
Load Balancing in the Lp NormBaruch Awerbuch� Yossi Azar y Edward F. GrovezDept. of Computer Science Dept. of Computer Science Dept. of Computer ScienceJohns Hopkins University Tel-Aviv University Duke UniversityBaltimore, MD 21218 Tel-Aviv 69978, Israel Durham, NC 27708{0129baruch@cs.jhu.edu azar@math.tau.ac.il efg@cs.duke.eduMing-Yang Kaox P. Krishnan{ Je�rey Scott Vitter kDept. of Computer Science Computing Systems Res. Lab. Dept. of Computer ScienceDuke University AT&T Bell Laboratories Duke UniversityDurham, NC 27708{0129 Holmdel, NJ 07733{3030 Durham, NC 27708{0129kao@cs.duke.edu pk@research.att.com jsv@cs.duke.eduAbstractIn the load balancing problem, there is a set of servers,and jobs arrive sequentially. Each job can be runon some subset of the servers, and must be assignedto one of them in an online fashion. Traditionally,the assignment of jobs to servers is measured by theL1 norm; in other words, an assignment of jobs toservers is quanti�ed by the maximum load assigned toany server. In this measure the performance of thegreedy load balancing algorithm may be a logarithmicfactor higher than optimal [3]. In many applications,the L1 norm is not a suitable way to measure how wellthe jobs are balanced. If each job sees a delay that isproportional to the number of jobs on its server, thenthe average delay among all jobs is proportional to thesum of the squares of the numbers of jobs assigned tothe servers. Minimizing the average delay is equiva-lent to minimizing the Euclidean (or L2) norm. Forany �xed p, 1 � p < 1, we show that the greedy al-gorithm performs within a constant factor of optimalwith respect to the Lp norm. The constant grows lin-early with p but does not depend on the size of theproblem, i.e., the number of servers and jobs.�Also a�liated with MIT Lab. for Computer Science. Sup-ported by ARPA/Army contract DABT63-93-C-0038, NSF con-tract 9114440-CCR, and DARPA contract N00014-J-92-1799.ySupported in part by Allon Fellowship and by the IsraelScience Foundation.zSupported in part by ARO grant DAAH04{93{G{0076.xSupported in part by NSF grant CCR{9101385.{Supported in part by an IBM Fellowship, by NSFgrant CCR{9007851, by ARO grant DAAH04{93{G{0076, andby AFOSR grant F49620{94{1{0217. This work was done whilethe author was visiting Duke University from Brown University.kSupported in part by NSF grant CCR{9007851 and by AROgrant DAAH04{93{G{0076.

1 IntroductionIn the load balancing problem, jobs arrive sequen-tially. There is a set of n servers. Each job has anassociated subset of the servers, called its permissibleservers, on which it may run. Each job has a load thatvaries according to the job and to the server to whichthe job is assigned. Each job is assigned to one of itspermissible servers in an online manner. The goal isto assign the jobs so as to spread the load as evenly aspossible among the servers. The greedy load balancingalgorithm, which we call Greedy, assigns each job tothe permissible server so as to minimize the Lp normof the loads of the servers created by assigning this jobto the servers in the current state. In the case whereall jobs have an equal load on every permissible server,Greedy puts each job on the permissible server thathas the fewest jobs currently assigned, breaking tiesarbitrarily.We use the standard de�nition of competitiveness toanalyze online algorithms. An algorithm A is said tobe C-competitive if for every sequence � of incomingjobs, CostA(�) � C � CostOPT(�);where OPT is the optimal o�ine algorithm, andCostX(�) is the cost of running X on �.Online load balancing has been considered by manyresearchers [7, 8, 9, 11, 6, 10]. Azar et al. [3, 4, 5] stud-ied the problem of load balancing, motivated by thecellular phone system. Customers arrive and wish tobe connected to a server. The goal is to minimizethe maximum number of customers assigned to anyone server. That is, CostX(�) is the maximum num-ber of customers assigned to any server by algorithm

