
NORTH- HOLLAND

ANALYSIS OF RESIDUATING LOGIC
PROGRAMS

MICHAEL HANUS’

D Residuation is an operational mechanism for the integration of functions
into logic programming languages. The residuation principle delays the
evaluation of functions during the unification process until the arguments
are sufficiently instantiated. This has the advantage that the deterministic
nature of functions is preserved, but the disadvantage of incompleteness:
if the variables in a delayed function call are not instantiated by the logic
program, this function can never be evaluated, and some answers which are
logical consequences of the program are lost. In order to detect such situa-
tions at compile time, we present an abstract interpretation algorithm for
this kind of programs. The algorithm approximates the possible residua-
tions and instantiation states of variables during program execution. If the
algorithm computes an empty residuation set for a goal, then it is ensured
that the concrete execution of the goal does not end with a nonempty set
of residuations which cannot be evaluated due to insufficient instantiation
of argument variables.

1. INTRODUCTION

Many proposals for the integration of functional and logic programming languages
have been made during recent years (see [16] for a survey). From an operational
point of view, these proposals can be partitioned into two classes: approaches
with a complete operational semantics and a nondeterministic search (narrow-
ing) for solving equations with functional expressions (ALF [12], BABEL [23],

*Address correspondence to M. Hanus, Informatik II, RWTH Aachen, D-52056 Aachen,
Germany. Email: hanusQinformatik.rwth-aachen.de.

Received January 1993; accepted December 1994.

THE JOURNAL OF LOGIC PROGRAMMING

@ Elsevier Science Inc., 1995
655 Avenue of the Americas, New York, NY 10010

0743-1066/95/$9.50
SSDI 0743-1066(94)00105-F

220 M. HANUS

EQLOG (111, K-LEAF [6], SLOG [lo], among others), and approaches which
try to avoid nondeterministic computations for functional expressions by reduc-
ing functional expressions only if the arguments are sufficiently instantiated (Fun-
log [27], Le Fun [3], LIFE [2], NUE-Prolog [24], among others). The former
approaches are complete under some well-defined conditions (e.g., confluence of
the axioms), i.e., they compute all answers which can be logically inferred from
the given program. The price for this completeness is an increased search space
since there may be several incomparable unifiers of two terms if these terms con-
tain unevaluated functional expressions. The latter approaches try to avoid this
nondeterminism in the unification process. In these approaches, a term is re-
duced to normal form before it is unified with another term, i.e., functional ex-
pressions are evaluated (if possible) before unification. If a function cannot be
evaluated because the arguments are not sufficiently instantiated, the unification
process cannot proceed. Instead of causing a failure, the evaluation of the func-
tion is delayed until the arguments will be instantiated. This mechanism is called
residuation in Le Fun [3] and extended to constraint logic programming in [26].
For instance, consider the program (we write residuating logic programs in the
usual Prolog syntax [9], but it is allowed to use arbitrary evaluable functions
in terms)

q :- p(X,Y,5), pick(X,Y) .

p(A,B,A+B).
pick(2,3).

together with the goal “?- q.” After applying the first clause to the goal, the
literals p(X,Y ,5) and p(A,B,A+B) are unified. This binds A to X and B to Y,
but the unification of X+Y and 5 is not successful since the arguments of the
function call X+Y are not instantiated to numbers. Therefore, this unification
causes the generation of the residuation X+Y=5 which will be proved (or disproved)
if X and Y will be bound to ground terms. We proceed by proving the literal
pick(X,Y) which binds X and Y to 2 and 3, respectively. As a consequence, the
instantiated residuation 2+3=5 can be verified. Hence, the entire goal has been
proved.

The residuation principle seems to be preferable to the narrowing approaches
since it preserves the deterministic nature of functions. However, it fails to compute
all answers if functions are used in a logic programming manner. For instance,
consider the function append for concatenating two lists. In a functional language
with pattern-matching, it can be defined by the following equations (we use the
Prolog notation for lists):

append ([I , L) =L
append([EIRl, L) = CEIappend(R,L)l.

From a logic programming point of view, we can compute the last element E of
a given list L by solving the equation append(_, [El) = L. Since the first argu-
ment of the left-hand side of this equation will never be instantiated, residuation
fails to compute the last element with this equation, whereas narrowing computes
the unique value for E [13]. S imilarly, we can specify by the equation append
(LE, C-1)=L a list LE which is the result of deleting the last element in the list L.

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 221

Current goal: Current residuation:

rev(Ca,b.cl ,R) 0
a(LE1, CEll)=Ca.b,cl, rev(LEl.LRl) 0

rev(LEl.LRI) aGEl. CEll)=Ca.b,cl
a(LE2, [E21)=LEI, rev(LE2,LR2) a(LE1, CEll)=Ca.b.cl
rev(LEZ.LR2) a(LE1, CEll)=Ca.b.cl, a(LE2,CE21)=LEl

a(LE3. CE31)=LE2, rev(LEJ.LR3) a(LEl,CE11)=Ca,b,cl. a(LE2.[E21)=LEl

FIGURE 1. Infinite derivation with the residuation principle (a(. ..> denotes
append (. . .)).

Combining the specification of the last element and the rest of a list, we define the
reversing of a list by the following clauses:

rev(Cl,[l>.
rev(L, [E I LRI > :- append(LE, [El) = L, rev(LE,LR).

Now, consider the goal “?- rev ([a, b, cl , RI .” Since the arguments of the calls
to the function append are never instantiated to ground terms, the residuation
principle cannot verify the corresponding residuation. Hence, the answer R= [c , b , al
is not computed, and there is an infinite derivation path using the residuation
principle and applying the second clause infinitely many times (see Figure l).l On
the other hand, a functional logic language based on the narrowing principle can
solve this goal and has a finite search space [13]. Therefore, we should use narrowing
instead of residuation in this example.

The last example raises the important question of whether it is possible to detect
the cases where the (more efficient) residuation principle is able to compute all
answers. If this would be possible, we can avoid the nondeterministic and hence
expensive narrowing principle in many cases, and replace it by computations based
on the residuation principle without losing any answers. A simple criterion to the
completeness of residuation is the groundness of all residuating variables: if at the
end of a computation all variables occurring in residual function calls are bound to
ground terms, then all residuations can be evaluated and the answer substitution
does not depend on an unsolved residuation. Since the satisfaction of this criterion
depends on the data flow during program execution, an exact answer is recursively
undecidable. Therefore, we present an approximation to this answer by applying
abstract interpretation techniques to this kind of programs. Previous approaches
for abstract interpretation of logic programs (see, for instance, [l, 8, 251) depend
on SLD-resolution as the operational semantics. Hence, we cannot directly apply
these frameworks to our case. But we will show that it is possible to develop
a similar technique by considering unsolved residuations as part of the current
substitution.

This paper is a revised and extended version of [141. Here, we use a simplified and
smaller abstract domain for the analysis. In the next section, we give a detailed

lA residual function call is only evaluated if all arguments are ground terms [3]. If we weaken
this condition to “a residual function call is evaluated if the arguments are suficiently instantiated

so that exactly one defining rule is applicable” (if functions are defined by equations as in [24]),
then we can also verify residuations like append([I , [El)= [al. In this case, the answer to the goal

“?- rev([a b cl R)” can be computed by incremental verification of residuations, but there is ,* 2
also an infinite derivation path using the second clause infinitely many times.

222 M. HANUS

description of the operational semantics considered in this paper. The abstract
domain and the abstract interpretation algorithm for reasoning about residuating
programs are presented in Section 3. Finally, the correctness of our method is
proved in Section 4.

2. THE RESIDUATION PRINCIPLE

The residuation principle tries to avoid nondeterministic computations by delay-
ing function calls until the arguments are sufficiently instantiated. The difference
between residuating logic programs and ordinary logic programs shows up in the
unification procedure: if a call to a defined function f(tr, . . . , tn) should be uni-
fied with another term, the function call is evaluated if all arguments ti, . . . , t, are
bound to ground terms and the unification proceeds with the evaluated term; other-
wise, the unification is delayed. If all variables in ti, . . . , t, will be bound to ground
terms in the further computation process, the delayed function call f(tr, . . . ,tn)
will be immediately evaluated and replaced by its result in order to proceed with
the unification process.

In residuating logic programs, terms are built from variables, constructors, and
(defined) functions. Constructors (denoted by a, b, c, d) are used to compose data
structures, while defined functions (denoted by f, g, h) are operations on these data
structures. A function call is a term f (tl, . . . , tn) where f is a defined function. A
constructor term is a term which does not contain function calls. A ground term
is a term containing no variables. With this concept of terms that may contain
function calls, we adopt all standard notions of logic programming [20] like clause,
logic program, etc.

We do not require any formalism for the specification of functions, i.e., they may
be defined by equations or in a completely different language (external or predefined
functions). However, the following conditions must be satisfied in order to reason
about residuating logic programs:

1. A function call can be evaluated if all arguments are ground terms.
2. The result of the evaluation is a ground constructor term (containing only

constructors) or an error message (i.e., the computation cannot proceed be-
cause of type errors, division by zero etc.).

