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Abstract 

Luby (1988) proposed a way to derandomize randomized computations which is based on the 
construction of a small probability space whose elements are 3-wise independent. In this paper 
we prove some new properties of Luby’s space. More precisely, we analyze the fourth moment 
and prove an interesting technical property which helps to understand better Luby’s distribution. 
As an application, we study the behavior of random edge cuts in a weighted graph. 
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1. Introduction 

During the last years there is a growing interest in techniques for removing ran- 

domness from parallel (and sequential) algorithms. These techniques were originated 

by [7,8] and generalized in [l, 2,4,6,9-l 11. The approach usually followed can be 

summarized as follows: The random variables which are considered are defined over 

a smaller probability space, specially designed, containing only a polynomial number 

of sample points. In that space, the random variables are only k-wise independent 
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(for constant k) but this is usually enough to replace the analysis of the randomized 
algorithm with fully independent random variables. 

In most cases, only 3-wise (or 2-wise) independence is enough. However, in some 
instances, this is not sufficient [3]. The algorithms described in that paper can be deran- 
domized successfully only because of the 4-wise independence property. In particular, 
an explicit example is given where Luby’s distribution [lo], which is 3-wise but not 
4-wise independent, cannot be used for the derandomization. But perhaps, it can be 
hoped that by relating the fourth moments under Luby’s distribution and the fully 
independent distribution, one can use Luby’s distribution in some other cases. This, 
so called fourth moment issue [2,3], is very interesting technically because it might 
indicate the dividing barrier between the two probability spaces, namely k-wise and 

complete independence. 
In this paper, we prove some new properties of Luby’s probability space, as defined 

in [lo]. More precisely, we examine the fourth moment of this space. We compute the 
joint probability that four random variables take particular values, and compare it to 
the corresponding joint probability under the fully independent distribution. The proof 
of the result is interesting in its own right and may lead to a general methodology of 
proving such results. We also relate precisely, the fourth moments under the two dis- 
tributions. As an application, we study the behavior of random edge cuts in a weighted 
graph. Based on Luby’s probability space, it is easy to construct a linear sized space 
of edge cuts. We then prove that this smaller space has bigger variance compared with 
the variance in the fully independent space of all possible edge cuts taken equiprob- 
ably (which is exponential in size). Thus, the smaller space can be a good predictor 
of extreme values of random variables defined on the larger space, possibly leading to 
NC algorithms for better approximations to the maximum edge cut problem. 

The paper is organized as follows. In Section 2 we present the new properties 
of Luby’s distribution and the fourth moment bound. In Section 3 we discuss the 
applications of these properties in the computation of edge cuts in weighted graphs. 

2. Properties of Luby’s sample space 

Luby in [lo], considers random variables Xi , . . . ,X,, for a positive integer n, defined 
on the sample space (Q, Pr), where !ZJ = GF(2)&+’ = (0, l}k+l, k = [logn] and Pr 
the equiprobable measure, i.e., for each point o E Sz we have Pr(o) = 2-ck+‘). Let 
i E (0, l}k denote the binary representation (ii ,...,ik) of the integer i for l<i,<n. At a 
point 0 = (ml,..., ok+i), the random variable Xi, for 1 <i<n, takes the values given 
by the formula: 

Xi(o) = i. w + ok+1 , (1) 

where the notation i.w denotes ilwl+. . .+ip~~k. (Note that in this section, all operations 
are under GF(2). Also, the reader is assumed to be familiar with basic linear algebra 
terminology and results; see e.g. [12]). 
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An alternate but equivalent description is as follows: Let L be an n x (k + 1) matrix 

over GF(2), whose ith row is [i, l] = [iI,..., ik, 11, for 1 <i<n. Then at the point 

OEQ (where now o = [ccl,..., o&+tlT), the random variables take the values given 

by the vector L o. We call the values taken by the random variables at a point w, 

their labels at o. 

We call a set of integers dependent if their binary representations are dependent as 

vectors over GF(2), and independent otherwise. The matrix L has some interesting 

properties which we give in the following (easy) proposition. 

Proposition 1. (i) Any three rows of L are linearly independent. (ii) Any four rows 

of L are linearly independent unless they correspond to dependent integers, that is, 

to integers such that the binary representation of any one of them is the sum of the 
binary representations of the other three. 

Proof. First note that no row is 0 on account of the last column. Hence, the only way 

for two rows to be linearly dependent is if their sum is 0. However, this is impossible 

as the binary representation of two distinct integers have a position where they differ. 

Thus any two rows are linearly independent. This in turn implies that the only way 

for any three rows to be dependent is if their sum is 0, which is impossible since the 

last column in such a sum is necessarily non-zero. Hence any three rows are linearly 

independent. From the independence of any three rows, it follows that the only way that 

any four rows can be dependent is if their sum is 0. This happens iff they correspond 

to integers with the stated property. 0 

These properties of L imply the following properties of the distribution of the random 

variables Xi, i = 1,2,. . . , n, defined above. (Remark: The first three are well-known; 

we add the last, interesting property.) 

