherwise the outerplanarity assumption would be violated. The same holds for

any ear with greater number that is included in the outgrowth: It must “touch” a lower

numbered ear in consecutive vertices. For the same reason there are no ears (included

in the outgrowth) with endpoints in two different ears. The shape of the outerplanar

outgrowth tends to be as in Fig. 1, where WI, ui and ~2, u2 are pairs of consecutive

vertices of the ear Pi and w4,u4 are consecutive vertices of the ear E’j.

Based on this observation, we start from an open ear decomposition and try to

identify ears that have the above property: Their endpoints are consecutive vertices of

130 D. J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

rest of graph

Fig. 1. The shape of a tentative outgrowth on ears Pi, Pj, Pm and Pk, where m > j > i and k > i. Note that

this is not the final outgrowth and further splitting is necessary, because of the ear with endpoints ~3 and ~3.

another ear. Any such maximal set of ears is a possible outerplanar outgrowth. It is

useful to view this set of ears as a new ear, and transform the ear decomposition to a

new one where there are no ears having both their endpoints to be consecutive vertices

of another ear. Note also (cf. Fig. 1) the possible existence of ears (both trivial and

non-trivial) that connect non-consecutive vertices, which may destroy the outerplanarity

(e.g. the ear with endpoints ~3, ~3 in Fig. 1), and which are treated separately in the

next step. This step consists of retransforming the new ear decomposition by dividing

each ear into a number of paths such that each new path is a maximal candidate of

being an outerplanar outgrowth. The transformation of the ear decomposition is done

in Stage 1 of algorithm Find-Outgrowths below.

Algorithm Find- Outgrowths. Stage 1:

BEGIN

1.1. Find an open ear decomposition, D = {PO, PI,. . . , P,_, }, of G,.

1.2. Construct an auxiliary graph A as follows: Create a vertex for each ear pi. For

each Pi, if both its endpoints belong to the same ear Pi, j < i, and are consecutive

vertices of Pi, and moreover there is no other non-trivial ear Pk having these two

vertices as endpoints, then let (Pi,Pj) be an edge of A.

1.3. Find the connected components of A. Each connected component is a tree (there

is no cycle because each endpoint of an ear Pi belongs to a smaller numbered ear).

Consider as the root of such a tree the vertex corresponding to the ear that either

has its endpoints on different ears, or on the same ear Pk but the endpoints are not

consecutive vertices of Pk.

1.4. In each connected component, join the ears of the component into a single ear

by converting for each ear the edge between its endpoints into a new trivial ear, and

also by rearranging the pointers of the vertices that point to the next vertex in the

obvious way. The number of the new ear is equal to the number of the ear which is

the root of the tree (connected component). Call the new ear decomposition D,.

D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154 131

1.5. Now call internal vertices of a (new) ear P,‘, all its vertices except for its

endpoints and internal ears with respect to Pj all ears (both trivial and non-trivial)

whose both endpoints are vertices of Pi. Analogously, ears that have only one endpoint

to be a vertex of cj are called external. We call dividing vertices of Stage 1 the

endpoints of all non-trivial ears. Divide each ear P/ into a set of paths each having as

endpoints two consecutive (on the ear Pi’) dividing vertices of Stage 1 (see Fig. 2).

Renumber the vertices of the new paths so as to be consecutively numbered. Call the

new decomposition into paths, D2.

END.

Stage 1 of algorithm Find-Outgrowths is based on the following lemma.

Lemma 3.2. An outerplanar outgrowth, not including the edge PO of the original ear

decomposition, consists of a consecutive subpath of a single path P,? of decomposition

02 and possibly of some edges that are internal to e2_

Proof. First observe that the restriction imposed by the lemma (i.e. the edge PO should

not be part of the outgrowth) follows from the fact that Stage 1 of algorithm Find-Out-

growths correctly identifies outgrowths, if the first ear enters the outgrowth by one of

the separation vertices and exits from the other. At the end of the current section we

show how to remove this restriction.

Let J1 be an outerplanar outgrowth with separation vertices VI and ~2. By definition,

J, i.e. JI with the edge (vr,vz) added, must be outerplanar.

We will show that the vertices of 51 form a subpath of some path e2 of decompo-

sition D2. Since no path in 02 has external or internal non-trivial paths attached to it,

this amounts to showing that the endpoints v and w of <s can be included in J, only

as separation vertices (i.e. they cannot be internal to JI). Assume to the contrary that

at least one endpoint of P,‘, say v, is in 51 but is not a separation vertex (see Fig. 3).

Since v was declared dividing at Step 1.5, it is the beginning of at least two more

paths (except <?). There are several cases to consider. If at least one of the paths

is non-trivial (path v - VI), then the second path cannot include vt: if it did, then it

must necessarily be simple edge (dashed line in Fig. 3) otherwise outerplanarity would

be violated. But then vr is dividing and path v - VI is connected to two consecutive

vertices of the ear of D, from which the trivial path v-v, evolved. This possibility was

Fig. 2. . = Dividing vertex of Stage 1 of algorithm Find_Outgrowths.

132 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

Fig. 3. Proof of Lemma 3.2.

ruled out at Step 1.4 and thus we come to a contradiction. Since all paths beginning

at u must either be totally included in Jr or pass through either ~1 or 212, we conclude

that v is directly connected to a vertex in path w - 212. But then similar arguments

result in the necessity to have w directly connected to a vertex in path v - VI, again a

violation of outerplanarity unless w is directly connected to v. This is absurd however

since, now, Pf has endpoints to be consecutive vertices of another path. We conclude

that u can be included in JI only as a separation vertex. Observe that this construction

does not rule out the possibility of a path to have external or internal edges attached

to it and thus further splitting may be necessary. 0

In the beginning of the second stage we have a new decomposition into paths where

each non-trivial path Pf is a maximal candidate of being an outerplanar outgrowth. A

path p? could have however external or internal edges attached to it that may destroy

the outerplanarity and hence only portions (if any) of the subgraph induced on c?

could be outerplanar outgrowths. This second stage resolves this problem.

Now referring to all paths e? of D2, call dividing vertices of Stage 2 the endpoints of:

(i) Pf and of all external edges with respect to Pf .

(ii) All internal edges that intersect with other internal or external edges. Two

internal edges with endpoints wt , w2 and ~1,242 intersect, if exactly one endpoint of the

second edge (e.g. exactly one of ~1 and ~2) lies between the endpoints of the first

one on the path Pf . In the case where one is external and only for the purpose of

identifying possible intersections, consider it as being connected to one endpoint of

<! and handle it as being internal. Equivalently, if we consider the numbers assigned

to the nodes of Pf at the end of Stage 1, two edges intersect if the corresponding

intervals intersect and no interval is a subset of the other.

(iii) All internal edges that do not intersect with other edges (internal or external

handled as above) and whose endpoints are separated by at least one dividing vertex

of cases (i) and (ii).

D. J. Kavvadias et al. / Theoretical Computer Science 168 (1996) 121-154 133

We are now ready to give Stage 2 of algorithm Find-Outgrowths.

Algorithm Find-Outgrowths. Stage 2:

BEGIN

2.1. For all paths c? of decomposition 02 (produced by Stage 1) in parallel, locate

the dividing vertices of types (i) to (iii) defined above.

2.2. Subgraphs of P,2 that are separated by two consecutive dividing vertices are

outerplanar outgrowths (see Fig. 4). Delete each such subgraph and substitute it by a

single edge that connects these dividing vertices. In order to be able to easily reconstruct

the outgrowths, label the edge by the numbers of the vertices of the corresponding

outgrowth.

END.

Stage 2 of the algorithm is based on the following lemma.

Lemma 3.3. The subgraphs induced on each of the portions into which the dividing

vertices separate a path Pi’ are outerplanar outgrowths (provided of course, that theqj

are not simple edges). The separation vertices of an outgrowth are the two dividing

vertices that define the portion.