X on input sequence �. In [3], the authors assumethat customers do not disconnect, and show that thegreedy algorithm is optimal with a competitive ratioof �(logn). For the general case that the load due toa job depends upon the server to which it is assigned acompetitive ratio of �(logn) is achieved by somewhatmore complicated algorithm [1]. The work in [4] and[5] deals with the case in which customers are allowedto disconnect.But is the maximum load the right cost to min-imize? This measure focuses on the worst server,and ignores how well the remaining servers are bal-anced. Consider an algorithm � that assigns xi jobsto server i, for 1 � i � n. Let X be a column vectorwith XT = (x1; : : : ; xn). (We use XT to denote thetranspose of vector or matrix X .) The Lp norm andL1 norm of X arejX jp = 0@ X1�i�n jxijp1A1=p and jX j1 = max1�i�nfjxijg:The L2 norm is the Euclidean norm, which measuresthe length of the vector X in Euclidean space. Notealso that (jX j2)2 = XTX .If we assume that each job sees a delay in servicethat is proportional to the number of jobs that areassigned to its server, then by minimizing the sum ofsquares (equivalently, by minimizing the L2 norm) weminimize the average delay of the jobs in the system.The di�erence between this approach and traditionalload balancing is that we try to minimize the aver-age delay rather than the maximum delay. Our mainresult is the following theorem:Theorem 1.1 The greedy load balancing algorithmGreedy is O(p)-competitive in the Lp norm, and anydeterministic algorithm must be
(p)-competitive.Note that the competitive ratio does not depend onthe number of servers or the numbers of jobs, i.e., itis �xed for �xed p.Our techniques and results can be extended to thecase where customers are allowed to disconnect. Herethe goal is to minimize the Lp norm of the vector ofsize nT of the load of each server on each unit of time(where T is the duration of the whole process). Us-ing the techniques in [5] we can get a constant (O(p))competitive algorithm for the Lp norm assuming thatthe duration of each job is known once it appears inthe system. If the duration is unknown until the jobdeparts it appears that by using some of the tech-niques of [2] one could achieve similar results by al-lowing reroutings.

In Section 2, we examine the case in which all jobshave a load of 1 on every permissible server. We startby considering how optimal adversaries behave. Weclassify jobs according to how they are processed byGreedy. Given any particular assignment of jobsto servers by Greedy, we determine how the adver-sary minimizes its cost. We then bound the cost ofGreedy in terms of the number of jobs assigned toeach server by an optimal adversary, and reduce theproblem to bounding the norm of a certain matrix.We get a bound of 2p on the competitive ratio in theLp norm. In Section 3 we show that this is optimal towithin a constant factor.We then generalize the problem in Section 4 to al-low for jobs whose load depends upon the server towhich they are assigned. We switch to a more alge-braic style of analysis, and we get a ratio of 1 + p2for the L2 norm, and cp + O(log p) for general Lpnorms, where c � 1:77 is the solution to the equationc ln c = 1.2 All Jobs Have Equal LoadIn this section we examine the case in which all jobshave the same load on every permissible server. Werelate this problem to �nding the norm of a certainmatrix. This is a rather intuitive approach, and isparticularly interesting because the matrix also showsup in [12]. In the Section 4, we will generalize theproblem and get stronger results, but the proofs willbe primarily algebraic in nature.2.1 Partitioning the JobsWe start by analyzing the structure of a requestsequence that gives rise to a particular output ofGreedy. Consider the output of Greedy when runon �. Let the servers be S = f1; : : : ; ng, where server iis assigned to at least as many jobs as server i+ 1. Forsome of these servers it may be that no job is assigned.For each server i, we build a tower of heighthi = # of jobs assigned to server i:We know hi � hi+1. Each unit of height in a towercorresponds to a job. The higher the unit, the laterthe corresponding job was assigned.Example 2.1 Let c be the highest job in the �rsttower. Let us �rst assume that h1 > h2 + 1. Thenc must have only server 1 in its set of permissibleservers. If any other server were permissible, Greedy

