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We show how to compute the smallest area parallel-

ogram enclosing a convex n-gon in the plane in linear

time, and we describe an application of this result in

digital image processing.

Related work has been done on �nding a minimal en-

closing triangle, see e.g. [OAMB86], a minimal enclosing

rectangle [FS75], a minimal enclosing k-gon [ACY85],

and a minimal enclosing k-gon that has sides of equal

lengths or a �xed-angle sequence [DA84]. Note that

whereas e.g. a rectangle would be contained in the latter

class of polygons, our problem is di�erent since the an-

gles of the desired enclosing parallelogram are not given

in advance. Nevertheless, our method clearly borrows

from the techniques developed in the computational ge-

ometry literature, and our contribution is to show how

these methods can help to obtain the result as requested

by the application. In fact, we learned that the linear

time algorithm has been previously published in a Rus-

sian journal, [Vai90].

There are two key facts which lead to the algorithm.

First, let us consider the edges e1; e2; e3 and e4 of an en-

closing parallelogram (in counterclockwise order), and

let l1; l2; l3 and l4, respectively, be their supporting lines.

Then there is an optimal enclosing parallelogram which

has at least one of the edges e1 and e3 
ush with an
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edge of the convex polygon, and also one edge of e2 and

e4 
ush with an edge of the polygon. There are at most

n pairs of parallel tangents to an n-gon, where at least

one supports an edge. This already leads to an O(n2)

algorithm.

A second stronger condition for any optimal paral-

lelogram reads as follows: There is a line l parallel to

l1 (and so to l3), which intersects the polygon in two

points touched by edges e2 and e4. Similarly, a symmet-

ric statement holds for a line parallel to l2 and l4. This

excludes many pairs of directions for the edges of an

optimal parallelogram. There are only a linear number

of such combinations possible, and we can scan through

those in a \rotating calipers"-fashion in linear time.

The implementation showed that, in fact, the linear-

time algorithm is not substantially more di�cult to im-

plement than the quadratic algorithm. Furthermore,

the linear-time algorithm is faster than the quadratic

algorithm for even the smallest problem size of n = 5.

The application that motivated this research is com-

pressing two-dimensional signals (e.g. images) based on

their frequency content [ETS94]. Speci�cally, we are in-

terested in designing rational decimation systems that

reduce the number of input samples by a rational factor.

A rational decimation system extracts a speci�c portion

of the frequency content (the passband) and resamples

the resulting signal at its Nyquist rate. Rational deci-

mation systems are realized by a cascade of four linear

operators|modulator, upsampler, �lter, and downsam-

pler. In the two-dimensional case, the modulation fac-

tor n0, the upsampling matrix L, the �lter passband

speci�cations, and the downsampling matrix M can be

computed directly from any parallelogram that circum-

scribes the passband and has vertices which are rational

multiples of �. Therefore, in order to optimize the com-

pression ratio of the overall system, we need to �nd the

parallelogram of minimal area that circumscribes the

passband.

Our design procedure takes the vertices of the desired

passband and returns the decimator system parameters

n0, L, and M . The vertices would be sketched with

a mouse, typed in, or de�ned by mathematical formu-

las. The design algorithm amounts to (1) snapping the

vertices of the desired passband to grid points that are

rational multiples of �, (2) �nding the convex hull of the

rational vertices, (3) computing the minimal enclosing

parallelogram, and (4) calculating the design parame-
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{n0, L, M} =

DesignDecimationSystem2D[

sketchedPolyVertexList,

Justification -> All, Mod -> 10 ];

The theoretical upper limit on the compression

ratio, computed as the ratio of 4 �2 over the

area of the original polygon, is 50

9
-to-1,

which is 5.55-to-1.

Packing e�ciency by the parallelogram is 80%.

The compression ratio is 40-to-9 (4.44-to-1).
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Figure 1: Automatic Design of a Rational Decimation System

ters. Figure 1 shows the automatic design of a rational

decimation system from a user's sketch of the desired

passband based on our implementation in the Mathe-

matica symbolic mathematics environment. The �gure

shows one 2��2� period of the frequency domain, which

includes most of one circumscribing parallelogram (top)

and a small piece of its replica from the period below

(bottom).

The full details of the algorithms to �nd the minimal

enclosing parallelogram are available as a technical re-

port [STWE94]. Details of the digital signal application

may be found in [ETS94].
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