In order to provide a simple but precise definition of the residuation principle and to
keep the analysis algorithm simple, we assume that all residuating logic programs
are transformed into a hat form: in a flat residuating logic program, all predicate
calls and clause heads have the form p(X,, . . . , Xn) where all Xi are distinct vari-
ables (similarly to the example in [8]). All other literals in the clause bodies and
goals have the form X = Y, X = c(Yr, . . . , Y,) or X = f (Yl, . . . , Y,). It is easy to
see that every residuating logic program can be transformed into this flat form by
introducing additional variables and equations. For instance, the residuating logic
program

q :- p(X,Y,72), X = V-W, Y = V+W, pick(V,Wl.

p(A,B,A*B).
pick(9,3).

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 223

can be transformed into the following equivalent flat program:

q :- Z = 72, p(X,Y,Z), X = V-W, Y = V+W, pick(V,W).
p(A,B,C) :- C = A*B.
pick(A,B) :- A = 9, B = 3.

In the following, we assume that all programs are in flat form.
The computational universe of residuating logic programs contains constructor

terms as well as unevaluated function calls. Therefore, we distinguish these different
parts in substitutions. In the following, we assume that the concrete domain of
computation C is not simply the set of all substitutions (as in logic programming),
but a set of pairs of substitutions and residuations such that (0, p) E C if

0 = (21 ++ tl, . . . , xk H tk}

P={Yl=~l,...,Ym=~m}

where tl, . . . , tl, are constructor terms and ~1, . . . , rm are nonground function calls,
i.e., substitutions contain only constructor terms and function calls are contained
in the residuation part. Since substitutions can also be represented by equations,
we describe the unification algorithm for residuating logic programs in the style of
Martelli and Montanari [22] by a set of transformation rules on pairs of equation
systems E; R where the first component E represents the substitution part and the
second component R represents the residuation part. These transformation rules
are shown in Figure 2. The standard transformation rules for unification are only
applied to the first constructor-term component of the equation system. This em-
phasizes the fact that residuated function calls just “wait” for their evaluation. In
order to enable the evaluation of a function call, instantiations of variables are pro-
pagated into the function calls (rule Instantiate). On the other hand, if a function
call can be evaluated, its result is moved to the substitution part (rule Evaluate).
Thus, the unification algorithm is responsible for solving equations between con-
structor terms and waking up residuations which are ready for evaluation. The
equations between constructor terms and the residuations are generated during the
evaluation of a residuating logic program (see below).

This unification procedure is not optimal in the sense that all possible failures
are not detected, e.g., the nonunifiability of the equation system x = 1, y = 2; x =
f(z), y = f(z) is not detected. A more sophisticated algorithm can be found in
[5]. However, our algorithm can be easily implemented using delay primitives and
is used in practical implementations [3].

The unification algorithm is applied by transforming a given equation system
until no more rules can be applied. The result of the unification algorithm is fail
or a system of the form

xl=tl,...,2k=t& Yl =nr...,YTn =T,

where each of the distinct variables xi does not occur in tj or rj, and all rj are
unevaluable function calls.3 Each yj = rj is called a “residual equation” or simply

*We will sometimes also allow ground functions calls pi in intermediate steps. Since such calls
will be evaluated during unification, they do not occur as a result of a unification process.

3This can be shown by a modification of the proofs presented in [22].

224 M. HANUS

Clash:

Decompose:

Delete:

Occur check

Instantiate:

Commute:

Evaluate:

c(t1,. ..,tn) =d(t; ,..., tA),E; R
fail

ifc#dorm#n

c(t1, * * *, tn) = c(t;, . ..,t;),E; R
t1=t;,..., n- t -t;,E; R

x=x,E; R
E; R

x=t.E: R
fail

if t # x and x occurs in t

x=t,E; yl=rl,...,ym=rm
x = t, a(E) ; yi = g(q), . . . , ym = a(~,)

if z occurs in E or in some Tj but not in t and c = {x ++ t}

t=x,E; R
x=t,E; R

if t is not a variable

E ; Y = f(t I,.-.,tn),R
E,y=t; R

if tl,. . . (2, are ground and f(tl, . . . , tn) is evaluated to t

FIGURE 2. Unification algorithm for residuating logic programs.

‘kesiduation,” and we can also interpret the substitution/residuation pair (g, p) with

as the result of the unification.
The operational semantics of residuating logic programs considered in this paper

is similar to ProIog’s operational semantics (SLD-resolution with leftmost selection
ruIe), but with the difference that the standard unification is replaced by the uni-
fication described above. Since we assume that all programs are in flat form, all
literals in goals have the form X = Y, X = c(Yr, . . . , Y,), X = f(Yr, . . . , Y,), or
P(Xl,... , Xn). Thus, the proof of a literal is done by simply adding the equations
to the first or second component of the current equation system from C (literals of
the form X = Y or X = c(Yr, . . . , Y,) are added to the substitution part, and liter-
als of the form X = f(Yr, . . . , Y,) are added to the residuation part) and applying
the unification algorithm. As an example, consider the following flat residuating
logic program:

q :- Z=5, p(X,Y,Z), pick(X,Y).
p(A,B,C) :- C = A+B.
pick(D,E) :- D = 2, E = 3.

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 225

If the initial goal is q, then the following elements of the concrete domain are
computed:

Current literal:
9
z=5

p(X,Y,Z)
C=A+B

pick(X,Y)
D=2
E=3
0

Cuwent substitution/residuation pair:

Ii7 :;
({Z ++ 51, 0)
({Z H 5, A H X, B H Y, C H 5}, 8)
({Z ++ 5, A H X, B H Y, C H 5}, {C=X+Y})
({Z H 5, A I-+ X, B H Y, C H 5, D H X, E H Y}, {C=X+Y})
({Z H 5, A H 2, B H Y, C t-+ 5, D H 2, E H Y, X H 2}, {C=2+Y})
({Z H 5, A H 2, B H 3, C H 5, D H 2, E H 3, X H 2, Y t-t 31, 0).

At the clause end, the residuation set is empty since all functions could be evaluated.
Hence, the initial goal is proved to be true.

Logic programming with residuations also has some connections to the frame-
work of constraint logic programming [18]. Prom a semantical point of view, residu-
ations can be considered as constraints on substitutions. Therefore, the residuation
framework could be viewed as a special case of the CLP framework where the do-
main is the set of Herbrand terms (with the defined functions as evaluable function
symbols) and the constraints are equations between terms. However, this is not
the case from an operational point of view because the CLP framework requires
a constraint solver which checks the satisfiability of the accumulated constraints
in each step. Since functions are user-defined, there need not exist a constraint
solver deciding the satisfiability of the accumulated residuations, i.e., it may be
the case that the current set of residuations is unsolvable,4 e.g., the unsatisfiability
of {append(Ll,L2)=[1], append(L2,Ll)=C21} is not detected by the unification
algorithms in [3, 51. This would require a constraint solver for the defined list op
erations. But residuations can be interpreted as passive constraints [4] which are
activated if the arguments are sufficiently instantiated. In fact, it is reasonable to
integrate the residuation principle into the CLP paradigm [ZS], and this is done
in some constraint logic languages to deal with hard constraints [19] (of course,
constraint solvers which delay hard constraints are incomplete and, therefore, the
same questions as discussed in this paper occur [15]).

Since the operational semantics of residuating logic programs is identical to Pro-
log except for the different notion of substitution and the different unification al-
gorithm, we can apply abstract interpretation frameworks for Prolog to our case.
In this paper, we will use Bruynooghe’s framework [8]. This is possible since his
framework does not depend on the concrete substitution or unification algorithm,
but only on the left-to-right evaluation of literals, which is also the operational
semantics presented in this section.

3. ABSTRACT INTERPRETATION OF RESIDUATING
LOGIC PROGRAMS

In this section, we present a method to check whether the residuation part of the
answer to a goal is empty, i.e., whether the residuation principle is complete w.r.t.

4This is the reason for the infinite derivation in the rev example of Section 1.

226 M. HANUS

a given program and goal. Since this problem is recursively undecidable in general,
we present an approximation to it based on a compile-time analysis of the program.
If this approximation has a particular form, then it is ensured that all residuations
can be solved at run time. In the following, we present the abstract domain and
the motivation for it. The relation to the concrete domain and the correctness of
the abstract interpretation algorithm are discussed in Section 4 in more detail. We
assume familiarity with basic ideas of abstract interpretation techniques [l].

3.1. Abstract Domain

There has been done a lot of work concerning the compile-time derivation of run-
time properties of logic programs (see, for instance, the collection [l]). Since we
have abstracted the different operational behavior of residuating logic programs
into an additional component of the concrete domain, we can use the well-known
frameworks (e.g., [8, 251) in a similar way. The heart of an abstract interpreta-
tion procedure is an abstract domain which approximates subsets of the concrete
domain. An element of the abstract domain describes common properties of a sub-
set of the concrete domain. The properties must be chosen so that they contain
relevant propositions about the interesting run-time properties. So what are the
abstract properties in our case?

