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Sorting in Linear Time?

Arne Andersson* Torben Hagerup!

Abstract

We show that a unit-cost RAM with aword length of w bits
can sort n integersin therange0 .. 2% — 1 in O(nloglog n)
time, for arbitrary w > logn, a significant improvement
over the bound of O(n+/logn) achieved by the fusion trees
of Fredman and Willard. Provided that w > (logn)?*¢, for
some fixed ¢ > 0, the sorting can even be accomplished in
linear expected time with a randomized a gorithm.

Both of our algorithms parallelize without loss on a unit-
cost PRAM with aword length of w bits. Thefirst oneyields
an agorithm that uses O(log n) time and O(n loglog n) op-
erations on a deterministic CRCW PRAM. The second one
yields an algorithm that uses O(logn) expected time and
O(n) expected operations on a randomized EREW PRAM,
provided that w > (logn)?*¢ for somefixed ¢ > 0.

Our deterministic and randomized sequentia and parallel
algorithms generalize to the lexicographic sorting problem
of sorting multiple-precision integers represented in severa
words.

1 Introduction

Sorting is one of the most fundamental computational prob-
lems, and n keys can be sorted in O(nlogn) time by any
of a number of well-known sorting algorithms. These algo-
rithms operate in the comparison-based setting, i.e., they ob-
tain information about the relative order of keys exclusively
through pairwise comparisons. It is easy to show that arun-
ning time of O(nlogn) is optimal in the comparison-based
model. However, this model may not always be the most
natural one for the study of sorting problems, since real ma-
chines allow many other operations besides comparison. Us-
ing indirect addressing, for instance, it is possible to sort n
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integersintherange(..n — 1 inlinear time via bucket sort-
ing, thereby demonstrating that the comparison-based lower
bound can be meaninglessin the context of integer sorting.

Integer sorting is not an exatic specia case, but in fact
is one of the sorting problems most frequently encountered.
Aside from the ubiquity of integersin algorithmsof all kinds,
we note that all objects manipulated by a conventional com-
puter are represented internally by bit patternsthat are inter-
preted as integers by the built-in arithmetic instructions. For
most basic data types, the numerical ordering of the repre-
senting integersinducesanatural ordering on the objectsrep-
resented; e.g., if an integer representsacharacter string inthe
natural way, the induced ordering is the lexicographic order-
ing among character strings. This is true even for floating-
point numbers; indeed, the |EEE 754 floating-point standard
was designed specifically to facilitate the sorting of floating-
point numbers by means of integer-sorting subroutines [13,
p. 228]. Most sorting problems therefore eventualy boail
down to sorting integers or, possibly, multiple-precision in-
tegers stored in severa words.

Classical algorithms for integer sorting require assump-
tions about the size of the integersto be sorted, or elsehave a
running time dependent on the size. Bucket sorting requires
the n input keysto bein therange 0 ..n — 1. Radix sorting
in k phases, each phase implemented via bucket sorting, can
sortn integersintherange0 . . n* —1inO(nk) time. A more
sophisticated technique, due to Kirkpatrick and Reisch [14],
reducesthisto O(n log k), but thefact remainsthat asthesize
of the integers to be sorted grows to infinity, the cost of the
sorting also grows to infinity (or to ©(n logn), if we switch
to a comparison-based method at the appropriate point).

If weallow intermediateresults contai ning many more bits
than theinput numbers, we can actually sort integersin linear
timeindependently of their size, as demonstrated by Paul and
Simon [18] and Kirkpatrick and Reisch [14]. But again, from
apractical point of view, thisisnot what wewant, sinceareal
machineisunlikely to have unit-time instructions for operat-
ing on integers containing a huge number of bits. Instead, if
theinput numbers are w-bit integers, we would like al inter-
mediate results computed by a sorting algorithm to fit in w
bits as well—in the terminology of Kirkpatrick and Reisch,
the algorithm should be conservative. In this caseit is real-
istic to assume that a full repertoire of “reasonable” instruc-
tions can be applied to word-sized operandsin constant time.
In the remainder of the paper, when nothing elseis stated, we
will take*“sorting” to mean sorting w-bit words on a unit-cost
RAM with aword length of w bits.



Fredman and Willard [9] were thefirst to show that n arbi-
trary integers can be sorted in o(n log n) time by a conserva-
tive method. Their algorithm, based on fusion trees, sorts n
integersin O(ny/log n) time. We describe two simple algo-
rithmsthat improvetheir result. It should be noted that fusion
trees have other uses besides sorting, such asin efficient data
structures, to which our results do not apply.

Our first algorithm works in O(n loglogn) time. It uses
arithmeticinstructionsdrawn from what wecall therestricted
instruction set, including comparison, addition, subtraction,
bitwise AND and OR, and unrestricted bit shift, i.e., shift of an
entireword by anumber of bit positions specified in asecond
word. Asis not difficult to see, these instructions are al in
ACY, i.e, they can be implemented through constant-depth,
polynomial-size circuitswith unbounded fan-in. Sincethisis
known not to be the casefor the multiplicationinstruction[4],
whichisessential for thefusion-treealgorithm, our algorithm
can also be viewed as placing less severe demands on the un-
derlying hardware; thisanswersaquestion posed by Fredman
and Willard (an answer to this question is already implicit in
[3]). Also, the algorithm by Fredman and Willard is nonuni-
form, in the sense that a number of precomputed constants
depending on w need to be included in the algorithm. Our
algorithms need to know the value of w itself, but no other
precomputed constants.

Our second algorithm is randomized and works in O(n)
expected time, provided that w > (logn)?*¢ for some fixed
e > 0. Sufficiently large integers can thus be sorted in lin-
ear expected time by a conservative algorithm. The algo-
rithm uses a full instruction set that augments the restricted
instruction set with instructions for multiplication and ran-
dom choice, where the latter takes an operand s in the range
1..2% — 1 and returns arandom integer drawn from the uni-
formdistributionover {1, .. ., s} andindependent of all other
such integers.