Proof. Let Q be the subgraph induced on a portion defined by two consecutive dividing

vertices. By definition, Q must include all edges of the path Pi2 that have both endpoints

on Q. Observe now that no two of those edges intersect, since intersecting edges define

dividing vertices and consequently the presence of such edges would result in further

splitting of Pf . Moreover, there are no edges connecting a vertex in the given portion

with the rest of the graph. If there were such an edge, then it would fall into cases

(i) or (iii) and its endpoints would also be dividing vertices. The graph Q defined in

this way, is clearly outerplanar and is separated from the rest of the graph by the two

dividing vertices. It is maximal, since the addition of any vertices must necessarily

include at least one of the dividing vertices that define Q. This vertex now becomes

internal to Q (i.e. it is no longer a separation vertex of Q). If this vertex was found

to be dividing because it falls into case (i), then a portion of at least one more path

must be included in the outer-planar outgrowth which by Lemma 3.2 is impossible. If

it is of type (ii), then it is the endpoint of an intersecting edge which must also be

part of Q, otherwise a link with the rest of the graph is introduced. Now this edge

I outerplanar outgrowth

Fig. 4. l = Dividing vertex of Stage 2 of algorithm Find_Outgrowths.

134 D.J. Kavvadias et al. 1 Theoretical Computer Science 168 (1996) 121-154

intersects with another which has an endpoint between the endpoints of the first. This

endpoint must also be included in Q since in order to separate it from Q at least two

more separation vertices are needed. For the same reason the intersecting edge must

also be included in Q, thus destroying the outerplanarity. If the vertex was found to

be dividing because it falls in case (iii), then it is the one endpoint of an edge which

has a dividing vertex of types (i) or (ii) between its endpoints. As before this dividing

vertex must be included in Q and consequently at least one pair of intersecting edges,

again a contradiction. 0

Locating dividing vertices of type (i) is straightforward. Also, if we determine di-

viding vertices of type (ii), it is easy to determine dividing vertices of type (iii). In

order however to locate the dividing vertices of type (ii) we need to locate the inter-

secting edges. Considering the numbering of the vertices of Pf, we conclude that this

problem is equivalent to the following one: Given a set of intervals on [1, n] determine

all intervals that intersect with at least another interval.

In our problem we need to determine all paths that are simple edges and intersect

with other edges. The endpoints of the edges are the boundaries of the intervals,

considering the path Pf to be the line of numbers. This is actually a geometric problem

and we manage to solve it in parallel time O(log p) using O(p) processors, where p is

the number of intervals involved. We note here that the literature of parallel geometry

is rich in related problems that study intersections of line segments in the plane (see

e.g. [2,23]). However the versions of the problems studied there, usually report all

intersections and carry therefore the burden of the size of the output either on the time

or the processor bounds. In our case we merely want to report intervals that have some

intersection.

We now briefly discuss how to solve this problem using a data structure mentioned

in [32] called “priority search tree”. A priority search tree of the points (xi,yi), i =

1,. , p, is a binary tree whose nodes keep the points sorted from left to right according

to their x coordinate and which is a heap w.r.t. the y coordinate (i.e. a node always

keeps a value that is greater than the value kept in its children). Now let I = (x1,x2)

be an interval chosen from a set S of p intervals of [I, n]. We say that I has a right in-

tersection (resp. left intersection) in S, if there is an interval I’ = [x’,,xi] E S such that

x1 < xi < x2 and xi > x2 (resp. xi < xi < x2 and xi < xi). The following lemma holds.

Lemma 3.4. Let R be a priority search tree constructed on a set S of p intervals

(where the intervals are seen as points). Then, given an interval I C [l,n] we can test

whether I has a right intersection in S in sequential time O(log p). Symmetrically, we

treat left intersections by a priority search tree that has reversed the heap property.

Moreover, constructing R in parallel can be accomplished in O(log p) time using

O(p) CREW PRAM processors.

Proof. Follows from a well-known reduction to the problem of locating all points on

a plane that lay in half-infinite band with sides parallel to the x and y-axes, see [33].

D. J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121~-154 135

In the same reference, the construction of the priority search tree basically requires

a sorting of the points according to their x-coordinate and a knock-out tournament in

order to establish the heap property of the y-coordinate. It is not difficult to see that

both steps can be parallelized within the resource bounds stated in the lemma. g

Therefore we have:

Lemma 3.5. The problem of interval intersections, for a set S oJ’ p interval.,‘, cun he

solved in O(log p) time by employing O(p) CREW PRAM processors.

Proof. By Lemma 3.4 the tree R on S can be constructed in O(log p) time using O(p)

CREW PRAM processors. Given this tree, we can solve interval intersections in the

same resource bounds by letting each processor to query one interval in parallel. CI

Theorem 3.1. Algorithm Find-Outgrowths correctly identi$es all outerplanur out-

growths of an n-vertex, m-edge biconnected graph G in O(logn loglogn) time using

O(n + m) CREW PRAM processors.

Proof. In Stage 1 of the algorithm, subsets of ears that possibly form outerplanar

outgrowths are identified. Each one of these subsets is converted into one new ear

and finally into a set of paths. Next, each path is divided into portions by invoking

Stage 2. Lemma 3.3 guarantees that the portions are outerplanar outgrowths. Stage 1 of

the algorithm employs an open ear decomposition procedure, a connected components

procedure and also at Steps 1.4 and 1.5 a list ranking procedure. Stage 2 can be

done in 0(1) time except for the identification of the dividing vertices, which by

Lemma 3.5 is accomplished in O(logn) time using O(n+m) CREW PRAM processors.

Therefore, the time and processor bounds are dominated by the bounds of the connected

components algorithm [5] (which also dominates the bounds for finding an open ear

decomposition [31]), and which are those stated in the theorem. !Z

We end this section by showing how to remove the restriction in algorithm Find-Out-

growths as promised in the proof of Lemma 3.2. We remind the reader that the problem

was that the algorithm correctly identifies an outerplanar outgrowth, if the first (lower

numbered) ear that involves the outgrowth enters from one separation point and exists

from the other. The first ear however (the ear PO) may have one or both endpoints

on an outgrowth. In this case one or two outerplanar outgrowths may not be identified

correctly. This can be corrected if we first run the algorithm from an arbitrary ear

decomposition, identify all but at most two outerplanar outgrowths and then rerun the

algorithm from a different ear decomposition with the endpoints of the new PO placed in

an already discovered outgrowth. This can be done since the parallel ear decomposition

algorithm begins from a spanning tree which also defines the first ear (see [31] for

details).

136 D.J. Kavvadias et al. I Theoretical Computer Science I68 (1996) 121-154

3.2. Pseudo-sequencing

This subsection shows how to efficiently parallelize the pseudo-sequencing procedure.

The parallel algorithm presented is based on ideas developed in [16] where also the

main theory behind the procedure can be found. The goal is to identify sequences of

faces that cover all but a constant part of a hammock. The hammocks thus produced

are called partial hammocks.

Let G,t be the undirected graph resulting from the pseudo-absorption procedure. Each

edge (x, y) in G,r has a (possibly empty) label representing the outerplanar outgrowth

generated by separation vertices x and y. Note that all vertices in G,r have degree

greater than 2.

Let H be a hammock in a basic face embedded graph I(G) (as defined in Section 2).

For each H, there is a corresponding subgraph H’ in G,t that has a special structure

which is relative to an outerplanar embedding of H’. Assume that H’ is biconnected.

The non-biconnected case is handled in a preprocessing step to be discussed later. Since

every node of G,t has degree at least three and H’ is outerplanar, it follows that all

faces (in an outerplanar embedding) of H’ are bounded by either three or four edges.

(There can be a situation where this is not true, involving the attachment vertices of the

hammock which however only represent a constant part.) This observation suggests that

a hammock is actually a sequence of triangles and rectangles sharing an edge in a way

that outerplanarity is preserved. Consequently, two neighboring faces of a hammock

form a graph that is isomorphic to one of the three graphs PI, PZ or P3 of Fig. 5.

We will next try to identify interior edges of a hammock. These are the edges that

separate two neighboring faces in the same hammock, i.e. the edges (ut, 02) of the

previous graphs. Note that the remaining (non interior) edges of H’ form two paths

corresponding to the paths of marked edges in H. Consequently, the endpoints of the

edges of these two paths in H’ form two sequences of vertices which are (in general)

subsets of the corresponding vertex sequences in H.
The following lemma is a combination of Lemmata 6.2-6.4 that were proved in [161.

