
File: 643J 257601 . By:CV . Date:14:06:96 . Time:08:11 LOP8M. V8.0. Page 01:01
Codes: 7042 Signs: 5262 . Length: 60 pic 11 pts, 257 mm

Information and Computation � IC2576

information and computation 126, 161�168 (1996)

Sensitive Functions and Approximate Problems

Shiva Chaudhuri

Max-Planck-Institut fu� r Informatik, Im Stadtwald, 66123 Saarbru� cken, Germany
E-mail: shiva�mpi-sb.mpg.de

Properties of functions that are good measures of the CRCW PRAM
complexity of computing them are investigated. While the block sen-
sitivity is known to be a good measure of the CREW PRAM complexity,
no such measure is known for CRCW PRAMs. It is shown that the
complexity of computing a function is related to its everywhere sen-
sitivity, introduced by Vishkin and Wigderson. Specifically, the time
required to compute a function f : Dn � R of everywhere sensitivity
es(f) with P processors and unbounded memory is 0(log[log es(f)�
(log(|D|+4P�es(f)))]). This improves results of Azar and of Vishkin
and Wigderson. This lower bound is used to derive new lower bounds
for some approximate problems. These problems can often be solved
faster than their exact counterparts and for many applications, it is suf-
ficient to solve the approximate problem. It is shown that approximate
selection, approximate counting, approximate compaction, and
padded sorting all require time 0(log log n) with a linear number of
processors, if the level of accuracy desired is moderately high. For these
levels of accuracy, no lower bounds were known for these problems on
the PRAM model. The lower bounds for some of the problems are
tight.] 1996 Academic Press, Inc.

1. INTRODUCTION

The computation of Boolean functions by circuits leads
naturally to their study in all models of parallel computa-
tion. Much work has been done on investigating properties
of Boolean functions which are measures of the difficulty of
computing the function. One such measure is the sensitivity
of a function. Let f : [0, 1]n � [0, 1] be a Boolean function,
let x # [0, 1]n and let x(r) # [0, 1]n denote the bit vector that
differs from x exactly on the rth co-ordinate. Then the sen-
sitivity of f on x, written sf (x) is the number of distinct
co-ordinates r, such that f (x){ f (x(r)). The sensitivity of f,
written sf , is the maximum, over all inputs x, of sf (x). The
sensitivity of Boolean functions has been extensively studied
[Si83, Tu84, CDR86, Ni91]. Cook et al. [CDR86] show
that the complexity of computing a function f on a CREW
PRAM is related to the sensitivity of f . More precisely, they
prove a lower bound of 0(log sf) on the time required to
compute f. Nisan considered a generalization of sensitivity,
called the block sensitivity [Ni91]. He showed that the time
required to compute a function f on a CREW PRAM is
3(log bsf), where bsf is the block of sensitivity f. Thus, com-
plexity of computing Boolean functions on CREW PRAMs
is well characterized.

The AND function has sensitivity n and therefore takes
3(log n) time on CREW PRAM. However, AND can be
computed in constant time on a CRCW PRAM. Thus, sen-
sitivity and block sensitivity are not appropriate measures
of CRCW PRAM complexity. The reason is that both
measures can critically depend on the value of the function
on a single input. A CRCW PRAM can use its concurrent
writing property to check, in a single step, if its input is
special. Thus any measure whose value depends on a small
number of inputs is doomed to failure.

A measure that avoids dependence on a small set of
inputs is everywhere sensitivity defined as follows. Let D and
R be finite sets and let f : Dn � R be a function. An input
x # Dn is q-sensitive if for every subset J�[1, ..., n], |J |=
q&1, there exists an input l, which agrees with x on the co-
ordinates in J and for which f (x){ f (l). The everywhere
sensitivity of x is the largest integer q such that x is q-sen-
sitive. The everywhere sensitivity of f is the minimum, over
all inputs x, of the eveywhere sensitivity of x. An alternative
way of thinking of the everywhere sensitivity of a function is
the maximum number of co-ordinates whose values can be
safely revealed without revealing the value of the function.
Vishkin and Widgerson showed that a CRCW PRAM with m
memory cells requires time 0(- q�m) to compute a function
of everywhere sensitivity q [VW85]. For a special class of
functions, Azar improved this bound to 0(q�m) [Az92].
However, this does not yield nontrivial bounds for m=0(n).

We investigate the role of everywhere sensitivity in
determining the CRCW PRAM complexity of a func-
tion. Our main result is that computing a function
f : Dn � R of everywhere sensitivity es(f) requires time
0(log[log es(f)�(log(|D|+4P�es(f)))]) on a CRCW PRAM
with P processors and unbounded memory. For computing,
with n processors, a Boolean function of everywhere
sensitivity n, for instance, PARITY, this gives a lower
bound of 0(log log n). This is weaker than the bound of
0(log n�log log n) obtained by Beame and Ha# stad [BH89].
However, surprisingly, for n processors and everywhere sen-
sitivity 0(n), the bound is tight. Goldberg and Zwick give
an O(log log n) time algorithm that computes a function of
everywhere sensitivity 0(n) optimally [GZ94].