Ben-Amramand Galil [5, Theorem 5] have shownthat, un-
der some circumstances, sorting requires Q(n log n) time on
a RAM with an instruction set consisting of comparison, ad-
dition, subtraction, multiplication, and bitwise boolean oper-
ations. Whileit is possibleto simulate | eft shifts using multi-
plication in their model, their lower bound does not apply if
right shifts are alowed. We, on the other hand, assume that
the complexity of left and right shiftsis the same (as indeed
it is to the underlying hardware).

Our basic algorithms can be extendedin variousdirections.
They parallelize without loss on a PRAM with aword length
of w bits, yielding agorithms that use O(logn) time and
O(nloglogn) operations on a deterministic CRCW PRAM
or, provided that w > (logn)?*¢ for some fixed ¢ > 0,
O(logn) expected time and O(n) expected operations on a
randomized EREW PRAM . Weal so obtain algorithmsfor the
general lexicographic sorting problem of sorting variable-
length multiple-precision integers. As an example, if the n
input numbers occupy atotal of N words, they can be sorted
sequentially in O(N + n log log n) time, which isworst-case

optimal if N = Q(nloglogn).

Our results flow from the combination of the two tech-
niques of packed sorting and range reduction. Packed sort-
ing, introduced by Paul and Simon [18] and devel oped further
in [12] and [2], saves on integer sorting by packing severa
integers into a single word and operating simultaneously on
all of them at unit cost. Thisis only possible, of course, if
several integersto be sorted fit in oneword, i.e., packed sort-
ing is inherently nonconservative. Range reduction, on the
other hand, reduces the problem of sorting integersin a cer-
tain range to that of sorting integersin a smaller range. The
combination of the two techniques is straightforward: First
range reduction is applied to replace the original full-size in-
tegers by smaller integers of which several fit in one word,
and then these are sorted by means of packed sorting.

Asapurely technical point, we assumeamachine architec-
ture that always allows us to address enough working mem-
ory for our algorithms, even when w is barely larger than
logn (thisisan issue only for w = logn + O(1), in which
case radix sorting works in linear time and space). Also,
standard algorithms for multiple-precision arithmetic allow
usto assume constant-time operationson words of O(w) bits,
rather than exactly w bits.

2 Sortingin O(nloglogn)time
Our goal in this section isto prove the following theorem.

Theorem 1 For all given integersn > 4 and w >
logn, n integersin therange 0..2% — 1 can be sorted in
O(nloglogn) time on a unit-cost RAM with a word length
of w bitsand the restricted instruction set.

For all positive integers n and b with b < w, denote by
T(n, b) theworst-casetime needed to sort n integersof b bits
each, assuming b and w to be known. A sequential version of
aparallel algorithm dueto Albersand Hagerup [2] showsthat
T(n,b) = O(n)fordln > 4andb < [w/(lognloglogn)],
i.e., provided that Q(log n loglog n) keys can be packed into
one word, sorting can be accomplished in linear time. This
follows directly from Corollary 1 of [2]. (The corollary re-
quiresaquantity |loglog m| to beknown, but it iseasy to see
that it suffices, in our case, to know the word length w.) We
sketch the algorithm to illustrate its simplicity. It stores keys
in the so-called word representation, i.e., k to aword, where
k = O(lognloglogn), and its central pieceis a subroutine
to merge two sorted sequences, each consisting of k£ keysand
given in the word representation, in O(log k) time. Essen-
tially using calls of this subroutine instead of single compar-
isons, the algorithm proceeds asin standard merge sort to cre-
ate longer and longer sorted runs. Since it can handle k keys
at acost of O(log k), it savesafactor of ©(k/log k) relative
to standard merge sort, so that the total time needed comesto
O(nlognlogk/k) = O(n).

Our second ingredient istherange reduction of Kirkpatrick
and Reisch [14, Corollary 4.2], embodied in the recurrence



relation

T(n,b) < T(n, [b/2]) + O(n),
i.e, in O(n) time we can reduce by about half the number
of hitsin the integers to be sorted; again, code realizing the
reduction fits on one page.

Let us now prove Theorem 1. In order to sort n given
keys, we first apply the range reduction of Kirkpatrick and
Reisch 2[loglog n] times, at atotal cost of O(nloglogn).
This leaves us with the problem of sorting »n integers of at
most [w/(log n)?] bitseach, which can bedonein O(n) time
using the algorithm of Albersand Hagerup.

3 Sortingin linear expected time

In this section we describe anew signaturesort algorithm and
show that it worksin linear expected time. Signature sort is
obtained by combining the packed sorting of [2] with a new,
randomized range-reduction scheme.

We first provide an informal sketch of the main ideas be-
hind signature sort. The algorithm uses packed sorting twice:
to construct a path-compressed trie of hash codes and to sort
the edges of thistrie. Assume aword length of w bitsand a
parameter k& < w chosen to alow linear-time packed sort-
ing of k-bit integers. In order to sort n w-bit keys, we split
each key into w/k fields of k£ bits each and represent each
value occurring in one or more fields by a unique signature
of O(log n) bits, obtained by applying a universal hash func-
tion. The signaturesof all fieldsin akey can be computed to-
gether in constant time, and their concatenation occupiesjust
O(wlogn/k) bits. If k issufficiently large, the concatenated
signatures of theinput keys can be sorted in linear time, after
which we construct their path-compressed trie (with signa-
turesconsidered as characters) in linear time. Thetrieisatree
with fewer than 2n edges. Each leaf correspondsto an input
key, and each edge is associated with a distinguishing signa-
turein anatural way. After sorting the“sibling” edges below
each node in the tree by the original field values correspond-
ing to their distinguishing signatures, the sorted sequence of
then input keyscan beread off thetreein aleft-to-right scan.