would have assigned c to the other server. Thus theadversary must also have assigned c to server 1. Ifh1 = h2 + 1 and h2 > h3, then c can have servers 1and 2 as permissible servers, but no others. 2Remark 2.1 Let a job c be at a height h in sometower. Then the permissible servers for c must be asubset of fi : hi � h� 1g.An adversary can reorder the jobs in the input se-quence so that they come in order of height. ThenGreedy assigns the jobs to the same servers as be-fore. In this new ordering, the permissible servers fora job of height h may include all servers of height atleast h � 1. Since the adversary chooses among per-missible servers of minimum load, the adversary canstill keep the assignment of Greedy the same. Lett = jfj : hj = hgj. The adversary can use at mostt servers besides the servers f1; : : : ; tg to serve thesejobs at height h, since these t jobs can be assigned toat most t di�erent servers. We can rearrange the num-bering so that the other servers the adversary uses forthe jobs at height h have the smallest numbers out ofall servers of height h� 1. Letxi = # of jobs with permissible servers f1; : : : ; ig.Remark 2.2 Let a job c be at a height h in sometower. Then we may assume without loss of generalitythat the permissible servers for c are exactlyfi : hi � h� 1 and i � 2 � jfj : hj = hgjg:Note that if xi > 0 then xi � i=2.Example 2.2 Suppose that we run Greedy withn = 15 servers, producing an assignment in which theservers receive jobs as follows: 0, 5, 0, 5, 0, 12, 0, 8, 0,5, 0, 2, 5, 0, 0. We reorder the servers as in the pre-ceding discussion, and we get x1 = 3, x2 = 5, x4 = 2,x6 = 12, x7 = 13, and x14 = 7. Other values of xi are0. Note that the jobs counted by x4 are not counted inx6. The adversary cannot serve those jobs with servers5 or 6 by the way we ordered the servers. Similarly,the adversary cannot assign the jobs counted by x14to server 15.

1 2 3 4 5 6 7ONLINE SERVER
HEIGHT 12345

678910
1112 x1x2x4x6x7x1422.2 Adversary AssignmentWe now consider how an adversary would minimizeits cost subject to a particular set of values fxig. Wegive the adversary the additional power to assign jobsfractionally. For example, the adversary can assign asingle job that has permissible servers f1; 2g to be halfon server 1 and half on server 2. Any bound on thecompetitive ratio using this stronger adversary appliesto the original problem. Consider an assignment (pos-sibly fractional) by the adversary of jobs to permissibleservers that minimizes its cost. Letai = # of jobs assigned by the adversary to server i.Lemma 2.1 For 1 � i � n� 1, we have ai � ai+1.Proof : By Remark 2.2, any job assigned to server i+1can also be assigned to server i. If ai were smallerthan ai+1, the adversary could shift part of a job fromserver i+ 1 to server i, reducing its cost. 2The minimum cost assignment is actually very in-tuitive in terms of a physical analogy: We build anin�nitely high barrier at 0. For each j up to n, webuild a barrier at j of heightwj = min1�i�j�xi + xi+1 + � � �+ xjj + 1� i � :These barriers break up the interval [0; n] into n bins.Then, for j ranging from 1 to n, we pour xj unitsof water into the jth bin. Water can pour over intolower-numbered bins when it over
ows the barriers.If I is the value of i where wj achieves its minimumvalue, the water from xj
ows to evenly top o� bins I

through j. By assigning the xj jobs according to wherethe water ends up, the adversary attains a minimumcost.Example 2.3 Let us consider the same values of xias in Example 2.2. We show the barriers in the �gurebelow with thick lines. The areas bounded by thicklines and thin lines show where the water ends up.The jobs counted by x7 contribute 1 to servers 1 and2, 1.5 to servers 3 through 6, and 5 to server 7.