As applications of the above bound we derive new lower
bounds for other problems. These problems have the

article no. 0043

161 0890-5401�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

File: 643J 257602 . By:CV . Date:14:06:96 . Time:08:11 LOP8M. V8.0. Page 01:01
Codes: 6194 Signs: 5467 . Length: 56 pic 0 pts, 236 mm

common feature that they are all approximate versions of
problems. For some applications, it is enough to solve the
approximate version, which can often be solved faster than
the exact version [HR92, HR93, CHR93, MV91]. For each
approximate problem, there is an accuracy parameter
*�1�(n+1). In approximate selection, the task is to find,
from n elements, an element whose rank differs from a
specified rank by at most *n. In approximate counting,
given a bit vector, the goal is to compute an integer that lies
between s�(*+1) and s(*+1), where s is the number of 1's
in the input vector. In approximate compaction, the goal is
to place all the 1's in the input into the initial s(*+1)
memory locations, at most one 1 to a memory cell. We
prove the following bounds: approximate selection with
accuracy *�1�4 with Cn processors requires 0(log[log n�
log(C+2)]) time. Approximate counting and approximate
compaction with accuracy * using Cn processors require
0(log[log n�log(C*+2)]) time. These bounds are easily
seen to imply lower bounds for other appoximate problems
such as interval allocation and approximate prefix summa-
tion [Hag93, HR93].

Padded sorting is the problem of placing n elements in
sorted order in an output array of size at most (*+1)n. The
unused locations should contain a special null value. Our
bounds for everywhere sensitive functions can be used to
derive a lower bound of 0(log[log n�log((*+2)(C+1))])
for padded sorting with accuracy * using Cn processors.

When *=1�(n+1) each of the above problems reduces
to its exact version, which is known to require
0(log n�log log n) time. It has been shown that if one can
solve any of the approximate problems with an accuracy of
* using p processors in time t, then one can, with the same
resources, solve a MAJORITY problem on 1�* elements
[Has]. The lower bound of Beame and Ha# stad then implies
an 0(log(1�*)�log log n) time lower bound for solving any
of these problems with a polynomial number of processors.
While this is good for small values of *, it does not give a
nontrivial bound when *=0(1�(log n)c), for constant c.
Our bounds improve the above for this range of *, where, in
fact, fast algorithms are known for each of the problems.
In particular, for *=1�4, with n processors, algorithms
for approximate selection, approximate counting and
approximate compaction are known that run in time
O(log log n)[GZ94]. With n2 processors padded sorting
can be solved in O((log log n)2) time [GZ94].

The methods used to prove the lower bounds are of inde-
pendent interest. In Section 3, we prove some lemmas
applicable to any PRAM algorithm. Roughly speaking
these lemmas state that it is possible to bound the number
of possible states of an algorithm by carefully setting a small
number of inputs. This makes it possible to prove a lower
bound for any problem merely by showing that if a small
number of inputs is set a large number of output possibilities
still remain. The method of bounding the number of states

is general enough to have applications to other computa-
tional models.

2. PRELIMINARIES

2.1. The Model

We prove the lower bound on a strong model of the
PRIORITY CRCW PRAM (see [JaJa92]). This model is
sometimes referred to as the ``Ideal'' or ``Full-Information''
PRAM [Be89]. In this model each processor is assumed to
keep track of the entire history of its own computation.
Each processor has an initial state, and its state at step i is
defined by its initial state and it history through step i&1.
We consider deterministic algorithms, so the action of a
processor is completely determined by its state. We make no
other assumptions about the algorithm in particular, non-
uniform algorithms are allowed.

We assume an infinite number of memory cells with
infinite wordsize. Since there is no restriction on the
wordsize, whenever a processor writes, it may as well write
the entire history of its computation hence the name Full-
Information PRAM. Lower bounds on this model depend
crucially on limiting the amount of information that pro-
cessors can communicate to each other through the shared
memory. Lower bounds proved on this model carry over to
more realistic models and give insight into the intrinsic
difficulty of solving problems in parallel.

2.2. Partial Inputs and the Computation Graph

In the following, A will be an algorithm computing a
function f : Dn � Rs. For inputs of size n, let A use P(n) pro-
cessors and take k(n) steps. We will use P and k for P(n) and
k(n) respectively, from now on.

A partial input is an element of (D _ [V])n. For a partial
input b, we denote by X(b) the set of inputs consistent with
b. That is, X(b)=[x # Dn: i=1, ..., n, bi , { V � bi=xi].
For partial inputs a and b, we say a is a refinement of b, and
write a�b, if X(a)�X(b).

For a given partial input b, consider a processor p at time
t. The set of inputs consistent with b defines a set of states
that p may be in, on inputs consistent with b. This set of
states, in turn, defines the possible actions of p at time t; in
particular, it defines the set of memory locations that p may
read from, or write to. This gives us a way to identify (and
consequently, limit) the amount of information that p may
read from, or write to, the shared memory. We formalize
this by modelling the computation of A on a graph. Let b be
a partial input of size n. The computation graph of A on
b, G(b), is defined as follows:

V(G(b))=[(c, i): c is a memory cell and 0�i�k].