Besidesthe usual interpretation of the contents of wordsas
integers, we will interpret words as representing sequences
of integers or truth values (booleans). Which interpretation
is intended for a given word will be expressed implicitly
through the operations applied to the word. Our interpreta-
tion is parameterized by two integers M, f > 2. These will
mostly be implicit; when wanting to make them explicit, we
speak of the (M, f)-representation.

The (M, f)-representation partitions the rightmost M f
bits of a word into M fields of f bits each, while ignoring
any other hits present in the word. The fields are numbered
1,..., M fromright to left, and the leftmost bit of each field,
called the test bit, is required to be zero. Suppose that field
i of aword X contains the integer z;, fori = 1,..., M
(according to the usual binary representation). Then onein-
terpretation of X is as the integer sequence (z1,...,2n).

The interpretation of X as a boolean sequence additionally
requiresthat z; € {0,1},fori =1,..., M, and interprets X
asthesequence (7(z1), ..., 7(znm)), wherer(1) = trueand
7(0) = false.

We now develop an arsena of basic operations, many of
which operate on sequencesof integers or booleanson acom-
ponent-by-component basis. The built-in bitwiseboolean op-
erations will be denoted by AND and OR, and the shift opera-
torisrendered as | or |: When = and i areintegers, z | i
denotes |z - 2'|,andx | i = z 1 (—i). Inthe follow-
ing, assume the (M, f)-representation used throughout, for
integers M, f > 2. Asiscommon, we do not aways dis-
tinguish between avariable and its value; e.g., we may write
X = (z1,...,2m),where X isavariableand (21, ..., zp)
isthe sequence that it represents.

First, the constant "2/ 5" 21/, which represents the se-
quence 1y = (1,...,1), can be computed in O(log M)
time by noting that 1ops,; = Lasp - (1 + 2M7). Aswill be
seen below, much of the utility of the constant 1,; ; comes
from the fact that multiplication with 1, ; carries out a pre-
fix summation. Componentwise logical conjunction and dis-
junction, denoted A and Vv, are easy, sincethey may beimple-
mented directly through AND and orR. Componentwise logi-
cal negation, denoted —, isjust subtractionfrom 1,7 ;. Asa
slightly lesstrivia operation, consider [X > Y], where X =
(z1,...,zp)andY = (y1,...,ym) e integer sequences,
which returns the boolean sequence (b1, . .., bar) With b; =
trueifandonlyif z; > y;,fori =1,..., M. [X > Y]canbe
computed by subtracting Y from X after first setting all test
bitsin X to 1. Thetest bitsprevent carriesbetween fields, and
thetest bitin field 7 will “survive” exactly if 2; > y;, sothat
all that remainsisto shift thetest bitsto therightmost position
of the fields and to mask away all other bits. Thus [X > Y]
canbeobtainedas (X + (lar; 1 (f—1)-Y) | (f—1))
AND 17 ;. Becausethefull range of componentwise boolean
operatorsisavailable, it isan easy matter toimplement there-
maining componentwise relational operators <, >, <, = and
# Eg.,[X =Y]=[X >Y]A[Y > X]. Ancther useful
operator is the extract operator |. When X = (z1,...,2m)
is an integer sequenceand B = (b1, ...,byr) isaboolean
sequence, X | B denotes the integer sequence (v, ..., yar)
suchthat fori = 1,...,M,y; = =z; if b; = true, while
y; = 0if b, = false. X | B can be obtained simply as X
AND (B - (27 —1)).

Lemmal Suppose that we are given two integers M > 2
and f > log M +2, aword X representing a sequence of in-
tegers according to the (M, f)-representation, and the con-
stant 1a7,7. Then, in constant time and using a word length
of M f bits, we can compute the index of the |l eftmost nonzero
fieldin X (zero if thereis no such field).

PROOF Setting A := [X > 0] - 1, computesfor each field
the number of nonzero fields to its right, including itself; the
condition f > log M + 2 ensures that the fields are wide
enough to hold the counts. In particular, m := (A | ((M —
1)f)) AND (27 —1) isthetotal number of nonzerofieldsin X.



Assumethatm > 0. Then B := [A =m - 1y ] A [X > 0]
contains 1in the field of interest and zerosin al other fields.
Taking C' := (1a4)? = (1,2,..., M) and forming D :=
C' | Breplacesthelinthefield of interest by theindex of that
field. Thelatter quantity, which is the desired answer, can fi-
nally beobtainedas ((D-1a7.4) | (M —1)f)) AND (2/ —1).
If m = 0, the same computation yields zero. a

We now return to the sorting problem and giveahigh-level
description of the new range reduction that ignores details
such as rounding. Assumethat w > 2(log n)?loglog n.

In order to sort n keys of b bits each, we begin by con-
ceptually partitioning each key into b/k k-bit fields, where
k is chosen so that we can still just sort k-bit integersin lin-
ear time; we know from Section 2 that we should choose
k = O(w/(lognloglogn)). Assume that we are given a
functionh : {0,...,25—1} — {0,...,2'— 1}, wherel < k,
that operatesinjectively ontheset of al fieldsoccurring inthe
input keys. We will actually consider the images under h as
strings of f = [ + 1 bits, with the leftmost bit always equal
to zero. For each field z, we call h(x) thesignatureof z; fur-
thermore, if akey X consistsof fieldsz, . . ., z3 /1, wedefine
the concatenated signature of X as the integer obtained by
concatenating (the f-bit strings representing) the signatures
h(l‘l), P h(lb/k)

We now sort the n input keys by their concatenated sig-
natures. Thisis the sorting problem to which we reduce the
origina problem; because ! < £, it will be easier than the
origina problem—the fields have “shrunk”. Unless h hap-
pens to be monotonic, this arranges the keysin an order dif-
ferent from the one required by the original sorting problem,
but one that nonetheless turns out to be useful.