Lemma 3.6. Any sequence of seven faces in a hammock (i.e. combination of triangles
and rectangles) falls into at least one of ten possible cases. At least one of the graphs
PI, P2 or P3 of Fig. 5 appears in any of the ten cases having at least two of its
vertices with degree less than 7. This graph can be identijed in any of the cases, in
O(1) time, by applying one of the following degree tests:

(1) PI with deg(v2) = deg(v3) = deg(v4) = 3.
(2) PI with deg(vz) = deg(v3) = 3 and deg(u4) = 4.
(3) PI with deg(u2) = 3 and deg(ul) = 5.
(4) PI with deg(u2) = 3 and deg(ul) = 6.
(5) PI with deg(u2) = deg(ul) = 4.
(6) PI with deg(v2) = 4 and deg(q) = deg(u4) = 3.
(7) Pz with deg(ol) = 4 and deg(uz) = deg(u4) = 3.
(8) P2 with deg(ul) = 4 and deg(q) = deg(us) = 3.

D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154 137

Fig. 5. The graphs used to identify the hammocks

(9) P3 with deg(q) = deg(q) = deg(v4) = deg(v6) = 3.

(10) P3 with deg(q) = deg(u2) = deg(uj) = deg(u6) = 3.

The importance of the above lemma lies in the fact that it shows firstly that any part

of a hammock consisting of seven faces has a constant number of different forms, and

secondly that each one of these forms is identifiable by a single processor in constant

time after running the ten tests sequentially. So a portion of a hammock is identifiable

in constant time by a single processor. After identifying it, we next delete edges that

are interior to the hammock. If a vertex, z, of degree 2 results from such deletions,

then we perform on it a contraction operation, i.e. we remove z, join its two neighbors

x and y by an edge (x, y), and assign to this edge a label CX, = (eXz,z, d;,>), where

e,, and /zY are the (possibly empty) labels of the removed edges (x,z) and (z,Y),

respectively. The edge labels will help us later to rebuild the hammock. Note that a

non-empty edge label denotes that the corresponding edge cannot be an interior edge of

a hammock. It is important to mention here that after the deletion of an edge and the

subsequent contraction of vertices (if any), the hammock is still a sequence of triangles

and rectangles and, hence, the same tests can be applied until all the hammock has

been shrunk. The following parallel algorithm uses these observations to identify edges

that are interior to hammocks.

138 D. J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

Algorithm Find-Sequences
BEGIN

Repeatedly apply Steps 1-5, for 4.5 x [lognl times:

1. Assign one processor to each vertex of G,i and check in turn the 10 cases of

Lemma 3.6, in order to identify an interior edge of a hammock. (Note that this task

involves the scanning of an adjacency list of a vertex of length at most six.) Several

processors may identify the same edge. However, their number will be constant and

hence breaking ties can be done in constant time.

2. Create linked lists of identified interior edges as follows. Assign a processor Pe,
to every interior edge ei identified in Step 1. Each P,, checks if there is an identified

interior edge ei such that ei and e(belong to the same triangle or rectangle. If this is

the case, then create a (double) link between them.

3. In every list L created in Step 2, find an independent set U of size]UI 2 IL1/3

using the algorithm of [22], or the 2-ruling set algorithm of [8]. Mark all ei that

belong to U.

4. Delete all marked interior edges and perform the necessary contraction operations

when a vertex of degree 2 appears.

5. Update the lists accordingly, by removing the marked elements.

END.

Lemma 3.7. Let G be an n-vertex, m-edge biconnected graph such that for each
hammock H in a basic face embedding, its corresponding subgraph H’ in G,, is
biconnected. Then, algorithm Find-Sequences generates a labeling of the edges that
gives a partial hammock decomposition of 0(7(G)) hammocks. The algorithm takes
O(log n log* n) time and uses O(n + m) processors on a CREW PRAM.

Proof. The correctness of the algorithm comes from Lemma 3.6 and the fact that all

contraction operations are performed independently. (It may happen for two identified

interior edges that they both bound the same triangle or rectangle. In such a case the

simultaneous execution of the two contraction operations does not give the desired edge

labeling.) To ensure independence of contraction operations, we first identify (in Step 2)

those interior edges whose deletion would cause conflicting contraction operations.

These interior edges are connected to lists. It follows that symmetry-breaking in these

lists enforces the desired independence. This is done by calling the independent set

algorithm of [22], or the 2-ruling set algorithm of [8] in Step 3. Hence, contraction

operations are correctly executed. It only remains to argue for the bounds and how the

hammocks are generated.

In each iteration at least one edge for every seven faces in every hammock is

contracted (i.e. in the worst case all lists consist of only one element). Since each

contraction joins two neighboring faces in one, we conclude that at least one-seventh

of a hammock is contracted in every iteration. Thus, after at most 4.5 x [log nl iterations

all hammocks will be contracted. All steps, except for Step 3, can be implemented in

0(1) time using O(n+m) CREW PRAM processors. Step 3 takes, by [8,22], O(log* n)

D. J. Kavvadias et al. I Theoretical Computer Science 168 11996) I21.154 139

time using O(n + m) EREW PRAM processors. Hence, the bounds stated in the lemma

follow.

Consider now the graph, GU2, resulting from algorithm Find-Sequences. Each non-

empty label of an edge in this graph, represents a sequence of vertices around the

basic face in some embedding. Alternatively, each non empty label defines the one of

the two sequences of vertices of a partial hammock. (Having the edge labels of G,,l

the hammocks are constructed in a way similar to the one described in [161.) Each

hammock H’ in Gu2 has now at most six faces, i.e. constant number of edges. Thus

the number of partial hammocks generated with respect to a given hammock H is

a constant. This means that we have a partial hammock decomposition of 0(7(G))

hammocks. 0

The entire approach above was based on the assumption that the hammocks were

biconnected. If however a hammock is not biconnected, the above procedure may delete

an external edge of the hammock. To handle the general case, we preprocess G,t to add

in dummy vertices and edges so that each hammock becomes biconnected. This addition

is done by identifying the two possible subgraphs that a hammock (i.e. an outerplanar

graph) must contain in order to be non biconnected (see [161). This operation is also

done by using local degree tests (like the ones given in Lemma 3.6) and is therefore not

difficult to parallelize. (It can be actually parallelized in O(logn) time using O(n + m)

CREW PRAM processors, since the tests in this case prevent conflicting operations.)

We call this parallel algorithm Preprocess. We therefore have:

Theorem 3.2. Given an n-uerte>x, m-edge graph G, the decomposition of G into

O(y(G)) partial hammocks can he done in O(log n log log n) time using O(n + m)

CREW PRAM processors.

Proof. The algorithm to find a partial hammock decomposition of a graph consists of

the following steps: First, find the biconnected components of G using the algorithm

in [5]. Second, find the outerplanar outgrowths of G (algorithm Find-Outgrolvths).

Third, make the appropriate preprocessing such that the hammocks of the graph are

biconnected (algorithm Preprocess). Fourth, find the sequences that make up the partial

hammocks (algorithm Find-Sequences). By Theorem 3.1, Lemma 3.7 and the discus-

sion preceding the theorem, it is clear that the dominating steps in terms of time are the

first two ones, which in turn are based on the algorithm of [S] (for finding connected

components in parallel) as it was also discussed in the proof of Theorem 3.1. 7

Our hammock-on-ears decomposition algorithm can be implemented faster on a

CREW PRAM, if G belongs to the class of linearly contractible graphs [25]. (A class

%? of graphs is called linearly contractible if: (a) for all G = (V,E) in %, IE] <cl V/,

where c is a constant; and (b) V is closed under taking of minors.) Examples of this

class of graphs are planar graphs and graphs of constant genus. In [25] it is shown that

if G is linearly contractible, then connected and biconnected components (and hence

140 D. J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

an open ear decomposition) can be found in O(log n log* n) time using an optimal

number of EREW PRAM processors.

