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D Residuation is an operational mechanism for the integration of functions 
into logic programming languages. The residuation principle delays the 
evaluation of functions during the unification process until the arguments 
are sufficiently instantiated. This has the advantage that the deterministic 
nature of functions is preserved, but the disadvantage of incompleteness: 
if the variables in a delayed function call are not instantiated by the logic 
program, this function can never be evaluated, and some answers which are 
logical consequences of the program are lost. In order to detect such situa- 
tions at compile time, we present an abstract interpretation algorithm for 
this kind of programs. The algorithm approximates the possible residua- 
tions and instantiation states of variables during program execution. If the 
algorithm computes an empty residuation set for a goal, then it is ensured 
that the concrete execution of the goal does not end with a nonempty set 
of residuations which cannot be evaluated due to insufficient instantiation 
of argument variables. 

1. INTRODUCTION 

Many proposals for the integration of functional and logic programming languages 
have been made during recent years (see [16] for a survey). From an operational 
point of view, these proposals can be partitioned into two classes: approaches 
with a complete operational semantics and a nondeterministic search (narrow- 
ing) for solving equations with functional expressions (ALF [12], BABEL [23], 
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EQLOG (111, K-LEAF [6], SLOG [lo], among others), and approaches which 
try to avoid nondeterministic computations for functional expressions by reduc- 
ing functional expressions only if the arguments are sufficiently instantiated (Fun- 
log [27], Le Fun [3], LIFE [2], NUE-Prolog [24], among others). The former 
approaches are complete under some well-defined conditions (e.g., confluence of 
the axioms), i.e., they compute all answers which can be logically inferred from 
the given program. The price for this completeness is an increased search space 
since there may be several incomparable unifiers of two terms if these terms con- 
tain unevaluated functional expressions. The latter approaches try to avoid this 
nondeterminism in the unification process. In these approaches, a term is re- 
duced to normal form before it is unified with another term, i.e., functional ex- 
pressions are evaluated (if possible) before unification. If a function cannot be 
evaluated because the arguments are not sufficiently instantiated, the unification 
process cannot proceed. Instead of causing a failure, the evaluation of the func- 
tion is delayed until the arguments will be instantiated. This mechanism is called 
residuation in Le Fun [3] and extended to constraint logic programming in [26]. 
For instance, consider the program (we write residuating logic programs in the 
usual Prolog syntax [9], but it is allowed to use arbitrary evaluable functions 
in terms) 

q :- p(X,Y,5), pick(X,Y) . 

p(A,B,A+B). 
pick(2,3). 

together with the goal “?- q.” After applying the first clause to the goal, the 
literals p(X,Y ,5) and p(A,B,A+B) are unified. This binds A to X and B to Y, 
but the unification of X+Y and 5 is not successful since the arguments of the 
function call X+Y are not instantiated to numbers. Therefore, this unification 
causes the generation of the residuation X+Y=5 which will be proved (or disproved) 
if X and Y will be bound to ground terms. We proceed by proving the literal 
pick(X,Y) which binds X and Y to 2 and 3, respectively. As a consequence, the 
instantiated residuation 2+3=5 can be verified. Hence, the entire goal has been 
proved. 

The residuation principle seems to be preferable to the narrowing approaches 
since it preserves the deterministic nature of functions. However, it fails to compute 
all answers if functions are used in a logic programming manner. For instance, 
consider the function append for concatenating two lists. In a functional language 
with pattern-matching, it can be defined by the following equations (we use the 
Prolog notation for lists): 

append ( [I , L) =L 
append([EIRl, L) = CEIappend(R,L)l. 

From a logic programming point of view, we can compute the last element E of 
a given list L by solving the equation append(_, [El ) = L. Since the first argu- 
ment of the left-hand side of this equation will never be instantiated, residuation 
fails to compute the last element with this equation, whereas narrowing computes 
the unique value for E [13]. S imilarly, we can specify by the equation append 
(LE, C-1 )=L a list LE which is the result of deleting the last element in the list L. 
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Current goal: Current residuation: 

rev(Ca,b.cl ,R) 0 
a(LE1, CEll)=Ca.b,cl, rev(LEl.LRl) 0 

rev(LEl.LRI) aGEl. CEll)=Ca.b,cl 
a(LE2, [E21)=LEI, rev(LE2,LR2) a(LE1, CEll)=Ca.b.cl 
rev(LEZ.LR2) a(LE1, CEll)=Ca.b.cl, a(LE2,CE21)=LEl 

a(LE3. CE31)=LE2, rev(LEJ.LR3) a(LEl,CE11)=Ca,b,cl. a(LE2.[E21)=LEl 

FIGURE 1. Infinite derivation with the residuation principle (a(. ..> denotes 
append (. . .)). 

Combining the specification of the last element and the rest of a list, we define the 
reversing of a list by the following clauses: 

rev(Cl,[l>. 
rev(L, [E I LRI > :- append(LE, [El) = L, rev(LE,LR). 

Now, consider the goal “?- rev ( [a, b, cl , RI .” Since the arguments of the calls 
to the function append are never instantiated to ground terms, the residuation 
principle cannot verify the corresponding residuation. Hence, the answer R= [c , b , al 
is not computed, and there is an infinite derivation path using the residuation 
principle and applying the second clause infinitely many times (see Figure l).l On 
the other hand, a functional logic language based on the narrowing principle can 
solve this goal and has a finite search space [13]. Therefore, we should use narrowing 
instead of residuation in this example. 

The last example raises the important question of whether it is possible to detect 
the cases where the (more efficient) residuation principle is able to compute all 
answers. If this would be possible, we can avoid the nondeterministic and hence 
expensive narrowing principle in many cases, and replace it by computations based 
on the residuation principle without losing any answers. A simple criterion to the 
completeness of residuation is the groundness of all residuating variables: if at the 
end of a computation all variables occurring in residual function calls are bound to 
ground terms, then all residuations can be evaluated and the answer substitution 
does not depend on an unsolved residuation. Since the satisfaction of this criterion 
depends on the data flow during program execution, an exact answer is recursively 
undecidable. Therefore, we present an approximation to this answer by applying 
abstract interpretation techniques to this kind of programs. Previous approaches 
for abstract interpretation of logic programs (see, for instance, [l, 8, 251) depend 
on SLD-resolution as the operational semantics. Hence, we cannot directly apply 
these frameworks to our case. But we will show that it is possible to develop 
a similar technique by considering unsolved residuations as part of the current 
substitution. 

This paper is a revised and extended version of [ 141. Here, we use a simplified and 
smaller abstract domain for the analysis. In the next section, we give a detailed 

lA residual function call is only evaluated if all arguments are ground terms [3]. If we weaken 
this condition to “a residual function call is evaluated if the arguments are suficiently instantiated 

so that exactly one defining rule is applicable” (if functions are defined by equations as in [24]), 
then we can also verify residuations like append( [I , [El )= [al. In this case, the answer to the goal 

“?- rev([a b cl R)” can be computed by incremental verification of residuations, but there is ,* 2 
also an infinite derivation path using the second clause infinitely many times. 
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description of the operational semantics considered in this paper. The abstract 
domain and the abstract interpretation algorithm for reasoning about residuating 
programs are presented in Section 3. Finally, the correctness of our method is 
proved in Section 4. 

2. THE RESIDUATION PRINCIPLE 

The residuation principle tries to avoid nondeterministic computations by delay- 
ing function calls until the arguments are sufficiently instantiated. The difference 
between residuating logic programs and ordinary logic programs shows up in the 
unification procedure: if a call to a defined function f(tr, . . . , tn) should be uni- 
fied with another term, the function call is evaluated if all arguments ti, . . . , t, are 
bound to ground terms and the unification proceeds with the evaluated term; other- 
wise, the unification is delayed. If all variables in ti, . . . , t, will be bound to ground 
terms in the further computation process, the delayed function call f(tr, . . . ,tn) 
will be immediately evaluated and replaced by its result in order to proceed with 
the unification process. 