LetYi,...,Y, betheconcatenated signaturesin the order
inwhich they appear after the sorting (i.e., Y1 <Yy <--- <
Y,)andtakey = {Y3,...,Y, }, formed asamultiset. View-
ing the elements of ) as character strings of length b/k over
thealphabet X = {0,...,2/ — 1}, wenow aim to construct a
path-compressed trie 7p for Y. (For amore detailed discus-
sion of the material that follows, consult [11].) 7p isatree
with aleaf node for each element of J) and an internal node
for each string over X that is the longest common prefix of
two stringsin )/, and the parent of each nonroot node s in Tp
isthe longest proper prefix of s that occurs asanodein Tp.
We will assumethat each internal nodein Tp is marked with
the length of the relevant common prefix, and that each |eaf
in Tp is marked with the corresponding input key (of which
theleaf isthe concatenated signature); after an easy computa-
tion, we can assumethat each internal node s in7p ismarked
with oneof theinput keys occurring in the subtreerooted at s.

In order to construct 7p, we begin by computing the length
r; of the longest common prefix of Y; and Y;44q, fori =
1,...,n — 1; by Lemma 1, applied to words of the form
[Y; = Y;4+1], thiscan bedonein atotal time of O(n). Guided
by this information, we can construct 7p in O(n) time by
means of an algorithm of Gabow et al. [10] for constructing a
so-called Cartesian tree, which is closely related to 7p [11].

The crucial observation at this point is that we can sort the
input keys, attached to the leaves of T, by sorting the chil-
dren of each internal nodein Tp by the original fields corre-
sponding to the single signaturesin which they differ. Since
the information available locally in the tree suffices to con-
struct a list of the fields concerned in linear time for each
internal node, we are now faced with the problem of sort-
ing a total of at most 2n fields within digoint groups. We
have taken care to ensure that fields are small enough to be
sorted in linear time, so that the sorting at the internal nodes
inTp canbedonein O(n) timealtogether. All that isrequired
to finish the sorting is a left-to-right traversal of Tp, during
which theinput keys are output as they are encountered. The
idea of first constructing an unordered compressed trie and
then sorting at each of itsinternal nodeswasalso usedin [3].

We dtill need to describe how to obtain and evaluate the
functionh : {0,...,2% —1} — {0,...,2"' — 1}. Recall that
what werequire of h isthat it must operateinjectively on aset
S of O(nlognloglogn) fields. While it appears difficult to
ensurethisdeterministically, it turnsout that if / issufficiently
large, a function chosen at random from a suitable class of
hash functionsisinjective on S with high probability. Infact,
most reasonable classes of hash functions have this property
(the class should be what is known as universal), but we are
severely restricted in our choice of hash functionsby the facts
that, first, our instruction repertoire does not include division
and, second, we can spend only constant time computing the
signatures of all fieldsin aword. A class of hash functions
that fits the bill istheclassH = {h, | 0 < a < 2¥,and a is
odd}, where h, is defined by

ha(z) = (az mod 2*) div 287,

forz =0,...,2%—1. It can beseenthat h, sSimply picks out
asegment of [ consecutive bits from the product az. In order
to compute the signatures of all fieldsin aword in constant
time, wetreat thefieldsin even-numbered positionsand those
in odd-numbered positions separately. To obtain the signa
tures of all even-numbered fields, we first clear the fieldsin
odd-numbered positions (i.e., they are set to zero) by means
of asuitable mask, which creates“buffer zones” between the
fields of interest. The whole resulting word is then multi-
plied by a, the buffer zones preventing overflow from one
field from interfering with the multiplication in another field,
and the final application of asuitable mask clearsall bits out-
sideof the signatures. At this point the signaturesof theeven-
numbered positions are easily combined with those of the
odd-numbered positions. Notethat theinteger represented by
theword computed so far, although closely related to the con-
catenated signature of the original key, is essentially aslarge
asthe original key—each signature, though only f bitslong,
still occupies a k-bit field, with zerosin unused bit positions.
Thisruns counter to our purpose, and it is necessary to obtain
asmaller integer by packing the signaturestightly in adjacent
f-bit fields. Fig. 1 showshow this can be donewith asimple
extension of the agorithm of [9, Lemma 3]. We pack fields
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Figure 1: Packing fields tightly.

tightly in ever larger groups, starting from agroup size of 1.
With one multiplication, a shift and a masking operation, we
can increase the size of all groups by a factor of £/f. Since
the total number of fieldsis b/k, the complete packing takes
timeO(1 + log(b/k)/log(k/f)) = O(1 + log b/log(k/f)).

Theclass’H wasanalyzed by Dietzfelbinger et a. [8], who
establish (Lemma 2.3) that if h is chosen randomly from H
(which amountsto choosing the multiplier a at random), then
hisinjectiveon S with probability at least 1 —|S|?/2'. Since
|S| = O(nlognloglogn), we can make the probability that
h is not injective on S smaller than 1/n? by choosing I =
©(log n) appropriately.

This compl etes the description of the reduction. The orig-
inal problem is reduced in O(n(1 + logb/log(k/f))) time
to that of sorting n concatenated signatures, each of which
is afactor of k/f smaller than the origina input keys. By
our choice of parameters, k/f = ©(q), where ¢ =
w/((logn)?loglogn) > 2, and we are freein our choice of
ktoensurethatinfactk/f > ¢q. Forn > 1,1 < b < w
and p > 0, denote by T'(n, b, p) the time needed to sort n in-
tegers of b bits each with probability at least p, assuming b
and w to be known. The reduction can be summarized in the
recurrence relation

T(n,b,p) < T(n,b/q,p+1/n") + O(n(1 +logb/logq)).