162 SHIVA CHAUDHURI

File: 643J 257603 . By:CV . Date:14:06:96 . Time:08:11 LOP8M. V8.0. Page 01:01
Codes: 6394 Signs: 4913 . Length: 56 pic 0 pts, 236 mm

We have (k+1) levels; in each level we have one vertex
for each cell in the memory. The set of vertices in level i will
be called Vi . The directed edges go from vertices at one level
to the vertices of the next level. Every edge is labelled by a
processor. E(G(b)) contains the edge ((c, i), (d, i+1))
labelled p if on some input in X(b), processor p reads cell c
and writes to cell d in step (i+1). (We assume that in each
step of the computation, the processors first read and then
write. Intuitively, the edges between levels i&1 and i repre-
sent the possible actions of the processors during step i.)
Initially, variable i of the input is assumed to be in cell i;
finally, output value i is assumed to be in cell i. We refer to
vertex (i, 0) as :i for 1�i�n (the input vertices), and vertex
(i, k) as ; for 1�i�s (the output vertices).

Let a # Dn. We shall associate with each vertex of G(a) a
content. The content associated with (c, i) is the content of
the cell c after step i (that is, just before the write of step
(i+1) changes it) in the computation of A on the input a.
We call this content(a, (c, i)). Similarly, for a processor p,
state(a, (p, i)) is the state of processor p just before the write
of step (i+1) in the computation of A on input a. For a
partial input b, let

contents(b, (c, i))=[content(x, (c, i)): x # X(b)];

states(b, (p, i))=[state(x, (p, i)): x # X(b)].

We say that (c, i) is a fixed vertex if |contents(b, (c, i))|
=1 and (p, i) is a fixed processor if |states(b, (p, i))|=1;
otherwise, we say (c, i)((p, i)) is a free vertex (processor).
Note that the above definitions depend on the algorithm A
and the size of input n. These parameters will be clear from
the context where they are used.

We model the computation of the algorithm A on the
computation graph as follows. We say that a processor p
reads from cell (c, i) and writes to cell (d, i+1) when we
mean that in the step (i+1) of the computation of the algo-
rithm A, p reads cell c and writes to cell d.

3. REGULARIZED COMPUTATION GRAPHS

Intuitively, if a cell is written to by a small number of pro-
cessors, then it can only be affected be a small number of
input variables, namely those that affect the processors that
write to it. Similarly, it can only have a small number of con-
tents, namely, the ones that each processor may write. Thus
computation graphs in which no cell is written to by many
processors are of special interest, which motivates the
following definition.

Definition. Let S be a sequence of positive integers
(d0 , d1 , d2 , . . .). For a partial input b, we say G(b) is
S-regularized up to level j if every free vertex in G(b) at level
i, 1�i�j has indegree less than di . If G(b) has k levels
and is S-regularized up to level k, we simply say G(b) is

S-regularized. If G(b) is S-regularized, then we call b an
S-regularizing input.

The above definition implies that at level i, at most di&1
processors may write to any free vertex. We would expect
that this property ensures a bound (dependent on i) on the
number of contents that a cell at level i may have. This is
indeed true, as shown by the following lemma.

Lemma 3.1. Let S=(d0 , d1 , d2 , . . .) be a sequence of
positive integers. Define Yi , Zi , Mi and Ni , for i�0 by
Y0=Z0=d0 , M0=N0=1 and

Yi=Yi&1+(di&1) Zi&1, Zi=Zi&1 Yi ;

Mi=Mi&1+(di&1) Ni&1, Ni=Ni&1+Mi .

Let G(b) be a computation graph, on partial input b for an
algorithm which takes inputs from Dn, where |D|�d0 . Sup-
pose G is S-regularized upto level j. Then, for each i, 1�i�j,
for any memory cell c and processor p:

1. (a) |contents(b, (c, i))|�Yi .

(b) |states(b, (p, i))|�Zi .

2. Let x # Dn be an input consistent with b. Then:

(a) c can be fixed to content(x, (c, i)) by setting the
values of at most Mi additional input co-ordinates con-
sistently with x.

(b) p can be fixed to state(x, (p, i)) by setting the values of
at most Ni additional input co-ordinates consistently with x.

Proof. The proof is by induction on i. For i=0 we have
the following. Initially, each cell has one of |D| possible
values written in it, and each processor, after the first read,
can be in one of |D| possible states. A cell can be fixed to any
of its possible contents by setting one input co-ordinate and
a processor to any of its possible states by setting the cell it
reads.

As the inductive hypothesis, assume 1(a), 1(b), 2(a), and
2(b) hold for i $�i&1. Consider level i�k.

Consider a vertex (c, i)(i>0) in the graph G(b). Let d<di

be the indegree of (c, i). Let p1 , ..., pd be the processors that
label the d edges. Let the number of states in which pro-
cessor pj writes to (c, i) be Sj . The content of (c, i) is deter-
mined by the state of the processor that succeeds in writing
to (c, i), or, if no processor writes to (c, i), by the content of
(c, i&1). Thus, we have

|contents(b, (c, i))|� :
d

k=1

Sk+|contents(b, (c, i&1))|.

By the inductive hypothesis, Sk�Zi&1 for each k and
|contents(b, (c, i&1))|�Yi&1 . Thus, for i�1,

|contents(b, (c, i))|�Yi=Yi&1+(di&1) Zi&1

163SENSITIVE FUNCTIONS AND APPROXIMATE PROBLEMS

File: 643J 257604 . By:CV . Date:14:06:96 . Time:08:11 LOP8M. V8.0. Page 01:01
Codes: 6314 Signs: 5131 . Length: 56 pic 0 pts, 236 mm

The number of states of a processor after the ith read is at
most the product of the number of states it had after the
(i&1)th read and the number of contents of the cell it read
at the i th read. Thus

|states(b, (p, i))|�Zi=Zi&1Yi .