Also, if a CRCW PRAM is used, then connected and biconnected components, as

well as an open ear decomposition, can be found in O(log n) time with O(n + m) pro-

cessors using the algorithm in [38]. However, it seems that algorithm Find-Sequences

cannot take advantage of this model in order to be implemented faster.

The above discussion leads to the following:

Corollary 3.1. Given an n-vertex, m-edge graph G, the decomposition of G into
0(7(G)) partial hammocks can be done in O(logn log* n) time using O(n+m) CRCW
PRAM processors. Moreover, tf G belongs to the class of linearly contractible graphs,

then the decomposition can be accomplished in O(log n log* n) time using O(n + m)
CREW PRAM processors.

4. Applications

In this section we give a high level description of our algorithms for the problems

mentioned in the introduction. Recall the general scheme for problem solving using the

hammock-on-ears decomposition technique. In the sequel, let G = (V,E) be a sparse

biconnected digraph with real-valued arc costs. (The non-biconnected case can be easily

handled. Consider for example the APSP problem: it suffices to find APSP information in

every biconnected component and then to observe that a shortest path between vertices

in different biconnected components has to pass through the cutpoints [27] of G. Which

cutpoints to consider, can be found by constructing the so-called block-cutpoint tree of

G [27]. The construction can be accomplished within the resource bounds for finding

the biconnected components. The other problems are treated similarly.) We will use 7

instead of y(G) for notational simplicity.

4.1. Computing all pairs shortest paths information

The algorithm for computing APSP information in G, encoded in compact routing

tables, is as follows:

Algorithm SparseApsp
BEGIN

1. Find a hammock-on-ears decomposition of (the undirected version of) G into

O(p) hammocks.

2. Rename the vertices of G, in a way such that all vertices belonging to a hammock

form two consecutively numbered sequences around its external face. (This is needed

for the encoding of APSP information into compact routing tables.)

3. Find APSP information in each hammock.

4. Find APSP in G between each pair of attachment vertices of the hammocks as

follows. For each hammock H, generate its compressed version C(H). This is done

D.J. Kavvadias ec al. I Theoretical Computer Science 168 11996) 121-154 141

using the algorithm in [36] to find the distance between each pair of attachment vertices

of H. The graph C(H) is just a complete digraph on the attachment vertices in H

(which are at most four), with the cost of each arc being the distance in H between its

endpoints. Then, generate a compressed version C(G) of G by replacing each hammock

H by its compressed version C(H) and deleting all but one least expensive copy of

any multiple arc. The compressed graph C(G) will have O(y) vertices and arcs. Find

APSP in C(G) by running another algorithm.

5. For each pair of hammocks determine succinct shortest paths information for each

vertex in one hammock to all vertices in the other hammock.

6. For each hammock determine shortest path information between vertices in the

same hammock. (This is needed since a shortest path between two vertices in a

hammock may leave and reenter the hammock.)

END

Theorem 4.1. Given an n-vertex sparse digraph G with real-valued arc costs (hut no

negative cycles), that can be decomposed into an asymptotically minimum number

of O(F) hammocks, we can encode all pairs shortest paths information into compact

routing tables in 0(log2 n) time using O(nT +&IS(~)) CREW PRAM processors and

O(nF) space. In the case where G is planar, the encoding can be done in 0(log2 n +

log4 7) time using O(n3) CREW PRAM processors.

Proof. Note that Step 1 of algorithm SparseApsp corresponds to major step 1 of the

general scheme, Steps 2 and 3 correspond to major step 2, Step 4 corresponds to major

step 3 and Steps 5 and 6 correspond to major step 4. Now, for the resource bounds the

following hold in a CREW PRAM. Step 1 needs O(logn log logn) time using O(n)

processors by Theorem 3.2. Step 2 can be done in O(logn) time using O(n) processors

by sorting [7], in a way similar to that described in [16] (i.e. perform a sorting to the

list of vertices obtained by arbitrarily concatenating the edge labels of Gu2 and then

by arbitrarily concatenating to them the vertices of G,2). Step 3 can be implemented,

overall hammocks, in 0(log2 n) time using O(n) processors by [36]. Step 4 needs

O(logn) time with O(n/ logn) processors for the generation of the graphs C(H) [36],

and 0(log2 7) time using MS(y) processors for APSP in C(G) by running the algorithm

of [26]. Step 5 needs for all hammocks O(logn) time using O(n7) processors by [36].

Finally, Step 6 (again by [36]) needs O(log2 n) time using O(n) processors. Hence,

the claimed bounds follow. The space bound comes from the discussion in Section 2.

If G is planar, then we use in Step 4 the algorithm of [6] to find APSP in C(G)

and the algorithm of [36] for generating the graphs C(H) which are outerplanar and

of O(1) size. (This latter step takes, overall hammocks, O(logn) time using O(n)

processors.) L

We will now discuss two alternative encodings of APSP information that require less

work and space. The first alternative encoding makes partial use of compact routing

tables, while the second one does not use compact routing tables at all.

142 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

Theorem 4.2. Given an n-vertex sparse diqraph G with real-valued arc costs (but no

negative cycles), that can be decomposed into an asymptotically minimum number
of O(F) hammocks, we can compute all pairs shortest paths information using an
alternative encoding (compact routing tables for hammocks and global tables for

shortest paths among the attachment vertices of the hammocks), in 0(log2 n) time
using O(n +M,(jj)) CREW PRAM processors and O(n+F2) space. In the case where
G is planar, this encoding takes O(log2 n + log4 7) time using O(n + ?2/ log4 y) CREW

PRAM processors.

Proof. The method for finding such an encoding is to run only the first four steps of

algorithm Sparse-Apsp. Then, using the table for APSP information between every pair

of attachment vertices in C(G), a shortest path or distance between two vertices v and

w in G is computed as follows. If both vertices belong to the same hammock H we
have first to compute the distance between them inside H and then compare it with

the minimum among the distances d(v,ai) + d(ai,ai) + d(aj,w), where ai # aj and

ai, 1 <i <4, are the four attachment vertices of H. If w belongs to another hammock

H’, then we have to choose those i and j that minimize the quantity d(u, ai)+d(ai, bj)+
d(bj, w), where bj, 1 <j ~4, are the attachment vertices of H’.

Having this encoding, a (divergent or convergent) shortest path tree in G, rooted at

some vertex, s, can be computed as follows. Find the shortest path tree rooted at s, in

the hammock containing s. In every other hammock H, find shortest path trees rooted

at the attachment vertices of H. (From the discussion in Section 2, both computations

take O(logn) time with O(n/logn) processors overall hammocks.) Finally, from the

global table for C(G), we have the shortest path trees in C(G) rooted at the four

attachment vertices of the hammock containing s. Having all these shortest path trees,

it follows easily by the discussion in the previous paragraph that the desired shortest

path tree can be constructed in O(logn) time using O(n/logn) processors. 0

The second alternative encoding follows the first alternative encoding, but now in

each hammock we do not build compact routing tables. Instead, we create the data

structures presented recently in [4, 151. In [151 it is shown how to preprocess an outer-

planar digraph in O(logn) time using O(n) CREW PRAM processors such that subse-

quently a shortest path, between any two vertices, is computed in O(logn) time using

O(max{ l,L/ logn}) CREW PRAM processors. (L is the number of arcs of the reported

path.) Also, in [4] it is shown how a digraph of constant treewidth is preprocessed

in O(log’ n) time using O(n/ log2 n) EREW PRAM processors, such that afterwards

the distance, between any two vertices, is computed in O(a(n)) time using a single

processor. (Note that an outerplanar graph has treewidth 2 and a(n) is the inverse of

Ackermann’s function.) Therefore, using the above data structures in each hammock

(instead of compact routing tables), we have:

Theorem 4.3. Given an n-vertex sparse digraph G with real-valued arc costs (but no
negative cycles), which can be decomposed into an asymptotically minimum number of

D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154 143

O(v) hammocks, we can compute an encoding of all pairs shortest paths in 0(log2 n)

time using O(n +MJjj)) CREW PRAM processors and O(n + y2) space. Having this
encoding a distance between any two vertices can be found in O(a(n)) time by a single
processor, while the corresponding shortest path can be found in O(logn) time using
O(max{ 1, L/ logn}) processors. In the case where G is planar, we can compute this
encoding in 0(log2 n + log4 F) time using O(n + ?2/ log4 $) CREW PRAM processors.