As in Section 2, we apply the reduction repeatedly until
the remaining sorting problem can be solved directly us-
ing the algorithm of Albers and Hagerup, i.e., until the

length of the numbers involved has dropped by a factor of
O(lognloglogn); it is easy to see that this happens af-
ter O(1 + loglogn/logq) reduction steps. Furthermore,
logb/log g = O(1 +1loglogn/logq) forb < w. Thisproves
the following main result.

Theorem 2 For all given integersn > 4 and w >
2(logn)? loglog n, a unit-cost RAM with a word length of w
bitsand thefull instructionset can sortn integersintherange
0..2% —1in

O(n(1 + loglogn/log q)%)

time, where ¢ = w/((logn)? loglogn), with probability at
least 1 — 1/n.

Corollary 1 If w > (log n)**¢ for somefixed ¢ > 0, wecan
sort in linear expected time.

4 Sorting multiple-precision integers

Theforward radix sort of Andersson and Nilsson[3] reduces
the problem of sorting » multiple-precision integers occupy-
ing atotal of N wordsto that of sorting n (single-precision)
integers; the reduction itself needs O(N + n) time. Com-
bining this with Theorem 1 and Corollary 1, we obtain two
algorithmsfor the general lexicographic sorting problem.



Corollary 2 For all integersn, N > 4, n multiple-precision
integers occupying a total of N machinewords can be sorted
inO(N + nloglogn) timeor, provided that w > (log n)?*¢
for somefixed e > 0, in O(N + n) expected time.

5 Spacerequirements

As is easy to discover from an inspection of the algorithms
of [2] and [14], the deterministic algorithm of Section 2
worksin O(2") space. The only point that might need clar-
ification concerns the recursion stack needed for successive
range-reduction steps. Each reduction step pushesalist of n
numbers on the stack. However, the number of bits needed
to store these numbers is reduced by a factor of essentially
two from one reduction step to the next. Hence, by stor-
ing several numbersin each machine word, we can arrange
that the total space requirements for the recursion stack are
O( 520 n/2) = O(n) = 0(2¥).

By breaking each input key into » pieces of at most [w/r]
bitseach, for somer > 1, thereby in effect reducing theword
length, and sorting the resulting multiple-precision integers
as described in the previous section, we obtain a sorting a-
gorithm that uses O(nr +n loglog n) timeand O(n + 2%/")
space. (The reduction of Corollary 2 itself worksin O(n +
2w/ space.)

The recursion stack of signature sort can also be repre-
sented in linear space, so that signature sort naturally works
in O(n) space.

6 Parallel sorting

We begin thissection by discussing two deterministic parallel
packed-sorting algorithms. We then show how to parallelize
therange reduction of Kirkpatrick and Reisch and usethisto
obtain a deterministic conservative parallel sorting a gorithm
(Theorem 4). Subsequently we argue that the range reduc-
tion of signature sort parallelizesin a straightforward manner
and derive a randomized conservative parallel sorting algo-
rithm (Theorem 5). Finally we consider the problem of sort-
ing multiple-precision integersin parallel.

Lemma?2 For all givenintegersn > 4 andw > logn,
n integers of [w/(lognloglogn)] bits each can be sorted
in O((logn)?) time using O(n) operations on an EREW
PRAM with the restricted instruction set.  On the CREW
PRAM, the same result holds, except that the running timeis
O(lognloglogn).

PROOF Thefirst part of the lemmaisjust Corollary 1 of [2].
It turns out that theonly part of the algorithm of that corollary
that needs more than ©(log n loglogn) time are ©(logn)
successive rounds of merging longer and longer sorted runs
of input numbers. The second part of the lemma follows by
observing that merging can be done in doubly-logarithmic
time on the CREW PRAM [16]. O

The agorithms of Lemma 2 need more than logarithmic
time because they are based on repeated merging. We now
providean alternativealgorithmthat sortsn keysin O(log n)
time, but in return requires more keysto fit in one word and
needs multiplication.

For dl integers M,f > 2, we extend the (M, f)-
representationto cover objectsof oneadditional type, namely
multisets of integers. If field : of aword X containstheinte-
ger z;,fori = 1,..., M, X may beinterpreted as the mul-
tiset obtained from the multiset {z1, ..., za} by removing
all occurrences of zero; in other words, afield with avalue of
zero isinterpreted as being “empty”. We sometimes restrict
the multiset representation further by requiring al nonzero
field values to be distinct; in this case we will call the object
represented a (simple) set, rather than a multiset.

Lemma 3 Suppose that we are given two integers M > 2
and f > logM + 2, aword X representing a (simple)
set U according to the (M, f)-representation, an integer »
with 1 < r < |U], and the constants 1as ¢, 1ar,a ¢ @nd
Ly (m—1)y- Then, in constant sequential time and using a
word length of M2 f bits, we can find the element of I/ whose
rankinU isr.

PROOF Denote by z; the integer contained in field ¢ of X,
fori = 1,..., M. Wewill temporarily adopt the (M?, f)-
representation, i.e., operations like | are to be interpreted ac-
cordingly below; note that the fundamental constant 1,2 ;
canbeobtainedas 1,y ; - 15, 3. Thebasicidea, which goes
back to Paul and Simon [18], isto create words A and B such
that field number (i — 1)M + j of A contains z;, whilethe
corresponding field of B contains z;, fori = 1,..., M and
j=1,..., M,andthentocarry out al pairwise comparisons
between elementsof {z1, ...,z } by evaluating [4 > B].
A iseasily computed as X - 1a7,a 7, and B can be obtained
as (X - Ly m-1yp) | 1armayp) - Laa g

Setting C ;= (([A > B]A[B > 0]) - lM,Mf) |
((M — 1)M f) computes the rank of z; in U and storesitin
field i of the (M, f)-representation, fori = 1,..., M, pro-
vided that z; # 0 (see Fig. 2). Recall that if z; = 0 then,
by definition, z; ¢ U, and note how thetest B > 0 prevents
zero elements of x4, . ..,z from interfering with the rank
computation. Asinthe algorithm of Lemma 1, the condition
f > log M + 2 ensures that fields are wide enough to hold
theranks.