In the following, let x be some input consistent with b.
Since the computation graph is regularized, a vertex, c, at

level i has at most di&1 processors that can write to it. By
the inductive hypothesis, each processor that can write to c
at step i can be fixed to its state on input x, by fixing Ni&1

input co-ordinates consistently with x. In case no processor
writes to c at step i, the state of c at step i&1 can be fixed
to be its state at step i&1 on input x, by fixing Mi&1 inputs
consistently with x. After this, the vertex at level i is fixed to
its state on input x, and the number of co-ordinates set, J,
satisfies

J�Mi=Mi&1+(di&1) Ni&1.

By the inductive hypothesis, the state of a processor
before the read of step i can be fixed to its state before the
read of step i on input x by setting Ni&1 co-ordinates con-
sistently with x. After this, the cell that this processor reads
at step i is determined, and its contents can be fixed to be its
contents on input x by setting Mi co-ordinates consistently
with x. Now, after the read of step i, the processor is in
the state it would be in on input x. Thus, the number of
co-ordinates set, K, satisfies

K�Ni=Ni&1+Mi .

This proves the lemma. K

3.1. Making a Computation Graph Regularized

In this section we show how to regularize a computation
graph by setting a small number of inputs. The idea is to fix
all the vertices at level i, for i=1, 2, ..., that have indegree at
least di . When we have done this for levels 1 through i&1,
the computation graph is S-regularized upto level i&1.
Then, by Lemma 3.1, the number of input variables that can
affect a processor at level i is small. Lemma 3.1 shows that
by appropriately setting the variables that affect a pro-
cessor, we can fix a processor to any desired state. Let p be
the highest priority processor that can write to a cell c at
level i. If we fix p to the state in which it writes to c, then,
since all other processors that may write to c have a lower
priority, c will always have the contents written by p, and
will therefore be fixed.

In this fashion, we may fix every vertex at level i that has
indegree at least i. In Lemma 3.2 we show that the total
number of input variables set is small.

Lemma 3.2. For any algorithm using P processors and
taking inputs from Dn, and for any m�1, there is a partial
input, b*, with at most P�m co-ordinates fixed, such that,
after t steps:

1. (a) Each memory cell has one of at most gt different
contents consistent with b*.

(b) Each processor is in one of at most gt different states
consistent with b*.

2. Let x # Dn be an input consistent with b*. Then:

(a) A cell can be fixed to have contents consitent with x
at time t by setting the values of at most gt additional input
co-ordinates consistently with x.

(b) A processor can be fixed to have a state consistent
with x at time t by setting the values of at most gt additional
input co-ordinates consistently with x.

Here gt=act+1
, where a=max[4, |D|, m] and c�

(5+- 5)�2.

Proof. Fix c�(5+- 5)�2, and define d0=max[4, |D|, m]
=a and di=aci

. Let S=(d0 , d1 , . . .) and define Yi , Zi , Mi

and Ni as in Lemma 3.1. We will find an S-regularizing
input with at most P�m co-ordinates set. We describe a
simple procedure to find such a S-regularizing input. Our
strategy is to proceed level by level, refining the current
partial input at each level. When we are finished with level
i, the current partial input will be such that at levels j�i, all
vertices of indegree �dj will be fixed.

Suppose we have finished with levels 1, ..., i&1, and are
currently at level i. Let b denote the current partial input.
Consider the computation graph on b and let (c, i) be a free
vertex of indegree �di . Let p be the highest priority pro-
cessor that could write to (c, i). Then _x # Dn, x�b, an
input on which p writes to (c, i). Use Lemma 3.1 2(b) to fix
this processor to state(x, (p, i&1)), setting at most Ni&1

additional inputs. If b$ is the partial input so obtained, on all
inputs consistent with b$, p will write the same value to
(c, i), so this vertex is fixed. We set the current input to be
b$ and repeat the process.

Since we are continuously refining the input, the degree of
a vertex cannot increase. Thus, the procedure will even-
tually fix all the vertices in level i with indegree �di .

It remains to bound the number of input variables set.
When we are at level i, the current input is such that all free
vertices at levels j<i have indegree �dj&1. By Lemma 3.1
1(b), each processor writing to a cell at level i may be in at
most Zi&1 states, and hence may contribute at most this
many edges to the graph. Thus, the number of edges
between levels i&1 and i is at most Zi&1 P, implying that
the number of vertices with indegree �di is at most
Zi&1P�di . To fix each such vertex, we set at most Ni&1

variables. At level i, therefore, at most Ni&1Zi&1P�di input
variables are set to values in D. We will show that this is at

164 SHIVA CHAUDHURI

File: 643J 257605 . By:CV . Date:14:06:96 . Time:08:11 LOP8M. V8.0. Page 01:01
Codes: 5844 Signs: 4248 . Length: 56 pic 0 pts, 236 mm

most P�m2i. Summing for all i yields the bound on the total
number of variables set.

We now show that Ni Zi�di+1�1�m2i+1, for each i�0.
From the recurrences defining Yi , Zi , Mi and Ni , it is easy
to derive the following inequalities:

Yi�Zi , Zi� `
i

j=0

ac j2i&j
;

Mi�Ni , Ni�2i `
i

j=0

ac j
.

