
ELSEVIER Computational Geometry 6 (1996) 315-327

Computational
Geometry

Theory and Applications

Queries on Voronoi diagrams of moving points

O. Devillers a'*, M. Golin b'l, K. Kedem c,2, S. Schirra d'3

a INRIA, B.P.93, F-06902 Sophia-Antipolis cedex, France
b Hong Kong UST, Kowloon, Hong Kong

e Ben-Gurion University, Beer-Sheva, Israel
d Max Planck Institutfiir lnformatik, 66123 Saarbriicken, Germany

Communicated by Mark Keil; accepted 7 November 1995

A b s t r a c t

Suppose we are given n moving postmen described by their motion equations pi(t) = s~ + vit, i = 1 , . . . , n,
where s~ E R 2 is the position of the ith postman at time t = 0, and vi E R 2 is his velocity. The problem we
address is how to preprocess the postmen data so as to be able to efficiently answer two types of nearest-neighbor
queries. The first one asks "who is the nearest postman at time tq to a dog located at point Sq. In the second
type a query dog is located at point sq at time tq, its speed is vq > Ivil (for all i = 1 , . . . ,n), and we want to
know which postman the dog can catch first. The first type of query is relatively simple to address, the second
type at first seems much more complicated. We show that the problems are very closely related, with efficient
solutions to the first type of query leading to efficient solutions to the second. We then present two solutions to
these problems, with tradeoff between preprocessing time and query time. Both solutions use deterministic data
structures.

Keywords: Dynamic computational geometry; Voronoi diagram; Post-office problem; Parametric search;
Persistent data structures

1. Introduction

The classic post -o f f ice problem is to preprocess the locations of n post-offices in the plane so as to
permit efficient solutions to queries of the type "where is the closest post-office to a cus tomer located
at (x, y)" . The standard solution to this problem is to preprocess the post-offices by constructing their
Voronoi-diagram; a query is answered by performing a planar point location in the Voronoi-diagram.

* Corresponding author. E-mail: Olivier.Devillers@sophia.inria.fr. Partially supported by ESPRIT Basic Research Action
r. 7141 (ALCOM II).

1 E-mail: golin@cs.ust.hk. Partially supported by HK-RGC grant HKUST 181/93E.
2 E-mail: klara@ivory.bgu.ac.il. Supported by a grant from the U.S.-Israeli Binational Science Foundation.
3 E-mail: stschirr@mpi-sb.mpg.de. Supported by BMFF (ITS 9103).

0925-7721/96/$15.00 © 1996 Elsevier Science B.V. All fights reserved
SSDI 0925-7721 (95)00053-4

316 O. Devillers et al. /Computational Geometry 6 (1996) 315-327

We discuss the variant of the post-office problem that arises when the post-offices become postmen,
i.e., they are allowed to move. A recent paper [4] introduced the problem and demonstrated a data
structure for solving it. The data structure and techniques used there were inherently randomized; the
existence of efficient deterministic solutions was posed as an open question. In this paper we provide
such solutions.

Following [4] we assume that the motion of each postman is described by the equation

p i (t) = s i + v i t , i = l , . . . , n ,

where t stands for time, si is the location in the plane of the ith postman at time t = 0, and vi E N 2
is his velocity vector. Thus Pi(t) is the location of the ith postman at time t. By analogy with the
static post-office problem we would like to preprocess the postmen so as to easily answer the question
"given a query point Sq at time tq who is the postman closest to sq?" In the static case the meaning of
"closest" was clearly closest in terms of distance. When the postmen are moving we must distinguish
between two very different problems: the closest postman at a given time (see query (1) below) and
the postman that can be reached first (see query (2) below).

More formally, denoting the Euclidean distance between points p, s E R 2 by [p - s I, we define the
two types of queries:

(1) Moving-Voronoi query: Given a point (dog) query, q, by its location Sq E R 2, at time tq, find
the postman nearest to it. Let

M(sq , tq) = {Pi:]pi(tq) - sq] <~]pj(tq) - Sql, Vj = 1 , . . . , n }

be the set of nearest postmen to Sq at time tq. The query returns a postman from M(sq, tq). (Through-
out the paper we abuse notation slightly by having Pi denote both the ith postman and its motion
parametrized by t.)

(2) Dog-Bites-Postman query: We define the query, q, to be a triple (Sq, tq, Vq) where Sq E N 2 is the
initial location of the dog at time tq, and Vq > 0, Vq E R, is the dog's speed. The problem is to find
the postman that the dog can reach quickest. For the dog, only the magnitude of its speed is known;
the direction of its velocity is chosen by the dog to minimize the time before reaching a postman. For
j = 1 , . . . , n , set

tj = min {t ~> tq: (t - tq)Vq = Ipj(t) - Sql },

to be the earliest time that the dog can catch postman j if it starts running at time tq, and

D(sq, tq, Vq) : {Pi: ti <~ tj, Vj = 1 , . . . , n}

to be the set of postmen that the dog can reach quickest. The query returns a postman from D (Sq, tq, Vq).
As in [4] we assume that Vq > Ivil, for all i = 1 , . . . , n, i.e., the dog is faster than all of the postmen.