Lemma 2. Let i, j, 1,m be distinct integers between 1 and n (so necessarily n>4 
below) and bi, bj, bt, b, be an arbitrary bit pattern. Then, the following hold in Luby’s 
distribution: 
1. Pr[Xi = bi] = l/2. 

2. Pr[X, = bi r\Xj = bj] = l/4. 

3. Pr[Xi = bi A Xj = bj r\Xt = bt] = l/8. 
4. Pr[Xi = bi A Xj = bj A Xt = bt A X, = b,] 

l/16 ifi+j+l#m, 
= l/8 ifi+j+I=mandbi+bj+bt=b,, 

0 otherwise. 

Proof. Since the proofs of (l)-(3) are similar, we shall prove the strongest one (3). 

Take the subsystem of L + w = b corresponding to the rows i,j, 1, to get L’ . w = 

[bi, bj, btlT. Take further a full rank square submatrix of L’ to form the square system 

L” . [coit,~jt,co~~]~ = [bi, bj, btlT. Since the coefficient matrix is non-singular, this has 
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a unique solution. Fixing these three co-ordinates of w as per the unique solution, and 

the rest to zeroes gives one point O* ED giving Xi,Xj,X/, the respective labels bi, bj, bl. 

Let C be a 3 x n matrix (over GF(2)) with rows corresponding to i’, j’, 1’ such that 

each row has all zeroes except for the position given by the corresponding integer where 

it is 1. Note that C has full rank. Now, w gives the same labels as o* to Xi,Xj, Xl iff 

CL(o-w’) = 0, i.e. iff w--w* EKer CL. Since dim(O) = dim (Ker CL)+dim(CL) (see 

e.g. [12, Theorem 6.81) and dim(CL) = rank(CL) = 3, it follows that dim(KerCL) = 

(k + 1) - 3 = k - 2. Hence /Ker CL] = 2k-2 and consequently the probability in 

question is 2k-2/2kfi = l/8. 

Turning now to the final property (4), we have that if i + j + I# m, then the rows 

corresponding to these integers are independent, and the proof as above gives the stated 

probability. Otherwise, if i + j + 1 = m, then the label of X,,, is determined by those of 

Xi,Xj and Xl via 

X,(w)=m’o+c&+l =(l+j+I)‘o+c&+l 

=i’a+mk+l +j’m+wk+l +l’m+wk+l =Xj(W)+Xj(W)+X,(O). 

Hence if bi + bj + br # b,, there are no points of 0 corresponding to these labels and 

the probability is zero. Otherwise, the probability is the same as that of the event that 

the three random variables take on a fixed label pattern which is computed in (3). 0 

One can compare Luby’s distribution to the fully independent distribution where each 

Xi is equiprobably 0 or 1 independently. For this, we shall make use of the following 

notation. 

Notation 1. We shall denote the statistics of Luby’s distribution with operators sub- 

scripted by L, for example, EL, ~2 and those of the fully independent distribution by 

the subscript I, for example, EI, CT:. If no subscripts appear, then the result holds for 

both distributions. 

The following lemma relates the moments between the two distributions. 

Lemma3. LetX=Xl+.. . + X,. We have that &[X’] = EL[X’] for 1 < a < 3 and 

EL[X4] = Er[X41 + d ; . 
0 

Proof. The statements of the third and lower moments follow from the 3-wise inde- 

pendence of Luby’s distribution (Lemma 2). For the fourth moment, we observe by 

expanding that the only difference will come from terms of the form EL[XiXj Xl Xm] 

for distinct i, j, 1, m. In turn, this equals the probability computed in Lemma 2 above, 

applied to the bit pattern consisting of all ones. For integers i, j, 1,m which are indepen- 

dent, this is the same as that for the fully independent distribution. For integers i, j, I, m 

which are dependent, this exceeds the probability of the fully independent distribution 
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by l/16. The result now follows from the fact that there are a total of (!$/4 such 

dependent tuples of integers. 0 

3. Computing edge cuts in a weighted graph 

Let G = (V, E) be a graph with weights W, > 0 for each e E E. Let also (VI, If,) 

be a partition of V into two disjoint sets VI and Vz. Then a cut %? in G is the set of 

edges with one endpoint in VI and the other in V2. The weight of the cut (8, is the 

sum of the weights of all edges in %I?. The problem of asking whether there is cut in 

a graph G with weight at least K (K > 0) is known as the max-cut problem and is 

also known that it is an NP-complete problem [5]. 

Consider the application of Luby’s distribution to compute a random cut %? in a 

graph G defined as above. Each vertex u E V picks a label X, E (0, 1) and an edge is 

in q iff its endpoints have different labels. For any given edge, the probability that it 

is in e is i if the labels are picked either uniformly and independently from (0, 1 }, 

or using Luby’s scheme. The latter part of the above statement holds because of the 

2-wise independence of Luby’s distribution. 

For two distinct edges, the probability that they are both in the cut under the fully 

independent distribution, is i. The next proposition computes this probability under 

Luby’s distribution. 