Taking logarithms, showing that Ni Zi �di+1�1�m2i+1 is
equivalent to showing

\i+log a _ :
i

j=0

(c j2i&j+c j)&ci+1&�&log m&(i+1).

Rearranging, we have

log a _ci+1&2i+1

c&2
+

ci+1&1
c&1

&ci+1&� &log m&(2i+1)

or

log a _ci+1 \ 1
c&2

+
1

c&1
&1+&

2i+1

c&2
&

1
c&1&

�&log m&(2i+1).

Since a�m and a�4, it can be verified that this inequality
holds if 1�(c&2)+1�(c&1)&1�0, i.e. if c2&5c+5�0.
The latter function has roots (5\- 5)�2, and is positive for
c>(5+- 5)�2, in particular, the inequality holds for the
chosen value of c.

It can be shown by induction that Zi�aci+1
; now, 1(a),

1(b), 2(a), and 2(b) follow from Lemma 3.1. K

4. EVERYWHERE SENSITIVE AND ELUSIVE
BOOLEAN FUNCTIONS

We give an alternate, but equivalent definition of
everywhere sensitivity.

Recall from Section 2.2 that a partial input b # D _ [V]n

and X(b) is the set of all inputs consistent with b. Define the
length of a partial input, written |b|, to be the number of
values in it that are not V's. For a function f : Dn � R, and
a partial input b, let R(b) denote the set of possible output
values on inputs in X(b). That is, R(b)=[r: r # R and
_x # X(b) such that f (x)=r].

Then we define the everywhere sensitivity of f to be
max[k: \ partial inputs b, |b|�k O |R(b)|>1]. It may be
verified that this definition is equivalent to the one in
Section 1. Thus we may view the everywhere sensitivity of a
function as the maximum number of input variables that an

adversary may reveal, without revealing the value of the
function. This is precisely the view that we will use in our
proofs. We now obtain a lower bound through the following
simple argument.

Theorem 4.1. Let f : Dn � R be a function with
everywhere sensitivity es(f). Let

k=�
1

log c
log \ log es(f)&1

log(|D|+4P�es(f))+|&2,

where c=(5+- 5)�2. Then, any CRCW PRAM algorithm
computing f with P processors requires k steps.

Proof. Assume that P�n. The function cannot be
computed faster by using less processors, hence the lower
bound for P=n also holds for P<n.

Choose m=4P�es(f) so that P�m�es(f)�4; note that
m�4. Let a=max[|D|, m]. Define c=(5+- 5)�2. The
choice of k in the theorem ensures that ack+1

<es(f)�2.
Suppose there is an algorithm that computes the function

in less than k steps. Consider the computation graph of the
algorithm. By Lemma 3.2 there is an with at most P�m
variables set to values in D such that the conclusions of the
lenama hold. Let b be this partial input and consider the
output cell of the computation graph, (;, k). Choose any
input x # Dn, x�b. Let b$ be the input obtained from b by
fixing (;, k) to content(x, (;, k)), setting at most ack+1

addi-
tional input co-ordinates as promised by the lemma. On any
input x$ # Dn, x$�b$, the algorithm outputs the same value,
that is, content(x, (;, i)).

However, since at most P�m+d2
k�es(f)�4+es(f)�2<

es(f) variables in b$ are set to values in D, there must be two
inputs consistent with b$ on which the function has different
values. This gives us a contradiction. K

We now introduce a measure that allows us to quantify
the complexity of a function more accurately. Everywhere
sensitivity is more robust than sensitivity in that its value is
unaffected by small numbers of inputs. However, it errs in
the other direction, that is, it is often insensitive to large
numbers of variables. Consider the Boolean function
f (x1 , ..., xn)=x1 6 (x� 1 7 PARITY(x2 , ..., xn)). It is easy to
see that es(f)=0. Clearly this function has a low
everywhere sensitivity, but is hard to compute. This
motivates our definition of another measure.

For a partial input b and a function f : Dn � R, f | b is the
function obtained by replacing input variable xi with the
value assigned to it by b, where a value V indicates that
the variable may assume any value in D.

The elusiveness of a function f, written E(f) is
max[es(f |b): b is a partial input]. Clearly, E(f)�es(f). On
the other hand, the difference between the two may be
arbitrarily large. This is demonstrated by the function above,
which has everywhere sensitivity 0 and elusiveness n&2.

165SENSITIVE FUNCTIONS AND APPROXIMATE PROBLEMS

File: 643J 257606 . By:CV . Date:14:06:96 . Time:08:11 LOP8M. V8.0. Page 01:01
Codes: 5754 Signs: 4322 . Length: 56 pic 0 pts, 236 mm

We may now strengthen the above theorem as follows. If
f is a function of elusiveness E(f), then there is a restriction
_ such that es(f |_)=E(f). Applying Theorem 4.1 now
yields:

Theorem 4.2. Let f : D � R be a function. Let

k=�
1

log c
log \ log E(f)&1

log(|D|+4P�E(f))+|&2,

where c=(5+- 5)�2. Then, any CRCW PRAM algorithm
computing f with P processors requires k steps.

5. APPLICATIONS

We use our bounds for everywhere sensitive functions to
prove lower bounds for the following problems.

