INFORMATION AND COMPUTATION 121, 172-192 (1995)

Basic Paramodulation

LEO BACHMAIR *

Department of Computer Science, State University of New York ar Stony Brook, Stony Brook, New York 11794
E-mail: leo¢ sbes.sunysb.edu

HaRraLD GANZINGER"

Max-Planck-Institut fiir Informatik, Im Stadrwald, D-66123 Saarbriicken, Germany
E-mail: hgiermpi-sb.mpg.de

AND

CHRISTOPHER LYNCH* AND WAYNE SNYDER?

Computer Science Department, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
E-mail: lynchialoriafr; snyderiocs.bu.edu

We introduce a class of restrictions for the ordered paramodulation
and superposition calculi (inspired by the basic strategy for nar-
rowing), which forbid paramodulation inferences at terms introduced
by substitutions from previous inference steps. In addition we introduce
restrictions based on term selection rules and redex orderings, which
are general criteria for delimiting the terms which are available for
inferences. These refinements are compatible with standard ordering
restrictions and are complete without paramodulation into variables or
using functional reflexivity axioms. We prove refutational completeness
in the context of deletion rules, such as simplification by rewriting
(demodulation} and subsumption, and of techniques for eliminating
redundant inferences. € 1995 Academic Press, Inc.

1. INTRODUCTION

The paramodulation calculus is a refutational theorem
proving method for first-order logic with equality, originally
presented in Robinson and Wos [28] and refined in various
ways since that time. Two important refinements of this
method that have been developed are, first, restricting the
paramodulation rule so that no inferences are performed
into variable positions and avoiding the use of functional
reflexivity axioms [7, 27] and, second, restricting the
inference rules using orderings on terms and atoms (see
Section 3.1 for references). In addition, various mechanisms
have been suggested for simplifying clauses and removing
redundant ones. The paramodulation rule is extremely
prolific, even if restricted to non-variable positions, and it is
crucial for the practical use of the method to work out the

* Partiaily supported by NSF Grant CCR-8901322.

' Partially supported by the ESPRIT Basic Research Working Group
No. 6028 “Construction of Computational Logics™ and by German Science
Foundation Grant Ga261/4-2.

3 Partially supported by NSF Grant CCR-8901647.

§ Partially supported by NSF Grant CCR-8910268.

0890-5401/95 $12.00

Copyright «¢ 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

various possibilities for reducing the search space for a
refutation.

In this paper, we strengthen previous refinements
significantly by extending the principles underlying the basic
strategy for narrowing, due to Hullot [16], in which
inferences are forbidden at terms introduced by substitu-
tions in earlier inferences, to the case of first-order clauses in
a refutational setting. In addition, we show how to associate
with each term information as to which subterms have
already been explored, so as to direct further inferences to
the unexplored region of a term. The boundary between the
two regions is called the frontier. Theorem proving can be
viewed as a process that continually expands this frontier
in the search for a refutation. Our refinements of para-
modulation are aimed at controlling and optimizing this
exploration process.

As a simple illustration, let us consider the paramodula-
tion inference

Qlgayvfilhz,)y~ gz =P f(x, gyv)) vkix, gy) = hy
—1P(ggyv)v Qlga)vk(hgy.gyvyxhy

and possible further paramodulations into its conclusion.
Using boxes to indicate subterms that have already been
explored and at which further paramodulations are
forbidden, we obtain the following representation of the
conclusion

"1P(gg) v Qga) vk hgl_:'l, g) x IIEI

if paramodulations into variables are disallowed. The basic
restriction also forbids inferences at any term introduced as
part of the substitution,

—1P(g) v Qga) vk(, g) xh.

BASIC PARAMODULATION

These restrictions can be implemented easily either by
using a simple marking strategy (with a Boolean flag
indicating forbidden terms) or by directly implementing the
formalism of closures (ie., pairs of clauses and substitu-
tions} in which we describe our inference systems. Alter-
nately, as described in Nieuwenhuis and Rubio [23, 24], the
basic strategy can be represented by clauses with equality
constraints, e.g., P() could be represented by
P(x) [x =a], where inferences are not permitted into the
constraint (see [18]). This formulation also allows the
integration of the basic strategy with other constraint
methods.

We also show that the basic strategy is compatible with
ordering restrictions and, hence, can be applied to the super-
position calculus (see [2]) which extends a suitable notion
of rewriting to first-order clauses. Further refinements
include the use of rerm selection functions and redex
orderings. Selection complements basic constraints in that it
provides a mechanism for specifying at which positions
inferences must take place, and is a generalization of the use
of orderings to constrain inferences. Redex orderings blend
well with selection functions and rest on the observation
that the rewrite steps modelled by superposition can be
assumed to have occurred in a particular order in reducing
selected terms to normal form.

These refinements would allow us, for example, to forbid
inferences at any term positioned below a former
paramodulation inference,

ﬂP()VQ(gabvld,g)zh.

or even at any term introduced by the left premise,

-WP()V Q()vk(,g) :hEl.

We will also formally describe a technique, called variable
abstraction, for propagating information about forbidden
terms around a clause. For example, if one occurrence of a
subterm has been explored, we may propagate the restric-
tions to other occurrences of the same term,

~P(ger])v O ga)) v k([hgy].[gr]) = A].

The combined effect of all these refinements of
paramodulation is reminiscent of the set of support strategy
in resolution, in that inferences are not permitted in certain
regions of the clause set. The differences lie in the scope of
these restricted regions: parts of terms local to one clause in
the basic method, and a subset of the entire clause set in the
set of support strategy. Thus we consider this paper to be a
robust answer to a research problem posed in Wos [34]:
What strategy can be used to restrict paramodulation at the
term level to the same degree that the set of support strategy
restricts all inference rules at the clause level?

173

Another aspect of paramodulation calculi, which is at
least as important for practical purposes as refinements of
the deduction process, is the design of suitable simplification
techniques. We explore the role of simplification rules such
as demodulation, subsumption and blocking, and adapt the
framework of redundancy developed in Bachmair and
Ganzinger [2]} to our basic variants of paramodulation.
The connections between simplification and deductive
inference rules are quite subtle in this context and raise a
number of interesting questions, both from a theoretical and
a practical point of view.

This paper is organized as follows. In Section 2, we
present the technical background to the calculi, which are
presented formally in Section 3. Section 4 proves complete-
ness, and then we consider theorem proving derivations for
saturating a set of clauses and discuss redundancy in
Section 5. In Section 6, we will briefly consider the purely
equational case and apply our results to describe Knuth/
Bendix completion under the basic strategy. We conclude
with a comparison with previous and current work in
Section 7.

2. PRELIMINARIES

2.1. Equational Clauses

We formulate our inference rules in an equational
framework and define clauses in terms of multisets. A multi-
set is an unordered collection with possible duplicate
elements. We denote the number of occurrences of an object
x in a multiset M by M(x).

An equation 1s an expression s X ¢, where s and ¢ are (first-
order} terms built from a given set of function symbols .#
and a set of variables ¥". We assume the reader is familiar
with some notation, such as strings of integers, for indi-
cating positions (i.e., addresses of subterms) in a term, literal,
or clause. By ¢/¢g we denote the subterm of ¢ occurring at
position g. We also write 7[s] if s is 4 subterm of ¢, and if
necessary write [5], to indicate the position p of s in t. We
identify s = ¢ with ¢ = s (and hence implicitly have symmetry
of equality). A literal is either an equation 4 (a positive
literal) or the negation —A thereof (a negative literal).
Negative equations —({s =) will be given in the form s % .
We may, where appropriate, assume the vocabulary of func-
tion symbols to be a many-sorted signature with the usual
typing constraints for equations, terms and substitutions.
In particular, atomic formulas P(t,,..,1,), where P is a
“predicate” symbol, can be represented as equations
P(t,, .., t,) =T, where T is a unary symbol of sort “atom”
and the signature of predicate symbols is defined accor-
dingly. For simplicity, we usually abbreviate P(z,, ...t)= T
by P(t,, ... t,).

By a ground expression (a term, equation, literal, formula,
etc.} we mean an expression containing no variables. A

174

clause is a (finite) multiset of literals { L,, ..., L,,}, which we
usually write as a disjunction L, v --- v L,." A clause which
is true in any (equality) interpretation is called a tautology.
Examples of tautologies are clauses containing complemen-
tary hterals (that is, literals 4 and —4) or containing an
equation t x t.

A substitution is a mapping from variables to terms which
1s almost everywhere equal to the identity. By Eo we denote
the result of applying the substitution ¢ to an expression £
and call Eo an instance of E. If Ec is ground, we speak of a
ground instance. For example, the clause « xbvaxbis an
instance of x &b va=xy Composition of substitutions is
denoted by juxtaposition. Thus, if 7 and p are substitutions,
then xzp = (x71) p, for all variables x. We define dom(o) =
{xlxo#x}. If 0 and o are two substitutions such that
dom(0) ndom(a) = &, then we define their union, denoted
6 + o, as the substitution which maps x to x0 if xf # x, and
to xo otherwise.

2.2. Equality Herbrand Interpretations

Because we formulate our system wholly in an equational
framework, we may represent Herbrand interpretations as
congruences on ground terms. We write A[s] to indicate
that 4 contains s as a subexpression and (ambiguously)
denote by A[¢] the result of replacing a particular
occurrence of s by t. An equivalence is a reflexive, transitive,
symmetric binary relation. An equivalence ~ on terms is
called a congruence if s ~ ¢t implies u[s] ~ u[¢], for all terms
u, s, and ¢. If E 1s a set of ground equations, we denote by
E* the smallest congruence ~ such that s~ whenever
sxtek.

By an (equality Herbrand) interpretation we mean a con-
gruence on ground terms. An interpretation [/ is said to
satisfy a ground clause C if either A € I, for some equation
Ain C, or else 4 ¢ I, for some negative literal 14 in C. We
also say that a ground clause C is true in I, if I satisfies C,
and that Cis false in I otherwise. An interpretation [/ is said
to satisfy a non-ground clause C if it satisfies all ground
instances Co. For instance, a tautology is satisfied by any
interpretation. The empty clause is unsatisfiable in that it is
satisfied by no interpretation. An interpretation I is called a
(equality Herbrand) model of a set N of clauses if it satisfies
all members of N. A set N is called consistent if it has a
model, and inconsistent (or unsatisfiable), otherwise. We say
that a clause C is a consequence of N if every model of N
satisfies C.

Convergent rewrite systems provide a convenient
formalism for describing and reasoning about equality
interpretations.

! Therefore we assume that the order of the literals in a disjunction is
unimportant, Le., A v B is the same clause as B v A4; also note that A v A4 is
distinct from A.

BACHMAIR ET AL.

2.3. Convergent Rewrite Systems

A binary relation = on terms is called a rewrite relation
if s = ¢ implies u[sg] = u[to], for all terms s, r and », and
substitutions g. It is called well-founded if there is no infinite
sequence f,=>1, => -... A transitive, well-founded rewrite
relation is called a reduction ordering. By < we denote the
symmetric closure of =; by =* the transitive, reflexive
closure; and by <* the symmetric, transitive, reflexive
closure. Furthermore, we write s |} to indicate that s and ¢
can be rewritten to a common form: s =* v and r=* ¢, for
some term v. A rewrite relation = is said to be Church-
Rosser if the two relations <* and |} are the same.

A set of equations R is called a rewrite system with respect
to an ordering > if we have s> ¢ or t >, for all equations
szt in R. If all equations in R are ground, we speak of a
ground rewrite system. Equations in R are also called
(rewrite) rules. When we speak of “the rule sx~1” we
implicitly assume that s>1. By =;. (or simply =) we
denote the smallest rewrite relation for which s = 5 r when-
ever s 1€ Rand s>t A term s is said to be in normal form
(with respect to R) if it can not be rewritten by =, ie., if
there is no term ¢ such that s =>4 A term is also called
irreducible, if it is in normal form, and reducible, otherwise.
For instance, if s§,t and s > ¢, then s is reducible by R. A
substitution o is called normalized with respect to R if xo is
in normal form for each x e dom(o).