We are interested in unevaluated residuations at run time (second component of
the concrete domain). A residuation can be verified if the function call in it can
be evaluated. Since a function call can be evaluated if all arguments are ground,
we need some information about the variables in it and the instantiation state of
these variables in order to decide the emptiness of the residuation set. Hence, our
abstract domain contains information about the following properties:

POTENTIAL RESIDUATIONS. In order to decide whether a residuation can be
evaluated at run time, we must know the variables in all potentially residuated
function calls. Therefore, our abstract domain contains elements of the form

“flf~~,...,~,l” meaning: there may occur a residuated call to function f which
can be evaluated if all variables X1, Xs, . . . , X, are ground.5

DEPENDENCIES BETWEEN VARIABLES. Function calls can be evaluated if all
variables in it are bound to ground terms. Hence, we must have some information
about the dependencies between variables. For instance, consider the goal

?- A = B+C, D = A*A, B = 1, C = 2.

During unification of D and A*A, the first term cannot be evaluated since A is not
ground. However, the groundness of A depends on the groundness of B and C. Thus,
we deduce that the function call A*A can be evaluated if B and C are bound to
ground terms. Hence, our abstract domain contains the element “A if {B,C} .” In
general, “X if V” means that variable X is bound to a ground term if all variables
in V are bound to ground terms.

In our abstract interpretation algorithm, we analyze each clause occurring in
the program. Therefore, the different abstractions computed in this algorithm
contain only information about the variables of the different clauses. Hence, each

5The concrete name of the residuated function could be omitted in the abstract domain, but
we have included it for the sake of readability.

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 227

abstraction A has a domain dam(A) which is a set of variables occurring in some
clause (or goal). All variables occurring in A must belong to dam(A).

Summarizing the previous discussion, our abstract domain A contains the ele-
ment _L (representing the empty subset of the concrete domain) and sets containing
the following elements (such sets are called abstractions and denoted by A, Al etc)?

Element Meaning

x if v X is ground if all variables in the variable set V are ground

flV there is a call to j which can be evaluated if all variables in V
are ground

f there may be an unevaluated function call to j depending on
arbitrary variables

The element “f” is the “worst case” in the algorithm. It will be used if the
dependencies between a function call and its variables are too complex for a finite
representation.7

Obviously, A is finite if the set of variables and function symbols is finite. In
our abstract domain, we use only program variables and functions occurring in the
program. Therefore, A is finite in the case of a finite program. For convenience,
we simply write “X” instead of “X if 0.” Hence, an element “X” in an abstraction
means that variable X is bound to a ground term.

To present a simple description of the abstract interpretation algorithm, we will
sometimes generate abstractions containing redundant information. The following
normalization rules eliminate some redundancies in abstractions:

Normalization Rules for Abstractions

Au{Z,X if Vu(Z)} + Au{Z,X if V}

Au tZflvu{z~~ - Au{Z,flv)
Au Ul0) -+ A
Au{X if Vr,X if I+,} + Au{X if VI} if VI G Vz
AU{flv,~flv,l + A’~{flv,l if VI c V2

A’~{flv,f) + Au(f)

We call an abstraction A normalized if none of these normalization rules is ap-
plicable to A. Later, we will see that the normalization rules are invariant w.r.t.
the concrete substitutions/residuations corresponding to abstractions. Therefore,
we assume that we compute only with normalized abstractions in the abstract in-
terpretation algorithm.

3.2. The Abstract Interpretation Algorithm
The abstract interpretation algorithm is based on several operations on the abstract
domain. The most important operation is the abstract unification algorithm which
approximates the concrete unification of equations occurring in clause bodies or

6The precise meaning of the abstract elements will be formalized in Section 4.
70ur algorithm analyzes each clause separately. If a residuation depends on variables from

different clauses, the worst case is introduced in order to ensure the termination of the analysis.

pa?alap s! A 8 _y huapuadap ay? ‘uosea~ auws ay$.IOJ ~sasw xaldtuo3 II! S!SL~XI’F!
ay? 30 uoyiw!unay ayl alnsua 03 hssa9au s! s!y~ .asnqa aql30 pua ayl IS salqsyA

p?3ol uo spuadap y3!qM J 0% lls3 uo!cPun3 pa$enl%taun UB aq ku alay? yzyl palou
s! $! ‘.a.! ‘M U! pauyuoa !JOU Sy saIqo!leA paAloAu! ayJ30 au0 3! J quauxala ay? o?u!

"1s waura(a uoiy)vl$sqe UT? su1.103sus.1~ sr+!xa asnvI3 “03 uoyxado uoygsal ay&

auyap am ‘a3uaH +salqv!Jcw asnep 1~~01 Inoqe
uoy~u~o3u~ vw?sqe aq$ $a%03 03 pua asnsl3 ayl p papaau s! uoywado .I~?I~I~s v

‘(~olaq aas) 11~3 ayl30 pua aql 9s pala
-p!suoaal aq IIy uoy~stu.Ioju~ s!ql ‘alo3alay;L .pua ayl 1% LIUO qnq ‘asnsla ay? apyu!
w=alal lou ST uoyXu.I03u! s!yq aau!s pall!uro s! sj~w Uoyun3 pa?enpyal lnoqe uoy
-TXLLIO~U~ aq;L .passed are saIqe!Iw $uaurn%e uaaM$aq sapuapuadap @IO lvy~ a?oN

way passed $0~ salqv!.wA woqv uoy~u~o3u~ aqy CQIIIO ol 11~3 aqw!pald r! u! pasn
aq II@ 11 ‘M SaIqs!.WA 30 $as B ol v uo~~~w~sqs UT? Sgl7sa.I uoywado lxau ay;L

0% pappr! ospz s! uoynp!sal Iyuaqod ay? ‘XKI WIZI ayl UI .alqvnpzAa aq ?ou kwu
l aDu!s 2 JO /I 30 ssaupuno6l ay$ 6IdurK $0~ saop (2 ‘A)! = _y uoyznba u! _y 30
ssaupuno.B aq? a%!s IwauaB u! aye3 aq plnorn huapuadap ~gauuuLs ay;L .pappe
s! 1p3 uoyDun3 ay$ u! saIqs!.rvA aq? uro.13 llauapuadap aqq ll~uo ‘uo!$enba ~STZI aq$
uI w0!~3oJ~sqs Jua.Im3 aql 0% pappv als ap!s puvy-@!~ pus -13aI ayq uo sa1qyw~
ay? uaawaq sapuapuadap ayq ‘uoygap s!y~30 suo!$vnba yrwo3 pus p~!yy aql UI

.{{“A‘.~.‘IA}l~I{~~‘. ..‘Q} /? x} nv=((“~‘...‘~~)S‘x‘y)n6ul~

{{x} jy! “A‘.-.‘(X) & Q‘{“~“‘-‘~~} j? x}nv= ((“11’...‘sr)a’x‘v)n6uL~

AiX3! [zdzl{{x) 4 A.‘{A~ J! xl n v= (A ‘x ‘v’)nfim?J
V= (x ‘x ‘v)nfiu?J

T= (zp ‘17 ‘T)R.6uL”

SnNVH'Pi 82.2

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 229

The least upper bound operation is used to combine the results of different clauses
for a predicate call:

_LuA=A

Aul_=A

A~uA~={X~~V~UV~IX~~V~EA~,X~~V~EA~}

Uiflv I flv E Al or flv E A21

U{fl.f~A~orf~&t).

Now, we can present the algorithm for the abstract interpretation of a residuating
logic program in flat form. It is specified as a function ai(cu, L) which takes an
abstract domain element (Y and a goal literal L and yields a new abstract domain
element as result. Clearly, ai(l-, L) =I and ai(A, t = t’) = amgu(A, t, t’). The in-
teresting case is the abstract interpretation of a predicate call ai(A, p(X1,. . . , X,))
which is computed by the following steps (war(t) denotes the set of all variables
occurring in the syntactic construction E):

1. Let C = ~(21,. . . , Zn) : - L1, . . . , Lk be a clause for predicate p (if necessary,
rename the clause variables such that they are disjoint from Xi,. . . , Xn).
Compute

Acall = caZZ_restrict(A, {Xl,. . . ,X,})
A0 = (replace all Xi by & in Acall) (i.e., dom(Ao) = var(C))

AI = ai(Ao, LI)

A2 = ai(Al, L2)

A,, = ai(Ak_l, Lk)
AOut = exit_restrict(Ak, {Z,, . . . , Zn})

Aezit = (replace all Zi by Xi in AOut) (i.e., dom(A,,it) = dam(A)).

2. Let Akzit,. . . , AEit be the exit substitutions of all clauses for p computed in
1. Then define ASllCCeSS = Aizi, LI . . . U AFzi,.

3. ai(A, p(X1. . . , -G>) = ASuCCeSS U (A - Acall) if ASuCCeSS #L else J-.