In residuating logic programs, terms are built from variables, constructors, and 
(defined) functions. Constructors (denoted by a, b, c, d) are used to compose data 
structures, while defined functions (denoted by f, g, h) are operations on these data 
structures. A function call is a term f (tl, . . . , tn) where f is a defined function. A 
constructor term is a term which does not contain function calls. A ground term 
is a term containing no variables. With this concept of terms that may contain 
function calls, we adopt all standard notions of logic programming [20] like clause, 
logic program, etc. 

We do not require any formalism for the specification of functions, i.e., they may 
be defined by equations or in a completely different language (external or predefined 
functions). However, the following conditions must be satisfied in order to reason 
about residuating logic programs: 

1. A function call can be evaluated if all arguments are ground terms. 
2. The result of the evaluation is a ground constructor term (containing only 

constructors) or an error message (i.e., the computation cannot proceed be- 
cause of type errors, division by zero etc.). 

In order to provide a simple but precise definition of the residuation principle and to 
keep the analysis algorithm simple, we assume that all residuating logic programs 
are transformed into a hat form: in a flat residuating logic program, all predicate 
calls and clause heads have the form p(X,, . . . , Xn) where all Xi are distinct vari- 
ables (similarly to the example in [8]). All other literals in the clause bodies and 
goals have the form X = Y, X = c(Yr, . . . , Y,) or X = f (Yl, . . . , Y,). It is easy to 
see that every residuating logic program can be transformed into this flat form by 
introducing additional variables and equations. For instance, the residuating logic 
program 

q :- p(X,Y,72), X = V-W, Y = V+W, pick(V,Wl. 

p(A,B,A*B). 
pick(9,3). 
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can be transformed into the following equivalent flat program: 

q :- Z = 72, p(X,Y,Z), X = V-W, Y = V+W, pick(V,W). 
p(A,B,C) :- C = A*B. 
pick(A,B) :- A = 9, B = 3. 

In the following, we assume that all programs are in flat form. 
The computational universe of residuating logic programs contains constructor 

terms as well as unevaluated function calls. Therefore, we distinguish these different 
parts in substitutions. In the following, we assume that the concrete domain of 
computation C is not simply the set of all substitutions (as in logic programming), 
but a set of pairs of substitutions and residuations such that (0, p) E C if 

0 = (21 ++ tl, . . . , xk H tk} 

P={Yl=~l,...,Ym=~m} 

where tl, . . . , tl, are constructor terms and ~1, . . . , rm are nonground function calls, 
i.e., substitutions contain only constructor terms and function calls are contained 
in the residuation part. Since substitutions can also be represented by equations, 
we describe the unification algorithm for residuating logic programs in the style of 
Martelli and Montanari [22] by a set of transformation rules on pairs of equation 
systems E; R where the first component E represents the substitution part and the 
second component R represents the residuation part. These transformation rules 
are shown in Figure 2. The standard transformation rules for unification are only 
applied to the first constructor-term component of the equation system. This em- 
phasizes the fact that residuated function calls just “wait” for their evaluation. In 
order to enable the evaluation of a function call, instantiations of variables are pro- 
pagated into the function calls (rule Instantiate). On the other hand, if a function 
call can be evaluated, its result is moved to the substitution part (rule Evaluate). 
Thus, the unification algorithm is responsible for solving equations between con- 
structor terms and waking up residuations which are ready for evaluation. The 
equations between constructor terms and the residuations are generated during the 
evaluation of a residuating logic program (see below). 

This unification procedure is not optimal in the sense that all possible failures 
are not detected, e.g., the nonunifiability of the equation system x = 1, y = 2; x = 
f(z), y = f(z) is not detected. A more sophisticated algorithm can be found in 
[5]. However, our algorithm can be easily implemented using delay primitives and 
is used in practical implementations [3]. 

The unification algorithm is applied by transforming a given equation system 
until no more rules can be applied. The result of the unification algorithm is fail 
or a system of the form 

xl=tl,...,2k=t& Yl =nr...,YTn =T, 

where each of the distinct variables xi does not occur in tj or rj, and all rj are 
unevaluable function calls.3 Each yj = rj is called a “residual equation” or simply 

*We will sometimes also allow ground functions calls pi in intermediate steps. Since such calls 
will be evaluated during unification, they do not occur as a result of a unification process. 

3This can be shown by a modification of the proofs presented in [22]. 
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Clash: 

Decompose: 

Delete: 

Occur check 

Instantiate: 

Commute: 

Evaluate: 

c(t1,. ..,tn) =d(t; ,..., tA),E; R 
fail 

ifc#dorm#n 

c(t1, * * *, tn) = c(t;, . ..,t;),E; R 
t1=t;,..., n- t -t;,E; R 

x=x,E; R 
E; R 

x=t.E: R 
fail 

if t # x and x occurs in t 

x=t,E; yl=rl,...,ym=rm 
x = t, a(E) ; yi = g(q), . . . , ym = a(~,) 

if z occurs in E or in some Tj but not in t and c = {x ++ t} 

t=x,E; R 
x=t,E; R 

if t is not a variable 

E ; Y = f(t I,.-.,tn),R 
E,y=t; R 

if tl,. . . (2, are ground and f(tl, . . . , tn) is evaluated to t 

FIGURE 2. Unification algorithm for residuating logic programs. 

‘kesiduation,” and we can also interpret the substitution/residuation pair (g, p) with 

as the result of the unification. 
The operational semantics of residuating logic programs considered in this paper 

is similar to ProIog’s operational semantics (SLD-resolution with leftmost selection 
ruIe), but with the difference that the standard unification is replaced by the uni- 
fication described above. Since we assume that all programs are in flat form, all 
literals in goals have the form X = Y, X = c(Yr, . . . , Y,), X = f(Yr, . . . , Y,), or 
P(Xl,... , Xn). Thus, the proof of a literal is done by simply adding the equations 
to the first or second component of the current equation system from C (literals of 
the form X = Y or X = c(Yr, . . . , Y,) are added to the substitution part, and liter- 
als of the form X = f(Yr, . . . , Y,) are added to the residuation part) and applying 
the unification algorithm. As an example, consider the following flat residuating 
logic program: 

q :- Z=5, p(X,Y,Z), pick(X,Y). 
p(A,B,C) :- C = A+B. 
pick(D,E) :- D = 2, E = 3. 
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If the initial goal is q, then the following elements of the concrete domain are 
computed: 

Current literal: 
9 
z=5 

p(X,Y,Z) 
C=A+B 

pick(X,Y) 
D=2 
E=3 
0 

Cuwent substitution/residuation pair: 

Ii7 :; 
({Z ++ 51, 0) 
({Z H 5, A H X, B H Y, C H 5}, 8) 
({Z ++ 5, A H X, B H Y, C H 5}, {C=X+Y}) 
({Z H 5, A I-+ X, B H Y, C H 5, D H X, E H Y}, {C=X+Y}) 
({Z H 5, A H 2, B H Y, C t-+ 5, D H 2, E H Y, X H 2}, {C=2+Y}) 
({Z H 5, A H 2, B H 3, C H 5, D H 2, E H 3, X H 2, Y t-t 31, 0). 

At the clause end, the residuation set is empty since all functions could be evaluated. 
Hence, the initial goal is proved to be true. 

Logic programming with residuations also has some connections to the frame- 
work of constraint logic programming [18]. Prom a semantical point of view, residu- 
ations can be considered as constraints on substitutions. Therefore, the residuation 
framework could be viewed as a special case of the CLP framework where the do- 
main is the set of Herbrand terms (with the defined functions as evaluable function 
symbols) and the constraints are equations between terms. However, this is not 
the case from an operational point of view because the CLP framework requires 
a constraint solver which checks the satisfiability of the accumulated constraints 
in each step. Since functions are user-defined, there need not exist a constraint 
solver deciding the satisfiability of the accumulated residuations, i.e., it may be 
the case that the current set of residuations is unsolvable,4 e.g., the unsatisfiability 
of {append(Ll,L2)=[1], append(L2,Ll)=C21} is not detected by the unification 
algorithms in [3, 51. This would require a constraint solver for the defined list op 
erations. But residuations can be interpreted as passive constraints [4] which are 
activated if the arguments are sufficiently instantiated. In fact, it is reasonable to 
integrate the residuation principle into the CLP paradigm [ZS], and this is done 
in some constraint logic languages to deal with hard constraints [19] (of course, 
constraint solvers which delay hard constraints are incomplete and, therefore, the 
same questions as discussed in this paper occur [15]). 