This guarantees that every query has an answer and also simplifies the underlying geometry of the
problem. We briefly discuss what happens if the dog is slower than the postman in Section 5.

As an example suppose that n = 2 with pl(t) = (2 + t / 4 , 0) , p2(t) = (- 3 + t / 2 , 0) (see Fig. 1). The
query point is Sq = (0,0), the query time tq = 0 and the query speed Vq = 1. The nearest neighbor
to Sq at time tq is postman pl. The postman that the dog can reach quickest though is P2 (this will
happen at t = 2). The reason that the two answers are different is that Pl, the nearest postman, is
moving away from the dog while P2, the further one, is moving towards it.

At first glance Moving-Voronoi queries look much easier to solve than Dog-Bites-Postmen ones.
This is because the first type of query can be thought of as freezing time at t = tq; if the positions

O. Devillers et al. / Computational Geometry 6 (1996) 315-327 317

p~(o)

• , O

8q pl(o)

Fig. 1. Two types of queries.

• t----2

t=0

of the postmen at time tq are all known the problem can be solved. The second problem looks much
more difficult because any solution not only needs information about where the postmen are at time
t = tq but also needs further information about where they are going to be in the future. One of the
main tools developed in this paper is a geometric method of reducing Dog queries to a sequence of
Moving-Voronoi queries.

In this paper we describe two deterministic techniques for solving these queries, with tradeoff
between preprocessing time and query time. For each technique we construct a data structure which
permits a fast solution of both types of queries. In essence both solutions reduce to the problem of
answering several point location queries in arrangements in (x, y, t)-space. For both techniques the
solution we propose for solving Moving-Voronoi queries is a straightforward cookbook application of
known tools. The complications arise in modifying these solutions to solve Dog queries as well.

The first solution starts by locating tq in some data structure and next locates Sq = (Xq, yq) in
the plane parallel to the xy-plane at t = tq. The Dog-Bites-Postman query time is O(log 4 n) and its
space complexity is O(T(n) log n), where T(n) is the number of topological changes in the Voronoi-
diagram of linearly moving points (cf. [6,8]). T(n) is described in more detail in the next section. For
Moving-Voronoi queries the query time is O(log 2 n) with the same space complexity as above.

The second solution first locates (xq, yq), and then locates tq in a data structure on a line parallel to
the t-axis through (xq, yq). It has query time O(log n) for both type of queries but space complexity
O((T(n)2).

The time and space requirements for both solutions as well as the query times they support are
presented in Fig. 2.

The paper is organized as follows. In the next section we discuss the geometric structure of the
problem. In Section 3 we briefly review some previous related work. Our first deterministic approach

Method Space Preprocessing M.V. query Dog query
I O(T(n)logn) O(T(n)logn) O(log3 n) O(log4 n)
2 O(T(n)') O(T(n)'logn) O(logn) O(logn)

Fig. 2. The algorithms presented in this paper for solving moving-Voronoi and dog queries. T(n) is the number of topological
changes in the Voronoi diagram of n moving points.

318 O. Devillers et al. / Computational Geometry 6 (1996) 315-327

is given in Subsection 4.1. Our second, time-optimal solution, is presented in Subsection 4.2. We
conclude and discuss open problems in Section 5.

2. The geometric structure of the problem

We start by considering the Voronoi-diagram of n moving points

p i (t)=s i+v i t , i = l , . . . , n .

Consider the three-dimensional space (z, y, t) where the z and y axes span the horizontal plane and
the t-axis is vertical to this plane. At any given time to the set of points (sites) Pi(tO), i = 1 , . . . , n ,

define a planar Voronoi-diagram, V(to), which partitions the plane t = to. As the points move with t,
their corresponding planar Voronoi diagram, V(t), changes continuously and sweeps the 3-dimensional
space (z, y, t). The sweep creates a partition, A/l, of this space in the following way. The vertices of
V(t) sweep along edges of .A4, edges of V(t) sweep faces of .A4 and Voronoi regions of V(t) sweep
three-dimensional cells of .A4. Thus, .A4 is a cell complex, which we call the moving Voronoi diagram
of the moving points.

During the sweep along t the Voronoi diagram V(t) may undergo two types of changes. The first
type is a continuous deformation, in which the topology of the Voronoi diagram remains the same; in
this type of change, Voronoi proximity relations do not change so no Voronoi edges and/or vertices
are either created or deleted. Only the location of the Voronoi vertices in the plane and the location
and lengths of the Voronoi edges change. The second type of change is the addition and deletion of
Voronoi edges. A Voronoi vertex is the center of an empty circle containing three sites on its boundary.
A Voronoi edge can disappear only if its two Voronoi vertex endpoints merge. This in turn occurs only
when all of the sites defining the two circles--there are four of them--become co-circular. See [8] for
more details. Due to new proximity relations, an old Voronoi edge contracts to a vertex (effectively
merging its two endpoints) and then expands to become a new Voronoi edge. When this type of change
occurs the topological structure of V(t) is modified and these changes are therefore called topological
changes in V(t). Note that when this type of change occurs the Voronoi vertex defined by the four
sites at time t creates a vertex in .A4.