ADVERSARY SERVER
HEIGHT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15123
45
x1 x2 x4

x6x7
x142Lemma 2.2 The adversary's minimum cost assign-ment of jobs to servers is given byaj = maxj�k�n min1�i�j�xi + xi+1 + � � �+ xkk + 1� i � :Proof : We have Paj = Pxj by the water analogy.Let K be the values of k that maximize the aboveterm. For the sake of contradiction, consider any j forwhich aj is smaller. We then haveaj < min1�i�j�xi + xi+1 + � � �+ xKK + 1� i � � xj + � � �+ xKK + 1� j :Each server from j to K is assigned at most aj jobs,so some part of some job from the xj + � � �+ xK jobsmust be assigned to a server s with s < j. But thenwe could move part of a job on server s to server jand reduce the cost, which contradicts the minimalityof the adversary's assignment. 22.3 The Greedy AssignmentNow we change our perspective. Given a set ofvalues fajg describing how the adversary assigned itsservers, how badly can Greedy perform? Basically,for �xed fajg the adversary's power is to set fxjg soas to maximize the cost of Greedy.

Lemma 2.3 Greedy assigns at most 2Pnk=j xk=kjobs to server j.Proof : Consider the jobs counted by xk . Let h bethe height of a highest such job, and let t = jfj :hj = hgj. These highest t jobs contribute 1 to theheight of each server from 1 to t. The remaining xk�tjobs are evenly assigned byGreedy among the serversf1; : : : ; kg and contribute an additional (xk � t)=k tothe height of each server from 1 to k. For any k � j,the jobs counted by xk contribute at most 2xk=k tothe height of server j, since if xk > 0 then t � k=2 byRemark 2.2. 2In the rest of this section, rather than boundingthe behavior of Greedy directly, we will bound thebehavior described in Lemma 2.3. Letrj = 2 Xj�k�n xkk and RT = (r1; : : : ; rn):Remark 2.3 It su�ces to bound (P rpj)=(P apj).Let us allow the adversary to set xj = aj . (Thismight violate Remark 2.2, but that just means thatwe are giving the adversary the extra power to use aset of aj values that are not consistent.) This settingis in fact the worst case. Note that an � xn, since theonly jobs the adversary may assign to station n arethose counted in xn. In order to maximize P r2i , it isclearly best to minimize xn. So we set xn = an. Oncewe know xn = an, it follows similarly that xn�1 shouldbe set to an�1 to maximize the sum, and inductivelyxi = ai for all i.Remark 2.4 It su�ces to bound (P rpj)=(Pxpj).We de�ne an upper triangular matrix G so that2GX = R. Let M = GTG.G(i; j) = (1=j for 1 � i � j � n;0 for 1 � j < i � n;M(i; j) = 1maxfi; jg :For example, when n = 4, we haveG = 0BB@ 1 1=2 1=3 1=40 1=2 1=3 1=40 0 1=3 1=40 0 0 1=4 1CCA ;M = 0BB@ 1 1=2 1=3 1=41=2 1=2 1=3 1=41=3 1=3 1=3 1=41=4 1=4 1=4 1=4 1CCA :