Since the operational semantics of residuating logic programs is identical to Pro- 
log except for the different notion of substitution and the different unification al- 
gorithm, we can apply abstract interpretation frameworks for Prolog to our case. 
In this paper, we will use Bruynooghe’s framework [8]. This is possible since his 
framework does not depend on the concrete substitution or unification algorithm, 
but only on the left-to-right evaluation of literals, which is also the operational 
semantics presented in this section. 

3. ABSTRACT INTERPRETATION OF RESIDUATING 
LOGIC PROGRAMS 

In this section, we present a method to check whether the residuation part of the 
answer to a goal is empty, i.e., whether the residuation principle is complete w.r.t. 

4This is the reason for the infinite derivation in the rev example of Section 1. 
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a given program and goal. Since this problem is recursively undecidable in general, 
we present an approximation to it based on a compile-time analysis of the program. 
If this approximation has a particular form, then it is ensured that all residuations 
can be solved at run time. In the following, we present the abstract domain and 
the motivation for it. The relation to the concrete domain and the correctness of 
the abstract interpretation algorithm are discussed in Section 4 in more detail. We 
assume familiarity with basic ideas of abstract interpretation techniques [l]. 

3.1. Abstract Domain 

There has been done a lot of work concerning the compile-time derivation of run- 
time properties of logic programs (see, for instance, the collection [l]). Since we 
have abstracted the different operational behavior of residuating logic programs 
into an additional component of the concrete domain, we can use the well-known 
frameworks (e.g., [8, 251) in a similar way. The heart of an abstract interpreta- 
tion procedure is an abstract domain which approximates subsets of the concrete 
domain. An element of the abstract domain describes common properties of a sub- 
set of the concrete domain. The properties must be chosen so that they contain 
relevant propositions about the interesting run-time properties. So what are the 
abstract properties in our case? 

We are interested in unevaluated residuations at run time (second component of 
the concrete domain). A residuation can be verified if the function call in it can 
be evaluated. Since a function call can be evaluated if all arguments are ground, 
we need some information about the variables in it and the instantiation state of 
these variables in order to decide the emptiness of the residuation set. Hence, our 
abstract domain contains information about the following properties: 

POTENTIAL RESIDUATIONS. In order to decide whether a residuation can be 
evaluated at run time, we must know the variables in all potentially residuated 
function calls. Therefore, our abstract domain contains elements of the form 

“flf~~,...,~,l” meaning: there may occur a residuated call to function f which 
can be evaluated if all variables X1, Xs, . . . , X, are ground.5 

DEPENDENCIES BETWEEN VARIABLES. Function calls can be evaluated if all 
variables in it are bound to ground terms. Hence, we must have some information 
about the dependencies between variables. For instance, consider the goal 

?- A = B+C, D = A*A, B = 1, C = 2. 

During unification of D and A*A, the first term cannot be evaluated since A is not 
ground. However, the groundness of A depends on the groundness of B and C. Thus, 
we deduce that the function call A*A can be evaluated if B and C are bound to 
ground terms. Hence, our abstract domain contains the element “A if {B,C} .” In 
general, “X if V” means that variable X is bound to a ground term if all variables 
in V are bound to ground terms. 

In our abstract interpretation algorithm, we analyze each clause occurring in 
the program. Therefore, the different abstractions computed in this algorithm 
contain only information about the variables of the different clauses. Hence, each 

5The concrete name of the residuated function could be omitted in the abstract domain, but 
we have included it for the sake of readability. 
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abstraction A has a domain dam(A) which is a set of variables occurring in some 
clause (or goal). All variables occurring in A must belong to dam(A). 

Summarizing the previous discussion, our abstract domain A contains the ele- 
ment _L (representing the empty subset of the concrete domain) and sets containing 
the following elements (such sets are called abstractions and denoted by A, Al etc)? 

Element Meaning 

x if v X is ground if all variables in the variable set V are ground 

flV there is a call to j which can be evaluated if all variables in V 
are ground 

f there may be an unevaluated function call to j depending on 
arbitrary variables 

The element “f” is the “worst case” in the algorithm. It will be used if the 
dependencies between a function call and its variables are too complex for a finite 
representation.7 

Obviously, A is finite if the set of variables and function symbols is finite. In 
our abstract domain, we use only program variables and functions occurring in the 
program. Therefore, A is finite in the case of a finite program. For convenience, 
we simply write “X” instead of “X if 0.” Hence, an element “X” in an abstraction 
means that variable X is bound to a ground term. 

To present a simple description of the abstract interpretation algorithm, we will 
sometimes generate abstractions containing redundant information. The following 
normalization rules eliminate some redundancies in abstractions: 

Normalization Rules for Abstractions 

Au{Z,X if Vu(Z)} + Au{Z,X if V} 

Au tZflvu{z~~ - Au{Z,flv) 
Au Ul0) -+ A 
Au{X if Vr,X if I+,} + Au{X if VI} if VI G Vz 
AU{flv,~flv,l + A’~{flv,l if VI c V2 

A’~{flv,f) + Au(f) 

We call an abstraction A normalized if none of these normalization rules is ap- 
plicable to A. Later, we will see that the normalization rules are invariant w.r.t. 
the concrete substitutions/residuations corresponding to abstractions. Therefore, 
we assume that we compute only with normalized abstractions in the abstract in- 
terpretation algorithm. 

3.2. The Abstract Interpretation Algorithm 
The abstract interpretation algorithm is based on several operations on the abstract 
domain. The most important operation is the abstract unification algorithm which 
approximates the concrete unification of equations occurring in clause bodies or 

6The precise meaning of the abstract elements will be formalized in Section 4. 
70ur algorithm analyzes each clause separately. If a residuation depends on variables from 

different clauses, the worst case is introduced in order to ensure the termination of the analysis. 
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The least upper bound operation is used to combine the results of different clauses 
for a predicate call: 

_LuA=A 

Aul_=A 

A~uA~={X~~V~UV~IX~~V~EA~,X~~V~EA~} 

Uiflv I flv E Al or flv E A21 

U{fl.f~A~orf~&t). 

Now, we can present the algorithm for the abstract interpretation of a residuating 
logic program in flat form. It is specified as a function ai(cu, L) which takes an 
abstract domain element (Y and a goal literal L and yields a new abstract domain 
element as result. Clearly, ai(l-, L) =I and ai(A, t = t’) = amgu(A, t, t’). The in- 
teresting case is the abstract interpretation of a predicate call ai(A, p(X1,. . . , X,)) 
which is computed by the following steps (war(t) denotes the set of all variables 
occurring in the syntactic construction E): 

1. Let C = ~(21,. . . , Zn) : - L1, . . . , Lk be a clause for predicate p (if necessary, 
rename the clause variables such that they are disjoint from Xi,. . . , Xn). 
Compute 

Acall = caZZ_restrict(A, {Xl,. . . ,X,}) 
A0 = (replace all Xi by & in Acall) (i.e., dom(Ao) = var(C)) 

AI = ai(Ao, LI) 

A2 = ai(Al, L2) 

A,, = ai(Ak_l, Lk) 
AOut = exit_restrict(Ak, {Z,, . . . , Zn}) 

Aezit = (replace all Zi by Xi in AOut) (i.e., dom(A,,it) = dam(A)). 

2. Let Akzit,. . . , AEit be the exit substitutions of all clauses for p computed in 
1. Then define ASllCCeSS = Aizi, LI . . . U AFzi,. 

3. ai(A, p(X1. . . , -G>) = ASuCCeSS U (A - Acall) if ASuCCeSS #L else J-. 