In order to estimate the complexity of .A4 we first need a bound on the number of vertices in .A4,
which is also the number of topological changes in the moving Voronoi diagram. We denote this
number by T(n). The value of T(n) has been extensively studied; it is known that T(n) = O(n 3)
[6,8], and that there are sets of n moving points for which T(n) = J?(r~2). The problem of whether
there are sets of n moving points for which T(n) = w(n2), i.e., asymptotically bigger than n 2, is still
open.

Since a two dimensional Voronoi-diagram has space complexity O(n) and each topological change
can cause only a constant number of changes to V(t), the space complexity of A4, as measured by
the total number of its cells, edges, faces and vertices, is O(n + T(n)) = O(T(n)).

In [8], Guibas, Mitchell and Roos describe an algorithm that in O(T(n) logn) time starts at t ---- - c ~
and sweeps towards t -- c~, stopping at each topological change in the Voronoi-diagram and reporting
it. Suppose then that their algorithm has been run and the times 7-1 < 7-2 < ... < 7-k, k <~ T(n), at
which the topological changes occur have been found.

O. Devillers et aL /Computational Geometry 6 (1996) 315-327 319

Another way to view the cell complex .M is to describe the motion of the points as line segments
in 3-space, thus the cells of .M can be viewed as s leeves around these line segments. The boundaries
of the sleeves consist of algebraic surface patches (ruled surfaces), which in turn intersect in algebraic
curves, called edges, and the edges intersect in the vertices of the cell complex .M.

More explicitly, let p i (t) = si + v i t for i = 1 , . . . ,n, where each point si = (x i , y i) and vi =
(vz i , Vyi) . Then the surface between two moving points p i (t) and p j (t) is described by

(x - x i - v z i t) 2 + (y - Yi - Vyi t) 2 = (x - x j - v z j t) 2 + (y - y j - Vy j t) 2,

which is a quadratic algebraic surface. The edges, which are intersections of these surfaces, can be
quartic curves in (x, y, t). Clearly there are exactly n sleeves in .M, one for each point.

3. Previous work

The combinatorics of moving-Voronoi queries have already been addressed in [2,8,11-13]; these
papers actually treat the evolution of c h a n g e s in the Delaunay triangulation and the Voronoi diagram
and not point location in them. A special case of dog type queries---one in which all of the postmen
move with the same velocity--was dealt with in [15], in that simple case, the diagram has linear size
and is computed in O(n log n) time. The general dog type query and algorithms for both types of
queries were introduced in [4].

The approach to solving Moving-Voronoi queries followed in [4] uses the fact that .M subdivides
three-space into cells such that all points in a given cell have the same nearest postman. Solving a
Moving-Voronoi query can therefore be done by locating the cell in 3,4 which contains (xq , yq, tq) . In
[4], a three-dimensional point location structure for .M is built incrementally by adding the postmen in
a random order, one at a time, into the structure and by saving the changes that the addition of the new
postman caused to the old structure. (This method is an extension of the Guibas, Knuth and Sharir [9]
randomized data structure for point location in static Voronoi diagrams.) It was shown in [4] that the
expected time for a moving-Voronoi query in this data structure is O(log 2 n) where the expectation
is taken over all possible orders in which the postmen can be inserted into the data structure. It was
also shown that, if the dog is faster than all of the postmen, then this same data structure also answers
Dog-type queries in O(log 2 n) expected time. If P is the set of n postmen being stored then the
expected size of the data structure was shown to be

r~<n

where T E (r) is the expected number of topological changes in the moving-Voronoi diagram of a
random sample of r postmen from P. This implies that the expected size of the data structure is
o(n3).

4. Our solutions

We now describe two approaches that will each allow us to solve both types of queries determinis-
tically. One approach is more economical in space requirements than the other approach, while having

320 O. Devillers et al. / Computational Geometry 6 (1996) 315-327

greater query times. In both approaches we first solve the Moving-Voronoi query, which is actually a
point location problem in a Voronoi diagram of moving points. Based on the point location solution
we build an algorithm for the Dog-Bites-Postman query.