Note that the total work required to set up these alternative encodings, in the case

of planar digraphs, is far from optimality (w.r.t. the results in [16, 181) by a polylog-

arithmic factor only.

4.2. Detecting negative cycles

In this section we give an efficient algorithm for finding a negative cycle in G.

The algorithm is based on the hammock-on-ears decomposition technique and on the

detection of a negative cycle in an outerplanar digraph. We shall first discuss the

outerplanar case and then the general one.

4.2.1. An optimal work algorithm for finding negative cycles in outerplanar digraphs
We will show, in the current subsection, how to solve optimally the negative cycle

problem provided that the input digraph is outerplanar and biconnected. (If it is not

biconnected, we apply our algorithm to every biconnected component.) Our method is

based on a novel extension of the fundamental tree-contraction technique [1,291 to the

tree of interior faces of the outerplanar digraph.

Let G, = (I’,E) be the input outerplanar digraph and let G;, be its undirected

embedded version. It is well known that the dual graph of G;, is a tree, T”, called the

tree of faces. (The exterior face is excluded in this construction.) Let us assume that TF

is binary. (At the end of the section we will show how to overcome this assumption.)

Any reference to a node of TF will be considered also as a reference to the face .f’ of

6, it represents, and vice versa. We shall refer to the endpoints of the edges bounding

a face f in G,, as the vertices off. The subgraph induced by a face f, is the subgraph

of G, consisting of the vertices of f and those arcs whose corresponding (undirected)

edges in G;, bound f. Let fi and f2 be two neighboring faces in G;,, i.e. they have

an edge in common. By fi U f2, we shall denote the subgraph of G, consisting of the

union of the subgraphs induced by fi and f2.
Root TF arbitrarily. For a face (or union of neighboring faces) f, let sl(f’) and

s2(f) be the endpoints of that edge in G;, whose dual (tree) edge connects f’ with

its parent node in TF. We will call si(f) and s2(f) the associated vertices of .f‘ and

denote them as A(f) = {sl(f),sZ(f)}.
A shortest path from a vertex x to a vertex y in a subgraph H of G, will be denoted

by SP(x, y; H). Let also D(x, y; G) denote the set {SP(x, y; G),SP(y,x; G)} and let

D((x, ,x2), (y,, y2); G) denote the set {D(xi, yj; G) / i, j E { 1,2}}. In the following, we

will use the well-known fact that a separator of G, is a pair of vertices {v, w}.

144 D.J. Kavvadias et al. I Theoretical Computer Science I68 (1996) 121-154

Consider the following problem II: Let G be an outerplanar digraph and let {u, w}

be a separator, separating G into two subgraphs Gi and Gz. Suppose also that in each

Gi, i = 1,2, there is no negative cycle. Find a negative cycle in G (if it exists).

Solution of II: Since there is no negative cycle in each Gi, a possible negative cycle

N(G) for G will consist of a path in Gi joined with a path in G2. Also, N(G) will

have v and w as two of its vertices. It follows that to find N(G), it suffices to find

SP(v, w; G1) and SP(w, v; G2) (or SP(w,v; G1) and SP(u, w; G2)). The union of these

two paths will give the possible N(G). Therefore we have the following.

Proposition 4.1. Let G be an outerplanar digraph and let {u,w} be a separator,
separating G into two subgraphs G1 and G2. Suppose also that in each Gi, i = 1,2,

there is no negative cycle and that the two shortest paths between v and w are known.

Then, G can be tested for a negative cycle in 0(1) time.

The main idea of our algorithm is the following. We assume that at a certain point, a

set of neighboring faces has been tested for a negative cycle. In the case of a positive

answer, the negative cycle is output and the algorithm stops. Otherwise, this set of

faces is joined to a neighboring set of faces that has also been tested, in order to form

a new set. Detection of a negative cycle in this union is done according to the rules

implied by Proposition 4.1. Thus, the algorithm proceeds in a bottom-up fashion.

We say that an interior face f has been evaluated in the tree of faces TF, iff in the

subgraph of G, induced by its descendant nodes in TF we have tested if there is a

negative cycle and in the case of a negative answer, we have computed shortest path

information between certain pairs of vertices in f. The main goal is to evaluate the

root face of TF.
The parallel tree-contraction algorithm [1,291 evaluates the root of a tree T process-

ing a logarithmic number of binary trees To, T, , . . . , Tk, where k = O(log 1 Tj), To = T
and Tk contains only one node. Also IT, 1 < &IT,_1 1, 1 6 a < k, for some constant 0 <

E < 1. The tree T, is obtained by T,_I by applying a local operation, called SHUNT

[29], to a subset of the leaves of T,_l. The SHUNT operation consists in turn by two

other operations, called prune and bypass [l].

Prune operation: Let 1 be a leaf in tree TEL-l. Let also v and 1’ be its parent and

sibling, respectively. Then by “pruning 1” we denote the deletion of 1 from T,_ 1.

Bypass operation: Let 1’ be the unique child of a non-root node v in T,_,. Then by

“bypassing I”’ we denote the joining of I’ and v into a new node v’.

Our algorithm follows the execution of the tree-contraction algorithm, as it is de-

scribed e.g. in [l] or [29], by executing a number of main steps. This means that

half of the leaves of the tree of faces TF perform a SHUNT operation (main step)

and this is repeated for a logarithmic number of times. It is worth noting that as the

algorithm proceeds and the tree is contracted, each leaf of TF corresponds to a set

of neighboring faces whose removal does not disconnect G,. Conversely, an internal

node of TF corresponds to a set of faces whose removal disconnects G,. To complete

the description of our algorithm we have to show how the information concerning the

D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154 145

negative cycle is maintained, i.e. what information is exchanged and/or updated during

a SHUNT operation. We will need the following two lemmata.

Lemma 4.1. Let G be an outerplanar digraph and let {u,w} be a separator of

G, separating it into two subgraphs GI and Gz. Let also a, b be vertices of GI
and let c,d be oertices of G2. Suppose that the following shortest paths in GI, G2
are known: D(a, b; G1), D(u, w; G1), D(u, w; GI), D(c, d; G2), D((a, b), (u, w); GI) and
D((u,w),(c,d); G2). Then, in O(1) time we can compute D(a, b; G), D(c,d; G), and

D((a, b), (c, d); G).

Proof. It is easy to see (cf. Fig. 6) that:

%‘(a, b; G) = tznh{SP(a, b; Gl),SP(a, u; GI) + SP(u, w; G2) + SP(w, b; GI))

SP(c,d, G) = m~~~{P(c,d; G2),SP(c,w; G,) + SP(w,u; G,) + SP(u,d; G2)]

SP(a,d; G) = ty${SP(a,u; Gl) + SP(u,d; G2) + SP(a,w; GI) + SP(w,d; GI))

where “minlmyrh” denotes minimum in length and “+” denotes path concatenation.

Similar expressions hold for the rest of the requested shortest paths. Note that each

one of the above computations involves a constant number of additions and comparisons

of the lengths of at most 4 shortest paths, and after that, a constant number of pointer

manipulations (to get the shortest path itself). The claimed bound follows now by the

fact that the number of the requested shortest paths is also constant. q

Lemma 4.2. Let G be an outerplanar digraph and let {u, w} be a separator of G, sep-
arating it into two subgraphs GI and Gz. Let a, b,c and d be vertices of Gz. Suppose
that the following shortest paths in G1 and G2 are known: D(a, b; G2), D(u, w; G,),

D(c, d; G2), D((a, b), (c, d); G2), D((a, b), (u, w); G2) and D((c, d), (u, w); G2). Then, in
O(1) time we can compute D(a, b; G), D(c,d; G) and D((a, b),(c,d); G).