Hence, a clause is interpreted in the following way. First, the call abstraction
is computed, i.e., the information contained in the predicate call abstraction is
restricted to the argument variables (A,,ll). The variables of this call abstraction
are mapped to the corresponding variables of the applied clause (Ao). Then, each
literal occurring in the clause body is interpreted. The resulting abstraction (&) is
restricted to the variables of the clause head, i.e., we forget the information about
the local variables of the clause. Potential residuations which are unsolved at the
clause end are passed to the abstraction Aout by the exkrestrict operation. In the
last step, the clause variables are renamed into the variables of the predicate call
(A,+it). If all clauses defining the called predicate p are interpreted in this way, all
possible interpretations are combined by the least upper bound of all abstractions
(A SILcceSS). In step 3, we compute the entire abstraction after the predicate call by
combining the abstraction ASUCCeSS with the information which was forgotten by
the restriction at the beginning of the predicate call (which is A - Acall).

230 M. HANUS

The abstract interpretation algorithm described above is useless in case of recur-
sive programs due to the nontermination of the algorithm. This classical problem is
solved in all frameworks for abstract interpretation and, therefore, we do not want
to develop a new solution to this problem, but use one of the well-known solutions.
Following Bruynooghe’s framework [8], we construct a rational abstract AND-OR-
tree representing the computation of the abstract interpretation algorithm (see also
Section 4.3). During the construction of the tree, we check before the interpretation
of a predicate call P whether there is an ancestor node P’ with a call to the same
predicate and the same call abstraction (up to renaming of variables). If this is the
case, we take the success abstraction of P’ (or I if it is not available) as the success
abstraction of P instead of interpreting P. If the further abstract interpretation
computes a success abstraction A’ for P’ which differs from the success abstraction
used for P, we start a recomputation beginning at P with A’ as a new success
abstraction. This iteration terminates because all operations used in the abstract
interpretation are monotone (w.r.t. the order on A defined in Section 4) and the ab-
stract domain is finite. A detailed description of this method is given in Section 4.3.

3.3. An Example
The following example is the flat form of a Le Fun program presented in [3]:

q(Z) :- p,(X,Y,Z), X = V-W, Y = V+W, pick(V,W).
p(A,B,C) :- C = A*B.
pick(A,B) :- A = 9, B = 3.

The abstract interpretation algorithm computes the following abstractions w.r.t.
the initial goal q(T) and the initial abstraction 8 (specifying the set of all substi-
tutions without unevaluated function calls):

ai(8, q(T)) :
ai(O, p(X,Y,Z)):

ai(8, C = A*B) = {C 2j {A,B}, *]{A,B)}
ai(0, p(X,Y,Z)) = {Z 2j {X,Y}, *]{x,y)} =: Al

ai(Al, X = V-N = {Z if {X,Y}, X if {V,W}, *I{x,y), -I{v,w)} =:A2

ai(A2, Y = V+W) = {Z if {X,Y}, X if {V,W}, Y if {V,W},
*]{x,Y}‘-]{v,w}~+]{v,w}~ =:A3

ai(A3, pick(V,W)):
ai(8,A = 9) = {A}
ai({A},B = 3) = {A,B}

ai(As,pick(V,W)) = {V,W,Z if {X,Y},X ij {V,W},Y i;f {V,W},
*]{x,Y}‘-]{v,w}~+]{v,w}~

nor*i”e{V,W,Z,X,Y}
ai(& q(T)) = {T}.

Hence, the computed success abstraction is {T}. This means that after a suc-
cessful computation of the goal q(T), the variable T is bound to a ground term and
the residuation set is empty, i.e., the residuation principle allows to compute a fully
evaluated answer. Similarly, the completeness of the residuation principle can be
proved by our algorithm for all other residuating logic programs presented in [3].

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 231

4. CORRECTNESS OF THE ABSTRACT
INTERPRETATION ALGORITHM

In this section, we will prove the correctness of the presented abstract interpretation
algorithm. First, we relate the abstract domain to the concrete domain by defining a
concretization function. Then we will prove that the abstract operations defined in
the previous section are correct w.r.t. the corresponding operations on the concrete
domain. Finally, we obtain the correctness of our algorithm by simply applying
Bruynooghe’s framework [g] .

4.1. Relating Abstractions to Concrete Values

To relate the computed abstract properties to the concrete run-time behavior, we
have to define a concretization function y : A -+ 2’ which maps an abstraction
into a subset of the concrete domain. A difficult point in the definition of y is the
correct interpretation of an abstraction “X if V.” The intuitive meaning is “the
interpretation of X is ground if all interpretations of V are ground.” To be more
precise, “X if V” describes a dependency between the instantiation of X and the
instantiation of the variables in V, i.e., we could define

(*) if X i;f V E A and (a,~) E y(A), then war(o(X)) C war(u(V)).

However, this interpretation is not suitable because it does not cover the variable
dependencies caused by residuations. For instance, if the terms X and f(Y) should
be unified, the result of the unification algorithm is (8; {X = f(y)}) i.e., the algo-
rithm generates a residuation instead of binding X to f(Y). On the abstract level,
the abstraction {X ij Y} is generated. Therefore, condition (*) does not hold in
this example.

In order to provide an appropriate relation between abstract and concrete values,
we have to consider also the residuation component in condition (*). Therefore, we
extend the set waT(o(V)) by all variables which become ground if the residuations
could be evaluated due to the groundness of variables in war(o(V)). Since the
evaluation of a residuation may cause the evaluation of another residuation, we
consider the closure of this extension. Thus, we define war,,,(V) as the smallest
set satisfying the following conditions:

1. war(u(V)) C war,,,(V).
2. If y = f(t) E p and war@) c war,,,(V), then var(cT(y)) c war,,,(V).

In the second condition and in the following sections, t denotes an argument se-
quence tl, . . . , t,. For instance, if (T = 8 and p = {X = f(Y)} as in the previous
example, then waro,p({Y}) = {X,Y}.

With this extension, we define the relation between abstract and concrete elements
by the following concretization function y : A + 2c:

y(A) = { (0, p) E C 1 1. X if V E A + var(a(X)) C war,,(V)
2. y = f(fl E p with y E dam(A)

+ f E A or var(t) C var(o(V)) for some f]v E A).

232 M. HANUS

In the following, we say a substitution/residuation pair (u, p) satisfies the variable
condition X if V E A if condition 1 holds. Similarly, we say a residuation y = f (q
in p is covered by A if condition 2 holds.

Condition 1 implies, for X if V E A, that all variables of the current instantiation
of X are ground if all variables of the current instantiation of V are ground terms.
Condition 2 ensures that unevaluated function calls are covered by some element
in A. Since an abstraction A can only contain information about variables in its
domain, it cannot cover residuations bound to variables outside dam(A). Since we
are interested in information about the evaluation of all potential residuations, we
will later explicitly prove (Theorem 4.4) that residuations connected to variables
outside dam(A) are also covered by the abstraction A at the end of the analysis.

Due to this semantics of abstractions, it can be proved that the normalization
rules defined on abstractions in Section 3.1 are invariant w.r.t. the concrete inter-
pretation. The following lemma justifies the application of the normalization rules.

Lemma 4.1. If A and A’ are abstractions with A -+ A’, then r(A) = $A’).

PROOF. First, we show y(A) 5 $A’). Let (a, p) E y(A). We prove (u, p) E $A’)
by a case analysis on the applied normalization rule:

1. Let A = A0 U (2,X if V U (2)) and A’ = Ao U (2,X if V}. Since the
only difference between A and A’ is the transformation of “X if V U (2)”
into “X 27 V,” we have to show var(r(X)) C var,,(V). Since (a, p) E
~(A),vur(a(Z)) = 0 and var(a(X)) C var,,,(V U (2)). Since o(Z) is a
ground term, var(a(X)) & var,,(V U (2)) = var,,,(V).

2. Let A = A0 U (2, fl vu(z~} and A’ = Ao U {Z, f Iv}. Since only the abstrac-
tion element f)I/ u (~1 is affected by this transformation, we have to show: if
y = f(t) E p with y E dam(A) = dom(A’) and var(t) c vur(a(V U {Z})),
then wur(?) 2 vur(a(V)). Since (a,~) E y(A), vur(o(Z)) = 0. Hence,
vu+) 2 wur(a(V U {Z})) = vur(a(V)).

3. Let A = A’ U {f 10). If the abstraction element f 10 was a relevant condition
for (a, p) E y(A), then y = f(i) E p with y E dam(A) and vur(fl G 0. Hence,
f (8 is a ground function call which cannot occur in p.

4. Let A = Ao U {X if Vl,X if Vg), A’ = A0 U {X if VI}, and VI C Vz.
Obviously (a, p) E ?(A’) since the variable condition X if V, is omitted in A’.

5. Let A = Ao U {f)v,,fjV2},A’ = A0 U {f/v,}, and VI C Vz. Obviously,
(a,~) E r(A’) since each residuation in p which is covered by the omitted
abstraction element f (vl is also covered by f (v2.

6. Let A = Ao U {f/v, f} and A’ = A0 U {f}. Obviously, ((~,p) E y(A’) since
each residuation in p which is covered by the omitted abstraction element f (v
is also covered by the abstraction element f.