We now reverttothe (M, f)-representation and removeall
elements of U except the one of rank r by setting D := X |
[C = r- Ly ;]. Finally the element of rank r is obtained as
(D 1ag) | (M —=1)f)) AND (27 = 1). o

Given two multisets U and V' of integers containing the
same number k£ of elements, wedenoteby U A V andU V V
the multisets consisting of the k smallest and the £ largest el-
ementsof the (2k)-element multiset U UV, respectively. We
will usetheterm“k-halver” to denoteadevicethat inputstwo
multisets U and V' of k integers each and outputs U A V' and
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Figure 2: Computing the ranks of the z;'s. ¢;; denotes the result of the comparison z; > z;,fori = 1,..., M
andj=1,...,M,and¢; istherank of z;,fori = 1,..., M. x representsadon’t-carevalue.

U ¥ V. The following lemma describes the implementation
of ak-haver.

Lemma4 Supposethat we are givenintegers M > 2, m =
[logM] +2,and f > m+ 1, twowords X and Y repre-
senting multisets I/ and V' of the same cardinality & accord-
ing to the (M, f)-representation, and the constants 1 ¢,
Loag,om g, @nd 1aag oar—1)5. Suppose further that them + 1
most significant bits of each field of X and Y are zero. Then,
in constant sequential time and using a word length of 4 M2 f
bits, we can compute words representing U A V.andU V V
according to the (2M, f)-representation.

PROOF We first combine X and Y by computing W := (X
AND (2M7—1))+(Y 1 (M f)). Fromnow onweemploy the
(2M, f)-representation. Theideaissimply to split the multi-
set stored in W at its median, the latter being found with the
algorithm of Lemma 3. Before we can appea to Lemma 3,
however, we have to convert the multiset stored in W to a
simple set by imposing a total order among equal elements.
We do this by shifting each element left by m bits and ap-
pending a unique marker to the right end of each element.
By the assumption of free leading bit positionsin each field,
the representation remainsvalid, and therelative order of dis-
tinct elementsis as before, which will ensure the correctness
of the procedure. The unique end markers are obtained from
theword A = (1aa7¢)? = (1,2, ...,2M), so that altogether
weexecute W := (W 1 m) + (A4 | [W > 0]). Now we
can employ the algorithm of Lemma 3 to determine the ele-
ment z of rank k. Subsequently we compute the two words
W [W <z loysandW | [W > z- lop p] and return
them after removing their end markersand shifting them right
by m hits. |

Animportant fact to note about the lemmaaboveisthat the
output is“less compact” than the input, in that the number of
fields per word has doubled, while the number of nonempty

fields per word remains exactly the same. In order to coun-
teract thisdrift, wewill regularly compact wordsrepresenting
multisetsin the sense described in the following lemma

Lemma5 Giventwo integers M > 2 and f > log M +
2 and aword X representing a multiset U according to the
(M, f)-representation, a word representing U according to
the (|U|, f)-representation can be computed sequentially in
O(log M) time using a word length of M f bits.

PrROOF We adapt a classical algorithm developed in the con-
text of routing on hypercubic networks. Wefirst give ahigh-
level description of the algorithm and then describe its de-
tailed implementation.

The goal will be to pack the elements of U tightly without
changing the relative order in which they occur in X. Hence
fori = 1,..., M, if field i contains an element that has r;
zero fields to its right, then this element should be moved
right by r; field widths—call »; its move distance. The ac-
tual movement takesplacein [log M| phases. In Phaset, for
t=0,...,[log M]—1, someelements moveright by 2* field
widths, while the other elements remain stationary. Whether
an element should participate in the movement in Phase ¢ can
beread directly off the corresponding bit of itsmove distance.
The nontrivial fact about the algorithm, which guarantees its
correctness, is that fields never “collide” during the move-
ment (seg, e.g., [17, Section 3.4.3)).

The sequence R = (ry,...,rpy) Of move distances is
computed by the instruction R := [X = 0] - 1ass, and
the movement in Phase ¢ simply computes A := (R | 1)
AND 1p7; and replaces X by (((X | 4) | (2'f)) AND
M5 — 1) + (X | (=A),fort = 0,...,[logM] — 1.
O

For our purposes, a comparator network of width m is
a straight-line program consisting of a sequence of instruc-
tions of the form Compare(i, j), where 1 < i < j <



m. The intended semanticsis that a comparator network of
width m operates on an array Q[1 ..m] containing m (not
necessarily distinct) elements drawn from an ordered uni-
verse, and that the execution of an instruction Compare(s, j)
simultaneously replaces Q[i] and Q[j] by min{QIi], Q[j]}
and max{QJi], Q[j]}, respectively. If executing a compara-
tor network P according to thisinterpretation sorts @, i.e., if
Q1] <€ Q2] < - - - < Q[m] after theexecution of P irrespec-
tively of the initial contents of @, P is called a sorting net-
work. A leveled network of depth d isacomparator network
whose sequence of Compare instructions is partitioned into
d contiguous subsequences, called levels, such that no inte-
ger occurs more than once as an argument to Compare within
asingle level. All Compare instructions within one level of
aleveled sorting network can clearly be executed in parallel
without affecting the sorting property of the network. For all
integersm > 2,the AKS network [1] isaleveled sorting net-
work of width m and depth O(log m).