Proof. It is easy to see (cf. Fig. 7) that:

%‘(a, b; G) = mi;{SP(a, b; Gz),SP(a, u; G2) + SP(u, w; GI) + SP(w, b; G2))

WC, d; G) = t;;h{Wc, d; (721, W , c u;G2)+SP(u,w;G1)+SP(w,d;Gz))

SP(a, c; G) = mi;{SP(a,c; Gz),SP(a,u; G2) + SP(u,w; GI) + SP(w,c; G2))

Fig. 6. Proof of Lemma 4.1

146 D. J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

Fig. 7. Proof of Lemma 4.2.

Similar expressions hold for the other requested shortest paths. Using a similar argument

with the one used in the proof of Lemma 4.1, it is clear that the above computations

can be done in 0(1) time. 0

We will distinguish between two types of SHUNT operations depending on what the

sibling of the tree node performing this operation is. In the following, all references to

a tree node z will be considered also as references to the subgraph of G, corresponding

to z. The description of the a-th execution of the SHUNT operation is as follows.

Type-l: Suppose that leaf Zi performs a SHUNT operation and assume also that

its sibling Zi is a leaf (see Fig. 8). From previous executions, the following short-

est paths are known: D(A(Zi); Zi), D(A(Zi); fi), D(A(fi); fi), D(A(Zj); fi), D(A(Zj); Ii),

D(A(J;:),A(Zi); fi), and D(JZ(),A(Z,); f;) (P rovided that these paths exist, since some

of the six associated vertices of Zi,f<, Z(may coincide). During the prune operation ex-

amine if there exists a negative cycle in Zi U 5, using Proposition 4.1. If it exists then

stop, report that a negative cycle was found and output the cycle. Otherwise, compute

D(A(Zi); Zi U A) and D(A(f;:); Zi U J;:) using Lemma 4.2, and continue with the bypass

operation resulting into a new node f/, where f/ = (Zi U fi) U Ii. Check again (using

Proposition 4.1) if there exists a negative cycle in J;! and if not, compute @A(h); A’)

using Lemma 4.1. Finally, and in the case where a negative cycle was not found, set

si(f;Y = si(J;:) and SZN) = so.
Type-2: Suppose that leaf Zk performs a SHUNT operation, and fj, the sibling of Zk,

is an internal node of TF (see Fig. 9). From previous executions, the following short-

est paths are known: (i) D(A(Zk); Zk); (ii) W(lk);fk), M(fk);fk), D(A(fj);fk),

W(fk)J(h);fk), W(fiM(h);fk), and WA(fk),A(fj);fk) (i.e. the shoest paths
among all six vertices A(Zk), A(fk) and A(fj) inside fk); and (iii) D(A(fj); fj),

W(J;:);fi), WA(li);Si), W(fj)J(lj);h), W(fj)A_h);fi) andW(hM&);J)

(i.e. the shortest paths among all six vertices A(&), A(J;:) and A(b) inside fj). (If some

of the above ten associated vertices coincide, the corresponding shortest paths do not

exist.) During the prune operation examine if there exists a negative cycle in Zk U fk,

using Proposition 4.1. If it exists then stop, report that a negative cycle was found and

output the cycle. Otherwise, compute D(A(fj); lk U fk) and D(&fk); Zk U fk) using

Lemma 4.2. After that continue with the bypass operation. This results into a new

node fkj, where fkj = (zk U fk) U fj. Check again (using Proposition 4.1) if there

D. J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154 147

li v fi

‘1 (Ii>

‘2 (l’i) d ’ 1 (l’i>
Vi

Fig. 8. The Type-l SHUNT operation.

exists a negative cycle in fkj and if not, compute D(A(fk); fk,), D(A(l,); fk/) and

D(A(fk),A(Zj); fkj) using one application of Lemma 4.1. Then compute D(A(J); ,fkj)

and D(A(fi),A(fk); fkj) using a second application of Lemma 4.1. Furthermore, com-

pute D(A(f;), A(b); fkj) using Lemma 4.2. Finally, and in the case where a negative

cycle was not found, set .~l(fkj) = sl(fk) and Sz(fk/) = sx(fk).

This completes the description of the SHUNT operations.

Lemma 4.3. The SHUNT operations are correct and are executed in 0(1) time.

Proof. Consider first the Type-l SHUNT operation. It is clear by Proposition 4.1

that if there is no negative cycle in any one of l,, f;, or li, then a negative cycle

(if exists) would be either in li U fi, or in fi U I:, or in f/. From the description

of this SHUNT operation, it follows that the first and the third cases are correctly

checked. Note however, that the second case is also checked implicitly in the third

one. This is true because a negative cycle in fi U 1: would involve D(A(1:); h) and

D(A(lj); li), according to Proposition 4.1. But notice that the length of any shortest

path in D(A(l(); li U fi) is always less than or equal to the length of its corresponding

shortest path in D(A(1;); J;:). Therefore, if a negative cycle exists in any one of li U fi,

fi U l:, or f[, then it is correctly detected. In the case that a negative cycle does not

exist, observe that f/ represents a set of faces whose removal does not disconnect G,.

Hence, it suffices for any further computation to find the shortest paths between the

associated vertices of f;’ (inside fi), since by Proposition 4.1 a portion of a negative

cycle that passes through f,’ would definitely involve these vertices as well as the

shortest paths between them.

148 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

Sl(fj) () (s,(fj)

y) s*(lj)

fj

~I’ s,(lj)

S2(fi) 0 4) s, (fi)
fi

Fig. 9. The Type-2 SHUNT operation.

Consider now the Type-2 SHUNT operation. Assume as before that there are no

negative cycles in any one of lk, fk and fj. Using a similar argument as before, we

can show that a negative cycle (if exists) is COrRCtly detected in lk U fk, or in fk U fj,
or in fkj. If such a cycle does not exist, then observe that fkj represents a set of faces

whose removal disconnects G,. Therefore, according to Proposition 4.1, a portion of a

negative cycle which passes through fkj would definitely pass through the associated

vertices of it and/or through the associated vertices of the two subgraphs corresponding

to its two children in the tree, and also would involve the shortest paths among them.

Hence, in this case it is sufficient to compute shortest paths among the above mentioned

associated vertices (inside fkj).

The resource bound follows clearly by the description of the SHUNT operations,

Proposition 4.1 and Lemmata 4.1 and 4.2. c7

D.J. Kuvvadias et al. I Theoretical Computer Science 168 (1996) 121-154 149

Now, we will show how to overcome the assumptions made in the beginning of

this section and prepare G, for the application of the parallel tree-contraction method

using the SHUNT operations described above. We call this, the initialization step

of our algorithm. This step includes construction of TF and binarization, and initial

computation of shortest paths in the subgraphs of G, induced by each internal face of

G,,. The initialization step consists of the following stages.

1. Find an embedding 6, of G,. Triangulate each interior face of G;, (if 6, is not

already triangulated) by adding appropriate edges to G, and corresponding arcs to G,.

Associate with these new arcs a very large cost (e.g. the sum of the absolute values

of all arc costs in G,) such that they will not be used by any shortest path. Then,

construct the tree of faces TF (which will be binary since every face is a triangle) and

root TF arbitrarily.

2. In each face (and in each subgraph of G, induced by) f:
(a) Find the associated vertices q(f) and I, and compute the clockwise and

counterclockwise distances from sl(f) to every other vertex in ,f (i.e. the sum of the

costs of the arcs in clockwise and counterclockwise order).

(b) Compute the sets of shortest paths D(A(f); f) and D(A(f’); p(f)), where p(f’)

is the face corresponding to the parent node of f in TF.

(c) Let I be the face corresponding to the left child of f and let h be the face

corresponding to the right child of f in T F. Compute the following shortest paths:

&K/IA(h); .f), &U),A(Q; f) and W(h)J(Q; f 1.
This completes the description of the initialization step and the description of our

algorithm. Let us call the algorithm presented in this section Out_Neg_Cyc/e. If G, is

not biconnected, apply Out-Neg_Cycle to every biconnected component.

Theorem 4.4. Given an n-vertex outerplanar digraph G, with real-valued arc

costs, algorithm Out_Neg_Cycle detects and outputs a negative cycle in G,, iJ’ it

exists, in O(log n log* n) time using O(n/ log n log* n) CREW PRAM processors and

O(n) space. A sequential implementation of’ the algorithm runs in O(n)

time.