For a general Lp norm, we have an upper boundon the competitive ratio of Greedy of 2 jjGjjp, wherejjGjjp = supfjGX jp=jX jp : X > 0g. Note also that forany vector Y of positive reals, the adversary can forcea ratio approaching jGY jp=jY jp by setting xi = bs yic,and letting s approach1. In this case, Greedy putsabout Pnk=j s yk=k jobs onto server j.Remark 2.5 The competitive ratio of Greedy liesbetween jjGjjp and 2 jjGjjp.Yao et al. [12] show independently that jjGjjp � p(in their Corollary to Lemma 5.7). This proves thatGreedy is 2p-competitive when all jobs have the sameload on all permissible servers. We improve this boundon the competitive ratio to about 1:77p in Section 4.2.Theorem 2.1 Greedyis �(p)-competitive when alljobs have the same load on all permissible servers.2.4 Analysis of Euclidean NormHere is an alternate analysis of the performance ofGreedy in the L2 norm. Since M is symmetric, wecan express it as QTDQ where D is a diagonal matrixcontaining the eigenvalues of M , and Q is a matrixwith Q�1 = QT. Call � the largest eigenvalue of M .Then it su�ces to bound(jRj2)2(jX j2)2 = (j2GX j2)2(jX j2)2= 4(GX)T(GX)XTX= 4XTGTGXXTX= 4XTQTDQXXTQTQX= 4Y TDYY TY� 4�;where Y = QX .Remark 2.6 Greedy is 2p�-competitive in the Eu-clidean norm.In order to bound the competitive ratio ofGreedy,we wish to bound the eigenvalues of M . Consider anypossible eigenvalue � � 4. The determinant ofM���Ishould be 0. We will do elimination on M � � � I toget a lower triangular matrix with negative values onthe diagonal. That implies the determinant is non-zero, and contradicts the possibility that � was an

eigenvalue. This proves that the eigenvalues of M areat most 4.We zero the columns (above the diagonal) from ndown to 2. When we zero the ith column, we add someamount to every element in the initial (i� 1)� (i� 1)submatrix. Let ti be the total added to each element ofthe i� i submatrix before we zero out the ith column(tn = 0). Notice that the same amount is added toeach element of the submatrix.Each of the �rst i � 1 entries in column or row iis currently equal to ti + 1=i. The diagonal entry isdi = 1=i��+ti. We add fi = (�1=di) �(ti+1=i) timesthe ith row to each row above it in the matrix. Thisclears the ith column above the diagonal. In so doing,we add fi�(ti+1=i) to each element of the (i�1)�(i�1)initial submatrix. We get the recurrenceti�1 = ti � 1di �ti + 1i�2 :Lemma 2.4 We have 0 � ti < 1=i and di < 0, forall i � 1.Proof : By induction, with the base case that tn = 0.Recall we are assuming that � � 4. We getdi = 1i � �+ ti < 2i � �;� 1di � 14� 2i < 14 �1� 1i � ;ti�1 < 1i + 14 �1� 1i � �1i + 1i�2= 1i + 1i(i� 1) = 1i� 1 ;di = 1i � �+ ti < 1� 4 + 1 < 0:We get ti�1 � 0 once we note di < 0. 2The matrix has non-zero determinant, and � cannotbe an eigenvalue. Thus the eigenvalues of M are atmost 4, and Greedy is 4-competitive in the L2 norm.3 Lower BoundIt is easy to get a lower bound of
(p) in the Lpnorm against any deterministic algorithm for the caseof all jobs having equal load.. Let the number ofservers be n = 2k, for some k � 1. The adversaryproceeds in k = lgn phases. Initially, all 2k serversare active. In each phase, the adversary matches theservers into pairs. For each pair of servers (a; b), the