A rewrite system R is said to be convergent if the rewrite
relation =, 1s well-founded and Church—Rosser. Con-
vergent rewrite systems define unique normal forms. A
ground rewrite system R is called left-reduced if for every
rule sx 7 in R the term s is irreducible by R\{s=¢}. It is
well-known that left-reduced, well-founded ground rewrite
systems are convergent (see [15]).

We shall represent equality Herbrand interpretations in
this paper by convergent ground rewriting systems. Any
such system R represents an interpretation / defined by:
s= tistruein /iff s | t. Thus we shall use the phrase “is true
in R” instead of the more proper “is true in the interpreta-
tion / generated by R.”

2.4. Clause Orderings

In this paper, we assume given a reduction ordering >
which is total on ground terms.”> For the purpose of
extending this ordering to literals and clauses, we identify a
positive literal s =7 with the multiset (of multisets) {{s}.
{r}}. and a negative literal s % ¢ with the multiset {{s, ¢} }.

Any ordering > on a set S can be extended to an ordering
> ON finite multisets over S as follows: M >, N if (1)
M # N and (ii) whenever N(x)> M(x) then M(y) > N(y},

* We assume the implicit unary predicate T is least in this ordering.

BASIC PARAMODULATION

for some y such that y > ~. If > is a total [well-founded]
ordering,” so is > .. Given a set {or multiset) S and an
ordering > on S, we say that x is maximal relative to S if
there is no y € S with y > x; and strictly maximal if there is
no ye S\{x} with y =x.

If > is an ordering on terms, then the twofold multiset
ordering (>,/) Of > is an ordering on literals, and the
threefold ordering ({ >/}t }mar 15 an ordering on clauses.
Note that the multiset extension of a well-founded [total]
ordering is still well-founded [total]. Since which ordering
we intend will always be clear from the context, we denote
all of these simply by >. When comparing a literal with a
clause, we consider the literal to be a unitary clause. These
orderings are similar to the ones used in Bachmair and
Ganzinger [2]. For example, if > > u, then s 2 u>sx
t>s=~u In general, 14 > A, for all equations A.

In the setting in which we work we need a notion of
reducibility which takes account of the ordering on the
literals involved. We say that a literal L[s'], is
order-reducible (at position p) by an equation s=v, if
s'=sp, sp >=tp and L > sp x tp. The last condition is always
true when L is a negative literal or else when the redex '
does not occur at the top of the largest term of L. For exam-
ple. if ¢ > b >a, then ¢ b is order-reducible by ¢ x a, and
¢ # a 1s order-reducible by ¢ x b, but ¢xa is not order-
reducible by ¢ > b. Note that no equation is order-reducible
by itself. But a ground instance of an equation may be
order-reducible by another ground instance of the same
equation, as the above two ground instances of ¢=xx
indicate. A literal is order-reducible by R if it is order-
reducible by some equation in R. Likewise, a clause is called
order-[ir Jreducible at p if the literal to which p belongs is
order-[ir Jreducible at p. “Order-irreducible” is the same as
“not order-reducible.”

2.5. Closures

Basic strategies require additional information about the
terms in a clause. A frontier for a term ¢ is a set of mutually
disjoint positions in s We assume that frontiers are
associated with all terms in a clause. Paramodulation
inferences will be forbidden at any term at or below a fron-
tier position. Thus, each term is effectively divided into an
explored region (all positions at or below some frontier posi-
tion) and an wunexplored region (all remaining positions).
When displaying formulas we use boxes, as in the examples
above, to delineate the explored regions in terms. Our
proposed restrictions on paramodulation inferences are
designed to maximize the explored regions, as this cuts
down the number of inferences that can be applied to a
clause. The fundamental observation underlying the basic
strategy is that frontier positions need not be retried when

*We shall often abbreviate the parenthetical “(respectively, ...)" by

A

175

clauses are instantiated via unifiers during the deductive
inference process.

A closure is a pair C-o consisting of a clause C (the
skeleton) and a substitution ¢. Closures provide a con-
venient formalism for denoting clauses and associated fron-
tiers: C - o represents the clause Co with frontiers consisting
of all positions of variables x in C for which xo # x. For
example,

(P(x)vzxb)-{xm fi. 2 gh}

is a closure representing the clause P(fy)vgh=xh, but

which we will conventially represent as P(@) v xh A
non-variable position p in Co is called a substitution position
in C-o if it can be written as p=p’'q, where p’ is a variable
position in C. In our previous example, the term /i occurs
at a substitution position, but y does not. The term b occurs
twice, once at a substitution position.

We will occasionally extend this notation to terms,
equations, and subsets of clauses, e.g., representing a term
occurring in a closure C-o by 7-0. We speak of a ground
closure 1f Co is ground. The closure C-id, where id is the
identity substitution, represents the clause C with no
associated frontier. An instance C-ap of a closure C- o (by
a substitution p) represents the clause Cop. A closure
Co, -0, is called a retraction of C-6if 6 =0,06,.* When a
retraction is formed, we assume that any variables intro-
duced are new. For example,

(P(x)vgz'=b) - {x— fy, 2+ b}

is a retraction of the closure given in the previous
paragraph.

We say that two closures C-¢ and D -t have disjoint
variables whenever var(C)u var(Co) and var(D) var(Dt)
are disjoint. In this case, C-o and D - r represent the same
clauses and frontiers as C-p and D . p. respectively, where
p =0T

Since we are only interested in the clauses and frontiers
represented by a closures, the latter may be kept in a certain
form during a refutation. Let us say that a closure C'- g is in
standard form if for every variable v occurring in C, either
Xo =x or xo Is a non-variable. For example, the closures
given above are in standard form, whereas

Pifx.z)-{xe>p 2>y}

is not. We will assume in what follows that all closures are
kept in standard form by instantiating variable-variable
bindings whenever they arise. This is merely a technical con-
venience and has no effect on the restrictions discussed in
the paper.

*1In [23. 24]. this is called a weakening.

176

2.6. Reduced Closures

The main technical problem in completeness proofs for
paramodulation systems is that ground inferences on
ground instances of clauses (which is the level where the
fundamental properties related to completeness are proved)
do not necessarily “lift” to corresponding inferences on the
clauses themselves, as the position of the inference may be
lifted off with the substitution. The solution to this, due to
Peterson [27], has been to work with substitutions which
are reduced with respect to a suitably defined rewrite system
constructed from the set of ground instances of clauses; in
our method we carry this one step further and require that
clauses be “hereditarily reduced,” so that no inference need
be performed inside any substitution position. In other
words, the restriction that inferences not be performed at
variable positions in premises is inherited by the conclu-
sions of inferences, so that no inference need be performed
at or below a position where a variable has ever occurred
during the accumulation of substitution terms. The key to
formalizing this approach is a suitable notion of what it
means for a closure to be reduced.’

We say that a ground closure C- g is redieced with respect
to a rewrite system R (or R-reduced) at a position p if Co 1s
order-irreducible by R at or below p. The closure C-o is
simply called reduced with respect to R if it is reduced at all
substitution positions.

For example P() v | fa|~ a is reduced with respect to

the system { fa x a}, but % a is not.

A non-ground closure C- ¢ is called reduced with respect
to R if for any of its ground instances C - gp it is the case that
C - op is reduced with respect to R whenever Co - p is (e.g.,
when p is normalized with respect to R, then C-ap will be
reduced with respect to R). These definitions are extended
to closure literals in the obvious way. Note that closures
C-id with an empty substitution part are reduced with
respect to any rewrite system R. A ground clause D is called
a reduced ground instance (with respect to R) of a set N of
closures if there exists a closure C- ¢ in N such that D = Cot
and C ot is reduced with respect to R.

3. BASIC INFERENCE RULES

We shall consider inference rules of the form

* We should remark at this point that the main technical difficulties in
formalizing the “basic” concepts arise only in the context of non-Horn
clauses and in the presence of variables that occur in positive equations,
but not as arguments of function symbols, in a clause. The exposition can
be considerably simplified if one considers. say. only Horn clauses.

BACHMAIR ET AL.

where ne {1,2} and C, - p, .., C, - p (the premises)and C- 0
{the conclusion) are closures. We assume that the premises
of a binary inference rule have disjoint variables (if
necessary the variables in one of the premises are renamed
with new variables), and so may give a common name p to
their substitutions for notational convenience.

3.1. Basic Paramodulation

The inference systems we discuss consist of restricted ver-
sions of paramodulation, equality resolution, and factoring.
Let us first discuss paramodulation [28], the basic variant of
which is

(Cvs=xt)-p (LEu]lvD)-p
(L[t]vCv D)0

where the redex u is not a variable and) = po, where ¢ is a
most general unifier® of sp and wup. These are basic
refinements of paramodulation in the sense that unifiers are
composed with the substitution part of a closure but not
applied to its skeleton and inferences do nor take place at
substitution positions (by virtue of the restriction “i is not
a variable”).

Since we formulate our rules in an equational framework,
basic resolution inferences are a special case of basic
paramodulation. For simplicity in the sequel we discuss
only paramodulation, leaving the translation to the resolu-
tion case to the reader: see also Bachmair and Ganzinger
[2].

We next refine basic paramodulation along two
parameters, first using a given reduction ordering > to
restrict the first premise, and second by the use of a term
selection function which delimits the locations in the second
premise where redexes can occur. Later on, we will in addi-
tion use a redex ordering to specify which selected positions
in both premises can be assumed to be reduced.

The use of orderings may be motivated as follows.
Assume given a reduction ordering >. We say that a clause
Cvstis reductive for st if t 25 and s= ¢ is a strictly
maximal literal in the clause. For example, if s > ¢ > u, then
sxuvs=xtisreductive for s ¢, but s # uvs=tisnot. In
general, if a clause Cis reductive for s x 7, then the maximal
term s must not occur in a negative literal. If the reduction
ordering > is total on ground terms, then a reductive
ground clause

—A4yv - vTAd,vB v .- vB,vsxt

® We assume in this paper that all most general unifiers are such as
produced by the Martelli Montanari set of transformations [32]; the
reader may check that when the variables in the premises are disjoint. then

all substitutions will be idempotent.

BASIC PARAMODULATION

can be thought of as a conditional rewrite rule

Ay, oA, B, ., B, osx1

(with positive and negative conditions), where all condi-
tions are strictly smaller than s = t.” Conditional rules of this
form define a rewrite relation on ground terms (“replace s
by ¢ whenever all conditions are satisfied”), so that corre-
sponding paramodulations on the ground level can be
thought of as rewriting applied to ground clauses. Our com-
pleteness proof shows that constructing a refutation proof
can (at the ground level) be seen as the process of partially
constructing a convergent rewrite system from reductive
clauses and normalizing negative equations to identities
(which are thereupon removed).

Selection rules (generalized from Bachmair and Gan-
zinger [2]) define a minimal set of positions where inferen-
ces must be performed to achieve this end. We define a term
selection function (or just a selection function) to be a func-
tion S that assigns to each closure C a set S(C) of selected
occurrences of non-variable terms in C, subject to the
following constraints. Let us say that an occurrence of a
literal in C is selected if it contains a selected occurrence of
a term; then we require that (1) some negative equation or
all maximal literals must be selected, and (i1) the maximal
side(s) of a selected literal, and all its non-variable subterms,
must be selected. Thus, if a negative equation in C is maxi-
mal, it must be selected.

Inferences may only take place at selected terms, but we
should emphasize that a given selection rule may select
more terms than are strictly required; below we shall see
that there is an interesting tradeoff between the strength of
the selection rule and the basic restriction. Finally, it should
be remarked that with respect to negative equations, this
strategy is much stronger than the usual ordering restric-
tions. In the latter, we must allow for redexes in all maximal
equations, but according to our selection strategy, we need
only select a single negative equation. This shows clearly the
difference between the don’t care non-deterministic choices
which must be made in searching for a redex among the
negatives namely, which negative equation to work on next,
and the choices which are don’t know non-deterministic,
namely, which redex to pick in the selected term(s) in the
chosen negative equation. Essentially, our results show that
orderings are significant with regard to positive equations,
since they guide the construction of critical pairs, but with
negatives, orderings play a minimal role compared with
selection functions, since (as in SLD-resolution) the choice
of a negative atom to work on is don’t care non-deter-
ministic.