Hence, a clause is interpreted in the following way. First, the call abstraction 
is computed, i.e., the information contained in the predicate call abstraction is 
restricted to the argument variables (A,,ll). The variables of this call abstraction 
are mapped to the corresponding variables of the applied clause (Ao). Then, each 
literal occurring in the clause body is interpreted. The resulting abstraction (&) is 
restricted to the variables of the clause head, i.e., we forget the information about 
the local variables of the clause. Potential residuations which are unsolved at the 
clause end are passed to the abstraction Aout by the exkrestrict operation. In the 
last step, the clause variables are renamed into the variables of the predicate call 
(A,+it). If all clauses defining the called predicate p are interpreted in this way, all 
possible interpretations are combined by the least upper bound of all abstractions 
(A SILcceSS). In step 3, we compute the entire abstraction after the predicate call by 
combining the abstraction ASUCCeSS with the information which was forgotten by 
the restriction at the beginning of the predicate call (which is A - Acall). 
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The abstract interpretation algorithm described above is useless in case of recur- 
sive programs due to the nontermination of the algorithm. This classical problem is 
solved in all frameworks for abstract interpretation and, therefore, we do not want 
to develop a new solution to this problem, but use one of the well-known solutions. 
Following Bruynooghe’s framework [8], we construct a rational abstract AND-OR- 
tree representing the computation of the abstract interpretation algorithm (see also 
Section 4.3). During the construction of the tree, we check before the interpretation 
of a predicate call P whether there is an ancestor node P’ with a call to the same 
predicate and the same call abstraction (up to renaming of variables). If this is the 
case, we take the success abstraction of P’ (or I if it is not available) as the success 
abstraction of P instead of interpreting P. If the further abstract interpretation 
computes a success abstraction A’ for P’ which differs from the success abstraction 
used for P, we start a recomputation beginning at P with A’ as a new success 
abstraction. This iteration terminates because all operations used in the abstract 
interpretation are monotone (w.r.t. the order on A defined in Section 4) and the ab- 
stract domain is finite. A detailed description of this method is given in Section 4.3. 

3.3. An Example 
The following example is the flat form of a Le Fun program presented in [3]: 

q(Z) :- p,(X,Y,Z), X = V-W, Y = V+W, pick(V,W). 
p(A,B,C) :- C = A*B. 
pick(A,B) :- A = 9, B = 3. 

The abstract interpretation algorithm computes the following abstractions w.r.t. 
the initial goal q(T) and the initial abstraction 8 (specifying the set of all substi- 
tutions without unevaluated function calls): 

ai(8, q(T)) : 
ai(O, p(X,Y,Z)): 

ai(8, C = A*B) = {C 2j {A,B}, *]{A,B)} 
ai(0, p(X,Y,Z)) = {Z 2j {X,Y}, *]{x,y)} =: Al 

ai(Al, X = V-N = {Z if {X,Y}, X if {V,W}, *I{x,y), -I{v,w)} =:A2 

ai(A2, Y = V+W) = {Z if {X,Y}, X if {V,W}, Y if {V,W}, 
*]{x,Y}‘-]{v,w}~+]{v,w}~ =:A3 

ai(A3, pick(V,W)): 
ai(8,A = 9) = {A} 
ai({A},B = 3) = {A,B} 

ai(As,pick(V,W)) = {V,W,Z if {X,Y},X ij {V,W},Y i;f {V,W}, 
* ]{x,Y}‘-]{v,w}~+]{v,w}~ 

nor*i”e{V,W,Z,X,Y} 
ai(& q(T)) = {T}. 

Hence, the computed success abstraction is {T}. This means that after a suc- 
cessful computation of the goal q(T), the variable T is bound to a ground term and 
the residuation set is empty, i.e., the residuation principle allows to compute a fully 
evaluated answer. Similarly, the completeness of the residuation principle can be 
proved by our algorithm for all other residuating logic programs presented in [3]. 
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4. CORRECTNESS OF THE ABSTRACT 
INTERPRETATION ALGORITHM 

In this section, we will prove the correctness of the presented abstract interpretation 
algorithm. First, we relate the abstract domain to the concrete domain by defining a 
concretization function. Then we will prove that the abstract operations defined in 
the previous section are correct w.r.t. the corresponding operations on the concrete 
domain. Finally, we obtain the correctness of our algorithm by simply applying 
Bruynooghe’s framework [g] . 

4.1. Relating Abstractions to Concrete Values 

To relate the computed abstract properties to the concrete run-time behavior, we 
have to define a concretization function y : A -+ 2’ which maps an abstraction 
into a subset of the concrete domain. A difficult point in the definition of y is the 
correct interpretation of an abstraction “X if V.” The intuitive meaning is “the 
interpretation of X is ground if all interpretations of V are ground.” To be more 
precise, “X if V” describes a dependency between the instantiation of X and the 
instantiation of the variables in V, i.e., we could define 

(*) if X i;f V E A and (a,~) E y(A), then war(o(X)) C war(u(V)). 

However, this interpretation is not suitable because it does not cover the variable 
dependencies caused by residuations. For instance, if the terms X and f(Y) should 
be unified, the result of the unification algorithm is (8; {X = f(y)}) i.e., the algo- 
rithm generates a residuation instead of binding X to f(Y). On the abstract level, 
the abstraction {X ij Y} is generated. Therefore, condition (*) does not hold in 
this example. 

In order to provide an appropriate relation between abstract and concrete values, 
we have to consider also the residuation component in condition (*). Therefore, we 
extend the set waT(o(V)) by all variables which become ground if the residuations 
could be evaluated due to the groundness of variables in war(o(V)). Since the 
evaluation of a residuation may cause the evaluation of another residuation, we 
consider the closure of this extension. Thus, we define war,,,(V) as the smallest 
set satisfying the following conditions: 

1. war(u(V)) C war,,,(V). 
2. If y = f(t) E p and war@) c war,,,(V), then var(cT(y)) c war,,,(V). 

In the second condition and in the following sections, t denotes an argument se- 
quence tl, . . . , t,. For instance, if (T = 8 and p = {X = f(Y)} as in the previous 
example, then waro,p({Y}) = {X,Y}. 

With this extension, we define the relation between abstract and concrete elements 
by the following concretization function y : A + 2c: 

y(A) = { (0, p) E C 1 1. X if V E A + var(a(X)) C war,,(V) 
2. y = f(fl E p with y E dam(A) 

+ f E A or var(t) C var(o(V)) for some f]v E A). 
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In the following, we say a substitution/residuation pair (u, p) satisfies the variable 
condition X if V E A if condition 1 holds. Similarly, we say a residuation y = f (q 
in p is covered by A if condition 2 holds. 

Condition 1 implies, for X if V E A, that all variables of the current instantiation 
of X are ground if all variables of the current instantiation of V are ground terms. 
Condition 2 ensures that unevaluated function calls are covered by some element 
in A. Since an abstraction A can only contain information about variables in its 
domain, it cannot cover residuations bound to variables outside dam(A). Since we 
are interested in information about the evaluation of all potential residuations, we 
will later explicitly prove (Theorem 4.4) that residuations connected to variables 
outside dam(A) are also covered by the abstraction A at the end of the analysis. 

Due to this semantics of abstractions, it can be proved that the normalization 
rules defined on abstractions in Section 3.1 are invariant w.r.t. the concrete inter- 
pretation. The following lemma justifies the application of the normalization rules. 

Lemma 4.1. If A and A’ are abstractions with A -+ A’, then r(A) = $A’). 

PROOF. First, we show y(A) 5 $A’). Let (a, p) E y(A). We prove (u, p) E $A’) 
by a case analysis on the applied normalization rule: 

1. Let A = A0 U (2,X if V U (2)) and A’ = Ao U (2,X if V}. Since the 
only difference between A and A’ is the transformation of “X if V U (2)” 
into “X 27 V,” we have to show var(r(X)) C var,,(V). Since (a, p) E 
~(A),vur(a(Z)) = 0 and var(a(X)) C var,,,(V U (2)). Since o(Z) is a 
ground term, var(a(X)) & var,,(V U (2)) = var,,,(V). 