Next, we show y(A) 2 $A’). Let (alp) E $A’). As before, we prove (a,~) E y(A)
by a case analysis on the applied normalization rule:

1. Let A = A0 U {Z,X if V U {Z}) and A’ = Ao U {Z,X if V). Since (0,~) E
r(A’), vur(o(X)) C vur,,,(V) C vur,,,(V U {Z)). Hence, (g,p) E y(A)
because “X zf V U {Z}” is the only altered abstraction element.

2. Let A = A0 U {Z, f) vu(z)} and A’ = A,J U {Z, f Iv}_ This is similar to the
first case.

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 233

3. Let A = .A’ U {flo}. Th is case is trivial since A contains the additional
abstraction element “flo.”

4. LetA=AoU{X~jV~,X$Vz},A’=AoU{X~,fV~},andV~GVz. Wehave
to show var(a(X)) C_ var,,p (Vz). But this is trivial because (a,~) E ?(A’)
implies var(g(X)) c var,,,(Vl) c war,,p(Vz).

5. Let A = Ao U {flv,, _f)vz},A’ = Ao U {flv2}, and VI G V2. Obviously,
(CT, p) E y(A) since A contains the additional abstraction element Al”, .

6. Let A = A0 U {flv, f} and A’ = A0 U {f}. Obviously, (0,~) E y(A) since A
contains the additional abstraction element flv. 0

Due to this lemma, it makes no difference to use an abstraction A or the nor-
malization of A if we want to prove a proposition like (a,~) E y(A). We will take
advantage of this property in the correctness proofs for the abstract operations (cf.
Section 4.2).

For the termination of the abstract interpretation algorithm, it is important
that all operations on the abstract domain are monotone. Therefore, we define the
following order relation on normalized abstractions:

(a) IL (Y for all (Y E A
(b) AC A’ w 1. X if V’ E A’ + 3V C_ V’ with X ~j V E A

2. flv E A + f E A’ or 3V’ > V with flv, E A’
3. f E A + f E A’.

It is easy to prove that C is a reflexive and transitive relation which is anti-
symmetric on normalized abstractions. Moreover, the operation u defined in Sec-
tion 3.2 computes the least upper bound of two abstractions, and y is a monotone
function:

Proposition 4.1. AI u A2 is a least upper bound of AI, A2 E A.

Proposition 4.2. If A E A’, then y(A) C $A’).

In order to ensure the termination of the analysis, all abstract operations used
in the abstract interpretation algorithm must be monotone in their abstraction
arguments. If this is the case, then recomputations in the AND-OR-graph (see
Section 4.3) starting with greater elements leads to greater results w.r.t. &. This
property ensures the termination of the fixpoint computation for recursive calls.
It is not difficult to show that all abstract operations defined in Section 3.2 are
monotone. Therefore, we only state the monotonicity property of the abstract
unification and the normalization process:

Proposition 4.3. The abstract operation amgu is monotone in its abstraction arg-
ument, i.e., amgu(A, tl, t2) 5 amgu(A’, tl, t2) provided that A 5 A’.

Proposition 4.4. The normalization process is monotone, i.e., if A L A’ and B, B’
are the normalized abstractions of A, A’, then B L B’.

4.2. Correctness of Abstract Operations

Following the framework presented in [8], the correctness of the abstract interpreta-
tion algorithm can be proved by showing the correctness of each basic operation of

234 M.HANUS

the algorithm (like abstract unification, clause entry, and clause exit). Correctness
means in this context that all concrete computations, i.e., the results of the con-
crete clause entry, clause exit, and unification (cf. Section 2), are subsumed by the
abstractions computed by the corresponding abstract operations. In this section,
we will prove the correctness of each of these operations.

First, we state an important property of our unification algorithm for residuating
logic programs. The transformation rules in Figure 2 show that our unification algo-
rithm is very similar to the classical unification algorithm for constructor terms, but
with the difference that equations of the form y = t, where t is a ground constructor
term, are added by rule Evaluate. This may cause additional instantiations com-
pared to classical unification. The next proposition contains a more precise descrip-
tion of this behavior. In this proposition and in subsequent proofs, we apply a sub-
stitution r to a residuation p = {yl = tl, . . . ,ym = tm} which is defined by r(p) =
{Yl = T(tl),-.. ,Ym = I), i.e., the substitution is only applied to the residuated
function calls. This is motivated by the special instantiation rule in Figure 2.

Proposition 4.5. Let tl and t2 be constructor terms and (a,~) E C. If the applica-
tion of the transformation rules in Figure 2 to the equational representation of
(c,p)andth e e u i n i - q ato t -t 2 yields the substitution/residuation pair (g’,p’)
(and not fail), then

1. (T’ = r o cr with a’(tl) = a’(t2) for some substitution r
2. p’ C T(P) and var(a’(y)) = var(Z) = 0 for all y = f(q E T(P) - p’.

Hence, the unification alggrithm for residuating logic programs computes a uni-
fier (not necessarily a most general one) for constructor terms and may delete (i.e.,
evaluate) some residuations. This is the basis to prove the correctness of amgu, but
for the complete proof, we need the following propositions about the set var,,(V).

Lemma 4.2. Letvar(o(X))Cvar,,,(V) and T be a substitution. Then var(T(a(X)))
C var,oO,,(p) (V).

PROOF. Consider the computation of the closure var,,(V). By definition of this
closure, there is a sequence Wi, W2, . . . , W, of variable sets with

1. Wi = wur(u(V)),
2. Wi+l = Wi u var(o(yJ) f or some residuation yi = ti E p with var(ti) G Wi,
3. var(g(X)) G W,.

We define a second sequence Wi, Wi , . . . , WL of variable sets by W,! := var(T(Wi))
(i= l,..., n). This sequence has the following properties:

1. W{ = var(T(Wl)) = var(T(o(V)))
2. w,!,, = W,! U var(T(u(yi))) for th e residuation yi = -r(ti) E T(P) with war(r

(M) c w,
3. var(~(a(X))) G WA.

Hence, var(T(g(X))) C var,o,,,(p)(V). 0

The next lemma shows that the set war,,,(V) is not influenced by the evaluation
of ground function calls.

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 235

Lemma 4.3. Let p’ C p and var(a(y)) = wur(g = 0 for al2 y = f(E) E p - p’.
Then vc~r,,~(V) = vara,+(V).

PROOF. If some residuation element y = f(s) from p - p’ is used to compute the
closure 2rur ,,P(V), it cannot add any new variable to this set since var(~(y)) = 0.
Therefore, the closures war,,,(V) and v~r,,,~~(V) are identical. •I

Now, we can prove the correctness of amgu, i.e., we show that abstract unification
covers all possible results of the concrete unification algorithm.

Theorem 4.1 (Correctness of Abstract Unification). Let X be a variable, t be a
term of the form Y,c(Yl,. . . ,Y,) or f(Yl,. . . ,Y,), and A be an abstraction.
Then for all (a,~) E y(A) and all unifiers (a’,~‘) computed by the rules of
Figure 2 w.r.t. (a, p) and X = t, (g’,p’) E y(amgu(A, X, t)).

PROOF. Let A,(o,p), and (u’,p’) be given as described above. We prove the
theorem for each of the three cases for t.

Let t = Y(# X; otherwise, the theorem is trivially true). Then

A’ := amgu(A,X,Y) = A U {X if {Y},Y if {X}}.

By Proposition 4.5, u’ = T o (I with O’(X) = o’(Y) and p’ c T(P). We have to
show: (g’, p’) E y(A’).

1.

2.

3.

Since c~‘(X) = 0’(Y),var(~7’(X)) = var(o’(Y)). Therefore, (o’, p’) satisfies
the variable conditions X if {Y} and Y if {X}.
2 if V E A' fl A: Since (c,p) E y(A), war(o(2)) G va~,,~(V), which implies
war(a’(2)) C_ 21arOr+f (V) by Proposition 4.5 and Lemmas 4.2 and 4.3.
y = f(z) E p’ with y E dom(A’) = dam(A): Hence, there is a residuation
y = f(a) E p with r(s) = E Since (a, p) E $A), f E A (which is the trivial
case) or flv E A with var(s) C var(a(V)). The latter case implies fjv E A’
and var-(fl = war(r(s)) G UU-(T(O(V))) = var(a’(V)).

Next, we consider the case t = c(Yl, . . . , Y,). Then

A’ := amgu(A,X, c(Yl,. . . ,Y,))

= A u {X if {Yl,. . . ,Yn},Yl if {X},. . . ,Y, if {X}}.

By Proposition 4.5, O’(X) = ~‘(c(Yi, . . . , Y,)), which implies war(a’(X)) = vcv

(a’(+?, * . . , Y,))). Therefore, ((T’, p’) satisfies the variable conditions added to A.
The remaining conditions for (~9, p’) E $A’) can be proved similarly to case t = Y.

Now, we consider the final case t = f(Yi, . . . , Y,). Then

A’ := amgu(A, X, f(Yl,K))=AU {Xif {~,...,Y,),~~{Y~,...,Y,}).