adversary presents one job whose permissible serversare a and b to the algorithm. The adversary assignsits job in opposition to the algorithm. If the algorithmassigns the job to a, then the adversary assigns it to b,and vice versa. The servers assigned jobs by the algo-rithm (half of the servers from the start of the phase)remain active for the next phase.Given 2k servers initially, the adversary places onejob on each of 2k � 1 servers, and the algorithm willplace a total of i jobs on each of 2k�1�i servers, for 1 �i � k � 1, and k jobs on one server. The competitiveratio is kp +Pk�1i=1 ip2k�1�i2k � 1 !1=p � p lg ee = �(p):4 Generalized Load BalancingWe have been assuming that the load on any serveris the number of jobs assigned to it. We now lookat a generalized version of load balancing where eachjob has a load vector associated with it. When a job isassigned to a server, the load of the server increases bythe amount speci�ed by the corresponding coordinateof the load vector.We will show that an obvious extension of Greedyhas a competitive ratio of O(p) for any Lp norm, andin particular we get a ratio of 1+p2 for the Euclidean(L2) norm.Each job j is represented by its \load vector" ~r(j) =(r1(j); r2(j); : : : ; rn(j)), where ri(j) � 0. Let `i(j) de-note the load on server i after we have already assignedjobs 1 through j. Assigning job j to server i increasesthe load on that server by ri(j), in other words:`k(j) = � `k(j � 1) + rk(j) if k = i;`k(j � 1) otherwise.Let Y (j) = (`1(j); : : : `n(j)) be the load vectorof the server after we have already assigned jobs 1through j. Consider a sequence of jobs de�ned by� = (~r(1); ~r(2); : : : ; ~r(t)). Denote by `�i (j) the loadon server i achieved by the optimal algorithm A� af-ter assigning jobs 1 through j in � and Y �(j) as theload vector of the servers. From now on we omit theparenthesis \(j)" for j = t; for example, `�i denotes`�i (t). We measure the performance of the online al-gorithm by the supremum over all possible sequencesof jY jp=jY �jp. We denote by J(i) and J�(i) the setof jobs that were assigned by the online and optimalalgorithms to server i, respectively.

How can we assign a job with a varying load in agreedy fashion? If we are trying to minimize the Lpnorm, then we minimize the increase in the pth powerof the load. When job j arrives we compute weightsto the servers,Increase(j) = (`i(j � 1) + ri(j))p � `pi (j � 1)and assign the job to a server with minimum increase.4.1 The case p = 2Theorem 4.1 Greedy is 1+p2 competitive with re-spect to the L2 norm.Proof : For a �xed j let i0 be the server to which job jwas assigned by the online algorithm. Similarly, let i�be the server to which job j was assigned by the opti-mal algorithm. We have`2i0(j)� `2i0(j � 1)= (`i0(j � 1) + ri0 (j))2 � `2i0(j � 1)� (`i�(j � 1) + ri�(j))2 � `2i�(j � 1)= 2`i�(j � 1)ri�(j) + r2i�(j)� 2`i�ri�(j) + r2i�(j);where the �rst inequality follows from the de�nitionof the algorithm. We sum all the above inequalitiesfor all j and classifying them according to the server'sindices, J(i) and J�(i). This yieldsXi Xj2J(i) `2i (j)� `2i (j � 1)� Xi Xj2J�(i)(2`iri(j) + r2i (j)): (1)The sum on the left-hand side of (1) telescopes foreach i. Also Xj2J�(i) ri(j) = `�iand thus Xj2J�(i) r2i (j) � `�i 2:Substituting these bounds into (1), we getXi `2i � Xi 2`i`�i + `�i 2� 2sXi `2i Xi `�i 2 +Xi `�i 2:

p c x 1:77p2 1.47 4.52 3.543 1.67 6.64 5.314 1.76 8.61 7.085 1.80 10.51 8.8510 1.84 19.72 17.7050 1.80 91.13 88.50100 1.78 179.70 177.00500 1.77 885.96 885.00Table 1: Bounds on the competitive ratio x impliedby (6). The values of c and x were derived using aC program. The column for 1:77p is given for help incomparsion with the experimentally determined valuefor x.The last inequality follows from the Cauchy-Schwartzinequality. Let us denote the ratio of the 2-norms byx =s Pi `2iPi `�i 2 :We can divide the above inequality by Pi `�i 2 to getx2 � 2x+ 1and hence x � 1 +p2: 24.2 The general case p > 2Theorem 4.2 Greedy is �(p)-competitive with re-spect to the Lp norm.As p grows, our bound on the competitive ratio iscp + O(log p), where c � 1:77 is the solution to theequation c ln c = 1, as indicated in Table 1. It shouldbe noted that the competitive ratio can never exceedthat of the L1 norm, which is �(logn).Proof : As before, for a �xed j, let i0 be the serverto which job j was assigned by the online algorithms.Similarly, let i� be the server to which job j was as-signed by the optimal algorithm. We have`pi0(j)� `pi0(j � 1)= (`i0(j � 1) + ri0(j))p � `pi0(j � 1)� (`i�(j � 1) + ri�(j))p � `pi�(j � 1)� (`i� + ri�(j))p � `pi�� p(`i� + ri�(j))p�1ri�(j): (2)