7 These systems have been introduced and investigated by Kaplan [17].

177

Based on these two methods for obtaining restrictions we
get

(Cvsxt)p (L[u}vD)-p
(L[tJvCv D)0

(Basic paramodulation)

where (i) u 1s not a variable and 0 = po, where 7 is a most
general unifier of sp and wup, (ii) the clause CO v s0) = 10 is
reductive for s ~ 1) and contains no negative selected equa-
tions (thus st/ will be selected), (iii) uf! is a selected term in
Lo~ D, (iv) LOK COv s ~1t0,and (v)if 10 is selected and
L is a negative literal 4 % v, then ufl x> v0 K 50 = 10.

We emphasize that we use selection not only to control
where inferences may take place, but also to disallow
inferences where the first premise contains negative selected
equations. It is this feature that allows us to achieve the
effect of hyper-resolution and hyper-paramodulation
strategies; ¢f. Bachmair and Ganzinger [2].

For a paramodulation inference with premises C, - p and
C, - p and conclusion D - one typically can require that
C,0# C,0 and DO ¢ C,0. The fourth condition we give
above not only strengthens this restriction, but seems also
easier to check in practice. These restrictions arise from the
induction ordering used at the ground level in the complete-
ness proof and require a more refined ordering on clauses,
as in Zhang [35], Bachmair and Ganzinger [1], and Pais
and Peterson [26], rather than just an ordering on atoms,
as in Peterson [27] and Hsiang and Rusinowitch [14].

The technique of selection rules for paramodulation can
be used to simulate restrictions on redexes based on
reduction orderings, such as standard paramodulation and
superposition. For example, ordered paramodulation as it
appears in Peterson [27] or Hsiang and Rusinowich [14]
can be obtained via a selection rule which selects both sides
of each maximal equation in a clause, and the superposition
calculus of Bachmair and Ganzinger [1] can be obtained by
selecting all maximal sides of maximal equations (and using
the equality factoring rule to be presented below). Positive
paramodulation (ie., the left premise can contain no
negatives) is obtained if the rule always selects a negative
equation if such exists. Also, certain results which have pre-
viously required special proofs are obtained as immediate
corollaries of our main completeness theorem. For example,
resolution is complete if no clause is ever resolved with itself
[10]: in the paramodulation case, we can show that com-
pleteness 1s preserved if we forbid paramodulation of a
clause into its own negative literals (but note that the con-
struction of critical pairs must allow for the paramodulation
of a clause into its own positive literals). This can easily be
seen by considering a selection rule which is invariant under
substitution (e.g., which is determined by the skeleton of a
clause only) and never selects a positive and a negative
equation simultaneously. In a later section, we shall add

178

further restrictions to paramodulation in the form of
blocking rules.

In addition to paramodulation we need an inference rule
that encodes the reflexivity of equality,

. . (Cvuzuv) p
Equality resolut ——
(Equality resolution) Cc.0
where) = pa, with o a most general unifier of up and vp and
ul) # vl a selected literal in COv uf) % v0.
We also need a variant of factoring, restricted to positive
literals,

(Cvsxitvs' =) p
(Cviztrvs =)0

(Equality factoring)

where (1) €/ = po, with ¢ a most general unifier of sp and s'p,
(1) 10 2 s and 0 2 5’0, (111) 86 ~ 10 is a selected equation
and no negative literal is selected in COv s =~ t0v s"0 = 1'0),
and (iv) if ¢@ is selected then t# and ¢#'# are unifiable.

Equality factoring is evidently sound, as the implication
t0 =1’ > 5’0 = t'#1s a logical consequence of the disjunction
S8~ 10vs'0=t'0. An alternative to equality factoring is to
use positive factoring plus the merging paramodulation rule
of Bachmair and Ganzinger [1], but the technical develop-
ment for the current system is simpler.

3.2. Variable Abstraction

Basic paramodulation, equality resolution, and equality
factoring are our core inference rules. We will also employ
an auxiliary inference rule in our calculus which can be
applied to the conclusions of inferences for expanding the
frontier of a new closure by moving skeleton terms into the
substitution,

Cltl,-o
Clx], {x—=t}o

(Variable abstraction)

where p is a non-variable position in C and x is a new
variable. We also speak of a variable abstraction ar
position p.

Obviously, we lose completeness if this inference rule is
applied at arbitrary positions, for then no paramodulation
inferences may be possible at all. The problem is to find out
at which positions variable elimination can be safely
applied. The fundamental idea here, as mentioned in the
introduction, is that it is possible to propagate certain
“basic” restrictions on redexes to other occurrences of the
same term; for example, P(aq, E|) can be abstracted to P(El,
EI), since (at the ground level) if one occurrence of a is
reduced, then so is the other. In addition, it is possible to
apply this rule during the construction of the conclusions of

BACHMAIR ET AL.

inferences, based on information about what terms (at the
ground level) can be assumed to be reduced. Before we
formalize this idea, we motivate the notion of a “redex
ordering.”

We have remarked above that paramodulation, on the
ground level, corresponds to conditional rewriting, while its
repeated application achieves normalization of ground
clauses. In this interpretation, paramodulation into
negative equations amounts to tracing rewrite proofs for the
two sides of the equation, and paramodulation into positive
equations serves to construct critical pairs, and, hence, to
allow the construction of convergent rewrite systems (our
completeness proof will be founded on this idea). Term
selection defines which positions must be considered as
possible redexes in this process. One important property of
convergent systems is that any fair strategy for finding
redexes, ie., one which does not ignore a possible redex
forever, can be used to normalize terms. For example,
searching for redexes in depth-first, left to right order is fair
in this sense. In general, one could define a function from
terms to an ordering on positions in the term, and the nor-
malization process could always use the ordering to search
for redexes. In our setting, in fact it is possible to order the
set of all positions occurring in selected terms in a closure;
when a redex is selected, then it may be assumed that all
positions lower in the ordering are in normal form; we may
formalize this as follows.

Let :# be a function which for any multiset M of (closure)
terms returns a partial order on the positions in the selected
terms in M. Thus, for any closure C, #(S(C)) is an ordering
on the positions in C where redexes are allowed in our
paramodulation rules. We will call such an ordering a redex
ordering, and denote it by <, when S and C are obvious
from context. We shall see that the ordering <, serves to
direct the search for a redex among disjoint innermost
redexes in a term. (Therefore, it is only necessary to consider
orderings which contain the subterm ordering on the terms
in M, ie,ift[r']eM, thent K1)

The essential idea is that when a paramodulation
inference is performed into a position ¢, then all selected
positions p <, ¢ can be assumed to be reduced, and hence
amenable to being moved into the substitution part of
the conclusion using variable abstraction. Thus, redex
orderings can be combined with selection functions to guide
the variable abstraction process as applied to the conclu-
sions of paramodulation inferences.

Formally, we say that a position p in the conclusion
C[1], - o of an inference is eligible for variable abstraction if,
for any arbitrary rewrite system R for which Co is order-
reducible at p, either (i) some premise or the conclusion
itself is order-reducible by R at a substitution position, or
(i1} the first (or only) premise is order-reducible by R at a
selected position, or (11} the second premise, in the case of
a paramodulation inference applied at a position ¢, is order-

BASIC PARAMODULATION

reducible by R at a selected position that is disjoint from
and smaller (with respect to < ,) than g.

Variable elimination may be applied to eligible positions
in the conclusions of inferences. These additional inferences
are optional, that is, variable abstraction need not be
applied to all eligible positions. Our completeness results
apply to all strategies for applying variable abstraction at
eligible positions. In practice, most eligible terms can be
identified by checking for the existence of terms in suitable
selected or substitution positions that are identical to
skeleton terms in the conclusion.

The technique of redex orderings is a generalization of a
similar technique used in narrowing (see [19]). Briefly, the
reason this technique does not disturb refutational com-
pleteness is that in our proof we use the fact that substitu-
tions can be kept in normal form (with respect to a suitable
rewrite system), and so normalized terms can always be
moved into the substitution. In addition, we may restrict (at
the ground level) the first premise of a paramodulation
inference, and the single premise of the unary inference
rules, to those clauses in which selected terms are nor-
malized, and may assume that selected terms in the second
premise are to be normalized using the given redex ordering
=<, so that all terms less than the redex are in normal form.
Details will be given in the next section.

To summarize, we have defined a class of basic inference
systems comprising equality resolution, equality factoring,
and paramodulation, plus subsequent variable abstraction,
which depend on the following parameters: a reduction
ordering >, a selection function S, and a redex ordering
function #. Such inference systems embed four kinds of
restrictions: (i) basic constraints preventing paramodula-
tions into those parts of a clause generated by previous
substitutions; (ii) ordering constraints allowing only
paramodulations that approximate conditional rewriting
(on the ground level); (iii) selection functions exclud-
ing paramodulations into non-selected terms and from
clauses with selected negative equations; and (iv) redex
orderings for defining the order in which inferences can be
assumed to have occurred. Basic constraints define the fron-
tier between explored and unexplored regions of a clause,
while ordering constraints and selection are mechanisms
for controlling the application of inferences at unex-
plored positions; redex orderings define conditions under
which the frontier can be expanded in newly constructed
closures. (A further technique for restricting inferences
based on reducibility criteria will be presented in a later
section.)

The soundness of the inference system presented in this
section is straight-forward and left to the interested reader.
In the next section we prove that these basic calculi are
refutationally complete in the sense that a contradiction
(the empty clause) can be derived from any inconsistent set
of clauses.

179

4. REFUTATIONAL COMPLETENESS

We prove completeness by showing that if a set of
closures N which is saturated with respect to our inference
rules does not contain the empty closure, then it is possible
to construct a model, represented by a convergent rewrite
system, for N. This means that the empty closure can be
derived from any inconsistent set of closures.

4.1. Construction of Equality Interpretations

Let N be a set of closures in standard form and recall that
> is assumed to be a reduction ordering which is total on
ground terms. We define interpretations R by means of
convergent rewrite systems as follows.

First, we use induction on the clause ordering > to define
sets of equations E - and R, for all ground instances C of
closures of V.

DerINITION 1. Let C be such a ground instance and
suppose that E.. and R have been defined for all ground
instances C’ of N for which C > ('. Then

R.= U E..
s e
Moreover,
Ec={sx1}

if C=Dvs=xris a reduced ground instance of N with
respect to R~ such that (1) Cis false in R, (ii) Cis reductive
for s > t, and (iii) s is irreducible by R . In this case, we say
that C produces the equation (or rule) s~ In all other
cases, £ = . Finally, we define R={) .. E - as the set of all
equations produced by ground instances of clauses of N.

Clauses that produce equations are called productive.
Note that a productive clause C is false in R, but true in
RV E.. The sets R and R are constructed in such a way
that they are left-reduced rewrite systems with respect to >>.
Hence, they are convergent, and so, as we have remarked
previously, represent interpretations of the set of clauses N,
and can also be used in conjunction with a redex ordering
to normalize selected terms in a closure.

We shall also use the following ancillary results in our
completeness proof.

LemMa 1. Let C=Bvs=x1 be a ground instance of N
where s = t is a maximal occurrence of an equation, and let D
be another ground instance of N containing s. If C> D and s
is irreducible by R, then R.= R,,.

Proof. If C' is any ground instance of N with
C>C'2=D, then E,=(J, for otherwise s would be
reducible by R.. Therefore Rc=Rp,ulUcs comp Ecv=

Ry. |1

180

LEMMA 2. Let C=Bvu % v and D be ground instances
of N with D= C. Then ux v is true in R if and only if it is
true in Ry, if and only if it is true in R.

Proof. If u=xv is true in R, then wl, v. Since
R-SR,<=R, we then have ul, v and wl,v, which
indicates that ¥ ~ v is true in R;, and in R.