If O(f(Yi,. . . , Y,)) is a ground function call, it is evaluated to a ground constructor
term t’, and the unification algorithm simply adds the equation X = t’ to the first
component of the equation system and the residuation component is not changed.
Thus, Proposition 4.5 is applicable and the correctness of amgu can be shown
similarly to case t = Y.

236 M. HANUS

Now, we assume that a(f(Yr, . . . ,Y,)) is not a ground function call. In this
case, the unification algorithm simply adds the residuation X = n(f(Yi, . . . , Y,)),
i.e., 0’ = (T and p’ = p U {X = cr(f(Yr, . . . ,Y,))}. We have to show: (g’,p’) E
-/(A’).

1. X if {Yr,. . . ,Y,} E A’: Since X = a(f(Yr,. . . , Y,)) E p’, var(a(X)) C
vor&{Yi,. . . , K}). H ence, this variable condition is satisfied by (u’, p’).

2. 2 $ V E A’ n A: Since (0, p) E y(A),var(o(Z)) C VW,,,(V), which implies
vCz?-(0’(Z)) c wu?-D,,p(v) c 7K57-o’,p~(v).

3. y = f(Q E p’ with y E dom(A’) = dam(A): If y = f(q E p, then this residua-
tion must be covered by some element in A c A’. Otherwise, this residuation
must be the new element X = a(f(Yr,. . . , Yn)) which is covered by the new
abstraction element flfy,,.,,,y,,I E A’. 0

Next, we prove that the abstract operations performed at the entry of a clause
are correct w.r.t. the concrete semantics.

Theorem 4.2 (Correctness of Clause Entry). Let P = p(X1, . . . ,X,) be a predicate
call with abstraction A and (a, p) E y(A). Let L:-B be a (renamed) clause, (u’, p’)
be a unifier computed by the rules of Figure 2 w.r.t. (a,~) and the equation
L = P, and A0 be the abstraction computed by algorithm ai. Then (o’,p’) E
$Ao).

PROOF. Let L = p(Z1,. . . , Zn). First of all, note that the unifier computed for the
equation L = P is a trivial renaming since 21, . . . , 2, are new different variables.
Hence, p’ = p and g’ = r o CJ with r = (2, H Xi,. . . 2, I+ Xn} (all other unifiers
are renamings of this).

1. X if V E Ao: By definition of call-restrict and ai, {X} U V c (21, . . . , Zn}
and T(X) if T(V) E A. Since (o,p) E r(A),var(o(r(X))) c uurO,,,(r(V)),
which implies var(a’(X)) C_ uur6/,p(V) = war,!,,!(V) (note that o(T(&)) =
0’(&) for i = 1,. . . ,n).

2. y = f(t) E p’ with y E dom(Ao): This case cannot occur since dom(Ac) =
i&r..., Zn} U war(B) h’ h w K is a set of new variables. Hence, p’ cannot con-
tain a residuation connected to one of these variables. 0

Next, we prove the correctness of the abstract clause exit operations, i.e., we
show that each substitution/residuation pair which may occur at the end of a clause
applied to a predicate call is covered by the abstract interpretation algorithm.

Theorem 4.3 (Correctness of Clause Exit). Let P = p(X1,. . . ,X,) be a predicate
call with abstraction Ai, #I and (oin,pin) E y(Ai,). Let A = ai(Ai,, P) =
A SUCCeSS U (Ain - Acall) be th e abstraction after the predicate call computed by
the abstract interpretation algorithm ai. Let L :- L1, . . . , Lk be a (renamed)
clause for P, and Ak be the abstraction computed for the clause end in ai.
If b’k,Pk) E $Ak) is an extension of the initial substitution/residuation pair
(uinr pin) computed by applying this clause, i.e., ffk = CT o oin with u(L) = u(P)
and pk = P U U(Pd then (uk,pk) E $4.

PROOF. Let L = p(Z1,. . . ,Zn)and7={X1~Z1,...,Xn.~Z,}.

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 237

FIGURE 3. OR-node for clause entry.

1. X ij V E A: Hence, there are two cases:

. X if V E (Ai, - Acall): S’ mce X zf V E Ai, and (gin, pin) E y(Ai,),
~a~(%,(X)) c_ ~aTLTxn,pi, (V), which implies UCU-(Q(X)) 2 uc~r~~,~(,,,,)(V)
C varuklPk (V) (by Lemma 4.2).

?? X ZJ V E ASuCCeSS: Since A,,it C ASuCCeSS, there is a set V’ C_ V with
X z;f V’ E Aezit. By definition of Aezit,7(X) 27 T(V’) E Ak and {r(X)}
u r(V’) 2 {Z,, . . . , &). Since (a, ,Q) E -y(h), var(a(W))) 2 ~aTok,pk
(I). Since ok(L) = ok(P), this implies var(crk(X)) 2 war,,,,,(V’) c
varu,,pk (V).

2. y = f(Z) E p k with y E dam(A): Since variables from the clause are not
contained in the domain of A, the residuation y = f (2) cannot be added dur-
ing the processing of the clause. Hence, y = j’(o E u&). Thus, there is
a residuation y = f(s) E pin with O(S) = t. Since (gin,pin) E y(Ai,) and
X E dam(A) = dom(Ai,),f E Ai, (which implies f E A) or f]v E Ai,
(which implies f]v E A) with war(s) C var(~~i~(V)). In the latter case, we
have vur(?) = war(a(s)) C war(~(c~i,(V))) = var(ak(V)). 0

4.3. Correctness of the Abstract Interpretation Algorithm
In the previous section, we have proved the local correctness of the basic opera-
tions of the abstract interpretation algorithm. We can combine these results into a
correctness proof for the whole algorithm by using Bruynooghe’s framework [8]. In
his framework, the abstract interpretation algorithm generates an abstract AND-
OR-tree which represents all concrete computations. To avoid infinite paths, this
tree is a rational AND-OR-tree, i.e., if a predicate call is identical to (a variant
of) a predicate call in an ancestor node, then this call node is identified with the
ancestor node. The monotonicity property of all abstract operations together with
the finite domain avoids an infinite computation in this graph. Next, we will give
a more detailed description of the abstract interpretation algorithm.

The abstract interpretation procedure generates the abstract AND-OR-graph as
follows. In the first step, the root is created. It is marked with the initial goal
(w.1.o.g. we assume that the initial goal contains only one literal) and the call
abstraction for this goal. Then, this initial graph is extended by computing the
success abstraction for this goal. The success abstraction A’ of an equation t = t’
with call abstraction A is computed by abstract unification, i.e., A’ = amgu(A, t, t’).
To compute the success abstraction A’ of a node with predicate call P and call
abstraction A, we distinguish the following cases:

1. There is no ancestor node with the same predicate call and the same call
abstraction (up to renaming of variables): First of all, we add an OR-node as
shown in Figure 3 (HI, . . , H, are the heads of all clauses for P). Ai” is the
call abstraction computed by our abstract operations for the entry of clause

238 M. HANUS

. . . a h-1 Lk Ak

FIGURE 4. AND-node for a clause.

_:(:j

FIGURE 5. Recursive call: P is renaming of P’,
and Ai, restricted to call P is a renaming of A:,
restricted to call P’.

. . . Ain ??Aoat . .

Hi : -. . . (i.e., A 0 in algorithm ai in Section 3.2). Then, for each new clause
head H, an AND-node is added as shown in Figure 4 where H : -LI, . . . , LI, is
the corresponding clause. After copying the call abstraction of the head to the
call abstraction of the first body literal (A0 = Ain), the success abstraction of
each literal in the clause body is computed. Then the success abstraction Aout
of the entire clause is calculated by restricting 4k to the head variables (i.e.,
Aout is identical to A out in algorithm ai in Section 3.2). When all success
abstractions of all clauses for the predicate call P are computed, they are
renamed, combined by the least upper bound operation, and then combined
with the elements of A not contained in the call abstraction of A (compare
algorithm ai).

2. There is an ancestor node P’ with the same predicate call and the same call
abstraction (up to renaming of variables) (Figure 5): Then the success ab-
straction of P’ (_-lb,, without the elements of A:, not passed to the call P’,
i.e., A success in algorithm ai in Section 3.2) is taken as the success abstraction
of P (or l_ if it is not available). The combination of this success abstrac-
tion with the elements of Ai, not contained in the call abstraction of P yields
Aout (step 3 of 1 a gorithm ai), and we proceed with the abstract interpretation
procedure (i.e., we connect P to P’). If we reach the node P’ at some point
during the further computation and we compute a success abstraction for
P’ which differs from the old success abstraction taken for P, we recompute
the success abstractions beginning at P where we take the new success ab-
straction of P’ as new success abstraction for P. The monotonicity property
of the abstract operations and the finite domain ensures that this iteration
terminates.