2. Let A = A0 U (2, fl vu(z~} and A’ = Ao U {Z, f Iv}. Since only the abstrac- 
tion element f )I/ u (~1 is affected by this transformation, we have to show: if 
y = f(t) E p with y E dam(A) = dom(A’) and var(t) c vur(a(V U {Z})), 
then wur(?) 2 vur(a(V)). Since (a,~) E y(A), vur(o(Z)) = 0. Hence, 
vu+) 2 wur(a(V U {Z})) = vur(a(V)). 

3. Let A = A’ U {f 10). If the abstraction element f 10 was a relevant condition 
for (a, p) E y(A), then y = f(i) E p with y E dam(A) and vur(fl G 0. Hence, 
f (8 is a ground function call which cannot occur in p. 

4. Let A = Ao U {X if Vl,X if Vg), A’ = A0 U {X if VI}, and VI C Vz. 
Obviously (a, p) E ?(A’) since the variable condition X if V, is omitted in A’. 

5. Let A = Ao U {f )v,,fjV2},A’ = A0 U {f/v,}, and VI C Vz. Obviously, 
(a,~) E r(A’) since each residuation in p which is covered by the omitted 
abstraction element f ( vl is also covered by f ( v2. 

6. Let A = Ao U {f/v, f} and A’ = A0 U {f}. Obviously, ((~,p) E y(A’) since 
each residuation in p which is covered by the omitted abstraction element f (v 
is also covered by the abstraction element f. 

Next, we show y(A) 2 $A’). Let (alp) E $A’). As before, we prove (a,~) E y(A) 
by a case analysis on the applied normalization rule: 

1. Let A = A0 U {Z,X if V U {Z}) and A’ = Ao U {Z,X if V). Since (0,~) E 
r(A’), vur(o(X)) C vur,,,(V) C vur,,,(V U {Z)). Hence, (g,p) E y(A) 
because “X zf V U {Z}” is the only altered abstraction element. 

2. Let A = A0 U {Z, f) vu(z)} and A’ = A,J U {Z, f Iv}_ This is similar to the 
first case. 
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3. Let A = .A’ U {flo}. Th is case is trivial since A contains the additional 
abstraction element “flo.” 

4. LetA=AoU{X~jV~,X$Vz},A’=AoU{X~,fV~},andV~GVz. Wehave 
to show var(a(X)) C_ var,,p (Vz). But this is trivial because (a,~) E ?(A’) 
implies var(g(X)) c var,,,(Vl) c war,,p(Vz). 

5. Let A = Ao U {flv,, _f)vz},A’ = Ao U {flv2}, and VI G V2. Obviously, 
(CT, p) E y(A) since A contains the additional abstraction element Al”, . 

6. Let A = A0 U {flv, f} and A’ = A0 U {f}. Obviously, (0,~) E y(A) since A 
contains the additional abstraction element flv. 0 

Due to this lemma, it makes no difference to use an abstraction A or the nor- 
malization of A if we want to prove a proposition like (a,~) E y(A). We will take 
advantage of this property in the correctness proofs for the abstract operations (cf. 
Section 4.2). 

For the termination of the abstract interpretation algorithm, it is important 
that all operations on the abstract domain are monotone. Therefore, we define the 
following order relation on normalized abstractions: 

(a) IL (Y for all (Y E A 
(b) AC A’ w 1. X if V’ E A’ + 3V C_ V’ with X ~j V E A 

2. flv E A + f E A’ or 3V’ > V with flv, E A’ 
3. f E A + f E A’. 

It is easy to prove that C is a reflexive and transitive relation which is anti- 
symmetric on normalized abstractions. Moreover, the operation u defined in Sec- 
tion 3.2 computes the least upper bound of two abstractions, and y is a monotone 
function: 

Proposition 4.1. AI u A2 is a least upper bound of AI, A2 E A. 

Proposition 4.2. If A E A’, then y(A) C $A’). 

In order to ensure the termination of the analysis, all abstract operations used 
in the abstract interpretation algorithm must be monotone in their abstraction 
arguments. If this is the case, then recomputations in the AND-OR-graph (see 
Section 4.3) starting with greater elements leads to greater results w.r.t. &. This 
property ensures the termination of the fixpoint computation for recursive calls. 
It is not difficult to show that all abstract operations defined in Section 3.2 are 
monotone. Therefore, we only state the monotonicity property of the abstract 
unification and the normalization process: 

Proposition 4.3. The abstract operation amgu is monotone in its abstraction arg- 
ument, i.e., amgu(A, tl, t2) 5 amgu(A’, tl, t2) provided that A 5 A’. 

Proposition 4.4. The normalization process is monotone, i.e., if A L A’ and B, B’ 
are the normalized abstractions of A, A’, then B L B’. 

4.2. Correctness of Abstract Operations 

Following the framework presented in [8], the correctness of the abstract interpreta- 
tion algorithm can be proved by showing the correctness of each basic operation of 
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the algorithm (like abstract unification, clause entry, and clause exit). Correctness 
means in this context that all concrete computations, i.e., the results of the con- 
crete clause entry, clause exit, and unification (cf. Section 2), are subsumed by the 
abstractions computed by the corresponding abstract operations. In this section, 
we will prove the correctness of each of these operations. 

First, we state an important property of our unification algorithm for residuating 
logic programs. The transformation rules in Figure 2 show that our unification algo- 
rithm is very similar to the classical unification algorithm for constructor terms, but 
with the difference that equations of the form y = t, where t is a ground constructor 
term, are added by rule Evaluate. This may cause additional instantiations com- 
pared to classical unification. The next proposition contains a more precise descrip- 
tion of this behavior. In this proposition and in subsequent proofs, we apply a sub- 
stitution r to a residuation p = {yl = tl, . . . ,ym = tm} which is defined by r(p) = 
{Yl = T(tl),-.. ,Ym = I), i.e., the substitution is only applied to the residuated 
function calls. This is motivated by the special instantiation rule in Figure 2. 

Proposition 4.5. Let tl and t2 be constructor terms and (a,~) E C. If the applica- 
tion of the transformation rules in Figure 2 to the equational representation of 
(c,p)andth e e u i n i - q ato t -t 2 yields the substitution/residuation pair (g’,p’) 
(and not fail), then 

1. (T’ = r o cr with a’(tl) = a’(t2) for some substitution r 
2. p’ C T(P) and var(a’(y)) = var(Z) = 0 for all y = f(q E T(P) - p’. 

Hence, the unification alggrithm for residuating logic programs computes a uni- 
fier (not necessarily a most general one) for constructor terms and may delete (i.e., 
evaluate) some residuations. This is the basis to prove the correctness of amgu, but 
for the complete proof, we need the following propositions about the set var,,(V). 

Lemma 4.2. Letvar(o(X))Cvar,,,(V) and T be a substitution. Then var(T(a(X))) 
C var,oO,,(p) (V). 

PROOF. Consider the computation of the closure var,,(V). By definition of this 
closure, there is a sequence Wi, W2, . . . , W, of variable sets with 

1. Wi = wur(u(V)), 
2. Wi+l = Wi u var(o(yJ) f or some residuation yi = ti E p with var(ti) G Wi, 
3. var(g(X)) G W,. 

We define a second sequence Wi, Wi , . . . , WL of variable sets by W,! := var(T(Wi)) 
(i= l,..., n). This sequence has the following properties: 

1. W{ = var(T(Wl)) = var(T(o(V))) 
2. w,!,, = W,! U var(T(u(yi))) for th e residuation yi = -r(ti) E T(P) with war(r 

(M) c w, 
3. var(~(a(X))) G WA. 

Hence, var(T(g(X))) C var,o,,,(p)(V). 0 

The next lemma shows that the set war,,,(V) is not influenced by the evaluation 
of ground function calls. 
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Lemma 4.3. Let p’ C p and var(a(y)) = wur(g = 0 for al2 y = f(E) E p - p’. 
Then vc~r,,~(V) = vara,+(V). 

PROOF. If some residuation element y = f(s) from p - p’ is used to compute the 
closure 2rur ,,P(V), it cannot add any new variable to this set since var(~(y)) = 0. 
Therefore, the closures war,,,(V) and v~r,,,~~(V) are identical. •I 

Now, we can prove the correctness of amgu, i.e., we show that abstract unification 
covers all possible results of the concrete unification algorithm. 