On the other hand, suppose 1z v is false in R... If i’ and
¢’ are the normal forms of « and v with respect to R, then
u' #v’. Furthermore, if s~ is a rule in R\R,, then
s>uzu and s> v =0’ (Clauses which produce rules for
terms not greater than u or v are smaller than C.) Therefore,
' and ¢’ are in normal form with respect to R, which implies
that ux visfalse in R, and in R. |}

LemMMA 3. Let C=Bvu=zxv and D be ground instances
of Nwith D= C. If uxvis true in R, then it is also true in
Rpandin R

Proof- Use the fact that Rr< R, < R |

The above lemmas indicate that the sequence of inter-
pretations R, with C ranging over all ground instances of
N, preserves the truth of ground clauses.

CoroLLARY 1. Let C and D be ground instances of N
with D= C. If Cis true in R, then it is also true in R, and R.

Next, we show that the property of being a reduced
closure is also preserved.

LemMMmA 4. A ground closure C is a reduced ground
instance of N with respect to R if and only if it is reduced
with respect to R.

Proof. If C is not reduced with respect to R, then there
is some clause D which produces an equation s= ¢, and
some literal L in C which is reducible at a substitution posi-
tion by s =t and such that s~ ¢< L. Since s ¢ 1s strictly
maximal in D, clearly D < C, and C is not reduced with
respect to R... For the converse use the fact that R < R. |}

Finally, it will be useful in a number of places to construct
reduced closures in the following way.

LEMMA 5. Suppose C-po is a ground instance of a
closure C- p in N. Then there is a ground instance C - pt such
that (1) Cpo = Cprt, (1) Cp - T is reduced with respect to R,
and (i) Cpt is true in Ry, [R] if and only if Cpo is true in
R, [R}, for any clause D = Cpo.

Proof. Define 7 to be the substitution for which xt is the
normal form of xo by R,,. Then (i) and (iii) are evidently
satisfied. For (ii), since Cp -t is reduced with respect to
R¢,.. then clearly it is reduced with respect to R,,., so then
by the previous lemma it is reduced with respect to R. ||

BACHMAIR ET AL.

4.2. Redundancy and Saturation

We shall prove that the interpretation R is a model of N,
provided N is consistent and saturated, ie., closed under
sufficiently many applications of the appropriate basic
inference rules. In addition we shall demonstrate that the
search space can be further decreased by certain restrictions
which are based on the concept of redundancy. Roughly, a
closure is redundant if it is a consequence of smaller closures
in N. Such closures are unnecessary in saturating a set of
closures, since they will play no role in the model construc-
tion given above. In addition, it is possible to show that
certain inferences are redundant as well, in that the con-
clusions of such inferences will play no role in the model
construction.

For any ground clause C and set of clauses N, let N be
the set of ground instances C' of N such that C' < C, and
N be the set of ground instances C’ of N such that C' < C.
Now suppose L is the maximal literal in C and let R be a
(ground) rewrite system. Then we write R for the set of
rules /~r from R such that /~r<L, and R¢ for the
rules /~r=< L. (This notation is consistent with that of
Definition 1.)

For any rewrite system R, set of closures N, and ground
closures D and C, let us say that D follows from the
R-reduced part of N, il there exist ground instances
D,.,..D,of Nsuchthat (i) C> D, for | <i<k, (ii)if Dis
reduced with respect to R then so is each D,, and (iii) if each
D, is true in R”, then D is true in R .

DerINITION 2. We call a ground closure D redundant
with respect to N, if for any convergent ground rewrite
system R for which D is reduced, D follows from the
R-reduced part of N,. Whenever the set R is obvious, we
will also say that D is redundant with respect to D,, ..., Dy,
referring to the D, that imply D in the sense made precise
above.

For convenience in this subsection, temporarily call a
position selected via the given selection rule S in a ground
instance 4 - pt of a closure 4 - p from a given set N if it is
selected in A p, and analogously for the redex ordering
<

DEerFINITION 3. A ground instance of an equality resolu-
tion or equality factoring inference from N is redundant with
respect to N if, for any convergent ground R for which the
premise C is order-irreducible at substitution and selected
positions, the conclusion D follows from the R-reduced part
of N..

A ground instance

C'vsxt C

BASIC PARAMODULATION

(where p is the redex position in C) of a paramodulation
inference is said to be redundant with respect to N if either
some premise is redundant with respect to N, or else D
follows from the R-reduced part of N, for any convergent
ground rewriting system R containing the rule s ~ ¢ and for
which the positions in P are order-irreducible, where P is
the union of the substitution positions in both premises, the
selected positions in the left premise, and the selected
positions g < , p in the second premise.

Finally, a closure (or an inference) is called redundant if
all its ground instances are redundant.®

Note that an equality resolution or equality factoring
inference is redundant by this definition if its premise is
redundant. This characterization of which closures and
inferences are unnecessary in constructing a model for a set
of closures provides us with a characterization of which
closures and inferences are unnecessary in searching for a
refutation for an inconsistent set of closures. This provides
a framework for designing useful syntactic criteria for
elimination and simplification of closures.

The completeness results in this paper depend on the
properties of sets of closures in which all non-redundant
inferences have been performed.

DeFNITION 4. We say that a set of closures N is
saturated if every inference from N is redundant with respect
to V.

Saturated sets have special properties which provide for
the completeness of our inference rules.

LEMMA 6. Let N be a saturated set of closures which does
not contain the empty clause, R be a rewrite system con-
structed from N according to Definition 1, and let C=C - pt
be an R-reduced ground instance of a closure C - p in N. Then

(1) Cis true in R if (1.1) C is redundant, or (1.2} C is
order-reducible by R, at a selected position, or (1.3) some
negative equation in C is selected

(i1} If Cis false in R then it must be a productive clause
of the form C=C' vsxt (where sxt is the equation
produced), such that C' is false in R, and

(iii) Cis true in R and in R, for every D > C.

Proof. First of all we note that (iii) follows from (i) and
(i1), by Corollary 1. Therefore we prove only the first two
cases, proceeding by induction on the clause ordering >.
Suppose N is saturated and does not contain the empty
clause, and assume that properties (i)—(iii) hold for all
reduced ground instances D of N with C > D. We consider
each subcase in turn.

® For a clause or inference to be redundant crucially depends on the
choice of the ordering > and the vocabulary 2 with respect to which
ground instances are considered. In cases where we have to emphasize this
dependency we will speak of redundancy with respect to > and Q.

643:121 2.9

181

(1.1) Suppose that C is redundant with respect to
R-reduced ground instances D;, 1<i<k, of N. By the
induction hypothesis we know that each D, is true in R
(and hence in R”), from which we may conclude that C is
true in R

Let us therefore assume that C is not redundant. We
proceed by contradiction by assuming that Cis false in R..
In this case we show that there exists a ground instance of
an inference from N with C and (in the case of paramodula-
tion) a productive clause D with C > D, as premises; we
then show that the conclusion B of the ground inference
must be a reduced closure which is false in R .. Using the
induction hypothesis for (i) and (ii) we may infer that D is
not redundant. Because N is saturated the inference is
redundant; but since neither premise i1s redundant, then B
follows from the R-reduced part of N, so there exist
reduced ground instances D, --- D, of N which are smaller
than C. By the induction hypothesis, the D, are true in R,
and so B is true in R, a contradiction.

Therefore in what follows we need only provide for the
existence of the reduced conclusion B false in R, from
premises C and, in the case of a paramodulation, a produc-
tive clause D < C. Note in this argument that B need not be
a ground instance of N and we do not apply the induction
hypothesis to B.

(1.2) Suppose Cis order-reducible at a selected position
p by a rule sx¢ in R, but is false in R.. Furthermore,
assume that p is the least such reducible selected position
with respect to the redex ordering < ,, and that sx1 is
produced by a ground clause D=D'vsxt1 As sxtisin
R, C> D. Using the induction hypothesis for (i) and (ii)
and Lemma 4 we may infer that D is represented by a
reduced ground instance D - pr (of a closure D - p from N)°
which is order-irreducible at selected positions, and has no
negative selected equations; furthermore, D’ is false in R,
and s~ tis true in R.

We distinguish two cases, depending on whether p occurs
in the negative or positive literals of C.

In the first case, if C=C"vu[s], # v, then u % v>D
because u ¥ v>s=xt and sx¢ s maximal in D. If 1 is
selected, then it is irreducible by R, and since # ~ v € R, and
so u[t] g, v, then either w=s and v =1, or u >, with the
result that ux~v=s~t as required. Thus there exists a
ground instance

Dvs~t C'vuls], #¢
C'vD vu[t] #0

of an inference satisfying all the ordering and other condi-
tions for paramodulation; let B - 6 denote the conclusion of
the ground inference and B - ' be the result of some number

? Again, for simplicity, we use p and 7 for the substitutions in both
closures, since these are variable disjoint.

182

of variable abstractions applied to this conclusion. Note
that we have B0 < C because s>t and v % v > D. Now we
know, using the induction hypothesis for (ii), that D’ is false
in Rand in R.. Also u[t] =~ v is in R, as both v~ v and
s =t are. Finally, C’ is false in R, with the result that Bis
false in R . This provides for the necessary contradiction as
mentioned above, as long as we can show that Bt is
reduced.

First we verify that B. 0 is reduced. Consider how this
closure is derived from D= D pr and C=C - pr. The fact
that the premises are reduced implies that every equation in
C'v D is reduced. It remains to show that u[t] % v is
reduced. Let x be a (closure) variable in 1. If / = r € R reduces
xf), then s>t =1 Hence, s~ t>/xr, and / = r would also
order-reduce xpt in the occurrence sx ¢ in D, which is a
contradiction. If x is a (closure} variable in u]] = v but not
in t, then any equation smaller than the occurrence of
u[t] # v and reducing xf would also reduce xpt in the
occurrence of u[s] % v in C. As u[s]zv>u[t]=zv we
again obtain a contradiction.

From this it is easy to see that B¢ is reduced. This is
because all selected terms in D, and all selected terms less
than p with respect to <, in C, are reduced by hypothesis,
and because any other term abstracted must be relatively
reduced to some other substitution term by the definition of
variable abstraction. '’

This derives the contradiction in the case that position p
occurs in a negative literal. The case where p occurs in a
positive literal is completely analogous. The only significant
difference is that we know that u= v > D because either
u>soru=sand ¢ >t (since if v = s and v =t then C would
not be false in R,), so u =~ v > szt The remainder of the
argument is almost identical.

{1.3) Next, consider the case where some negative equa-
tion in C is selected. By the previous cases, we may assume
that C is not redundant and is order-irreducible at selected
positions. Again we assume that the clause is false in R,
which means that all negative equations in C must be true
in R.. Thus C must be in the form C'vs % s, where s % s
is the selected equation, since it is irreducible by R. Consider
the ground instance

C'vs s
CV

of an equality resolution inference from N (the reader may
easily check that the conditions for such an inference are
satisfied). Clearly C' < C and C is false in R... The proof
that " is reduced is trivial, since any term at a variable posi-
tion in C’ also occurs at a variable position in C, and, as

1" Observe that this inference is a ground instance of an inference from
N. and hence variable abstraction is applied only to the conclusion of this
general inference, and not at the ground level.

BACHMAIR ET AL.

with the previous case, any variable abstractions would not
change the fact that the conclusion is reduced.

(ii) Suppose that Cis false in R... From case (i), we may
assume that C is a non-redundant instance which is order-
irreducible at selected positions by R, and which contains
no negative selected equations. We also know that C is not
the empty clause. Therefore C must be in the form ¢’ v s,
where st is maximal, s>t (since C can not be a
tautology), and thus s is selected. We distinguish two
subcases, depending on whether s % 1s strictly maximal
in C.

If it is, then the clause is reductive, and since s is
irreducible in R then the clause produces s x> ¢. Since ("' is
false in R, the only thing that remains is to show that the
positive equations in ' remain false in R. Now suppose to
the contrary that C' = C” vu=x v, where u=r i1s true in R.
Since (' is false in R, we have #~ ve I\R. which is only
possible if s =« and t{. v, with ¢ > v. Consider the ground
mstance

C'vsat, sxv
C'vittuvovsxye

of an equality factoring inference, where B is the conclusion.
Note that ¢ can not be selected, since then it would be
normalized, violating the fact that ¢{, v with 7> v. Hence
condition (iv) for equality factoring is satisfied. The other
conditions are easily checked. Now, since s > v >t % v, then
C > B, but since C and the literal ¢ ¥ v are false in R, so
is B. The only thing which remains in order to derive the
contradiction as in case (1) is to show that Bis reduced. This
depends on the observation that any (closure) variable x in
t or v in the concluston occurs also in the premise in one of
the strictly larger equations s=x¢ or s=xv. Subsequent
variable abstractions, again, would keep the conclusion
reduced.