In [8], it is shown that this algorithm computes a superset of all concrete proof
trees if the abstract operations for built-ins (here: unification), clause entry, and

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 239

clause exit satisfy certain correctness conditions. Theorems 4.1, 4.2, and 4.3 imply
exactly these correctness conditions. Hence, we can infer the correctness of our
abstract interpretation algorithm since we consider the same operational semantics
(left-to-right evaluation of goals), except for the different notion of substitution and
unification (which does not influence Bruynooghe’s general framework).

There is one remaining problem with our abstract interpretation algorithm. Ini-
tially, we wanted to characterize a class of residuating logic programs where all
residuations can be evaluated at run time. However, if we analyze a program
with our algorithm, the absence of elements of the form f and f]” in the success
abstraction of the initial goal does not necessarily indicate that there are no un-
evaluated residuations at the end of the computation. Due to the definition of our
concretization function y, it may be the case that there are residuations connected
to variables which are local to some clauses. The next theorem shows that this case
cannot occur since all potential residuations are covered by our algorithm.

Theorem 4.4 (Completeness of Residuation Covering). Let L be a flat literal with
abstraction A and A’ = ai(A, L). Let ((TO, 0) E y(A) and (c, p) E $A’) be an
extension of (a, p), i.e., p contains the new residuations which are added during
the execution of L. If y = f(@ E p where t is not ground (i.e., it is a residuation
which could not be evaluated), then A’ contains an abstraction element of the
form f or f IV.

PROOF. If y = f (5) E p, this residuation must be generated by executing a
clause containing a residuation y = f (3) in the body. Since all concrete proof trees
are represented by the abstract rational AND-OR-tree computed by the abstract
interpretation algorithm (cf. [S]), this residuation must also be processed by our
analysis algorithm which inserts the element f Ivar(2). From the definition of amgu,
exit-restrict, U, and ai, it is obvious that this delay element will never be deleted in
the subsequent (success) abstractions. The only possibility to delete a delay element
is an application of a normalization rule, but this cannot happen if t is not ground
due to the correctness of the normalization rules (Lemma 4.1). Therefore, this delay
element or a transformed version of it (by operation exit-restrict or renaming) is
contained in A’. 0

Due to this theorem, our abstract interpretation algorithm characterizes a class
of residuating logic programs (those containing no new elements of the form f
and flv in the success abstraction of the goal) for which all residuations can be
evaluated at run time. A concrete example for the construction of an abstract
AND-OR-tree will shown in the next section.

4.4. A Final Example

The following residuating logic program is an example for a recursive procedure
which requires the construction of the abstract AND-OR-tree described in the pre-
vious section. The following clauses define a predicate sum(L, S> which computes
the sum S of a list of numbers L:

sum(C1 ,o>.
sum([E I RI ,E+RS) :- sum(L,RS).

240 M. HANUS

Al0

FIGURE 6. AND-OR-tree for the abstract interpretation of sum(LO,SO).

For instance, the execution of the goal sum ([1,3,53 , S> yields the answer S=9. The
concrete computation is shown in the following table:

Goal Current Residuation Current Substitution

sum(C1,3,51, Sl 0 0
sum([3,51 ,RSl) {S=l+FlS1} 0
sum(c51 ,RS2) {S=l+RSi, RS1=3+RS2} 0
sum (Cl , RS3) {S=l+RSi, RS1=3+RS2, RS2=5+RS3} 0
0 0 (RS3t-4, RS2++5,

RSlH8, s-9 }

We want to show that the residuation principle computes a fully evaluated answer
for S for any given list of numbers L. In order to apply our abstract interpretation
algorithm, we transform the program into an equivalent flat program:

sum(L,S) :- L=[l, s=o.

Sum(L,S) :- L=[EtR], S=E+RS, sum(L, RS).

The initial goal is sum(L0, SO> with abstraction {LO}, i.e., it is predicate call with
a ground first argument. Our abstract interpretation algorithm applied to this goal
and abstraction generates the abstract AND-OR-tree shown in Figure 6. We will
see that the tree is finite because the literal sum(L, RS) together with the call ab-
straction part of Ag is a renaming of the root literal sum(L0, SO> together with the
call abstraction part of Ao. In the following, we describe the computation of the
abstract interpretation algorithm and the evolving values of the abstractions Ai.

?? A0 = {LO}: The call abstraction of the root literal is the initial abstraction
of the goal.

?? Al = {L} and As = {L}: The root is an OR-node with two sons since two
clauses can be applied to the literal sum(LO,SO). The entry abstractions for
these clauses are computed from A0 by calLrestrict and renaming.

?? A2 = {L}: Th e entry abstraction of the clause is also the abstraction for the
first predicate call in the clause body.

?? A3 = {L}: The abstraction AZ is not modified by abstract unification since
L is already ground.

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 241

Ad = {L, S}: S is added to the abstraction by abstract unification since it is
bound to a ground term after this unification.
As = {L, S}: Th e exit abstraction of this clause is the exit abstraction of the
last body literal restricted to the variables in the clause head.
A7 = {L}: The entry abstraction of the second clause is also the abstraction
for the first predicate call in the clause body.
As = {L, E, R}: The variables E and R are ground since L is ground. This
is computed by the abstract unification algorithm together with the normal-
ization rules.
As = {L, E, R, S 2.f {RS},+I{RS}}: The function call to + is added to the
abstraction. It cannot be evaluated until the variable RS is ground.
Alo =-L: The call abstraction part of Ag is {L} (compare definition of
callrestrict). Hence, this predicate call is a renaming of the predicate call at
the root. Therefore, we take the value _L as the success abstraction for this
call since the success abstraction of the root call is not yet known. However,
if the latter success abstraction is available and different from I, we start a
recomputation at this point.
AlI =1: The exit abstraction of the second clause is the exit abstraction of
the last body literal.
A12 = {LO, SO}: The success abstraction of the root predicate call is the
least upper bound of {LO,SO} and I together with the elements of A0 not
contained in the call abstraction (actually, there are no such elements). Since
the success abstraction of the root call is now available and different from I,
we restart the evaluation of the abstraction Alo.
Alo = {L, RS, E, R, S}: The new value of Alo is computed from the new
renamed success abstraction of the root predicate call ({L, RS}) together with
the elements of Ag not contained in the call abstraction giving {L, RS, E, R, S
‘j {R’S)> +I{RS}). This abstraction, simplified by the normalization rules, is

the new value of Alo.
AlI = {L, S}: The exit abstraction of the second clause is the exit abstraction
of the last body literal restricted to the variables in the clause head.
Al2 = {LO, SO}: The success abstraction of the root predicate call is the
least upper bound of the renamed exit abstractions A5 and AlI (which are
identical). Since the success abstraction of the root call is identical to the
previous value, we need not restart the evaluation of the abstraction Alo.
Hence, the abstract interpretation algorithm is finished.

Since the abstract interpretation algorithm has computed the exit abstraction
(LO, SO} for the initial goal, wc conclude by the correctness of the abstract inter-
pretation algorithm and Theorem 4.4 that variable SO is bound to a ground term,
and there are no unevaluable residuations at the end of a successful computation.

5. CONCLUSIONS AND RELATED WORK

In this paper, we have considered an operational mechanism for the integration
of functions into logic programs. This mechanism, called residuation, extends the
standard unification algorithm used in SLD-resolution by delaying unifications be-
tween unevaluable function calls and other terms. If all variables of a delayed

242 M. HANUS

function call are bound to ground terms, then this function call is evaluated in
order to verify the delayed unification. This residuation principle yields a nice op-
erational behavior for many functional logic programs, but has two disadvantages.
One problem is that the answer to a query may contain unsolved and complex resid-
uations for which the user cannot easily decide their solvability. A further problem
is that the search space of a residuating logic program can be infinite in contrast to
the equivalent logic program. This case can occur if the residuation principle gen-
erates more and more residuations which are simultaneously not solvable. Hence,
it is important to check at compile time whether or not this case can occur at run
time. Since this is undecidable in general, we have presented an approximation to
this problem based on the abstract interpretation of residuating logic programs.
Our algorithm manages information about all possible residuations together with
their argument variables and the dependencies between different variables in order
to compute groundness information. Hence, the algorithm is able to infer which
residuations can be completely solved at run time.

We can also interpret our algorithm as an attempt to compile functional logic
programs from languages with a complete but often complex operational semantics
(e.g., ALF [12], BABEL [23], EQLOG [ll], or SLOG [lo]) into a more efficient
execution mechanism without losing completeness. For this purpose, we check a
given functional logic program by our algorithm. If the algorithm computes an
abstraction containing no potential residuations, then we can safely execute the
program with the residuation principle, i.e., all valid answers are computed by
the residuation principle (provided that the computation terminates). Otherwise,
we must apply the nondeterministic narrowing principle to compute all answers.
This method can also be applied to individual parts of the program so that some
parts are executed using the residuation principle and other parts are executed by
narrowing. For instance, in order to avoid the termination problem in the “reverse”
example in Section 1, we can check the solvability of the residuated function calls
by narrowing just before the recursive call to rev. Our algorithm can be simply
modified to compute the necessary information to decide at compile time whether
there may be residuated functions before recursive predicate calls at run time.