Theorem 4.1 (Correctness of Abstract Unification). Let X be a variable, t be a 
term of the form Y,c(Yl,. . . ,Y,) or f(Yl,. . . ,Y,), and A be an abstraction. 
Then for all (a,~) E y(A) and all unifiers (a’,~‘) computed by the rules of 
Figure 2 w.r.t. (a, p) and X = t, (g’,p’) E y(amgu(A, X, t)). 

PROOF. Let A,(o,p), and (u’,p’) be given as described above. We prove the 
theorem for each of the three cases for t. 

Let t = Y(# X; otherwise, the theorem is trivially true). Then 

A’ := amgu(A,X,Y) = A U {X if {Y},Y if {X}}. 

By Proposition 4.5, u’ = T o (I with O’(X) = o’(Y) and p’ c T(P). We have to 
show: (g’, p’) E y(A’). 

1. 

2. 

3. 

Since c~‘(X) = 0’(Y),var(~7’(X)) = var(o’(Y)). Therefore, (o’, p’) satisfies 
the variable conditions X if {Y} and Y if {X}. 
2 if V E A' fl A: Since (c,p) E y(A), war(o(2)) G va~,,~(V), which implies 
war(a’(2)) C_ 21arOr+f (V) by Proposition 4.5 and Lemmas 4.2 and 4.3. 
y = f(z) E p’ with y E dom(A’) = dam(A): Hence, there is a residuation 
y = f(a) E p with r(s) = E Since (a, p) E $A), f E A (which is the trivial 
case) or flv E A with var(s) C var(a(V)). The latter case implies fjv E A’ 
and var-(fl = war(r(s)) G UU-(T(O(V))) = var(a’(V)). 

Next, we consider the case t = c(Yl, . . . , Y,). Then 

A’ := amgu(A,X, c(Yl,. . . ,Y,)) 

= A u {X if {Yl,. . . ,Yn},Yl if {X},. . . ,Y, if {X}}. 

By Proposition 4.5, O’(X) = ~‘(c(Yi, . . . , Y,)), which implies war(a’(X)) = vcv 

(a’(+?, * . . , Y,))). Therefore, ((T’, p’) satisfies the variable conditions added to A. 
The remaining conditions for (~9, p’) E $A’) can be proved similarly to case t = Y. 

Now, we consider the final case t = f(Yi, . . . , Y,). Then 

A’ := amgu(A, X, f(Yl, . . ..K))=AU {Xif {~,...,Y,),~~{Y~,...,Y,}). 

If O(f(Yi,. . . , Y,)) is a ground function call, it is evaluated to a ground constructor 
term t’, and the unification algorithm simply adds the equation X = t’ to the first 
component of the equation system and the residuation component is not changed. 
Thus, Proposition 4.5 is applicable and the correctness of amgu can be shown 
similarly to case t = Y. 
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Now, we assume that a(f(Yr, . . . ,Y,)) is not a ground function call. In this 
case, the unification algorithm simply adds the residuation X = n(f(Yi, . . . , Y,)), 
i.e., 0’ = (T and p’ = p U {X = cr(f(Yr, . . . ,Y,))}. We have to show: (g’,p’) E 
-/(A’). 

1. X if {Yr,. . . ,Y,} E A’: Since X = a(f(Yr,. . . , Y,)) E p’, var(a(X)) C 
vor&{Yi,. . . , K}). H ence, this variable condition is satisfied by (u’, p’). 

2. 2 $ V E A’ n A: Since (0, p) E y(A),var(o(Z)) C VW,,,(V), which implies 
vCz?-(0’(Z)) c wu?-D,,p(v) c 7K57-o’,p~(v). 

3. y = f(Q E p’ with y E dom(A’) = dam(A): If y = f(q E p, then this residua- 
tion must be covered by some element in A c A’. Otherwise, this residuation 
must be the new element X = a(f(Yr,. . . , Yn)) which is covered by the new 
abstraction element flfy,,.,,,y,,I E A’. 0 

Next, we prove that the abstract operations performed at the entry of a clause 
are correct w.r.t. the concrete semantics. 

Theorem 4.2 (Correctness of Clause Entry). Let P = p(X1, . . . ,X,) be a predicate 
call with abstraction A and (a, p) E y(A). Let L:-B be a (renamed) clause, (u’, p’) 
be a unifier computed by the rules of Figure 2 w.r.t. (a,~) and the equation 
L = P, and A0 be the abstraction computed by algorithm ai. Then (o’,p’) E 
$Ao). 

PROOF. Let L = p(Z1,. . . , Zn). First of all, note that the unifier computed for the 
equation L = P is a trivial renaming since 21, . . . , 2, are new different variables. 
Hence, p’ = p and g’ = r o CJ with r = (2, H Xi,. . . 2, I+ Xn} (all other unifiers 
are renamings of this). 

1. X if V E Ao: By definition of call-restrict and ai, {X} U V c (21, . . . , Zn} 
and T(X) if T(V) E A. Since (o,p) E r(A),var(o(r(X))) c uurO,,,(r(V)), 
which implies var(a’(X)) C_ uur6/,p(V) = war,!,,!(V) (note that o(T(&)) = 
0’(&) for i = 1,. . . ,n). 

2. y = f(t) E p’ with y E dom(Ao): This case cannot occur since dom(Ac) = 
i&r..., Zn} U war(B) h’ h w K is a set of new variables. Hence, p’ cannot con- 
tain a residuation connected to one of these variables. 0 

Next, we prove the correctness of the abstract clause exit operations, i.e., we 
show that each substitution/residuation pair which may occur at the end of a clause 
applied to a predicate call is covered by the abstract interpretation algorithm. 

Theorem 4.3 (Correctness of Clause Exit). Let P = p(X1,. . . ,X,) be a predicate 
call with abstraction Ai, #I and (oin,pin) E y(Ai,). Let A = ai(Ai,, P) = 
A SUCCeSS U (Ain - Acall) be th e abstraction after the predicate call computed by 
the abstract interpretation algorithm ai. Let L :- L1, . . . , Lk be a (renamed) 
clause for P, and Ak be the abstraction computed for the clause end in ai. 
If b’k,Pk) E $Ak) is an extension of the initial substitution/residuation pair 
(uinr pin) computed by applying this clause, i.e., ffk = CT o oin with u(L) = u(P) 
and pk = P U U(Pd then (uk,pk) E $4. 

PROOF. Let L = p(Z1,. . . ,Zn)and7={X1~Z1,...,Xn.~Z,}. 
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FIGURE 3. OR-node for clause entry. 

1. X ij V E A: Hence, there are two cases: 

. X if V E (Ai, - Acall): S’ mce X zf V E Ai, and (gin, pin) E y(Ai,), 
~a~(%,(X)) c_ ~aTLTxn,pi, (V), which implies UCU-(Q(X)) 2 uc~r~~,~(,,,,)(V) 
C varuklPk (V) (by Lemma 4.2). 

?? X ZJ V E ASuCCeSS: Since A,,it C ASuCCeSS, there is a set V’ C_ V with 
X z;f V’ E Aezit. By definition of Aezit,7(X) 27 T(V’) E Ak and {r(X)} 
u r(V’) 2 {Z,, . . . , &). Since (a, ,Q) E -y(h), var(a(W))) 2 ~aTok,pk 
(I). Since ok(L) = ok(P), this implies var(crk(X)) 2 war,,,,,(V’) c 
varu,,pk (V). 