Now suppose that s x ¢ is not strictly maximal in C. Then
C’' = C" v sat, and we proceed almost exactly as in the pre-
vious paragraph. The only difference is that we proceed with
the assumption that t = v; therefore if ¢ is in the form ¢ - pz
and v in the form ¢’ pt, then tp and vp must be unifiable
(satisfying condition (iv) for equality factoring). This
concludes case (i1} and the lemma. §

This result allows us to show that the process of satu-
rating a set of closures of the form C-id will produce the
empty closure iff the set is inconsistent. (In the following
section we will discuss methods for saturation.)

THEOREM 1. Let K be a set of clauses and let N be a
saturated set of closures such that C -1d is in N for any clause
C in K and such that any closure in N follows from K. Then
K is consistent if and only if N does not contain the empty
clause. In the latter case, R is a model of K and N.

BASIC PARAMODULATION

Proof. If N contains the empty clause, K is inconsistent.
On the other hand, if N does not contain the empty clause,
R is a model of any R-reduced instance of N, as was shown
in Lemma 6. Now let Cp be a ground instance of K. We
define a substitution t by xt =1, where 7, is the normal
form of xp by R. Then C -7 is a reduced ground instance of
the closure C-id in N. Therefore Cr, and hence Cp, is true
inR |

5. THEOREM PROVING IN THE PRESENCE
OF DELETION RULES

We now discuss the completeness of methods for satu-
rating a set of closures in which we may delete superfluous
closures. The central notion of this section, that of a fair
theorem proving derivation, is introduced in Section 5.2. The
basic idea here is that at each step in the process of refuta-
tional theorem proving, we can either add a consequence of
the existing set of clauses, or delete a subsumed or a redun-
dant closure. After this definition, we present a number of
specific applications of redundancy, such as simplification
and blocking. However, our definition of redundancy does
not explain the special case of subsumption by a clause with
the same number of literals'' and so we present the notion
of subsumption first, in Section 5.1, and incorporate it more
essentially into the definition of a fair theorem proving
derivation.

Before we present these results, it will be convenient to
have a set of purely syntactic sufficient conditions for the
notion of redundancy for closures. For that purpose the
notion of “relative reducibility” of closures is significant.

DEFINITION 5. A ground closure C - g is reduced relative
to another ground closure D.-# if for any R, C-g is
R-reduced whenever D -0 is.

For example, P(g) is reduced relative to P(m). For
non-ground closures, this notion must be extended slightly
for the contexts in which we use it.

DEFINITION 6. A position ¢ in a literal L is reduced
relative to a position p in a literal L' [closure C] modulo »
if for any R and for any ground instance L't [(1], Lyt is
reduced at ¢ whenever L't [Ct] is reduced at p. A closure
D - o is called reduced relative to C- ¢ modulo n if for any R
and for any R-reduced ground instance C-f0r, D a5t is
R-reduced at all positions at which a variable x € dom(o)
occurs.

For example, the position of gfy in P(gfy) is reduced
relative to the position of gfy (modulo the identity substitu-

"It would be possible to modify the definition of redundancy to
accomodate this special case, at the cost of some additional complexity,
and so we have chosen to deal with the problem outside the framework of
redundancy.

183

tion), but not relative to the position of /v, in Q(gfy). The
closure P(@) is reduced relative to Q() modulo

{ ¥+ gx} but not modulo { y+gc}.

The notion of “relatively reduced” is rather strong, as it
requires this property to hold for any rewrite system, but
fortunately there are simpler sufficient conditions. The
essential idea 1s that relative reducibility can be assured in
all but pathological cases by checking that the respective
substitution terms in the first closure are a subset of the sub-
stitution terms in the second. For instance, a closure D - g is
reduced relative to C-# modulo # if for every position p
where a variable x € dom(o) occurs in a literal M in D, there
exists a variable y occurring in some literal L in C, such that
xay is a subterm of y@ and either L0 = Mo or L} is negative.

The only pathologies involve substitution terms at the
maximal side of a positive equation. For example, P() 15
not reduced relative to x ¢. For supposing b > ¢, the
ground instance 2 ¢ 18 reduced with respect to fhx b,
but P() 1S not.

One issue concerning closures which are reduced relative
to each other needs to be clarified at this point. If C- o and
D . 0 are two closures such that Co and D¢ are identical up
to variable renaming, and each is reduced relative to the
other, then they are said to be identical upto renaming and
under reducibility. For example, Q() v P(a, x)and Qla) v
P(IE],)') are identical in this sense. We will see later that
in our inference system such closures need not be dis-
tinguished.

We now present a set of sufficient conditions for
redundancy which are of practical significance for theorem
proving.

LemMma 7. Let D, D, .., D, be closures from a set N, and
W1y i be substitutions such that

1. Foreachi, Dy, <D,
2. Foreachi, D, s reduced relative 1o D modulo y;, and

3. For any ground instance Dt of D, Dt is a consequence
of Dint, .., Dyt Then D is redundant in N.

Proof. Let R be a convergent ground rewriting system,
and Dt be an R-reduced ground instance of D. Note that
each variable in each D, occurs in D, since D,n, < D. Thus
each D;n,7 1s ground. Now, for any ground substitution
O={x;—1;} < <, temporarily define ¢| as {x,—1},
where £} is the normal form of 7, with respect to the rewrite
system R, .. We claim that the set

Dymt), . Dyt |

satisfies conditions (i)—(iii} in the definition of redundancy.

First, for each 4, clearly D,(#,7) | < D,5;t < D, so condi-
tion (i) is satisfied. Now, suppose D, = D, - ,. Because Dr is
R-reduced, we must show that D,.o,(n,7)] is R-reduced.

184

(This is not trivial, because (#,7) | being normalized does
not of itself imply that xo,(»n,7) | 1s normalized.) Now, for
any occurrence of a variable x in D, there are two cases. If
x¢dom(s,), then xo,(n,7)]| =x(n,7)| 1s R-normalized by
definition. Otherwise, if x € dom(o;), then since D, 1s reduced
relative to D modulo x,, we know xo,{n;7) is order-
irreducible by R, and so any proper subterm is in R-normal
form (since it can not be at the top of a maximal side of a
positive equation). We conclude that xa,(5,;7) | =x0,4,1,
and so xo,(x,7)] is order-irreducible. Thus D, (n,7)| is
R-reduced. This verifies condition (ii).

Now, for (ii1) we first observe that the sequence of lemmas
culminating in Corollary 1 are true not only for models
constructed according to our definition, but for arbitrary
ground convergent rewrite systems. Thus, assume that each
D,(n,7)] is true in R'?"7 1); then it must be true in R, as
well, by the extension of Corollary 1. But then by (3) above,
Dristruein R,,. |

This set of three conditions can be used to prove the com-
pleteness of the next two deletion rules we discuss.

5.1. Basic Subsumption

First we present the form of subsumption which is used in
the basic setting. A closure C is a basic subsumer of a closure
D if there exists a substitution # such that Cy is a sub-
multiset of D, and C is reduced relative to D modulo #; it i1s
a proper basic subsumer if D is not a basic subsumer of C in
turn. Basic subsumption reduces to standard subsumption
in the case of closures with identity substitutions.

Note that non-proper basic subsumers are identical upto
renaming and under reducibility, as defined in Section 2.6. A
technical feature of proper basic subsumption which will be
used later is the following.

LEmMMA 8. The relation “is a proper basic subsumer of” is
well-founded and transitive.

Proof. The only difficulty is in proving well-founded-
ness. We map each closure C to a complexity measure
{P, M, where P is the number of non-variable positions in
C, and M is the multiset of integers {k,, .., k,}, where
var(C)={x, .., x,,} and each x; occurs k, times. The
lexicographic combination of > and >,,, is well-founded
on such pairs. If Cy = D, then C has a strictly smaller com-
plexity, since either C has fewer literals than D (reducing the
first component), # maps some variable in C to a non-
variable term (reducing the first component), or else C and
D have the same number of literals and » maps two
variables in C to some single variable in D (reducing the
second). |

When a closure Cis a basic subsumer of a closure D, then
D may be deleted from the set of closures. The technical
Jjustification for this deletion rule is that subsumed clauses

BACHMAIR ET AL.

are unnecessary in constructing a model for a set of clauses.
In most cases, this is because of redundancy.

LEMMA 9. Let C be a basic subsumer of D, where C con-
tains fewer literals than D. Then D is redundant with respect
to C.

Proof. We simply observe that C with its associated #
fits the criteria mentioned in Lemma 7. ||

The other case of subsumption we will deal with in the
next subsection. A natural question at this point is what to
do when one clause subsumes another in the standard sense
but not the the basic sense (i.e., is not relatively reduced).
That we can not naively delete such subsumed clauses in the
basic setting is shown by the next example.

EXAaMPLE .

—P(x, y)v P(x, b)
—1P(a, b)
axc

P{c, b)

Suppose we use a lexicographic path ordering based on the
precedence P> Q>a>b>c. If we resolve the first two
clauses, we obtain the clause ﬂP{'ﬁI,)'). Since this new
clause subsumes (in the standard sense) the second clause,
we might suppose that the latter clause can be deleted.
However, if we do so, the reader may verify that there is no
refutation. Note that this would not be a legal subsumption
step in the basic setting, unless we retracted —tP(EL y) to
—1P(a, y) before performing the deletion.

If we have a subsumer in the standard, but not the basic
sense, then we may retract the subsumer in such a way that
it is reduced relative to the closure subsumed. Since we wish
to keep as much of the closure in the substitution part as
possible, this means retracting just enough of the substitu-
tion part of the subsumer so as to satisfy the condition of
relative reducibility. We now discuss a simple deterministic
way of achieving this, by giving a sufficient condition for
“relatively reduced” which essentially requires that the sub-
stitution part of one closure can be overlapped in a very
straight-forward way onto the substitution part of another.

DErFINITION 7. Let s-o and ¢- 8 be closures of terms and
let us temporarily define P as the set of positions in ¢ where
non-variable subterms occur. Also, suppose that dom(a) =
var(s). We say that s - g is y-dominated by ¢ - 9, for some sub-
stitution #, written s-o—, t- 0, iff soy =10 and for each
x edom(a), if x occurs in s at position p, then p¢ P. For
equations, we say that (sxt) o=, (uxv)-8 iff either
s-o=,u-0and t-o,v-0, orif s-o=,v-0 and 1.0,
u - 0. For negated equations the definition is analogous. For

BASIC PARAMODULATION

closures of multisets of literals, we have C,-6,=, C,- 0, iff
there exists an injection ¢ from C, -4, into C, - 8, such that
ifo(L,-#,)=L,-0,,then L,-6,=, L,-8,. For closures of
clauses, we have (4 - I') -0, (1 - 0)-piff 4.0, I1-p
and I"-0=, @ - p.

We write &= ¥ to indicate that there exists some 5 such
that ¢, ¥ (in the case of closures, @ is in fact a basic sub-
sumer of ¥).

Note that this relation is not closed under substitution,
since for example Px -id Pa-id but Px-[x+—a]z Pa.

The basic idea of the relation =, is that all terms in the
closure substitution on the left side must overlap directly
onto the right side inside the closure substitution. Clearly
this is a sufficient condition for one literal, or one closure, to
be reduced relative to another modulo 5. But it is not
necessary, since for example P(, b) is reduced relative to

P(b,@), but P(, b)x_,; P(b,@). However, for subsump-
tion and simplification (to be presented below) it is a
relatively simple condition to check, and provides for a sim-
ple method for forming the minimal retract when the condi-
tion fails. Roughly, if L' -6p=L-6but L'-acz, L -0, then
we can take the union U of the set of non-vanable skeleton
positions in L’ - ¢ and in L - 0, and form the retract L" - ¢’ of
L' - o by instantiating the positions in U (equivalently, this
can be thought of as taking the intersection of substitution
positions).