The operational semantics considered in this paper originates from Le Fun [3].
The unification procedure is very similar to S-unification [5]. However, S-unification
immediately reports an error if some residuations cannot be evaluated after the uni-
fication of a literal with a clause head, e.g., the example programs in Section 2 and
3.3 cannot be evaluated using S-unification. Therefore, Boye has extended this
framework to computation with delayed residuations [7]. He has also characterized
a class of operationally complete programs based on notions from attribute gram-
mars. Compared to our abstract interpretation procedure, Boye’s characterization
is mainly based on the syntactic structure of the program, while we have tried to
approximate the operational behavior. Hence, we obtain positive results for pro-
grams where Boye’s check fails, e.g., our method yields a positive answer to the
completeness question of the program

p(A,A+A).

p(A+A,A).

w.r.t. the initial goal p(2+2,1+1), while Boye’s check fails (since there are external
functors in input positions).

ANALYSIS OF RESIDUATING LOGIC PROGRAMS 243

Marriott et al. [21] have also presented an abstract interpretation algorithm
for analyzing logic programs with delayed evaluation. The purpose of their work
was to check logic programs with negation for floundering, i.e., whether a delayed
evaluation of negated subgoals is complete. This problem has similarities to our
residuation problem, but it is also very different due to the following reasons:

1. A delayed evaluation of a negated literal cannot bind any goal variables since
this literal is evaluated if all arguments are ground. In our context, it is
important that a delayed evaluation of a residuation can bind variables in
order to enable the evaluation of other residuations (see the example in Section
3.3). Therefore, we have to manage the dependencies between residuations
and their variables in order to analyze the data flow in this case.

2. In our context, the terms contain constructors and function calls. The right
abstraction of these terms complicates the correctness proofs of our algorithm.

On the other hand, we cannot analyze logic programs yith delayed negation with
our algorithm (for instance, by declaring all negated literals as functions) since we
consider the evaluation of a ground function call as an atomic operation. However,
the evaluation of a negated literal may cause the evaluation of other negated literals,
i.e., it is not an atomic operation. Nevertheless, it would be interesting to extend our
algorithm to a more detailed analysis of function calls if the functions are specified
and evaluated in a particular formalism (for instance, by conditional equations as
in ALF [12]).

Since we must restrict all abstract information to a finite domain, our algorithm
cannot manage all dependencies between residuations and their variables. If a
residuation depends only on variables of one clause and these variables are bound
to ground terms at the end of the clause, the algorithm detects the solvability of
the residuation. However, if a residuation depends on local variables from different
clauses, then the algorithm cannot manage it, and simply infers the unsolvability
of this residuation. It would be interesting to improve the algorithm at this point
by refining the abstract domain.

Another interesting topic for further research is the question of whether it is
possible to adapt our proposed method to the abstract interpretation of other logic
languages which are not based on SLD-resolution with the leftmost selection rule.
Such a method could be applied to analyze the floundering problem of NU-Prolog
or to derive run-time properties of the Andorra computation rule [17].

The author is grateful to the anonymous referees for their suggestions to improve the analysis and
the readability of this paper. The research described in this paper was made during the author’s
stay at the Max-Planck-Institut fiir Informatik in Saabriicken, Germany. It was supported in part
by the German Ministry for Research and Technology (BMFT) under Grant ITS 9103 and by
the ESPRIT Basic Research Working Group 6028 (Construction of Computational Logics). The
responsibility for the contents of this publication lies with the author.

REFERENCES

1. Abramsky, S. and Hankin, C. (eds.), Abstract Interpretation of Declarative Lan-
guages, Ellis Horwood, 1987.

-_
244

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

M. HANUS

Aiit-Kaci, H., An Overview of LIFE, in: J. W. Schmidt and ;2. A. Stogny (eds.), Proc.
Workshop on Next Generation Information System Technology, Springer LNCS 504,
1990, pp. 42-58.
Ait-Kaci, H., Lincoln, P., and Nasr, R., Le Fun: Logic, Equations, and Functions,
in: Proc. 4th IEEE Int. Symposium on Logic Programming, San Francisco, CA, 1987,
pp. 17-23.
Kit-K& H., and Podelski,, h., Functions as Passive Constraints in LIFE, Research
RepoFt 13, DEC Paris Rese&h Laboratory, 1991.
Bonnier, S., Unification in Incompletely Specified Theories: A Case Study, in: Math-
ematical Foundations of Computer Science, Springer LNCS 520, 1991, pp. 84-92.
Bosco, P. G., Giovannetti, E., Levi, G., Moiso, C., and Palamidessi, C., A Complete
Semantic Characterization of K-LEAF, A Logic Language with Partial Functions, in:
Proc. 4th IEEE Int. Symposium on Logic Programming, San Francisco, CA, 1987, pp.
318-327.
Boye, J., S-SLD-Resolution-An Operational Semantics for Logic Programs with
External Procedures, in: Proc. 3rd Int. Symposium on Programming Language Im-
plementation and Logic Programming, Springer LNCS 528, 1991, pp. 383-393.
Bruynooghe, M., A Practical Framework for the Abstract Interpretation of Logic
Programs, Journal of Logic Programming 10:91-124 (1991).
Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 3rd rev. and ext. edition,
Springer, 1987.
Fribourg, L., SLOG: A Logic Programming Language Interpreter Based on Clausal
Superposition and Rewriting, in: Proc. IEEE Int. Symposium on Logic Programming,
Boston, MA, 1985, pp. 172-184.
Goguon, J. A. and Meseguer, J., Eqlog: Equality, Types, and Generic Modules for
Logic Programming, in: D. DeGroot and G. Lindstrom (eds.), Logic Programming,
Functions, Relations, and Equations, Prentice-Hall, 1986, pp. 295-363.
Hanus, M., Compiling Logic Programs with Equality, in: Proc. 2nd Int. Workshop
on Programming Language Implementation and Logic Programming, Springer LNCS
456, 1990, pp. 387-401.
Hanus, M., Efficient Implementation of Narrowing and Rewriting, in: Pry. Int.
Workshop on Processing Declarative Knowledge, Springer LNAI 567, 1991, pp. 344-
365.
Hanus, M., On the Completeness of Residuation, in: Proc. 1992 Joint Int. Conference
and Symposium on Logic Programming, MIT Press, 1992, pp. 192-206.
Hanus, M., Analysis of Nonlinear Constraints in CLP (R), in: Proc. 10th Int. Con-
ference on Logic Programming, MIT Press, 1993, pp. 83-99.
Hanus, M., The Integration of Functions into Logic Programming: From Theory to
Practice, Journal of Logic Programming 19&20:583-628 (1994).
Haridi, S. and Brand, P., Andorra Prolog: An Integration of Prolog and Committed
Choice Languages, in: Proc. Int. Conf. Fi$h Generation Computer Systems, 1988,
pp. 745-754.
Jaffar, J. and Lassez, J.-L., Constraint Logic Programming, in: Proc. 14th ACM
Symposium on Principles of Programming Languages, Munich, 1987, pp. 111-119.
Jaffar, J., Michaylov, S., and Yap, R. H. C., A Methodology for Managing Hard
Constraints in CLP Systems, in: Proc. ACM SIGPLAN’91 Conference on Program-
ming Language Desagn and Implementation, pp. 306-316; SIGPLAN Notices 26(6)
(1991).
Lloyd, J. W., Foundations of Logic Programming, 2nd ext. edition, Springer, 1987.
Marriott, K., Srandergaard, H., and Dart, P., A Characterization of Non-Floundering
Logic Programs, in: Proc. 1990 North American Conference on Logic Programming,
MIT Press, 1990, pp. 661-680.

ANALYSIS OF RESIDU~=OGIC PROGRAMS 245

22.

23.

24.

25.

26.

27.

Martelli, A. and Montanari, U., An Efficient Unification Algorithm, ACM Dansac-
tions on Programming Languages and Systems 4(2):258-282 (1982).
Moreno-Navarro, J. J. and Rodriguez-Artalejo, M., Logic Programming with Func-
tions and Predicates: The Language BABEL, Journal of Logic Programming 12:191-
223 (1992).
Naish, L., Adding Equations to NU-Prolog, in: Proc. 3rd Int. Symposium on Pro-
gramming Language Implementation and Logic Programming, Springer LNCS 528,
1991, pp. 15-26.
Nilsson, U., Systematic Semantic Approximations of Logic Programs, in: Proc. 2nd
Int. Workshop on Programming Language Implementation and Logic Programming,
Springer LNCS 456, 1990, pp. 293-306.
Smolka, G., Residuation and Guarded Rules for Constraint Logic Programming, in:
F. Benhamou and A. Colmerauer (eds.), Constraint Logic Programming: Selected
Research, MIT Press, 1993, pp. 405-419.
Subrahmanyam, P. A. and You, J.-H., FUNLOG: A Computational Model Integrat-
ing Logic Programming and Functional Programming, in: D. DeGroot and G. Lind-
Strom (eds.), Logic Programming, Functions, Relations, and Equations, Prentice-
Hall, 1986, pp. 157-198.