Let m and k be positive integers and suppose that we re-
interpret a sorting network P of width m asfollows: Rather
than single elements, the cells of () now contain multisets of
k elements each, and the execution of Compare(i, j) simul-
taneoudly replaces Q[i] and Q[;] by Q[i] A Q[j] and Q[i] ¥
Q[7], respectively. Suppose further that we add to the be-
ginning of P instructions to partition km elements arbitrar-
ily into m multisets of £ elements each and to store these
in@Q[1],...,Q[m], and that we add to the end of P instruc-
tions to sort the multiset @[] into nondecreasing order, for
i = 1,...,m, and to concatenate the resulting sorted se-
quences in the order corresponding to Q[1], ..., Q[m]. We
will call the procedure obtained in thisway the k-halving ver-
sion of P. It isknown that the k-halving version of any sort-
ing network of width m correctly sorts any sequence of km
elements [15, Exercise 5.3.4.38].

Theorem 3 For all givenintegersn > 2 and w > log n and
all fixed ¢ > 0, n integersof b = [w/(logn)?*<] bitseach
can be sorted in O(log n) time using O(n) operations on a
unit-cost EREW PRAM with a word length of w bits and the
full instruction set.

PROOF Let k& be the smallest power of 2 no smaller than
log n and assume without loss of generality that & divides
n and that n,b > 4. We will use the k-halving ver-
sion of the AKS network P of width m = n/k, with
each Compare instruction being executed by the k-halver of
Lemma 4. Since the k-haver works in constant time and
the depth of P is O(logm) = O(logn), the sorting runsin
O(logn) time. Furthermore, since the number of Compare
instructions in a leveled comparator network cannot exceed
the product of its width and depth, the total number of k-
halving steps and, hence, the total number of operations ex-
ecuted is O(mlogm) = O(n). What remainsisto check a
number of details.

Given n integers of b bits each and any integer f > b, it
isatrivial matter, spending O(k) = O(logn) timeand O(n)

operations, to partition theinput numbersinto m multisets of
k elements each and to store each of these in aword accord-
ing to the (k, f)-representation. One small complication de-
rives from the fact that the value zero, stored in afield, isre-
served to denote an “empty” field. We can deal with this by
adding 1 to each key for the duration of the sorting, which
may increase b by 1. This realizes the “preprocessing” of
the k-halving version of P. Similarly, the “ postprocessing”
can berealized by first converting each multiset, storedin the
(k, f)-representation, to the corresponding sequence of £ in-
tegers, storedin k& words, and then sorting this sequence with
the algorithm of Lemma 2. The sorting needs O((log k)?) =
O(logn) timeand atotal of O(n) operations. Recall, how-
ever, that since the k-halvers of the k-halving version of P
are implemented via Lemma 4, each level of the network
blowsup the representation by afactor of 2, i.e., takesusfrom
the (M, f)-representation to the (2, f)-representation, for
some M > k. We need to limit the maximum value M sy of
M that arisesduring the sorting, which we do by compacting
thewordsproduced by regularly spaced |evel sof the network.
More precisely, for aninteger d > 1, we compact the words
at hand whenever the total number of levels executed so far
isdivisible by d, as well as after the final level. We choose
d suchthat d < [(e¢/4)loglogn], butd = Q(loglogn).
The first condition ensures that Mma is bounded by & -
2l(e/4)loglognl < 9k (logn)/* = O((logn)'*T</4). In par-
ticular, since My is polylogarithmicin n, each compaction
according to Lemmab takes O(log log n) time, together with
which the second condition imposed on d impliesthat the to-
tal time spent on compaction iswithin a constant factor of the
depth of the network, i.e., negligible.

Theword lengthneededis M2, f bits(Lemmad4 isthebot-
tleneck). By the discussion above, thisis O(f(logn)?*¢/?)
bits. According to Lemmad4, f must be chosen so large that
each field, in addition to the b bits of the key stored there,
has at least [log Mmax| + 3 leading zero bits. Since Mma is
polylogarithmic in n, we can easily satisfy this requirement
while ensuring that f = O(b + (log n)¢/?); the necessary
word length therefore is O(b(logn)?T¢) = O(w) bits, as
promised. Note also that it istrivial to compute the constants
of theform 1., 5 required by Lemmad4in O(log n) sequential
time for all relevant values of M. Finaly, although we shall
not demonstrateit here, the AK'S network can be constructed
within the required resource bounds. O

The range reduction of Kirkpatrick and Reisch does not
lend itself to easy direct parallelization. Bhatt et a. [6] dis-
covered a way around this based on reducing the integer-
sorting problem to another problem known as ordered chain-
ing and applying parallel versions of the techniques of Kirk-
patrick and Reisch to the latter problem. The ordered-
chaining problem of size NV is, given N processors numbered
0,...,N — 1, some of which are (permanently) inactive,
to compute for each active processor the smallest processor
number of an active processor larger than its own number, if
any; the active processors are thus to be hooked together in a



linked list.

The problem of sorting n keysintherange0..m — 1 can
also be viewed as that of sorting n distinct integers in the
range0 .. nm— 1, which canin turn beviewed as an ordered-
chaining problem of size N = nm. Bhatt et a. describe are-
duction that takes constant time on a CRCW PRAM and es-
sentially reduces an ordered-chaining problem of size N toa
collection of ordered-chaining subproblemsof sizev/N each.
Our approach is to apply this reduction r times, for suitable
r, and to solve the resulting ordered-chaining subproblems by
viewing them asinteger-sorting problems (sort the processors
within each subproblem by their processor numbers, which
areintegersof length smaller thantheinput keys by afactor of
2"). Undoing the reductions yields a solution to the original
ordered-chaining problem, which isturned into a solution to
the origina integer-sorting problem by means of optimal list
ranking [7]. The whole reduction needs O(r + logn) time
and O(nr) operations.