We will return to another application of this test for
relative reducibility when we consider simplification in a
later subsection.

5.2. Fair Saturation Methods

Complete methods for theorem proving amount to proce-
dures for saturating a set of clauses with respect to a given
set of inference rules.

DEFINITION 8. A (finite or countably infinite) sequence
Ny, N,, N,, ... of sets of closures is called a theorem proving
derivation if the substitution part of every closure in N is
empty, and if each set N, _, can be obtained from N, by
adding a clause which is a consequence of N, or by deletion
of a redundant or a subsumed clause. A closure C is said to
be persisting if there exists some j such that for every k >/,
there exists a closure C’ in N, which is identical with C upto
renaming and under reducibility.'? The set of all persisting
closures, denoted N__, is called the /imit of the derivation.

A theorem proving derivation is called fair if N is
saturated.

This means that a fair derivation can be constructed, for
instance, by systematically adding conclusions of non-
redundant inferences from persisting closures. We can also
apply various deletion rules during this process, as redun-
dant closures and inferences stay redundant through the
course of a theorem proving derivation.

12 Naturally, C and €' may be the same closure.

185

LemMa 10. (1) If NS N', then any closure [inference]
which is redundant with respect to N is also redundant with
respect to N'.

(i) If NN’ and all closures in N'\N are redundant
with respect to N', then any closure [inference] which is
redundant with respect to N' is also redundant with respect
to N.

Proof. Itis sufficient to consider only the case of ground
instances of closures and inferences. For (i), the result is
trivial for both closures and inferences, since N <€ N'. Thus
consider (i1) in the case of closures. Let a ground instance D
be redundant with respect to N’, suppose an arbitrary R is
given, and assume that we choose the set D, ..., D, as the
minimal such with respect to <,,,,,. If we can prove that no
member of this set is itself redundant wrt N’, then D is
redundant with respect to N. Thus, suppose some D, is
redundant with respect to a set E,, .., E, of ground instan-
ces of N'. But then we can show that D 1s redundant with
respect to

D,,..D, \,E,, ..E,.D .D,.

FTEy RN

Clearly conditions (i) and (ii) in Definition 3 are still
satisfied; and if each E, is true in R¥, then D, is true in R, ,
and thus (by Corollary 1) D, is true in R and so each of
the D, 1 <i<k, is true in R?, and the original condition
(1i1) applies; thus our original set was not minimal, a con-
tradiction.

Next we consider part (ii) of the lemma in the case of
inferences. The case of redundancy on account of redundant
premises is covered by the previous paragraph. Thus, con-
sider an inference from N' with premises C,.--C, and
conclusion C, which is redundant in N’ by virtue of a set
{D,--- D} of instances of N" with the properties specified
in the definition of a redundant inference. As above, we may
assume that no D, is redundant, which means that
{D,---D,} = N and the inference is redundant in N. |

This shows a fundamental property of redundancy:
redundancy is preserved if additional closures are added or
if redundant closures are deleted. Redundancy is a syntactic
means of determining if a clause is unnecessary in the pro-
cess of saturating a set, and has as special cases most of the
common deletion rules used in theorem provers. There are
some instances of deletion rules which can not be proved
complete using the notion of redundancy we employ, for
example (as mentioned above) the special case of subsump-
tion by a closure with the same number of equations.
However, such closures are unnecessary in constructing a
model for a set of closures. The main completeness result of
the paper may now be given.

186

THEOREM 2. Let Ny, N, N,,.. be a fair theorem
proving derivation. If \J, N, does not contain the empty
closure, then N is consistent.

Proof. Since N is saturated and does not contain the
empty closure, by Lemma 6 we can construct a rewrite
system R with an associated interpretation for the set. It
remains to be shown that this yields a model of |J, N,, from
which we conclude that N, is consistent. It suffices to show
that R is a model of any ground instance C of {J; NAN, .
There are two cases.

Suppose such a C is not redundant in {J; N;. Then by
Lemma 10(1) it can not be a ground instance of a closure
which was redundant at some finite stage N,. The only
remaining possibility is that C is subsumed by some ground
instance ' of | J; N, with the same number of literals. Now,
by Lemma 8, we may assume that C’ is the minimal such
under the proper subsumption relation, and so there is no
C” which properly subsumes C'. Since €’ can not be redun-
dant in |); N; (or else so would be C, since (' is reduced
relative to C), then it must be in N , and hence " and C are
true in R.

Next, suppose C is redundant with respect to | J; N;. By
Lemma 10(ii) it is redundant with respect to R-reduced
ground instances D, --- D, of {J; N, which are not them-
selves redundant. But then by Lemma 6 and the previous
paragraph, each D, is true in R, and so C is true in R. This
concludes the proof. |

5.3. Basic Simplification

Simplification techniques in our calculus can be designed
and justified using the sufficient conditions for redundancy
developed in a previous subsection. The main problem, as
with subsumption, is to insure that the relative reducibility
criterion holds, however, we also wish to preserve as much
of the constraint of the closure as possible during the sim-
plification process, and this causes some additional com-
plications. We present two versions of simplification, the
first a very general rule using variable abstraction, and a
second version based the sufficient condition = which
avoids variable abstraction.

Let D[!'], -0 be a closure with /" a non-variable skeleton
term, which is order-reducible at p by an instance lop ~ rop
of a closure equation (/xr).-¢ from N which is reduced
relative to D[/'],- 0 modulo p and such that lop >rap.
Then we can basic simplify this closure into the form

D[rp] - apb.

Then we perform variable abstraction of this new closure
wrt the old closure. (Note that by the assumption of
variable disjointness for closures, and by the idempotence of
the substitutions, opl =0+ ap.)

BACHMAIR ET AL.

The simplified version of the closure D is added to the set
and the original can then be deleted because (as we show
below) it is then redundant. The main difficulty is in
insuring that the new closure and the simplifier are reduced
relative to the original D, modulo the matching substitu-
tion. If the simplifier does not satisfy this condition, then we
can form a retract which does. Naturally, we would wish to
retract as few positions in the simplifier as possible. An addi-
tional complication is that is that some variables in / may
not be bound by g, and if these also occur in r, then we must
instantiate them when r is inserted into the simplified
closure to insure that it is reduced relative to the old one.
For example, we can not simplify P(f(a))-id by (f(x) =
g(x))-id to obtain P(g(x))- {x — a}, but must instantiate x
by the matching substitution to obtain P(g(«)). The infor-
mation about substitution positions in the original closure
which is lost during this process can then be recovered by
variable abstraction.

An example may perhaps clarify this rule. Suppose a
closure

Pf(g, h(@)) = Pflgw, hn') - {wrsa, w' +— hb}

is to be simplified by a closure

Six | hhz]) = k., [z

=flx, y)xk(x, p)- { y+ hhz}.

Then the matching substitution is p= {x+>ga, z+> b},
however we must take a retract of the rule in order to per-
form the simplification. For example, we may form the new

rule
e h([Rz]yy > ke m(hz

=fix, hvy = k(x, ho) - {v— hz}.

Now we have relative reducibility modulo p and may sim-
plify the literal to

Pk(ga, h(|hb))) = Pk(ga, hv) - {v— hb}

according to our rule (we have surpressed useless bindings).

However, note that we have lost the fact that a is con-
sidered to be irreducible by the original closure. Thus we
could abstract out the ¢ to obtain

Pk(gla]. i[hb])) = Pk(ge', hv) - {v' = a, v hb}.

Our first version of simplification, in combination with
variable abstraction, is the most general form of simplifica-
tion rule in our calculus.

However, if the condition — is used to insure relative
reducibility, then certain details of the general method

BASIC PARAMODULATION

above become more concrete. The idea here is similar to the
case of subsumption: we must insure that the term in the
simplifier is dominated by the term in the clause being
matched, and could form the retract of the simplifier by
taking the intersection of the non-variable substitution
positions in /' - # and /- ¢. In the same spirit, we would also
need to form a retract in which var(r) < var(l).

In fact, in the example above, we formed the retract in this
way to obtain relative reducibility via the condition that

fix hey ez, flgw, w'y-{wia, w'—hb}.

In this framework we can express the variable abstraction
process directly in the simplification rule. Let us suppose we
add the conditions that var(r) S var(/) and /-0, {" -8 in
our formulation of simplification, so that p is a matcher of
lo onto /'f). Let p, ..., p, be the positions of all occurrences
of variables in /o. The matcher p binds these variables to
subterms of /'0). The only problematic variables are those
such that for every occurrence of x in /o at position ¢, ¢ is
a non-variable postition in /'; for all other variables y, some
vp occurs at a substitution position in /- € and hence can be
preserved in the substitution part of the simplified term. For
problematic x, we can not assume that the whole term xp is
reduced relative to the clause being simplified. Our original
version of simplification solved this in brute force fashion by
simply instantiating each such term by replacing the redex
by rp (the problematic variables are all in dom(p)).
However, as demonstrated above, we lose information
about the portions of such problematic xp which are known
to be reduced by virtue of overlapping substitution posi-
tions in /- #. To calculate the “minimal instantiatiation”
rp’, for each vanable xewvar{lg) occurring at positions
g1+ 4. i any ¢, occurs at a substitution position of ¢ - 0,
then define xp’ = x; otherwise, let xp’ be the most specific
generalization (see [15]) of the terms /'/g,, ..., I/g,,. Thus
the problematic variables are exactly dom(p'). Since
xp=Ujq) 0= ... =(l"/q,,) 0, then for each xedom(p’),
xp' contains only variables already occurring in /', and
xp'0=xp. Now, for each problematic variable x, the sub-
stitution postitions in xp’- & are relatively reduced to the
closure being simplified, since they are a part of §. Therefore
we reformulate the simplification rule so that the simplified
clause is of the form D[rp’']-opf! and do not perform
variable abstraction. This implementation of basic
simplification reduces to standard simplification when
og=0=1id (cf also the complete version of simplification
used in basic narrowing as in Nutt et a/. [25], where o = id).

For example, in simplifying f(A(x, b), h(a, ¥))- {x+>a,
¥y b} by (f(z,) =) - id, with the matching substitution
p={z—hia, b)}, our original rule would give us a reduc-
tion to A{a, b)-id before variable abstraction produces
A 3"y - {x > a, ¥ +— b}, We may perform this reduction
directly by taking the most specific generalization /({x, y) of

187

hix, b) and h(a, y), and forming p’' = {z h(x, _v)} (note
that -p'0="h(a, b)=zp), we would simplify the term to
hx,p)-{xa, y—b}.

Note that in the context of “eager” application of the
variable abstraction rule to conclusions of inferences, the
terms /'/q,, .., I'/q,, would all be identical and the use of
most specific generalization would not be necessary. In fact,
most of the fussy details above are only necessary to avoid
a special requirement that variable abstraction be so used.

To sum up, when using the sufficient condition = for
relative reducibility, we can preserve as much of the original
constraint on the simplified closure as possible by instan-
tiating the replacement term r by just as much of the
matcher p as overlaps only on the skeleton of the clause
being simplified when the match from /o onto /' is
calculated, the portion overlapping ¢/ being already “safe”
for abstraction. The point here is to preserve as much
information about the frontier of a closure as possible
throughout the simplification process.

The justification for deleting a clause after a simplified
version has been constructed is again that it is redundant.
The proof is again a routine verification of the conditions in
Lemma 7to show that the original closure is redundant in
the context of the simplifier and the newly simplified closure.

LemMma 11. Let C = (I~ r)o, D' = D[I'] 0, D" =
D[rp]-apl, and D" = D[rp'] - opl be as above. Then D’ is
redundant with respect to C and D", and with respect to C
and D"

As with subsumption, the standard notion of simplifica-
tion (i.e., where relative reducibility does not hold) is incom-
plete in the basic setting, as the following example shows.