Approximate Selection: Given n elements from an ordered
universe, an integer r # [1, ..., n] and an accuracy parameter
*�1�(n+1), find an element with rank between r&*n and
r+*n.

Approximate Counting: Given an input from [0, 1]n, and
an accuracy parameter *�1�(n+1) compute an integer
b, s�(*+1)�b�s(*+1), where s is the number of 1's in the
input.

Approximate Compaction: Given an input from [0, 1]n,
and an accuracy parameter *�1�(n+1) compute b1 , ..., bn

such that if the input had k 1's, then for some
S�[1, ..., min[(1+*)k, n]], with |S|=k, bj=1 � j # S.
(In other words, all the 1's in the input are compacted into k
distinct locations among the first(1+*) k locations.) A lower
bound for this problem was first proved in [Cha93].

Padded Sorting: Given n elements from an ordered
universe, and an array A of size w(*+1)nx , place the input
elements in the array A, in any order such that, if ai<aj are
two input elements, then ai is placed to the left of aj in the
array. The unused locations should contain a special null
value.

Theorem 5.1. Approximate selection problems with
accuracy *�1�4 using Cn processors requires time

0 \log
log n

log(C+2)+ .

Proof. We assume that C�2 and *=1�4; clearly, the
problem cannot be solved faster by using less processors or
by solving for smaller *.

In order to prove a lower bound, we consider a restricted
version of the problem where each element has a value in
[0, 1] and the problem is to approximately select the
median. Any deterministic algorithm that solves this
problem with accuracy * can be viewed as computing a
Boolean function f : [0, 1]n � [0, 1].

We will show that the function f has everywhere sen-
setivity at least n�2&*n&1. Consider any partial input b of
length less than n�2&*n. Let b0 and b1 be elements of X(b)
obtained by setting all the V's in b to 0 and 1 respectively.
Clearly, f (b0)=0 and f (b1)=1. Thus es(f)�
n�2&*n&1�(n�2)(1�2&*), when n�4. Using Theorem
4.1 with P=Cn and *=1�4 gives us the claimed bound. K

Theorem 5.2. Approximate counting with accuracy *
using Cn processors requires time

0 \log
log n

log(C*+2)+ .

Proof. We prove the bound for *�1; clearly, the
problem cannot be solved faster by solving for a smaller *.

Any deterministic algoritm that solves the approximate
counting problem can be viewed as computing a function
g : [0, 1]n � [0, ..., n], where, for x # [0, 1]n, g(x) is the
value output by the algorithm. Note that if x has s 1's,
s�2*� g(x)�2s*, since *�1.

We will show that the function g has everywhere sen-
sitivity at least n�6*2. Consider any partial input b, of length
less than n�a, for some real a, whose value will be deter-
mined later. Let b0 # X(b) be the partial input obtained
from b by setting all the V's in b to 0, and let bi # X(b) be the
input obtained by setting all the V's to 1. Since b0 has
at most n�a 1's and b1 has at least n&n�a 1's, we
have g(b0)�n(*+1)�a and n(1&1�a)�(*+1)� g(b1). For
a>(*+1)2+1, we have n(*+1)�a<n(1&1�a)�(*+1),
hence, in this range of values for a, g(b0){ g(b1). Setting
a=6*2>(*+1)2+1 (since *�1), we find es(g)�n�6*2.

Applying Theorem 4.1 with P=Cn yields the stated
bound. K

Theorem 5.3 [Cha93]. Approximate compaction with
accuracy * using Cn processors requires time

0 \log
log n

log(C*+2)+ .

Proof. We reduce approximate counting to approxi-
mate compaction. Let a1 , ..., an be an instance of approxi-
mate counting with accuracy *. First solve the approximate
compaction problem with accuracy * on this input. Let
b1 , ..., bn be the output produced. Then, find the index, b, of
the rightmost 1 in the output, which can be done in constant
time [FRW88]. Then, the solution to the approximate
counting problem is b. This is because, if the input had k 1's,
then the index of the rightmost 1 in the output is at least k
and at most (*+1) k. K

As approximate compaction has applications to various
important problems, it has been studied in great detail. A

166 SHIVA CHAUDHURI

File: 643J 257607 . By:CV . Date:14:06:96 . Time:08:11 LOP8M. V8.0. Page 01:01
Codes: 6285 Signs: 5155 . Length: 56 pic 0 pts, 236 mm

particularly important case is the range of * for which the
problem can be solved in constant time. Radge showed that
for *=k3, *-Approximate Compaction can be solved in
constant time with n processors [Rag90]. Hagerup
extended this by giving a constant time algorithm for *=k=

for any =>0, where the constant depends upon = [Hag92].
Below, we show that when =<1 and *=n=, the time
required is 0(log 1�=), for sufficiently large n (note that since
k�n, this automatically implies a lower bound for *=k=).
Thus as = � 0, the time required grows to infinity. The
following is obtained by simply substituting the value of * in
the bound for approximate compaction.

Corollary 5.1. For = � 0 and *=n=, approximate
compaction takes time 0(log(1�=)).

Theorem 5.4. Padded sorting with accuracy * with Cn
processors requires

0 \log
log n

log((*+2)(c+1))+
time. (See Acknowledgments).

Proof. Let A be the output array into which the
elements are placed; |A|=wn(*+1)x. We prove the lower
bound for Cn processors, where Cn�|A|; clearly, the
problem cannot be solved faster by using less processors.