Proposition 4. Let e,e’ be fixed edges of G. Then, the following hold: (i) If e and 
e’ share a vertex, then PrL[e E % A e’ E U] = i. (ii) If e and e’ are disjoint, but 
their endpoints correspond to independent integers, then PrL[e E %? A e’ E q] = $. 

(iii) If e and e’ are disjoint, but their endpoints are dependent integers, then 

PrL[eE%? A e/E%] = i. 

Proof. Follows easily from the probabilities computed in Lemma 2. 0 

Let C be the random variable denoting the weight of the cut %. Then, we have 

(using the Zuersoniun APL notation [I’] which denotes 1 if the boolean property P is 

true and 0 otherwise), 

c= c K#X”lK.= c (&+~“-~J”)K=~yeK, 
e=(u,v) e=(u,o) e 

since J&,X, are O-l valued. Here we denote, for e = (u, u), 

Y,:=X,+X”-2x&. 

Hence, 

E[C]=E EYeWe 
[ 1 = Ee EWL +& - 2KAWJ e=(u,u) 
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= c b%u + axI - 2JwJuI) K 
e=(u,v) 

= ezgv) WGI + -wKJ - 2ww[X,I) K 

= l/2 c w,. (3) 
e=(u,v) 

(In the third line, for Luby’s distribution, we use the 2-wise independence property.) 
Next we compute the second moment. From (2), we have, 

C2=~Ye~~~Ye~Wet =CYeYelWeWel 

= ec Y,y,:‘w,& + ; Y,Y,Iw,w,I 
em?'=0 erwf0 

= c (x,+x, - zu,x,)(Xw +x, - 2xjJ-z)Kw,~ 
G(“,“, 

e’=(w,r) 

= c w,w,’ c c x,X, - 2 c x,&X, + 4X,X,X,X, 
C’(W) 

e’=(v,r) ( II=U,U b=w,z a#b#cZa 

+ .=T”, KKG +x-L --x,-L -x,x,). 

e’=(u.w) 

Hence it follows that 

E[C2] = c 4W,W,~E[X,X”X,X,] + l/4 c Kw,!. 
P(“,“j 
e’=(w.*) erle’f0 

(4) 

Here we use for Luby’s distribution, the 3-wise independence property and the proba- 
bilities computed in Lemma 2. 

For the fully independent distribution, we immediately have that for distinct U, u, W, z, 
EI[X,X,X,X,] = h. Thus we conclude from (4) that 

E&2] = l/4 c w,w,, + l/4 c W,W,l. (5) 
met=0 awf0 

For Luby’s distribution, we use the probabilities computed in Lemma 2 to get: 

if u, u, w,z are all distinct and independent; 
otherwise. 

Hence, using (4), 

E&2] = l/4 c w,& + l/2 c w,w,f + l/4 c w,w,,, (6) 
en.‘=0 
-Eke’) D(w’) endf0 
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where we use D(e,e’) to denote that the endpoints of e, e’ are disjoint dependent 

integers. Comparing (5) and (6), we get: 

E@] = E@] + l/4 c w,W,l . 
D(e,e’) 

Since by (3) E1[C] = &[C], we conclude: 

Theorem 5. The variance under Luby’s distribution and the variance under the fully 
independent distribution are related as follows: 

a;[cl = o:[C] + l/4 c w,w,,, 
DC& ) 

where D(e,e’) denotes that e,e’ have disjoint endpoints which are dependent integers. 

Thus the variance under Luby’s distribution is at least as big as the variance under 

the fully independent distribution. Potentially, this can be used to get a better predictor 

of extreme values as implied by the following observation: 

Observation 6. Given a weighted graph G, we can compute in NC a cut with weight 

either at most l/2 C, We - M or at least l/2 C, W, + a, where 

a* := of(C)+ l/4 c w,w,, . 
DC& ) 

To see that such a cut exists, use the variance under Luby’s distribution. Further since 

Luby’s sample space has only linear size, we can exhaustively search it for the “good” 

point in NC. 

Remark. Under Luby’s distribution, the random variable X = Xi +X2 + . . . + X, is 

symmetrically distributed around its mean E[X] = n/2. To see this, considerfor each 

point 0 = (wi , . . . ,wk, c&+1) the point w’ := (01,. . . ,cok, 1 - o&+1) and compute: 

X(0’) = $X(w’) = e( 1 -4(o)) = n -X(w) 
i=l 

Thus for each point w such that X(o) = n/2 - CI, there corresponds the unique point 

of such that X(0’) = n/2 + a. Hence for each tl, Pr[X = n/2 - a] = Pr[X = n/2 + a]. 

Unfortunately, this property no longer holds for the variable C we are interested in. We 

suspect (but cannot prove) that nevertheless, the distribution of C is “shifted upwards” 

in the sense that if Pr[C = E[C] - rx] > 0, then also Pr[C = E[C] + a] > 0 for any 

CI > 0. This would give us a predictor of an extreme value for max-cut. 

4. Conclusion 

We presented here some new properties of Luby’s probability space [lo]. In parti- 

cular, we analyzed the fourth moment and gave an application to the behavior of random 
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edge cuts in a weighted graph. It would be very interesting if the new properties of 

Luby’s distribution presented in this paper can find other applications too. 
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