Theorem 4 For all givenintegersn > 4 and w > logn,
n integers in the range 0..2¥ — 1 can be sorted using
O(nloglogn) operations in O(lognloglogn) time on a
unit-cost CRCW PRAM with the restricted instruction set, or
in O(log n) time on a unit-cost CRCW PRAM with thefull in-
struction set.

ProoOF We apply the reduction abovewith » = 3[loglog n],
which takes O(logn) time and uses O(n loglogn) opera
tions. The resulting problem of sorting » integers of at most
[logn] + [(w + logn)/(logn)?] bits each is solved using
the algorithm of [6] if w < (logn)*, and using the packed-
sorting agorithm either of the second part of Lemma 2 or of
Theorem 3 otherwise. O

Theorem 5 For all givenintegersn > 4andw > 2(logn)?,
a unit-cost EREW PRAM with a word length of w bitsand the
full instruction set can sort n integersin therange0 ..2% —
1in O(logn(1 + loglogn/logq)?) time using O(n(1 +
loglogn/log¢)?) operations, where ¢ = w/(logn)?, with
probability at least 1 — 1/n.

PrROOF We will demonstrate the theorem only for w >
(logn)3*<, forfixed e > 0, in which case the bounds claimed
are O(logn) timeand O(n) operationswith high probability;
the extension to smaller word lengths centers around a ran-
domized version of Lemma3 that islesswasteful, in terms of
word length. Onemay notethat Theorem 5 actually strength-
ensTheorem 2. The sequential version of Theorem 5 doesnot
need the AK S network.

Recall that the major steps in the randomized signature-
based range reduction of Section 3 were to compute the con-
catenated signatures of the input keys, to sort these, then to
construct their compressedtrie 7p, and finally to sort the chil-
dren of each internal node in 7p not by the relevant signa-
tures, but instead by the corresponding origina fields.

The sequential computation of the concatenated signatures
of the input keys parallelizes trividly, since it is done inde-
pendently for each key. The same istrue of the computation
of thelengthsry, . . ., r,_; of thelongest common prefixesof
consecutive concatenated signatures. Given these numbers,
Tp can be constructed in O(log n) time using O(n) opera
tions, as described in [11], and the Euler-tour technique [19]
and optimal list ranking[7] can beused to collect theleavesof
Tp inleft-to-right order after the sorting at the internal nodes,
which concludes the whole sorting.

We choose k = O(w/(logn)?t¢/?), which allows us to
sort at the nodes of the trie in O(logn) time using the al-
gorithm of Theorem 3. Since the “reduction factor” k/f is
Q((log n)¢/?), after aconstant number of reduction stepswe
can also sort the concatenated signaturesin O(log n) time us-
ing the algorithm of Theorem 3. O

Corollary 3 If w > (logn)**¢ for somefixed ¢ > 0, we can
sortn integersin O(log n) expected time on an EREWPRAM
using O(n) expected operations.

Theorem 6 For all integersn > 4, n multiple-precision
integers occupying at most L machine words each and N
machine words altogether can be sorted either in O(L +
log nloglogn) timeusing O(N + nloglogn) operationson
a CRCW PRAM or, provided that w > (logn)?*< for some
fixede > 0,inO(L + log n) expected time using O(N + n)
expected operations on a randomized CRCW PRAM.

PROOF Omitted. m]

7 Conclusions

The comparison-based model is an elegant and genera
framework in which to study sorting problems, and the
O(nlogn) complexity of sorting is one of the basic tenets
of computer science. However, many sorting problems of
considerableinterest can be cast asinteger-sorting problems.
The complexity of integer sorting on RAM-likemodel sthere-
foreisof great practical and theoretical significance.

The problem of integer sorting is sometimes equated with
that of sorting » integers of O(log n) bits each, another clas-
sical and well-understood problem, solved using indirect ad-
dressingin theform of radix sorting. However, it scemsmore
natural to tiethe size of theintegersto be sorted not to the in-
put size, but to the word length of the computer on which the
sorting problem arises. A fundamental question thereforeis:
How fast can we sort n w-bit integers on a w-bit machine?
Fredman and Willard achieved a breakthrough by showing
the complexity to be o(nlogn), independently of w. In a
practical vein, they suggested that the use of features found
on typical machines other than indirect addressing and com-
parison might eventually lead to new sorting schemes with
the potentia of outperforming both comparison-based sort-
ing and radix sorting in certain settings.



The actual algorithm proposed by Fredman and Willard
probably isimpractical. Our sequential algorithms are sim-
pler, have smaller constant factors, require much shorter
word lengths to be effective and offer greater improvements
over comparison-based sorting. Moreover, likethea gorithm
of Fredman and Willard, they do not rely on exotic instruc-
tions (indeed, the deterministic algorithm eschews even the
use of multiplication). Nevertheless, several factors remain
that probably preclude them from being practical. For in-
stance, the deterministic algorithm hasinordinate storage re-
quirements, a property that it inherits from the algorithm of
Kirkpatrick and Reisch, and both algorithms still rely on un-
reaistically large word sizes. In the case of the deterministic
algorithm, thelast claim can be partially countered by observ-
ing that the exclusive use of AC? instructions could makethe
unit-cost assumption remain valid even for fairly large word
sizes. Still, our resultsare best viewed as no more than astep
further towards the goal of faster practical integer-sorting al-
gorithms,

Our research also raises a number of intriguing theoretical
guestions. Oneistofind tight boundson deterministicinteger
sorting. Can the performance of signature sort be matched
by a deterministic agorithm? And can integers be sorted in
linear expected time for all word lengths? We have demon-
strated that n integers can be sorted in O(n) expected time
with a word length of w bits not only for w = O(logn),
but also for w > (logn)**te, for arbitrary fixed e > 0.
Between these two outer ranges, however, there might be a
“hump”, where the complexity of integer sorting goes up to
O(nloglogn). Weleave as an open problem to demonstrate
the presence or absence of such a“hump”.
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