2. y = f(Z) E p k with y E dam(A): Since variables from the clause are not 
contained in the domain of A, the residuation y = f (2) cannot be added dur- 
ing the processing of the clause. Hence, y = j’(o E u&). Thus, there is 
a residuation y = f(s) E pin with O(S) = t. Since (gin,pin) E y(Ai,) and 
X E dam(A) = dom(Ai,),f E Ai, (which implies f E A) or f]v E Ai, 
(which implies f]v E A) with war(s) C var(~~i~(V)). In the latter case, we 
have vur(?) = war(a(s)) C war(~(c~i,(V))) = var(ak(V)). 0 

4.3. Correctness of the Abstract Interpretation Algorithm 
In the previous section, we have proved the local correctness of the basic opera- 
tions of the abstract interpretation algorithm. We can combine these results into a 
correctness proof for the whole algorithm by using Bruynooghe’s framework [8]. In 
his framework, the abstract interpretation algorithm generates an abstract AND- 
OR-tree which represents all concrete computations. To avoid infinite paths, this 
tree is a rational AND-OR-tree, i.e., if a predicate call is identical to (a variant 
of) a predicate call in an ancestor node, then this call node is identified with the 
ancestor node. The monotonicity property of all abstract operations together with 
the finite domain avoids an infinite computation in this graph. Next, we will give 
a more detailed description of the abstract interpretation algorithm. 

The abstract interpretation procedure generates the abstract AND-OR-graph as 
follows. In the first step, the root is created. It is marked with the initial goal 
(w.1.o.g. we assume that the initial goal contains only one literal) and the call 
abstraction for this goal. Then, this initial graph is extended by computing the 
success abstraction for this goal. The success abstraction A’ of an equation t = t’ 
with call abstraction A is computed by abstract unification, i.e., A’ = amgu(A, t, t’). 
To compute the success abstraction A’ of a node with predicate call P and call 
abstraction A, we distinguish the following cases: 

1. There is no ancestor node with the same predicate call and the same call 
abstraction (up to renaming of variables): First of all, we add an OR-node as 
shown in Figure 3 (HI, . . , H, are the heads of all clauses for P). Ai” is the 
call abstraction computed by our abstract operations for the entry of clause 
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. . . a h-1 Lk Ak 

FIGURE 4. AND-node for a clause. 

_:(:j 

FIGURE 5. Recursive call: P is renaming of P’, 
and Ai, restricted to call P is a renaming of A:, 
restricted to call P’. 

. . . Ain ??Aoat . . 

Hi : -. . . (i.e., A 0 in algorithm ai in Section 3.2). Then, for each new clause 
head H, an AND-node is added as shown in Figure 4 where H : -LI, . . . , LI, is 
the corresponding clause. After copying the call abstraction of the head to the 
call abstraction of the first body literal (A0 = Ain), the success abstraction of 
each literal in the clause body is computed. Then the success abstraction Aout 
of the entire clause is calculated by restricting 4k to the head variables (i.e., 
Aout is identical to A out in algorithm ai in Section 3.2). When all success 
abstractions of all clauses for the predicate call P are computed, they are 
renamed, combined by the least upper bound operation, and then combined 
with the elements of A not contained in the call abstraction of A (compare 
algorithm ai). 

2. There is an ancestor node P’ with the same predicate call and the same call 
abstraction (up to renaming of variables) (Figure 5): Then the success ab- 
straction of P’ (_-lb,, without the elements of A:, not passed to the call P’, 
i.e., A success in algorithm ai in Section 3.2) is taken as the success abstraction 
of P (or l_ if it is not available). The combination of this success abstrac- 
tion with the elements of Ai, not contained in the call abstraction of P yields 
Aout (step 3 of 1 a gorithm ai), and we proceed with the abstract interpretation 
procedure (i.e., we connect P to P’). If we reach the node P’ at some point 
during the further computation and we compute a success abstraction for 
P’ which differs from the old success abstraction taken for P, we recompute 
the success abstractions beginning at P where we take the new success ab- 
straction of P’ as new success abstraction for P. The monotonicity property 
of the abstract operations and the finite domain ensures that this iteration 
terminates. 

In [8], it is shown that this algorithm computes a superset of all concrete proof 
trees if the abstract operations for built-ins (here: unification), clause entry, and 
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clause exit satisfy certain correctness conditions. Theorems 4.1, 4.2, and 4.3 imply 
exactly these correctness conditions. Hence, we can infer the correctness of our 
abstract interpretation algorithm since we consider the same operational semantics 
(left-to-right evaluation of goals), except for the different notion of substitution and 
unification (which does not influence Bruynooghe’s general framework). 

There is one remaining problem with our abstract interpretation algorithm. Ini- 
tially, we wanted to characterize a class of residuating logic programs where all 
residuations can be evaluated at run time. However, if we analyze a program 
with our algorithm, the absence of elements of the form f and f]” in the success 
abstraction of the initial goal does not necessarily indicate that there are no un- 
evaluated residuations at the end of the computation. Due to the definition of our 
concretization function y, it may be the case that there are residuations connected 
to variables which are local to some clauses. The next theorem shows that this case 
cannot occur since all potential residuations are covered by our algorithm. 

Theorem 4.4 (Completeness of Residuation Covering). Let L be a flat literal with 
abstraction A and A’ = ai(A, L). Let ((TO, 0) E y(A) and (c, p) E $A’) be an 
extension of (a, p), i.e., p contains the new residuations which are added during 
the execution of L. If y = f(@ E p where t is not ground (i.e., it is a residuation 
which could not be evaluated), then A’ contains an abstraction element of the 
form f or f IV. 

PROOF. If y = f (5) E p, this residuation must be generated by executing a 
clause containing a residuation y = f (3) in the body. Since all concrete proof trees 
are represented by the abstract rational AND-OR-tree computed by the abstract 
interpretation algorithm (cf. [S]), this residuation must also be processed by our 
analysis algorithm which inserts the element f Ivar(2). From the definition of amgu, 
exit-restrict, U, and ai, it is obvious that this delay element will never be deleted in 
the subsequent (success) abstractions. The only possibility to delete a delay element 
is an application of a normalization rule, but this cannot happen if t is not ground 
due to the correctness of the normalization rules (Lemma 4.1). Therefore, this delay 
element or a transformed version of it (by operation exit-restrict or renaming) is 
contained in A’. 0 

Due to this theorem, our abstract interpretation algorithm characterizes a class 
of residuating logic programs (those containing no new elements of the form f 
and flv in the success abstraction of the goal) for which all residuations can be 
evaluated at run time. A concrete example for the construction of an abstract 
AND-OR-tree will shown in the next section. 

4.4. A Final Example 

The following residuating logic program is an example for a recursive procedure 
which requires the construction of the abstract AND-OR-tree described in the pre- 
vious section. The following clauses define a predicate sum(L, S> which computes 
the sum S of a list of numbers L: 

sum(C1 ,o>. 
sum([E I RI ,E+RS) :- sum(L,RS). 
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Al0 

FIGURE 6. AND-OR-tree for the abstract interpretation of sum(LO,SO). 

For instance, the execution of the goal sum ( [1,3,53 , S> yields the answer S=9. The 
concrete computation is shown in the following table: 

Goal Current Residuation Current Substitution 

sum(C1,3,51, Sl 0 0 
sum( [3,51 ,RSl) {S=l+FlS1} 0 
sum( c51 ,RS2) {S=l+RSi, RS1=3+RS2} 0 
sum ( Cl , RS3) {S=l+RSi, RS1=3+RS2, RS2=5+RS3} 0 
0 0 (RS3t-4, RS2++5, 

RSlH8, s-9 } 

We want to show that the residuation principle computes a fully evaluated answer 
for S for any given list of numbers L. In order to apply our abstract interpretation 
algorithm, we transform the program into an equivalent flat program: 

sum(L,S) :- L=[l, s=o. 

Sum(L,S) :- L=[EtR], S=E+RS, sum(L, RS). 

The initial goal is sum(L0, SO> with abstraction {LO}, i.e., it is predicate call with 
a ground first argument. Our abstract interpretation algorithm applied to this goal 
and abstraction generates the abstract AND-OR-tree shown in Figure 6. We will 
see that the tree is finite because the literal sum(L, RS) together with the call ab- 
straction part of Ag is a renaming of the root literal sum(L0, SO> together with the 
call abstraction part of Ao. In the following, we describe the computation of the 
abstract interpretation algorithm and the evolving values of the abstractions Ai. 

?? A0 = {LO}: The call abstraction of the root literal is the initial abstraction 
of the goal. 