EXAMPLE 2.
P(f(x)vfixyxb
—1P(f(a))
axc
fle)# b

We assume a lexicographic path ordering based on the
precedence P>f>a>b>c, and suppose the selection
rule simulates superposition, as discussed in Section 3. Let
us assume that saturation begins with resolving the first
onto the second clause. This produces a closure,f() x b,
which we use to simplify the second clause, to obtain

PUfx)vfix)xb
—P(bh)
axc
fle) b

188

From hereon it is impossible to derive the empty clause by
basic superposition, as the calculus does not admit a super-
position of a > ¢ intof() xb.

5.4. Basic Blocking

The sufficient conditions for redundancy given in
Lemma 7 are fairly general, but do not provide for all
deletion rules which we would like to implement. Two other
rules we will discuss are essentially a kind of tautology
deletion: if we know that for every model represented by a
convergent rewrite system R, every R-reduced instance of a
closure C is true in R, then C can be deleted, since it is
redundant by our definition. The first rule, blocking, occurs
when there are no R-reduced instances and also can be
extended to a rule for blocking inferences.

The main idea in this subsection is that the generation of
simplifiers in the process of saturating a set of closures
allows us to reason to some degree about the model con-
structed for the “final” saturated set. Briefly, if a simplifier
I =~ r appears, and /o > ro for some g, then any occurrence of
o in a clause will represent the location of a term which is
reducible with respect to the R constructed from the
saturated set. This means that if /o occurs at a substitution
position, then the closure is not reduced and hence not
necessary in the construction upon which our completeness
result rests.

DeFINITION 9. Let us call a instance lop ~rap of a
closure (/= r) o from N a basic simplifier instance of N if
lop > rop. A closure C-81s blocked with respect to a set of
closures N if it is order-reducible at a substitution position
by a basic simplifier instance of & which is reduced relative
to C- 0.

Note that relative reducibility always holds in this case if
var(r) < var(l). Blocked closures can always be deleted from
a set.

LEMMA 12. Blocked closures are redundant.

Proof. Suppose C - 0 1s order-reducible at a substitution
position in a literal L - 0 by (/~r)-op. For notational sim-
plicity let us assume that the closures are ground (otherwise
we would consider ground instances via some ground sub-
stitution 7). Thus suppose C-8 is reduced with respect to
some R; we claim that (/= r) - op satisfies conditions (i)-(iii)
in the definition of redundancy. Clearly (i) and (ii) hold.
Now suppose (/xr)-op is true by virtue of equations in
R no larger than itself; then the term lop is reducible by
an equation in R no bigger than /op ~ rop. But then again
L -0 would be reducible at a substitution position by a
smaller equation. In either case this implies that C.0
was not R-reduced, a contradiction. Thus (iii) must hold
trivially. |

BACHMAIR ET AL.

In blocking, the left side of a rule is trivially reduced
relative to the substitution term which it matches modulo
the matching substitution p; thus we need only verify that
the right side is relatively reduced. A simple way to ensure
this, as mentioned above, is to verify that var(r) < var(l) or
form a relatively reduced retract. An example which shows
that the relative reducibility of the right side is necessary in
blocking may be framed as follows (a similar example could
be constructed for simplification).

ExampLE 3.

P(a, b)
TPx, YY) v Qlx, f(3))

a, x)vazxx
flby=c
—1Q(a, c)

Suppose an ordering based on the precedence P> Q >
R>a>f>b>c. If we resolve the first two clauses, we
obtain the clause Q(E], J(|8])). Then if we resolve this new
clause with the third clause, we obtain the clause a =~ ,
which blocks Q(v fi (@)). Since the variables of the right
hand side of the blocking equation are not in the left hand
side, the equation should be instantiated. If we do not per-
form the instantiation, (/) =~ ¢ blocks a & . Therefore,
both of the new clauses can be deleted; we are left with the
original set of clauses, and because of fairness, no more
inferences need be performed. We have not found a refuta-
tion, although the original set was unsatisfiable.

Note that an inference

ClpC”p
c.0

is redundant by definition if one of the closures C,8---C, - 6
is blocked. It is possible in addition to show that certain
additional inferences can be blocked during the saturation
of a set of clauses; this is essentially a generalization of the
technique of blocking due to Slagle [29] (see also [20, 14]).

DermniTION 10. An equality resolution or equality fac-
toring inference with premise C-p and conclusion D -8 is
blocked in N if C-0 is blocked or if C- 6 is order-reducible
at a selected position by a basic simplifier instance / > r-op
of N which is reduced relative to the substitution and
selected positions in C- 6.

Consider a paramodulation inference

(C'vsxt)-p
D0

C[S’]p P

BASIC PARAMODULATION

(where p is the redex position), let C; =(C'vs=x1t)-6, and
let C,=C[s'],-0. Define P as the union of the selected
positions in C, the selected positions ¢ < , p in C,, and the
substitution positions in both these closures. The inference
18 blocked in N if

(i) itis order-reducible at a position in Pin C, or C, by
a basic simplifier instance as above of N which is relatively
reduced to the positions P, or

(ii) it is order-reducible in C, by the instance s =< 10,
at either a selected position ¢ < , p or at a substitution
position. '

Note that case (1) includes the possibility that either C, or
(', is blocked (as a closure). The reader should compare this
definition with the definition of a redundant inference given
previously. As explained above, the fundamental idea here is
that the equations used to do reduction can be assumed to
be true in the model R, and hence indicate the presence of
reducible terms. Note that for a simplifier, we can use an
arbitrary instance, whereas in part (ii), we must use the
instance sf x tf) generated by the paramodulation inference
(i.e., it can not be further instantiated). This is because any
instance of a positive unit clause must be true, but we do not
know which instances (if any) of s0 x 1} are true.

LemMa 13, Blocked inferences are redundant.

Proof. The case where the premises are blocked is trivial
by the definition of a redundant inference. For the other
cases it if sufficient to consider ground inferences. Thus, con-
sider an equality resolution or equality factoring inference
with conclusion D -6 and with a premise C- € which is
order-reducible at a selected position by a basic simplifier
ground instance /x r reduced relative to the selected and
substitution positions in the premise. Then for any R for
which C- # is reduced at substitution and selected positions,
we can show that / = r satisfies conditions (1)—(ii1) in Defini-
tion 3. The only difference from the similar argument in
Lemma 12 is that we consider selected positions in addition
to substitution positions.

Now consider a ground paramodulation inference with
premises (C, vsxt)-0 and C,[s],-¢ and conclusion
D - 0, and which is reducible at a position in P as specified
in case (1) by basic simplifier ground instance / = » which is
reduced relative to the positions P. Again for any R we can
show that /= r satisfies conditions (1)-(ii1) in Definition 3,
by considering reducibility at substitution and selected
positions. If the inference is order-reducible by s = t0) at a
position as specified in case two, the argument is identical,
except that we consider a rewrite system R containing
s0=t0. |

Under certain very natural conditions, selection rules can
be used to precalculate which clauses will cause inferences to

189

be blocked, and so the work in actually constructing the
inferences and checking these conditions can be saved. For
example, if the selection rule is invariant under substitution,
then a clause which is simplifiable at a selected position ¢
will form a blocked inference whenever it is either the first
premise or else the second premise of a paramodulation
applied at a position bigger than g¢.

In addition, it will sometimes be possible to perform
simpler checks for blocking when the set of simplifiers has
special properties. For instance, if a set of simplifiers fully
defines a function symbol f in the sense that every ground
term containing f'is reducible by a basic simplifier instance,
then it is sufficient simply to check for the existence of fin
substitution and selected terms when blocking.

5.5. Basic Tautology Deletion

Another deletion rule which can be shown to be correct
using the notion of redundancy is tautology deletion. For
example, a simple kind of tautology in paramodulation has
the form Cv —14v A or the form Cvs=xs, and can be
shown to be redundant with respect to the empty set of
closures. This is because a clause which is always true in any
model is unnecessary in the construction of models. Thus
any tautology can be deleted. In our setting, in addition, it
is possible to define another kind of tautology by virtue of
the fact that we represent models by convergent rewrite
systems and require closures to be reduced (at the ground
level) in our completeness proof. This implies that for any
convergent rewrite system R, an R-reduced ground equa-
tion of the form (x = s} a, where xvo > so, must always be
false with respect to R, since any rewrite proof between the
two sides must reduce xo. When such an equation occurs
negatively in a clause C, then C must be true with respect
to R.

DEerFINITION 11, A clause of the form (Cvx ¥) -01is a
basic tautology if xo > so.

A routine verification of the conditions for redundancy, in
the case where the set {D,, .., D,} is empty, gives us the
following result.

LEMMA 14. Basic tautologies are redundant in any set N.
It is also possible to do a similar check during the

construction of an inference

Cl_p...C".p
C-0

on closures. If any of C,---- C,,- # are tautologies or basic
tautologies, then the inference is redundant and need not be
performed.

190

6. BASIC COMPLETION

We next look at the relationship between the Knuth/
Bendix completion method and saturation up to
redundancy. One question is under what circumstances a
saturated set of equations is convergent (and not just
ground convergent). In this section we consider only
positive unit clauses, which for simplicity can be thought of
as equations. (Since we will only reason about saturated sets
below, we need not consider closures, but only the clauses
represented by them.)

By a basic completion procedure we mean any procedure
that accepts as input a set of equations £ and a reduction
ordering > and generates a fair theorem proving derivation
from E in which all deduction steps are by basic
paramodulation and all deletion steps are by basic sim-
plification, basic subsumption, or blocking. We have shown
that the interpretation generated from the limit £, of a fair
derivation is a model of £ which can be represented by a
convergent ground rewrite system R consisting of certain
ground instances of E,. Thus, the set of all orientable
ground instances of £ (that is, the set of all instances so x 1o,
for which so > to) is convergent on ground terms. In this
sense, saturation of a (finite or recursively enumerable) set
of equations up to redundancy under the basic strategy may
be thought of as a basic variant of the ordered completion
procedure.

An interesting situation arises when all equations in £,
are orientable with respect to »>. We will show that in that
case, £ is actually convergent on af/ terms. Let # be the
given set of function symbols and 7 be the given set of
variables. We first introduce a set of new constants %, such
that a bijection 1: ¥~ — % exists. Furthermore, let x: ¢ — .#
be the function that maps each constant in % to the same
minimal (with respect to >) constant in %,

The reduction ordering > can be extended to an ordering
>.on.J(F U¥, v} as tollows: s >, t if and only if either
K(s)>k(t) or else w(s)=n(t) and 8>, 1 (Here >,
denotes a lexicographic path ordering based on a total well-
founded precedence relation on # U % and the mapping «
is extended from ¢ to .7 (.# U %) in the usual way.) Note
that >, is indeed a reduction ordering that extends > and
moreover is total on the set of ground terms .7 (# L %)

(cf. [4]).

LEMMA 15. Let > be a reduction ordering that is total on
T(F) and E be a set of equations between terms in
T(F,), such that s >, for all equations s ~ t in E. Then,

Sfor all terms uand vin T (F, 7y with (u) = .-, 1(v) we have
U=>px 0.

Proof. Suppose u and v are terms of the form u[so] and
u[to], respectively, where s~ is an equation in £ and

BACHMAIR ET AL.

(1) >, 1(v). We have either s >t or t >, so that k(1(u)) #
r{i(v)). This implies w(i(u}) > x(2(v)), from which we may
infer s >t and hence u >v. ||

We have the following result.'”

THEOREM 3. Let > be a reduction ordering that is total
on T (F). Let E be a set of equations between terms in
FT(F.+Yand E | be the limit constructed by a basic comple-
tion procedure for inputs E and >. If s > 1, for all equations
st in E, | then E_ is a convergent rewrite system on
TAF,).

Proof. First observe that any fair derivation from E with
respect to > (over the set of ground terms .7 (.#)) can also
be interpreted as a fair derivation from E with respect to >,
(over the set of ground terms .7 (F u %)). The limit £, of
the derivation is thus convergent on all ground terms in
J(F %) We claim that it is also convergent on
T(F,).