Proof. The correctness of the algorithm comes from Lemma 4.3. Now for the resource

bounds we have that each main step (SHUNT operation) of the algorithm needs 0(1)

time and 0(IT:\) CREW PRAM processors by Lemma 4.3, where IT,“1 is the size of

the tree of faces during the a-th phase. Hence, by [11, this results in a total of O(log n)

time using O(n/logn) CREW PRAM processors. The bounds of the initialization step

are as follows: Stage 1 needs O(log n log* n) time and O(n/ log n log* n) EREW PRAM

processors by [12]. Stage 2(a) can be done in O(logn) time using O(n/ logn) EREW

PRAM processors, using the algorithm of [9]. Finally Stages 2(b) and 2(c) can be

easily done having the information of Stage 2(a). Note also that within the same

bounds as those stated in the theorem, we can find the biconnected components of

the input digraph [25]. The claimed sequential bound follows directly by the parallel

ones. 0

150 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

4.2.2. The general case
The algorithm for finding a negative cycle in a sparse digraph G is the following.

Algorithm Sparse_Neg_Cycle
BEGIN

1. Find a hammock-on-ears decomposition of (the undirected version of) G into

O(l) hammocks.

2. Detect if there is any negative cycle in some hammock using algorithm

Out_Neg_Cycle. If a negative cycle is found in any hammock, then output one such

cycle and stop.

3. Compress each hammock into an 0(1)-sized graph such that the shortest paths

between its attachment vertices are preserved and then compress G into a digraph of

size O(y). Examine if there is any negative cycle in this graph.

4. If a negative cycle is found, then output the cycle taking into account the subpaths

contained in each hammock. Otherwise, output that there is no negative cycle in G.

END.

Theorem 4.5. A negative cycle in an n-vertex sparse digraph G with real-valued

arc costs, that can be decomposed into an asymptotically minimum number of O(T)
hammocks, can be found in 0(log2 n) time with O(n + MS(y)) CREW PRAM pro-

cessors using O(n + p2) space.

Proof. The correctness of the algorithm as well as the space bound are clear. Note

that Step 1 needs O(logn loglogn) time using O(n) processors by Theorem 3.2. Step 2

needs, for all hammocks, O(log n log* n) time using O(n/ log n log* n) CREW PRAM

processors by Theorem 4.4. The implementation of Step 3 is similar to the one

described in Step 4 of algorithm SparseApsp. The compression of a hammock needs

O(log2 n) time with O(n) processors [36]. The detection of a negative cycle in the

compressed digraph is performed by running the algorithm of [26], thus taking O(log2 7)

time and 0(&(y)) processors. Step 4 can be executed in O(1) time using O(n)

processors. 0

Corollary 4.1. A negative cycle in an n-vertex planar digraph G with real-valued

arc costs, that can be decomposed into an asymptoticaly minimum number of O(b)
hammocks, can be found in 0(log2 n + log4 F) time with O(n + j?/ log4 7) CREW
PRAM processors using O(n + y2) space. Sequentially, a negative cycle can be found
in O(n + yl.5 log 9) time.

Proof. The parallel bounds are achieved, if in Step 3 of algorithm SparseJVegCycle
we run the algorithm of [6] (instead of the one in [26]). For the sequential implemen-

tation we have that: Step 1 is performed in O(n) time (by running a straightforward

sequential implementation of our algorithm presented in Section 3, or the algorithm of

[16]). Step 2 needs O(n) time by Theorem 4.4. The first part of Step 3 (hammock

D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154 151

compression) is described in [17] and needs O(n) time. For the second part (detec-

tion of a negative cycle in the compressed version of G), we run the algorithm of

[34] which needs O(yt.5 log?) time. Finally, Step 4 obviously runs in O(n) time. The

bounds follow. 0

4.3. Computing all pairs reachability information

We treat the APR problem as a degenerated version of the corresponding APSP problem.

(To every arc (u, w) of G assign a cost of 1, and if there is no arc (w,u) in G, then

add it with cost cc. Clearly, a vertex t is reachable by s iff their distance is not

cc.) Succinct encoding of reachability information can be stored into compact routing

tables by defining for each arc (v,w) its compact label R(u,w) as the set of vertices u

such that there is a directed path from v to u with first arc (0, w). If we additionally

want to output such paths, we must enforce a tie-breaking rule, to be applied when

a vertex u belongs also to another set R(u,z) and z is a neighbor of v. Therefore, by

Theorems 4.14.3, we have the following.

Corollary 4.2. Given an n-vertex sparse digraph G that can he decomposed into an

asymptotically minimum number of O(lJ) hammocks, we can find on a CREW PRAM:

(i) APR information (encoded into compact routing tables) in O(log2n) time using

O(rq7 + Mr(l)) processors and O(ny) space; (ii) APR information (using alternative

encodings) in O(log’ n) time by employing O(n+M,(F)) processors and using O(n+;7*)

space.

Corollary 4.3. Given an n-vertex planar digraph G that can be decomposed into

an asymptotically minimum number of O(f) hammocks, we can find on a CREW

PRAM: (i) APR information (encoded into compact routing tables) in O(log2 ntlog” 7)

time using O(ny) processors and O(nF) space; (ii) APR information (using alternative

encodings) in 0(log2 n + log4 7) time by employing O(n + 721 log4 “7) processors und

using O(n + 72) space.

5. Conclusions and further results

We have presented here a technique, called hammock-on-ears decomposition, that

decomposes any graph into outerplanar subgraphs (called hammocks) satisfying certain

separator properties. The interesting feature of this technique is that it can be used to

design algorithms parameterized in terms of certain topological properties of the input

(di)graph, i.e. in terms of y”. We have also shown that the hammock-on-ears decom-

position technique is well-suited for parallel computation and can be advantageously

used to improve the parallel bounds for all pairs shortest paths and related problems.

Moreover, we managed to beat the transitive closure bottleneck (that appears to be

inherent on these problems) for all sparse digraphs with a small value of Ij. There are

certain classes of graphs for which the value of y” is small. Examples are: outerplanar

152 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-154

graphs, graphs which satisfy the k-interval property [191 and graphs with small genus

which, when embedded in their genus surface, have a small number of faces that cover

all vertices.

We can achieve further improvements to the applications discussed in this paper,

in the case where the input digraph G is provided with a balanced O(np)-separator

decomposition, 0 < p < 1. Although it is known that a digraph with genus 0 <

y < n has a separator of size 0(fi) [13,211 and that such a separator can be

computed in O(n) time without an embedding of G to be provided [13], it is not

known yet how to compute such a separator in NC. But there are some families of

graphs for which a balanced O(n@)-separator decomposition can be computed in NC.

Consider for example the d-dimensional grid which has a trivial balanced O(n(d-l)‘d)-

separator decomposition. Also in [35] it is shown that the class of k-overlap graphs

embedded in d dimensions (which includes planar graphs) have a separator of size

O(kl/dn(d-l)/d) that can be computed in NC. Hence, in the case where an O(np)-

separator decomposition is either provided with the input or it can be computed, we

have the following results.

Corollary 5.1. Let G be an n-vertex digraph with real-valued arc costs (but no neg-

ative cycles). Let also G be provided with a balanced O(nfl)-separator decomposition
and can be decomposed into an asymptotically minimum number of O(y”) hammocks.

Then, we can find the following on a CREW PRAM: (i) APSP information (encoded
into compact routing tables) in O(log2 n+log3 7) time using 0(n~+(y”2+F2”+r)/log3 7)

processors and O(ny”) space; (ii) APSP information (using alternative encodings) in

O(log2 n + log3 y”) time by employing O(n + (72 + 7 Q+*)/ log3 y”) processors and using

O(n + 72) space.

Corollary 5.2. Let G be an n-vertex digraph with real-valued arc costs. Assume that
G is provided with a balanced O(np)-separator decomposition and that it can be de-
composed into an asymptotically minimum number of O(T) hammocks. Then, there is

an algorithm for finding a negative cycle in G in 0(log2 n+log3 F) time by employing
O(n + ($2 + y2,+l)/ log3 7) CREW PRAM processors. A sequential implementation
of this algorithm runs in O(n + min{y”sfl + y”l+p log~,~z}) time.