4.1. Space-efficient solution

One approach to solving a Moving-Voronoi query would be to store the topology of the graph
of each Voronoi-diagram between two consecutive topological changes in a way that permits point
location. Recall that we denoted by 7-1,..., "rk the times at which the topological changes occured in
the moving Voronoi diagram. We denote by Vi the topological structure of the Voronoi diagram of the
postmen in time interval [7-i, Ti+l). (In this structure a Voronoi edge, e.g., is stored as the sites that are
equidistant from it, and a Voronoi vertex as a triple of the sites equidistant from it, together with the
cyclic ordering of the edges incident to it.) An obvious improvement to this approach takes advantage
of the fact that two consecutive Voronoi diagrams have one topological change between them, which,
as described above, causes just a constant number of local changes to the edges and vertices of these
Voronoi diagrams. So a data structure for dynamic planar point location that uses only the topology
and can be made partially persistent would be very useful.

We are not aware of an efficient planar point location structure that uses only the topology of
the planar map. However, Goodrich and Tamassia [7] present a method for dynamic planar point
location and a dynamic data structure which maintains a dynamically changing monotone subdivision,
its graph theoretic dual and spanning trees for both, which nearly uses only the topology. (A monotone
subdivision with respect to the y-axis is a planar graph in which each face has the property that its
boundary is intersected at most twice by any horizontal line.) This point location structure can be used
for V(t ~) and V(t ~) as long as both have the same topology and the directed graphs, obtained by
directing all edges of both Voronoi diagrams downwards, with respect to the y-axis, are isomorphic
(cf. Lemma 4.2 in [7]). Clearly, a planar graph in which each face is convex, such as the Voronoi
diagram, is a monotone subdivision. The Voronoi diagram 1I/is kept in a topological representation.
In order to maintain a y-monotone representation of the moving Voronoi diagram, we notice that the
directed graph associated with the Voronoi diagram V(t), changes only when, at time t ~, a Voronoi
edge in V(t ~) becomes parallel to the x-axis (horizontal). Since all the faces of the moving Voronoi
diagram are ruled surfaces of constant degree, each edge can become horizontal at most a constant
number of times, so, in total, the number of changes in the monotone representation of the Voronoi
diagrams is also O(T(n)). We refine each interval [7-i, 7-i+1) into a sequence of sub-intervals, such that
in each sub-interval the y-monotone representation corresponding to the Voronoi diagram, does not
change. Let the set 7" -- {7-~,..., T[}, 1 = O(T(n)), denote now the thus refined set of times.

Since the successive Voronoi diagrams are monotone subdivisions, a persistent data structure can
be used for point location [5,7]. Given the list of times and the corresponding changes at these times
in the monotone subdivisions, the data structure can be constructed in time O(T(n)logn), and its
size is O(T(n)log n). Applying this to the Moving-Voronoi query q = (Sq, tq), we first perform an
O(log n) binary search on the set 7" to find i such that tq E [7-~, 7-~+1), and then follow by performing
the point location algorithm of Goodrich and Tamassia [7] in time O(log 2 n). This brings the total
time for solving a Moving-Voronoi query to O(log 2 n).

Turning to the Dog-Bites-Postman queries, we will now describe how access to moving-Voronoi
solutions and an approach very similar to parametric searching (cf. [10]) will permit us to solve dog

O. Devillers et al. / Computational Geometry 6 (1996) 315-327 321

p2(t)

t2 _ _ _

tl

pl(t)

I

Fig. 3. The postmen in (x, y, t) space and the cone Cq of the dog's motion options.

queries. Recall that a dog query q is specified by the dog's starting location Sq at starting time tq, and
its speed Vq, and that ti is the first time that a dog can reach postman Pi. Let t* = mini ti be the first
time that a dog can reach some postman. The crucial observation is the following lemma.

Lemrna 1. Let t > tq be an arbitrary time and let Pi (t) be the nearest postman to Sq at time t. I f the
dog is faster than all of the postmen then

t* <~ t i f and only if t~ <~ t.

Proof. Since t* ~< ti the i f direction is obvious.
To prove only if we introduce a geometric construct associated with the Dog-Bites-Postman query.

We can view the motion of the postmen as straight line segments in (z, y, t)-space (see Fig. 3). A query
dog at (Sq, tq) with speed Vq can choose to run in any one direction, which corresponds to choosing a
generating line on the boundary of a circular cone C a in (z, y, t)-space, with an apex at (Sq, tq), that
grows upwards with angle arctan vq. The motion (direction) chosen by the dog is, therefore, a ray from
the apex of Cq on the boundary of it. Finding the postman that can be reached quickest is equivalent
to finding the line segment of postman pj which intersects the cone Ca at the lowest t value. Denote
by Cq(t) the circle which is the 'horizontal' cross section of Ca at time t >~ tq. Clearly the radius of
C q (t) is V q (t - - tq) for t >1 tq .