Write d=W*X+2 and consider the action of the padded
sorting algorithm on inputs from Dn=[1, ..., d]n. On input
x # Dn, let yi be the minimum index in A where the value i
appears, for 1�i�d. If i does not appear in x, then y, is 0.
Define F : Dn � [0, 1, ..., |A|]d, by F(x)=(y1 , y2 , ..., yd) .

Now, F must have everywhere sensitivity at least
n&w |A|�dx. If not, there is a partial input b, of length less
than n&w |A|�dx, such that \x # X(b), F(x)=(y1 , ..., yd) ,
where (y1 , ..., yd) # [0, ..., |A|]d. First, note that since b
has at least one V, yi {0 for each i=1, ..., d since there is an
input in X(b) containing the value i. Since the output is in
sorted order, y1< y2< } } } < yd . Let yd+1=|A|+1. Then
_i # D such that yi+1& yi� } } } w |A|�dx. Consider the input
x$ obtained from b by setting all the V's to the value i. Then
x$ has at least w |A|�dx+1 elements with value i which must
all be placed between indices y1and yi+1 , that is in at most
w |A|�dx output positions, which is impossible.

We show that F can be computed in time T+log d+1,
where T is the time taken by the padded sorting algorithm.
Let B be an array of size d. Modify the padded sorting algo-
rithm so that after the output is written into A, processor pi

reads A(i), for each i. If it reads the value j{0, it writes i into
B(j) If it reads a null value, it does not write. After this step,
B(i) contains the minimum index of A in which i appears,
for i=1, ..., d (this is because the PRIORITY rule automati-
cally selects the processor of minimum index that writes to

B(i)). F can now be computed in log d further steps in by
encoding all the information in B into half the number of
cells at each step.

Observe that n&w |A|�dx�n&n(*+1)�(*+2)=n�
(*+2). Applying Theorem 4.1 now gives

T+log d+1�0 log _ log(n�(*+2))
log[(*+2)+4C(*+2)]&+ .

The stated bound follows from simple estimations. K

6. DISCUSSION

The technique used to prove the lower bounds in this
paper is a restriction technique. We restrict the set of inputs
under consideration by setting the values of some of the
input co-ordinates. This technique has been used in the past
to prove lower bounds [FSS88, BH89, Mac92]. The
method of restricting is typically to set the values of a
random subset of the inputs. Here, we determine which
co-ordinates to set based on the algorithm, in a manner
similar to [Mac92]. The method of random restrictions
[FSS88, BH89] yields the following results for PRAMs. A
memory cell in a PRAM algorithm that uses P processors
can be fixed by setting the values of n&n�log(P) input co-
ordinates. Thus, random restrictions cannot be used to give
lower bounds for functions with everywhere sensitivity
smaller than, say, n&- n. On the other hand, the technique
can be applied for any sub-exponential value of P. In
contrast, our method fixes a cell by fixing p1&= input
co-ordinates for some =, 0<=<1. If P is close to linear, this
method can be used for functions with everywhere sen-
sitivity as low as n1&=. On the other hand, as soon as P
becomes larger than n1+$, for some $, the method yields
only trivial bounds. Thus, the first method appears to give
lower bounds that deteriorate slowly as the number of pro-
cessors grows, but rapidly as the everywhere sensitivity of
the function decreases. Our method gives bounds that
deteriorate rapidly as the number of processors increases,
but slowly as the everywhere sensitivity decreases. It would
be interesting to combine the two methods to get bounds
that are robust with respect to both parameters.

The method of bounding the number of states achievable
by a processor or a memory cell has been used before in
[BeSS, LY89, Bel89]. While we set input co-ordinates to
limit the number of achievable states, there is also a natural
limit, even when no input co-ordinates are set, determined
by the number of processors the algorithm uses. In par-
ticular, analogously to Lemma 3.1, if we use Y� i and Z� i to
denote the number of contents and states of a memory
cell and processor respectively, then the corresponding
recurrences would be

Y� i�Y� i&1+PZ� i&1 , Z� i�Z� i&1Y� i ,

167SENSITIVE FUNCTIONS AND APPROXIMATE PROBLEMS

File: 643J 257608 . By:CV . Date:14:06:96 . Time:08:01 LOP8M. V8.0. Page 01:01
Codes: 6509 Signs: 5355 . Length: 56 pic 0 pts, 236 mm

where P is the number of processors used by the algorithm.
This is the approach implicit in [Be88, LY89], which yields
Z� i�P2i+O(1), Our method yields Zi�m4i

. Beame [Be88]
obtains a lower bound of log n&log log P for the problem
of writing an encoding of n bits into one cell. The n bits are
initially written, one bit to a cell, in n cells. The upper bound
is log n&log log(P�n); i.e. the second term is smaller. Using
our method yields a lower bound of 0.5 log n&log log(P�n),
where the second term has a similar form; however, the first
term is weaker by a factor of 1�2.

It is interesting to note that these bounds do not apply to
randomized algorithms. In fact, approximate counting and
approximate compaction can be solved in time O(log* n),
using randomization [MV91], and this is the best possible
for randomized algorithms, as proved in [Mac92]. Thus,
this is one of the instances where randomization yields
provably better algorithms.