The �rst inequality follows from the greedy nature ofthe algorithm. The second inequality follows the factthat `i�(j � 1) � `i�(t) = `i� . The third inequalitymakes use of the derivative pxp�1 of the function xpat x = `i� + ri�(j).Lemma 4.1 We can bound the term (`i� +ri�(j))p�1in (2) by c`p�1i� +�ri�(j)�p� 1ln c + 1��p�1 ; (3)for any c > 1.Proof : The second term of (3) clearly upper bounds(`i� + ri�(j))p�1 when `i� � ri�(j)(p � 1)= ln c. Wenow show that the �rst term of (3) is an upper boundon (`i� + ri�(j))p�1 for the other case, namely, when`i� > ri�(j)(p� 1)= ln c. In that case, we haveri�(j)(p� 1)`i� < ln c;exp�ri�(j)(p� 1)`i� � < c;�1 + ri�(j)`i� �p�1 < c;(`i� + ri�(j))p�1 < c`p�1i� : 2We substitute the upper bound (3) into (2) and get`pi0(j)� `pi0(j � 1)� p(`i� + ri�(j))p�1ri�(j)� p c`p�1i� +�ri�(j)�p� 1ln c + 1��p�1! ri�(j)� cp`p�1i� ri�(j) + p�p� 1ln c + 1�p�1 rpi�(j):We sum the above inequality for all j and classifythem according to the server's indices J(i) and J�(i).This yieldsXi Xj2J(i) `pi (j)� `pi (j � 1) �p�p� 1ln c + 1�p�1rpi (j) +Xi Xj2J�(i) cp`p�1i ri(j): (4)The left-hand side of (4) telescopes to giveXi `pi :

On the right-hand size we haveXj2J�(i) ri(j) = `�i ;and thus for p � 1 we haveXj2J�(i) rpi (j) � `�i p:Substituting these bounds into (4), we getXi `pi � cpXi `p�1i `�i + p�p� 1ln c + 1�p�1Xi `�i p� cp Xi `pi!(p�1)=p Xi `�i p!1=p+ p�p� 1ln c + 1�p�1Xi `�i p; (5)where (5) follows from Holder's inequality:Xi a�i b�i � Xi ai!� Xi bi!� ;for �+� = 1. We use ai = `pi , bi = `�i p, � = (p�1)=p,and � = 1=p.Let us de�ne x to be the competitive ratio of thegreedy online algorithm, that is,x = (Pi `pi)1=p(Pi `�i p)1=p :Dividing (5) by Pi `�i p and expressing the result interms of x, we getxp � cpxp�1 + p�p� 1ln c + 1�p�1 ;x � cp+ p p�1ln c + 1x !p�1 : (6)It is easy to see for large enough c that we get x =�(p). 2To get more detailed information on the best boundon x implied by (6), we consider the correspondingrecurrence x = cp+ p p�1ln c + 1x !p�1 ; (7)for all c > 1. Table 1 shows the bounds on the com-petitive ratio x implied by (6), where the choice of cis optimized for each p.