Assume by contradiction that t* ~< t < ti. Then there must be some postman pj such that t* = tj <~ t.
Since the dog is faster than all postmen, thus faster than postman pj, then, once the line of postman pj in
(x, y, t)-space enters the cone Ca, at time tj, it will never leave the cone again, i.e., Cq(t') Npj (t') ¢ O
for all t' >1 tj. This implies that Cq(t) Npj(t) ¢ O because it entered the cone at time tj <~ t. On the
other hand, the point pi(t) must be outside of circle Cq(t) because t < ti, and ti is the first time the
line segment of postman pi entered the cone. The radius of Cq(t) is Vq(t - tq), so

I p i (t) - Sql > Vq(t- tq) >/ I p j (t) - sql,
contradicting the fact that Pi(t) was the nearest postman to sq at time t. []

322 O. DeviUers et al. / Computational Geometry 6 (1996) 315-327

Let Pi be a nearest postman to sq at time t*. The lemma implies that t~ ~< t*. By definition t* ~< ti
so t* = ti and Pi is a postman that the dog can catch quickest. This suggests an algorithm for solving
Dog-Bites-Postman queries; perform a Moving-Voronoi query at location sq at time t*. The difficulty
with this approach is that knowing t* requires having already solved the dog query. We work around
this difficulty by using parametric search [10] and applying Lemma 1.

The algorithm for the Dog-Bites-Postman query has two phases. The first phase performs a modified
binary search on r to find the interval [r~, r~+l) such that t* E ['r', r~+l), and the associated point
location data structure for the topology of V(t*). The second phase uses a variation of parametric
search [10] to find t* in this interval. It runs the point location procedure implicitly for t*, and on any
branching point of the procedure it makes a local decision on the branching options, as we describe
below, while, at the same time, it truncates the time interval where t* can be found.

For the first phase note that questions of the form "is t* ~< t?" can be answered by performing a
Moving-Voronoi query at time t, taking the answer Pi and checking whether ti ~< t. If the answer is
"yes" then the lemma implies t* ~< t, otherwise it implies t* > t. Using binary search on r , we can find,
by asking log(T(n)) = O(logn) such queries, the interval [r~, r;+l) such that t* E [r~, "r;+l). The total
amount of time for the binary search is the number of Moving-Voronoi queries made multiplied by the
amount of time required for answering a Moving-Voronoi query, i.e., O(log n) .O(log 2 n) = O(log 3 n).

Along with the interval [r;, r;+l) we also find the associated point location structure for searching
in the Voronoi diagram V(t), t ~ [r;, r;+l). How can this be used to search in V(t*)? Consider the

algorithm of [7] for simple point location at a fixed time t in the interval [r~, r;+~). It asks O(log 2 n)
questions of the form "is Sq = (Xq, yq) above or below bisector line L(t) at time t?", where L(t) is
the line through an edge of V(t) , and of the form "is yq greater or smaller than the y-coordinate of
Voronoi vertex v(t) at time t?"

Even though we do not know the exact value of t* we will be able to use Lemma 1 to parametrically
answer questions of the two types. This will enable us to make the proper branching choices in the
point location procedure and find the region that contains Sq at time t* and its associated nearest
neighbor postman, as we describe below.

The lines L(t) to which Sq is compared in the procedure, are extensions of edges of v(t), and are
therefore the bisectors of two postmen. Suppose then that line L(t) is the bisector of postmen p' and
p~'. The crucial observation here is that Sq lies on L(t) only when Ip"(t) - 8 q l 2 -]p~(t) - Sql 2 = 0;
since the points move with linear motion this is a quadratic equation in t so, if the equation is not
identically 0---corresponding to sq always lying on the bisector--then Sa may lie on L(t) at most
twice. Thus, sq switches from being above or below L(t) to below or above L(t) at most twice.

Answering the question "is Sq above or below line L(~) at time t*?" is therefore a matter of
calculating the times that Sq lies on L(t). Suppose these are times t ~ and t", and assume ~ ~< t ~. If
both t' and t" are outside time interval [r~, r;+l) then Sq is either always above or always below line
L(t) for all times in the interval and specifically for time t*. We calculate which it is, above or below,
and then proceed with the search. If either t ~ or t ~ or both are in this interval we perform at most two
calls (one for each of these times) to the Moving-Voronoi query procedure to calculate if t* is less
than t ~, between t ~ and t" or greater than t", using Lemma 1. As before, locating sq in V(t ~) gives
the postman pj closest to sq at time t ~, and checking if tj <<, t ~ will tell us, using Lemma 1, if t* ~< t t.
Similarly for t ~. The answers to these two questions allow us to perform the correct branching, as
well as to truncate the time interval where t* can be found.

O. Devillers et al. / Computational Geometry 6 (1996) 315-327 323

Similarly, the Voronoi vertex v(t), to which Sq is compared in the second type of question, is the
center of the circumcircle through three specified linearly moving postmen and therefore follows an
algebraic curve of constant degree and can only pass through the horizontal line y = yq a constant
number of times. As with the case of the L(t) we can calculate these times and, using Lemma 1,
decide using a constant number of Moving-Voronoi queries whether Sq is above or below Voronoi
vertex v(t) at time t = t*.