Corollary 5.3. Let G be an n-vertex digraph that can be decomposed into an asymp-
totically minimum number of O(y”) hammocks. Let also G be provided with an O(nfi)-
separator decomposition. Then, APR information can be computed in the same resource
bounds with those given for APSP in Corollary 5.1.

The hammock-on-ears decomposition technique has also been used recently in the

solution of the dynamic version of the APSP problem [151. We believe that the technique

has potential and will find applications to other problems, too.

D.J. Kaaaadias et al. I Theoretical Computer Science 168 (1996) 121-154 153

Acknowledgements

We are indebted to the anonymous referees for their careful reading of the paper and

their helpful and constructive comments which improved the presentation. We are also

grateful to Dimitris Sofotassios for pointing out the geometric approach to the intervals

problem, and to Hristo Djidjev, Greg Frederickson, Christos Papadimitriou and Moti

Yung for their insightful comments and encouragement.

References

[I] K. Abrahamson, N. Dadoun, D. Kirkpatrick and T. Przytycka, A simple parallel tree contraction

algorithm, J. Algorithms 10 (1989) 287-302.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. 6’Dunlaing and C. Yap, Parallel computational geometry,

Algorithmica 3(3) (1988) 293-328.

[3] R. Ahuja, T. Magnanti and J. Orlin, Network Flows (Prentice-Hall, Englewood Cliffs, NJ, 1993).

[4] S. Chaudhuri and C. Zaroliagis, Optimal parallel shortest paths in small treewidth digraphs, Proc. 3rd

European Symp. on Algorithms, Lecture Notes in Computer Science, Vol. 979 (Springer, Berlin, 1995)

3145.

[5] K.W. Chong and T.W. Lam, Finding connected components in O(lognloglogn) time on an EREW

PRAM, Prof. 4th ACM-SIAM Symp. on Discrete Algorithms (1993) 11-20.

[6] E. Cohen, Efficient parallel shortest-paths in digraphs with a separator decomposition, Pro<. 5th ACM

Symp. on Parallel Algorithms and Architectures (1993) 57-61.

[7] R. Cole, Parallel merge sort, Proc. 27th IEEE Symp. on Foundations af Computer Science (I 986)

51 llSl6.

[8] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list ranking.

Inform. and Control 70 (1986) 32-53.

[9] R. Cole and U. Vishkin, Approximate parallel scheduling. Part I: the basic technique with applications

to optima1 parallel list ranking in logarithmic time, SIAM J. Comput. 17(l) (1989) 1288142.

[IO] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbol Comput.

9(3) (1990) 251-280.

[I I] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms (MIT Press, Cambridge, MA.

McGraw-Hill, New York, 1990).

[I21 K. Diks, T. Hagerup and W. Rytter, Optimal parallel algorithms for the recognition and colouring of

outerplanar graphs, Proc. 15th Symp. on Mathematical Foundations af Computer Science. Lecture

Notes in Computer Science, Vol. 379 (Springer, Berlin, 1989) 2077217.

[13] H. Djidjev, A linear algorithm for partitioning graphs of fixed genus, SERDICA 11 (1985) 369--387.

[l4] H. Djidjev, G. Pantziou and C. Zaroliagis, Computing shortest paths and distances in planar graphs,

Proc. 18th Internal. Coil. on Automata, Languages and Programming, Lecture Notes in Computer

Science, Vol. 510 (Springer, Berlin, 1991) 327-338.

[151 H. Djidjev, G. Pantziou and C. Zaroliagis, On-line and dynamic algorithms for shortest path problems,

Proc. 12th Symp. on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science.

Vol. 900 (Springer, Berlin, 1995) 193-204.

[16] G.N. Frederickson, Using cellular graph embeddings in solving all pairs shortest path problems, Proc.

30th IEEE Symp. on Foundations of Computer Science (1989) 448-453: also J. Algorithms. to

appear.

[171 G.N. Frederickson, Planar graph decomposition and all pairs shortest paths, J. ACM 38(I) (1991)

1622204.

[18] G.N. Frederickson, Searching among intervals and compact routing tables, Proc. 20th Infernat. Coil.

on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 700 (Springer,

Berlin, 1993) 28-39.

[I91 G.N. Frederickson and R. Janardan, Designing networks with compact routing tables, Algorithmica 3

(1988) 171-190.

154 D.J. Kavvadias et al. I Theoretical Computer Science 168 (1996) 121-1.54

[20] H. Gazit and G. Miller, A deterministic parallel algorithm for finding a separator in planar graphs,

Technical Report CMU-CS-91-103, Carnegie-Mellon University, 1991.

[21] J. Gilbert, J. Hutchinson and R. Tarjan, A separator theorem for graphs of bounded genus, J. Algorithms

5 (1984) 391-407.

[22] A. Goldberg, S. Plotkin and G. Shannon, Parallel symmetry-breaking in sparse graphs, SIAM J. Discrete

Math. l(4) (1988) 4344446.

[23] M. Goodrich, Intersecting line segments in parallel with an output-sensitive number of processors, Proc.

1st ACM Symp. on Parallel Algorithms and Architectures (1989) 127-136.

[24] J.L. Gross and T.W. Tucker, Topological Graph Theory (Wiley, New York, 1987).

[25] T. Hagerup, Optimal parallel algorithms for planar graphs, 1form. and Comput. 84 (1990) 71-96.

[26] Y. Han, V. Pan and J. Reif, Efficient parallel algorithms for computing all pair shortest paths in directed

graphs, Proc. 4th ACM Symp. on Parallel Algorithms and Architectures (1992) 353-362.

[27] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

[28] J. JaJa, An Introduction to Parallel Algorithms (Addison-Wesley, Reading, MA, 1992).

[29] R. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in: J. van Leeuwen,

ed., Handbook of Theoretical Computer Science, Vol. A (Elsevier, Amsterdam, 1990) 869-941.

[30] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston,

New York, 1976).

[31] Y. Maon, B. Schieber and U. Vi&kin, Parallel ear decomposition search (EDS) and St-numbering in

graphs, Theoret. Comput. Sci. 47 (1986) 277-298.

[32] E.M. McCreight, Priority search trees, SIAM J. Comput. 14 (1985) 257-276.

[33] K. Mehlhom, Data Structures and Algorithms 3: Multidimensional Searching and Computational

Geometry (Springer, Berlin, 1984).

[34] K. Mehlhom and B. Schmidt, A single source shortest path algorithm for graphs with separators,

Proc. Conf on Fundamentals of Computation Theory, Lecture Notes in Computer Science, Vol. 158

(Springer, Berlin, 1983) 3022309.

[35] G. Miller, S.H. Teng and S. Vavasis, A unified geometric approach to graph separators, Proc. 32nd

IEEE Symp. on Foundations of Computer Science (1991) 538-547.

[36] G. Pantziou, P. Spirakis and C. Zaroliagis, Efficient parallel algorithms for shortest paths in planar

digraphs, BIT 32 (1992) 215-236.

[37] T. Reps, M. Sagiv and S. Horwitz, Interprocedural dataflow analysis via graph reachability, Technical

Report TR 94-14, Datalogisk Institut, University of Copenhagen, 1994.

[38] Y. Shiloach and U. Vi&kin, An O(log n) parallel connectivity algorithm, J. Algorithms 3 (1982) 57-67.

[39] P. Spirakis and A. Tsakalidis, A very fast, practical algorithm for finding a negative cycle in a digraph,

Proc. 13th Internat. Coil. on Automata, Languages and Programming, Lecture Notes in Computer

Science, Vol. 226 (Springer, Berlin, 1986) 397-406.

[40] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) 5688576.

[41] D. Yellin and R. Strom, INC: a language for incremental computations, ACM Trans. Prog. Lang.

Systems 13(2) (1991) 21 l-236.

[42] J. van Leeuwen and R. Tan, Computer networks with compact routing tables, in: G. Rozenberg and

A. Salomaa, ed., The Book of L (Springer, Berlin, 1986) 259-273.