?? Al = {L} and As = {L}: The root is an OR-node with two sons since two 
clauses can be applied to the literal sum(LO,SO). The entry abstractions for 
these clauses are computed from A0 by calLrestrict and renaming. 

?? A2 = {L}: Th e entry abstraction of the clause is also the abstraction for the 
first predicate call in the clause body. 

?? A3 = {L}: The abstraction AZ is not modified by abstract unification since 
L is already ground. 
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Ad = {L, S}: S is added to the abstraction by abstract unification since it is 
bound to a ground term after this unification. 
As = {L, S}: Th e exit abstraction of this clause is the exit abstraction of the 
last body literal restricted to the variables in the clause head. 
A7 = {L}: The entry abstraction of the second clause is also the abstraction 
for the first predicate call in the clause body. 
As = {L, E, R}: The variables E and R are ground since L is ground. This 
is computed by the abstract unification algorithm together with the normal- 
ization rules. 
As = {L, E, R, S 2.f {RS},+I{RS}}: The function call to + is added to the 
abstraction. It cannot be evaluated until the variable RS is ground. 
Alo =-L: The call abstraction part of Ag is {L} (compare definition of 
callrestrict). Hence, this predicate call is a renaming of the predicate call at 
the root. Therefore, we take the value _L as the success abstraction for this 
call since the success abstraction of the root call is not yet known. However, 
if the latter success abstraction is available and different from I, we start a 
recomputation at this point. 
AlI =1: The exit abstraction of the second clause is the exit abstraction of 
the last body literal. 
A12 = {LO, SO}: The success abstraction of the root predicate call is the 
least upper bound of {LO,SO} and I together with the elements of A0 not 
contained in the call abstraction (actually, there are no such elements). Since 
the success abstraction of the root call is now available and different from I, 
we restart the evaluation of the abstraction Alo. 
Alo = {L, RS, E, R, S}: The new value of Alo is computed from the new 
renamed success abstraction of the root predicate call ({L, RS}) together with 
the elements of Ag not contained in the call abstraction giving {L, RS, E, R, S 
‘j {R’S)> +I{RS}). This abstraction, simplified by the normalization rules, is 

the new value of Alo. 
AlI = {L, S}: The exit abstraction of the second clause is the exit abstraction 
of the last body literal restricted to the variables in the clause head. 
Al2 = {LO, SO}: The success abstraction of the root predicate call is the 
least upper bound of the renamed exit abstractions A5 and AlI (which are 
identical). Since the success abstraction of the root call is identical to the 
previous value, we need not restart the evaluation of the abstraction Alo. 
Hence, the abstract interpretation algorithm is finished. 

Since the abstract interpretation algorithm has computed the exit abstraction 
(LO, SO} for the initial goal, wc conclude by the correctness of the abstract inter- 
pretation algorithm and Theorem 4.4 that variable SO is bound to a ground term, 
and there are no unevaluable residuations at the end of a successful computation. 

5. CONCLUSIONS AND RELATED WORK 

In this paper, we have considered an operational mechanism for the integration 
of functions into logic programs. This mechanism, called residuation, extends the 
standard unification algorithm used in SLD-resolution by delaying unifications be- 
tween unevaluable function calls and other terms. If all variables of a delayed 



242 M. HANUS 

function call are bound to ground terms, then this function call is evaluated in 
order to verify the delayed unification. This residuation principle yields a nice op- 
erational behavior for many functional logic programs, but has two disadvantages. 
One problem is that the answer to a query may contain unsolved and complex resid- 
uations for which the user cannot easily decide their solvability. A further problem 
is that the search space of a residuating logic program can be infinite in contrast to 
the equivalent logic program. This case can occur if the residuation principle gen- 
erates more and more residuations which are simultaneously not solvable. Hence, 
it is important to check at compile time whether or not this case can occur at run 
time. Since this is undecidable in general, we have presented an approximation to 
this problem based on the abstract interpretation of residuating logic programs. 
Our algorithm manages information about all possible residuations together with 
their argument variables and the dependencies between different variables in order 
to compute groundness information. Hence, the algorithm is able to infer which 
residuations can be completely solved at run time. 

We can also interpret our algorithm as an attempt to compile functional logic 
programs from languages with a complete but often complex operational semantics 
(e.g., ALF [12], BABEL [23], EQLOG [ll], or SLOG [lo]) into a more efficient 
execution mechanism without losing completeness. For this purpose, we check a 
given functional logic program by our algorithm. If the algorithm computes an 
abstraction containing no potential residuations, then we can safely execute the 
program with the residuation principle, i.e., all valid answers are computed by 
the residuation principle (provided that the computation terminates). Otherwise, 
we must apply the nondeterministic narrowing principle to compute all answers. 
This method can also be applied to individual parts of the program so that some 
parts are executed using the residuation principle and other parts are executed by 
narrowing. For instance, in order to avoid the termination problem in the “reverse” 
example in Section 1, we can check the solvability of the residuated function calls 
by narrowing just before the recursive call to rev. Our algorithm can be simply 
modified to compute the necessary information to decide at compile time whether 
there may be residuated functions before recursive predicate calls at run time. 

The operational semantics considered in this paper originates from Le Fun [3]. 
The unification procedure is very similar to S-unification [5]. However, S-unification 
immediately reports an error if some residuations cannot be evaluated after the uni- 
fication of a literal with a clause head, e.g., the example programs in Section 2 and 
3.3 cannot be evaluated using S-unification. Therefore, Boye has extended this 
framework to computation with delayed residuations [7]. He has also characterized 
a class of operationally complete programs based on notions from attribute gram- 
mars. Compared to our abstract interpretation procedure, Boye’s characterization 
is mainly based on the syntactic structure of the program, while we have tried to 
approximate the operational behavior. Hence, we obtain positive results for pro- 
grams where Boye’s check fails, e.g., our method yields a positive answer to the 
completeness question of the program 

p(A,A+A). 

p(A+A,A). 

w.r.t. the initial goal p(2+2,1+1), while Boye’s check fails (since there are external 
functors in input positions). 
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Marriott et al. [21] have also presented an abstract interpretation algorithm 
for analyzing logic programs with delayed evaluation. The purpose of their work 
was to check logic programs with negation for floundering, i.e., whether a delayed 
evaluation of negated subgoals is complete. This problem has similarities to our 
residuation problem, but it is also very different due to the following reasons: 

1. A delayed evaluation of a negated literal cannot bind any goal variables since 
this literal is evaluated if all arguments are ground. In our context, it is 
important that a delayed evaluation of a residuation can bind variables in 
order to enable the evaluation of other residuations (see the example in Section 
3.3). Therefore, we have to manage the dependencies between residuations 
and their variables in order to analyze the data flow in this case. 

2. In our context, the terms contain constructors and function calls. The right 
abstraction of these terms complicates the correctness proofs of our algorithm. 

On the other hand, we cannot analyze logic programs yith delayed negation with 
our algorithm (for instance, by declaring all negated literals as functions) since we 
consider the evaluation of a ground function call as an atomic operation. However, 
the evaluation of a negated literal may cause the evaluation of other negated literals, 
i.e., it is not an atomic operation. Nevertheless, it would be interesting to extend our 
algorithm to a more detailed analysis of function calls if the functions are specified 
and evaluated in a particular formalism (for instance, by conditional equations as 
in ALF [12]). 

Since we must restrict all abstract information to a finite domain, our algorithm 
cannot manage all dependencies between residuations and their variables. If a 
residuation depends only on variables of one clause and these variables are bound 
to ground terms at the end of the clause, the algorithm detects the solvability of 
the residuation. However, if a residuation depends on local variables from different 
clauses, then the algorithm cannot manage it, and simply infers the unsolvability 
of this residuation. It would be interesting to improve the algorithm at this point 
by refining the abstract domain. 

Another interesting topic for further research is the question of whether it is 
possible to adapt our proposed method to the abstract interpretation of other logic 
languages which are not based on SLD-resolution with the leftmost selection rule. 
Such a method could be applied to analyze the floundering problem of NU-Prolog 
or to derive run-time properties of the Andorra computation rule [17]. 
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