Thus, the point location algorithm of [7] provides us with O(log 2 n) questions as described above,
at each question we get at most a constant number of time values for which we answer a constant
number of Moving-Voronoi queries in O(log 2 n) time to determine the next branching in the point
location algorithm. At the end of the parametric point location algorithm we have located sq at time
t = t*. The full parametric point location procedure uses O(log 4 n) time. The initial binary search
used only O(log 3 n) time so the total cost of performing a Dog-Bites-Postman query is O(log 4 n).

Theorem 1. A Moving-Voronoi query for n postmen can be answered in time O(log 2 n) time using
space O(T(n) log n). A Dog-Bites-Postman query for n postmen slower than the dog can be answered
in time O(log 4 n) using space O(T(n) log n) where T(n) denotes the number of topological changes
in the moving Voronoi diagram.

4.2. Time-efficient solution

Consider a fixed infinite vertical line l perpendicular to the horizontal plane at point s -- (x, y) and
its intersections with the faces of the cell complex Ad. These intersections subdivide l into intervals
such that in each interval only one postman is nearest to all points (s, t) = (x, y, t) for all t in this
interval. Label the interval with the index of the nearest postman. If l is tangent to a face of .hd
then it is equidistant to two postmen, in which case we break ties by labeling the interval by the
nearest postman with the smaller index. The labels change only at the times t~ < t~ < . . . < t~ when

s and s l intersects .hA. We set ij to be the index of the nearest postman to s between times tj tj+ l,
$ j = 1 , . . . , m. To make our definitions consistent we set t~ = - o e and tin+ I = oo. We call the times

t~ the stabbing times and the sequence ij, j = 1 , . . . , m , the stabbing sequence associated with s.
Let us denote T s = {tsa,..., t s } . The number of different labelings of lines can be bounded by the
number of faces, edges and vertices of the projection of .3,4 on the (x, y) plane.

Because the postmen are moving linearly, the size of a stabbing sequence must be small.

Lemma 2. Fix a point s and let the stabbing sequence i l , . . - , im be defined as above. Then m <~ 2n.

Proof. An (n, s) Davenport-Schinzel sequence is a sequence composed over an alphabet of n char-
acters, where each pair of alphabet characters is allowed to alternate in the sequence at most s times.
We show that a stabbing sequence is an (n, 2) Davenport-Schinzel sequence. An (n, 2) Davenport-
Schinzel sequence has length at most 2n, see [1].

Suppose the stabbing sequence did contain some 2-repeating subsequence. Between each subse-
quence i . . . j or j . . . i there must be a time t such that

Ip (t) - sl 2 = Ip (t)- sl 2

The existence of a 2-repeating sequence therefore implies the existence of at least three distinct times t
when this equation is satisfied. The points move with constant speed, though, so Ipi(t)-sl 2 - IPj (t) - s l 2

324 O. Devillers et al. / Computational Geometry 6 (1996) 315-327

is a quadratic equation and only has two roots, leading to a contradiction. Therefore the stabbing
sequence is an (n, 2) Davenport-Schinzel sequence and hence has length m ~< 2n. []

We can now propose a different approach to answering a Moving-Voronoi query. Note that between
any two stabbing times t~ and t~+ l the vertical line through s is wholly contained within the region
associated with postman pi t . If, for any query point Sq, we could access the stabbing times associated
with Sq in a way that permits binary search on T s, then, in logarithmic time, we could solve a Moving-
Voronoi query (sq, tq) by performing a binary search on the stabbing times to find the interval that
contains tq, which will immediately give us pi t as the nearest postman to Sq at time tq. We show below
a data structure that allows us to access the stabbing times in this way, so that the Moving-Voronoi
query can be performed in time O(log n).

The nice fact is that using the same data structure we can also answer the Dog-Bites-Postman query
in time O(log n). This will follow from the next lemma (which also follows from Theorem 4 in [4]).

Lemma 3. Let s be a f ixed point in]R 2, and let v be a f ixed speed o f a query dog, such that v >]vii,
i = 1 , . . . , n. We define a function p(t) as follows. Let p be a postman nearest to s at time t. Set
d(t) = Ip(t) - s [to be the distance between s and its nearest postman. Define the function p :]R --+ IR,

d(t)
p (t) = t - - -

v

Then
(a) p is a 1-1 continuous mapping from]R to]R such that if t > t' then p(t) > p(t'). Furthermore

p (- c ~) = - o o and p(oo) = c~.
(b) The quickest reachable postman for a dog starting from point s at time p(t) with speed v, is the

postman nearest to s at time t: D(s , t, oo) = D(s , p(t), v).

Proof. (a) Let t > t t E]R, s E]i;~ 2 and let p = M (s , t) and p~ = M (s , t I) the nearest postman of s at
time t and t ~ (p may be equal to p~).

d(t) <<. Ip ' (t) - s[since at time t postman p is closer to s than p'

Ip ' (t ') - s I + [p ' (t) - p'(t')l by triangular inequality

< d(t') + v(t - t ~) since the speed of p~ is less than v.