ACKNOWLEDGMENTS

The proof of Theorem 5.4 is joint work with Torben Hagerup and
Holger Bast. We thank Jaikumar Radhakrishnan for pointing out the
application to Corollary 5.1. We especially thank Referee B for an excep-
tionally insightful referee report; the paper and the author, have benefited
immeasurably from the comments therein. In particular, almost all the
remarks in Section 6 are due to Referee B.

A preliminary version of this paper appeared in [C93].

Received August 31, 1993; final manuscript received February 21, 1996

REFERENCES

[Az92] Azar, I. (1992), Lower bounds for threshold and symmetric
functions in parallel computation, SIAM J. Comput. 21, No. 2,
329�338.

[Be88] Beame, P. (1988), Limits on the power of concurrent write
parallel machines, Inform. and Comput. 76, 13�28.

[Be89] Beame, P. (1989), ``Lower Bounds in Parallel Machine
Computation,'' Ph.D. thesis, Univ. of Toronto.

[BH89] Beame, P., and Ha# stad, J. T. (1989), Optimal bounds for
decision problems on the CRCW PRAM, J. Assoc. Comput.
Mach. 36, 643�670.

[Bel89] Bellantoni, S. (1989), Parallel RAMs with bounded memory
wordsize, in ``Proc. of 1st ACM sypposium on Par. Alg. and
Arch.,'' pp. 83�91.

[Cha93] Chaudhuri, S. (1993), A lower bound for linear appoximate
compaction, in ``Proc. 2nd Israel Symp. on Theory of Comp.
and Sys.,'' pp. 25�32.

[C93] Chaudhuri, S. (1993), Sensitive functions and approximate
problems, in ``Proc. of 34th IEEE FOCS,'' pp. 186�193.

[CHR93] Chaudhuri, S., Hagerup, T., and Raman, R. (1993),
Approximate and exact deterministic parallel selection, in
``Proc. 18th Math. Fdtns. of Comp. Sci.,'' Lecture Notes in
Computer Science, Vol. 711, pp. 352�361, Springer-Verlag,
Berlin�New York.

[CDR86] Cook, S., Dwork, C., and Reischuk, R. (1996), Upper and
lower time bounds for parallel random access machines
without simultaneous writes, SIAM J. Comput. 15, No. 1,
87�97.

[FRW88] Fich, F. E., Wigderson, A., and Ragde, P. (1988), Simulations
among concurrent-write models of parallel computation,
Algorithmica 3, 43�51.

[FSS88] Furst, M., Saxe, J. B., and Sipser, M. (1988), Parity, circuits,
and the polynomial time hierarchy, Math. Systems Theory 17,
13�27.

[GZ94] Goldberg, T., and Zwick, U. (1995), Optimal deterministic
approximate parallel prefix sums and their applications, in
``Proc. Israel Symp. on Theory and Computing Systems
(ISTCS '95),'' pp. 220�228.

[Hag92] Hagerup, T. (1992), On a compaction theorem of Ragde,
Inform. Process. Lett. 43, 335�340.

[Hag93] Hagerup, T. (1993), Fast deterministic processor allocation, in
``Proc. 4th ACM�SIAM SODA,'' pp. 1�10.

[HR92] Hagerup, T., and Raman, R. (1992), Waste makes haste: Tight
bounds for loose parallel sorting, in ``Proc. 33rd IEEE FOCS,''
pp. 628�637.

[HR92] Hagerup, T., and Raman, R. (1993), Fast approximate
and exact parallel sorting, in ``Proc. 5th Annual SPAA,''
pp. 346�355.

[Has] Ha# stad, J. (1992), Personal communication.
[JaJa92] Ja� Ja� , J., ``An Introduction to Parallel Algorithms,'' Addison�

Wesley, Reading, MA.
[LY89] Li, M., and Yesha, Y. (1989), New lower bounds for parallel

computation, J. Assoc. Comput. Mach. 36, No. 3, 671�680.
[Mac92] MacKenzie, M. D. (1992), Load balancing requires 0(log* n)

expected time, in ``Proc. 3rd ACM�SIAM SODA,'' pp. 94�99.
[MV91] Matias, Y., and Vishkin, U. (1991), Converting high proba-

bility into nearly-constant time with applications to parallel
hashing, in ``Proc. 23rd Annual STOC,'' pp. 307�316.

[Ni91] Nisan, N. (1991), CREW PRAMs and decision trees, SIAM
J. Comput. 20.

[Rag90] Ragde, P. (1990), The parallel simplicity of compaction and
chaining, in ``Proc. 17th ICALP 1990,'' Lecture Notes in
Computer Science, Vol. 443, pp. 744�751, Springer-Verlag,
Berlin�New York.

[Si83] Simon, H.-U. (1983), A tight 0(log log n) bound on the time
for parallel RAM's to compute nondegenerated Boolean func-
tions, in ``Foundations of Computing Theory'' (M. Karpinski,
Ed.), Lecture Notes in Comput. Sci., Vol. 158, pp. 439�444,
Springer, Berlin.

[TU84] Turan, G. (1984), The critical complexity of graph properties,
Inform. Process. Lett. 18, 151�153.

[VW85] Vishkin, U., and Wigderson, A. (1985), Trade-offs between
depth and width in parallel computations, SIAM J. Comput.
14, 303�314.

168 SHIVA CHAUDHURI