As p gets larger, the optimal value of c for use in (7)converges to the solution of the equation c ln c = 1,which is c � 1:77.Theorem 4.3 The minimal solution x to (7) is x =c�p + �(log p), when c = c� � 1:77 is the solution tothe equation c ln c = 1.Proof : It isn't hard to show from (7) that for c = c�we have x(c�) = cp + �(log p). To get a particularbound on the lower order terms we can bootstrap bycombining the bound with (7) to getx(c�) = c�p+ p p�1ln c� + 1x !p�1 = c�p+�(log p); p�1ln c� + 1x !p�1 = �� log pp � ;exp (p� 1) ln p�1ln c� + 1x !! = �� log pp � :Taking logarithms and dividing by p� 1, we getln p�1ln c� + 1x ! = � ln pp + ln ln pp +O�1p� : (8)Let x(c�) = c�p+ g(p) = c�p(1+ g(p)=c�p). Using thefact that c� ln c� = 1, we haveln p�1ln c� + 1x ! = ln�1� g(p)c�p +O�1p�� :By (8) and the fact that ln(1 + y) = y + O(y2), forsmall y, we haveg(p)c�p = ln pp � ln ln pp +O�1p� ;g(p) = c� ln p� c� ln ln p+O(1):Therefore, by the de�nition of g(p),x(c�) = c�p+ c� ln p� c� ln ln p+O(1):The rest of the proof consists of showing in asimilar manner that x � c�p + ln p implies thatc = c� + O((log p)=p), which implies that x = c�p +�(log p). 2

5 ConclusionsIn this paper we have analyzed the performanceof the greedy algorithm for the online load balancingproblem, where instead of examining the maximumload on a server, we measure the Lp norm of the loadassignment. For the case p = 2, the L2 norm is re-lated to the average delay seen by the jobs on theservers. We have shown that the greedy algorithmhas a bounded competitive ratio with respect to theLp norm, for any �xed p � 1. In particular, the greedyalgorithm is (1+p2)-competitive under the L2 norm,and is (cp+O(log p))-competitive with respect to theLp norm, for p � 1, where c � 1:77 is the solution tothe equation c ln c = 1. These results are optimal towithin a constant factor.References[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, andO. Waarts. On-line machine scheduling with appli-cations to load balancing and virtual circuit rout-ing. In Proc. 25th Annual ACM Symposium onTheory of Computing, pages 623{631, May 1993.[2] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts.Competitive routing of virtual circuits with un-known duration. In Proc. 5th ACM-SIAM Sympo-sium on Discrete Algorithms, pages 321{327, Jan-uary 1994.[3] Y. Azar, J. Naor, and R. Rom, \The Competitive-ness of On-Line Assignments," Proceedings of the3rd Annual ACM-SIAM Symposium on DiscreteAlgorithms (January 1992).[4] Y. Azar, A. Y. Broder, and A. R. Karlin, \On-lineLoad Balancing," Proceedings of the 33rd Sympo-sium on Foundations of Computer Science (Octo-ber 1992), 218{225.[5] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. R.Pruhs, and O. Waarts, \Online Load Balancing ofTemporary Tasks," Proceedings of the 1993 Work-shop on Algorithms and Data Structures (August1993).[6] Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. Newalgorithms for an ancient scheduling problem. InProc. 24th Annual ACM Symposium on Theory ofComputing, pages 51-58, 1992.[7] R.L. Graham. Bounds for certain multiprocess-ing anomalies. Bell System Technical Journal,45:1563{1581, 1966.

[8] R.L. Graham, E.L. Lawler, J.K Lenstra, andA.H.G. Rinnooy Kan. Optimization and approxi-mation in deterministic sequencing and scheduling:a survey. Annals of Discrete Mathematics, 5:287{326, 1979.[9] R. Karp, U. Vazirani, and V. Vazirani. An op-timal algorithm for on-line bipartite matching. InProc. 22nd Annual ACM Symposium on Theory ofComputing, pages 352{358, 1990.[10] S. Phillips and J. Westbrook. Online load bal-ancing and network
ow. In Proc. 25th AnnualACM Symposium on Theory of Computing, pages402{411, 1993.[11] D. Shmoys, J. Wein, and D.P. Williamson.Scheduling parallel machines on-line. In Proc. 32ndIEEE Annual Symposium on Foundations of Com-puter Science, pages 131{140, 1991.[12] F. Yao, A. Demers, and S. Shenker, \A Schedul-ing Model for Reduced CPU Energy," in these Pro-ceedings of the 36th Symposium on Foundations ofComputer Science (October 1995).