Hence

p(t) = t - - - > d(t') + v (t - t') = p(t').

p (- c ~) = - o o and p(oo) --- oo follows from the fact that the nearest neighbor of s when t goes to
+oo has a speed < v.

(b) From the definitions above, to reach p at time t, the dog must leave s at time less than p(t).
Now using this remark and Statement (a), a dog starting at time p(t) from s cannot reach a postman
p' at a time t' < t, since to do that, the dog must leave s before p(t t) < p(t). []

Taken together the two statements of Lemma 3 provide us with a way of answering a Dog-Bites-
Postman query: Given a dog query (s, tq, v) we locate the unique interval 1~ such that tq E J~. The

O. Devillers et al. / Computational Geometry 6 (1996) 315-327 325

index of the postman assigned to interval I] immediately gives us the postman that the dog can reach
quickest.

We will now show how we find the interval I] such that tq E J]. Recall that we assume that for
a fixed s we have a sequence of stabbing times with the assigned indices of the closest postman in
each interval. We can do this by performing a binary search on the m values

p(q) < < . . . <

Since we do not know these values in advance we perform binary search on the set T s. For each
s s _ . s s[and from there p(t~). Consequently, given any t~ we can, tj E T s we compute d(tj) - Ip,j(ty) -

in constant time, decide whether tq > p(t~) or not. We can therefore perform an O(logn) binary
search to find the interval J] which contains tq without explicitly computing the whole sequence J] ,
j -- 1 , . . . , m .

To review, we have just seen that if we have a data structure which returns the stabbing times T s,
in a form suitable for binary search, for any given point s, then we can solve both Moving-Voronoi
queries and dog queries in O(log n) time.

We now describe such a data structure. The 3-dimensional diagram .M is orthogonally projected
on the horizontal plane ((x, y)-plane) to get a planar subdivision .M ±. A vertex of .M is projected to
a vertex of .M ±. An edge of .hi is projected to some curve in the plane. A face of .M is projected
to some planar region whose boundary is defined by edges of .h,4, and possibly by the silhouette of
the face, which is the locus of points of vertical tangency of the projected face. All these projected
features define edges and vertices of A/l ±. Additional vertices of Mp are the intersection points of
the projected curves. It is known that the silhouette of an algebraic surface patch of a constant degree
consists of a constant number of connected components (the boundaries of which are also algebraic
of constant degree), and that it has a constant number of extremal points in a given direction and a
constant number of points of self intersection. Thus, the total number of curve segments defining .M ±
(projection of edges and silhouettes of the faces of .M) is O(T(n)) . Any two curve segments in A/I ±
intersect at most a constant number of times. Thus the number of cells in the planar subdivision .M ±
is O(T(n)2). The projection A/I ± consists of vertices, edges which are algebraic curves and regions,
which are maximally connected planar cells. It is easy to see that for all points in one region there is
a unique stabbing sequence.

Assume we have constructed A/[by one of the standard methods, see, e.g., [8]. After construction
of the defining curve segments we construct the planar subdivision J~4 ± by a plane sweep. The sweep
stops at vertices of .M and at intersections and cusps of the projection of the edges and the silhouettes
of the faces of .h4. Under the assumption that intersections and cusps of the curve segments can be
computed in constant time, the sweep takes time O (N log N) = O (N log n) where N = O(T(n)2).

During the sweep we can build a point location structure for .M ± as described, e.g., by Samak and
Tarjan [14] or Cole [3]. This point location data structure has space complexity O(T(n)2), and a point
location query takes time O(log(T(n))) = O(log n) [5,14].

Assume we are given a Moving-Voronoi query q = (Sq, tq). We first locate the region in .h4 ± that
contains the point Sq. Next we have to locate tq in the stabbing sequence corresponding to this region.
We use binary search trees to store the stabbing sequences. Since the stabbing sequences of neighboring
regions are similar, the persistence-technique can be used again. Given a search tree for a connected
region in .M ±, a constant number of updates is sufficient to build a search tree for a neighboring
region. Here we can use full persistence, which allows to modify all versions. We choose a region

326 O. Devillers et al. / Computational Geometry 6 (1996) 315-327

r0 in .A4 ± and construct a binary search tree for its stabbing sequence. For all other regions r we
take a neighboring region whose binary search tree has already been constructed and can be modified
according to the full-persistence-technique to get a binary search tree for the stabbing sequence of r.
We can use any rooted spanning tree of the dual of the graph defined by A/l ±, which has root r0, to fix
the order of search tree constructions. Since O(1) updates suffice, the search tree for a region r can be
constructed from the search tree of the predecessor of r in the rooted spanning in time O(log n) with
O(1) additional storage, cf. [5]. Alternatively partial persistence can be used as well. By traversing the
rooted spanning tree, we can get a linear list (with duplicates) of neighboring regions. This list defines
a sequence of updates of our search structure where only the latest version of the search structure
has to be modified, i.e., partial persistence is sufficient. Since the length of the list is less than twice
the number of regions this solution has the same asymptotic behavior as the solution based on full
persistence.

With each region we store a pointer to (one of) the search tree(s) for its stabbing sequence. No matter
whether partial or full persistence is used construction time of the whole structure is O(n + N log n)
and it requires O(n + N) space, where N = O(T(n) 2) is the number of regions. Once a region is
known we can locate t with the fully (or partially) persistent binary search tree associated to the region
in time O(log n). Altogether we get Theorem 2.

Theorem 2. A Moving-Voronoi query for n postmen can be answered in time O(log n) time using
space O(T(n)2). A Dog-Bites-Postman query for n postmen slower than the dog can be answered in
time O(log n) using space O(T(n) 2) where T(n) denotes the number of topological changes in the
moving Voronoi diagram.

5. Open problems

The major problem left open in this paper is how to solve Dog-Bites-Postman queries if the dog
is slower than some of the postmen. If the dog is slower than the postmen then Lemma 1 and
the correspondence between Moving-Voronoi and Dog-Bites-Postman queries described above are no
longer true and it is not obvious how to construct a data structure that permits the solution of both
types of queries.

It would also be nice to be able to introduce some type of systematic trade off between query
time and storage requirement for this problem. In our first solution we used O(T(n) log n) space, but
had time complexity O(log 4 n) to answer Dog-Bites-Postman queries while in our second solution we
achieved logarithmic search time for Dog-Bites-Postman queries at the expense of squaring the storage
requirements to O(T(n)2). Are there intermediate techniques that balance storage requirements and
search times?

Acknowledgements

Klara Kedem and Mordecai Golin would like to thank the Max-Planck-Institut, for providing an
excellent working environment.

O. Devillers et aL / Computational Geometry 6 (1996) 315-327 327

The authors would like to thank Mike Goodrich for directing our attention to the applicability of [7]
to solving moving-Voronoi queries. Furthermore they would like to thank an anonymous referee for
pointing out the use of partial persistence in the time-efficient approach to Dog-Bites-Postman queries.

References

[1] EK. Agarwal and M. Sharir, Davenport-Schinzel Sequences and Their Geometric Applications (Cambridge
Univ. Press, Cambridge, UK, 1995).

[2] G. Albers and T. Roos, Voronoi diagrams of moving points in higher dimensional spaces, in: Proc. 3rd
Scand. Workshop Algorithm Theory, Lecture Notes in Computer Science 621 (Springer, Berlin, 1992)
399-409.

[3] R. Cole, Searching and storing similar lists, J. Algorithms 7 (1986) 202-220.
[4] O. Devillers and M. Golin, Dog bites postman: Point location in the moving Voronoi diagram and related

problems, in: Proc. 1st Annu. European Sympos. Algorithms (ESA '93), Lecture Notes in Computer
Science 726 (Springer, Berlin, 1993) 133-144.

[5] J.R. Driscoll, N. Sarnak, D.D. Sleator and R.E. Tarjan, Making data structures persistent, J. Comput. Syst.
Sci. 38 (1989) 86-124.

[6] J.-J. Fu and R.C.T. Lee, Voronoi diagrams of moving points in the plane, Internat. J. Comput. Geom. Appl.
1(1) (1991) 23-32.

[7] M. Goodrich and R. Tamassia, Dynamic trees and dynamic point location, in: Proc. 23rd Annu. ACM
Sympos. Theory Comput. (1991) 523-533.

[8] U Guibas, J.S.B. Mitchell and T. Roos, Voronoi diagrams of moving points in the plane, in: Proc.
17th Internat. Workshop Graph-Theoret. Concepts Comput. Sci., Lecture Notes in Computer Science 570
(Springer, Berlin, 1991) 113-125.

[9] L.J. Guibas, D.E. Knuth and M. Sharir, Randomized incremental construction of Delaunay and Voronoi
diagrams, Algorithmica 7 (1992) 381--413.

[10] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30 (1983)
852-865.

[11] T. Roos, Voronoi diagrams over dynamic scenes, in: Proc. 2nd Canad. Conf. Comput. Geom. (1990) 209-
213.

[12] T. Roos, Dynamic Voronoi diagrams, Ph.D. thesis, Bayerische Julius-Maximilians-Univ. Wtirzburg, Germany
(1991).

[13] T. Roos and H. Noltemeier, Dynamic Voronoi diagrams in motion planning, in: Computational Geometry--
Methods, Algorithms and Applications: Proc. Internat. Workshop Comput. Geom. CG '91, Lecture Notes
in Computer Science 553 (Springer, Berlin, 1991) 227-236.

[14] N. Sarnak and R.E. Tarjan, Planar point location using persistent search trees, Commun. ACM 29 (1986)
669-679.

[15] K. Sugihara, Voronoi diagrams in a river, Internat. J. Comput. Geom. Appl. 2(1) (1992) 29-48.