Ifu and v are terms in .7 (F, '), such that w <} v, then
fu) <> 1(v) and, by ground convergence, (1) { o~ 1(v). By
the above lemma, we get ul,- v, which completes the
proof. |

The substitution positions in the rewrite systems
produced by basic completion have no significance when
such systems are used for reduction; however, it is
interesting that when these systems are used for basic
narrowing (see below), substitution positions can be added
to the positions at which narrowing is forbidden. This can
be easily seen by recasting narrowing problems of the form
RE3d(sx1)? in the form of a refutation of the set
R {s # 1t} using the inference systems presented here; see
also Chabin [8].

7. SUMMARY

In this paper, we have defined a framework for
paramodulation (and completion) which depends on a
reduction ordering, a selection function, and a redex
ordering to restrict inferences along several dimensions. The
“basic” strategy forbids inferences into substitution posi-
tions. Ordering restrictions work both at the level of clauses,
at the level of literals, and at the level of terms to restrict
inferences. (We remark here that it is possible to refine the
notion of selection in a way analogous to the notion of a
“complete set of positions” in Fribourg [12]. Essentially,
we only need to select positions which include some redex at
the ground level so that we may provide for an inference in
the completeness proof. The definition of selection given in
this paper is a very general one which assumes no special
information about the clauses. With more information, for

""We remind the reader of the caveat expressed in the footnote to
Definition 3.

BASIC PARAMODULATION

example in the presence of additional constraints on clauses,
it may be possible to restrict selection.) Selection is par-
ticularly significant in defining restrictions on inference
positions in negative literals, whereas orderings are more
significant on positive literals. Finally, redex orderings on
selected positions define reducibility criteria on positions in
clauses. These results can be thought of as defining the fron-
tier between the explored and unexplored parts of the clause
and for controlling the application of inference rules in the
unexplored regions. In addition to the standard inference
rules, variable abstraction can be performed to extend the
basic restriction on closures, and a variety of deletion rules
which implement a very general notion of redundancy have
been presented.

The basic strategy was introduced explicitly---as far as we
know—for the first time in Russia by Degtyarev [9], who
sketches a basic strategy for paramodulation, but we do not
have any detailed information about his calculus. It was
introduced in the West in a more comprehensive way by
Huliot [167, and further studied by Nutt er al. [25]. This
latter paper shows that the basic strategy conflicts to some
degree with simplification, and a method for dealing with
this was described. In addition, various of the techniques
described in this paper, such as selection, blocking non-
reduced closures, and variable abstraction, were described
in a comprehensive framework. Redex orderings are a more
general form of the Left-to-Right Basic Narrowing rule of
Herold [13] and Bosco er al. [6] (see also Bockmayr et al.
[57). The current paper can thus be thought of as an exten-
sion and development of techniques discovered first in the
narrowing framework to the full first-order calculus in a
refutational setting.

Plaisted has remarked to us that some features of Brand's
modification method [7] are reminiscent of the basic
strategy, and the theorem prover described by Nie and
Plaisted [22], which uses a similar transformation, also
avoids paramodulation into substitution terms. A critical
pair criterion similar to the basic strategy is described in
Smith and Plaisted [30]. McCune [21] has conjectured
that it 1s never necessary to perform paramodulation inside
Skolem functions. Indeed, this refinement is a special
case of basic paramodulation, and hence the conjecture
1s a corollary of our results. More generally, (basic)
paramodulation inferences need never be applied to proper
subterms of function symbols, such as Skolem symbols, that
occur in the input clauses with just variables as arguments.

Nieuwenhuis and Rubio have also independently
developed an inference system for completion and for
refutational theorem proving based on basic superposition
and proved completeness in the context of deletion rules
such as subsumption and simplification [23]. In addition,
they have developed a comprehensive framework for
ordering constraints in combination with equational con-
straints (essentially the same as our closure substitutions)

191

and analysed the role of initial constraints and problems
with deletion in this framework [24 7. Although we have not
stressed it here, this paper can be seen as a contribution to
the theory of constrained rewriting and deduction (see
[18]). The current project grew out of a lemma necessary in
the proof of Snyder and Lynch [31] and was presented in
a preliminary form at the 4th Unification Workshop in
Barbizon, France without deletion or blocking rules, and
using a very different style of proof. The current paper is
a long version of the abstract presented at the Eleventh
Conference on Automated Deduction [3].

Our results, in addition to providing a means of making
paramodulation theorem provers (and related systems,
such as completion procedures) more efficient, show that
substitutions, which are produced initially as most general
unifiers which calculate the intersection of ground instances
of universally quantified clauses, in fact play on/y this role in
theorem proving, in the sense that they need not be subject
to equational inferences themselves. We view these results as
a robust answer to the question posed by Wos and cited in
the introduction in the following sense. Essentially, our
results depend on the fact that terms in clauses can be for-
bidden for paramodulation inferences when, at the ground
level, they represent irreducible terms in the construction of
the model described in Section 4. The user specifying addi-
tional forbidden terms in the original set of clauses—which
would be more in the spirit of set of support-—seems to
require that we can prove that these clauses are reduced
to start with; since in general it is difficult or impossible to
know what models could be constructed for a set of clauses
being saturated (except in a limited sense when simplifiers
arise), it seems that the results presented here contain the
strongest possible such restrictions.

ACKNOWLEDGMENTS

We thank Dennis Kfoury and Steve Homer of Boston University for
graciously providing funds for the third author during the academic years
1990-1992. We also thank Michael Rusinowich, David Plaisted, Pierre
Lescanne, Deepak Kapur, H.-J. Ohlbach, Robert Nieuwenhuis. Albert
Rubio, Zino Benaissa, Nachum Dershowitz, and the anonymous referees
for helpful discussions on the ideas presented here. Thanks also to
Jean-Pierre Jouannaud for his interest in this work.

Received August 10, 1993; final manuscript received October 25. 1994

REFERENCES

1. Bachmair, L., and Ganzinger, H. (1990), On restrictions of ordered
paramodulation with simplification. /n “Proc. 10th Int. Conf. on
Automated Deduction.” Lecture Notes in Computer Science. Vol. 449,
pp- 427-441. Springer-Verlag, Berlin.

. Bachmair, L., and Ganzinger, H., Rewrite-based equational theorem
proving with selection and simplification. J. Logic and Comput.. to
appear.

(s8]

192

. Bachmair, L. (1991), “Canonical Equational Proofs,”

. Bockmayr, A., Krischer, S.,

. Degtyarev, A.

. Krischer, S,

. Bachmair, L., Ganzinger, H., Lynch, C., and Snyder, W. (1992), Basic

paramodulation and superposition. in “Proc. l1th Int. Conf. on
Automated Deduction,” Lecture Notes in Artificial Intelligence.
Vol. 607, pp. 462-476, Springer-Verlag, Berlin.

Birkhauser,
Boston.

and Werner, A. (1992), An optimal
narrowing strategy for general canonical systems, i “Proc. of CTRS”
(M. Rusinowich and J. L. Remy, Eds.), Lecture Notes in Computer
Science, Vol. 250, pp. 483-497, Springer-Verlag, Berlin.

. Bosco, P. G., Giovannetti, E.. and Moiso, C. {1987). Refined stategies

for semantic unification, in “Proc. of TAPSOFT 87" (H. Ehrig er al.,
Eds.), Lecture Notes in Computer Science, Vol. 250, pp. 276-290,
Springer-Verlag, Berlin.

. Brand, D. (1975), Proving theorems with the modification method,

SIAM J. Comput. 4, 4, 412-430.

. Chabin, J., Anantharaman. S. and Réty, P. E-unification via

constrained rewriting, in “Proceedings of Seventh Workshop on
Unification, Boston University, June 1993."

(1979), The monotonic paramodulation strategy,
in “Proc. 5th All-Union Conference on Mathematical Logic,
Novosibirsk.” [In Russian]

. Eisinger, N. (1989}, A Note on the completeness of resolution without

self-resolution, Inform. Process. Lett. 31, 323-326.

. Fay, M. (1979), First-order unification in an equational theory, in

“Proc. 4th Workshop on Automated Deduction, Austin, Texas.”

. Fribourg, L. (1989), A strong restriction of the inductive completion

procedure. J. Symbolic Comput. 8, 253-276.

. Herold, A. (1986), “Narrowing Techniques Applied to Idempotent

Unification,” SEKI-Report SR-86-16, Univ. Kaiserslautern.

. Hsiang, J., and Rusinowich, M. (1991), Proving refutational complete-

ness of theorem proving strategies: The transfinite semantic tree
method, J. Assoc. Computr. Mach. 38, 559-587.

. Huet, G. (1980), Confluent reductions: Abstract properties and applica-

tions to term rewriting systems, J. Assoc. Comput. Mach. 27, 797-821.

. Hullot, J.-M. (1980), Canonical forms and unification, /s “Proc. 5th

Int. Conf. on Automated Deduction.” Lecture Notes in Computer
Science, Vol. 87, pp. 318-334, Springer-Verlag, Berlin.

. Kaplan, S. (1988), Positive/negative conditional rewriting, iz “Condi-

tional Term Rewriting Systems.” Lecture Notes in Computer Science,
Vol. 308, pp. 129-143, Springer-Verlag, Berlin.

. Kirchner, C., Kirchner, H., and Rusinowich, M. (1990), Deduction

with symbolic constraints, Rev. Fr. Intell. Artif. 4, 3, 9-52.

and Bockmayr, A. (1991), Detecting redundant
narrowing derivations by the LSE-SL reducibility test, in “Proc. 4th
Int. Conf. on Rewriting Techniques and Applications,” Lecture Notes
in Computer Science, Vol. 488, pp. 74-85, Springer-Verlag, Berlin.

20.

30.

3L

29. Slagle, J.

. Snyder, W.

. Zhang, H.

BACHMAIR ET AL.

Lankford, D. (1975), “Canonical Inference,” Tech. Rep. ATP-32, Dept.
of Math. and Comp. Sci., Univ. of Texas, Austin, TX.

. McCune, W. (1990), Skolem functions and equality in automated

deduction. in “Proc. 8th Nat. Conf. on AL™ pp. 246-251, MIT Press,
Cambridge, MA.

. Nie, X., and Plaisted, D. (1990), A complete semantic back-chaining

proof system, /n “Proc. 10th Int. Conf. on Automated Deduction,”
Lecture Notes in Computer Science, Vol. 449, pp. 16-27, Springer-
Verlag, Berlin.

. Nieuwenhuis, R.. and Rubio, A. (1992), Basic superposition is com-

plete, in “Proc. European Symposium on Programming, Rennes,
France.”

. Nieuwenhuis, R., and Rubio, A. (1992), Theorem proving with

ordering constrained clauses, in “Proc. 11th Int. Conf. on Automated
Deduction,” Lecture Notes in Artificial Intelligence, Vol. 607,
pp. 477-491, Springer-Verlag, Berlin.

. Nutt, W Réty, P., and Smolka, G. (1990). Basic narrowing revisited,

J. Symbolic Comput. 7 {1989). 295-317; reprinted in “Unification”
(C. Kirchner, Ed.), Academic Press. London.

. Pais, P., and Peterson, G. (1991), Using forcing to prove completeness

of resolution and paramodulation, J. Symbolic Compur. 11, 3-19.

. Peterson, G. (1983), A technique for establishing completeness results

in theorem proving with equality, SIAM J. Compur. 12, 82-100.

. Robinson, G. A., and Wos, L. T. (1969), Paramodulation and theorem

proving in first-order theories with equality, in “Machine Intelligence”
(B. Meltzer and D. Michie, Eds.), Vol. 4, pp. 133-150. American
Elsevier, New York.

(1974), Automated theorem proving with simplifiers,
commutativity, and associativity, J. Assoc. Comput. Mach. 21,
622-642.

Smith, M., and Plaisted, D. (1988), “Term-Rewriting Techniques for
Logic Programming 1: Completion,” Report TR88-019, Department of
Computer Science, Univ. North Carolina.

Snyder, W., and Lynch, C. (1991), Goal directed strategies for
paramodulation. in “Proc. 4th Int. Conf. on Rewriting Techniques and
Applications.” Lecture Notes in Computer Science, Vol. 488,
pp. 150161, Springer-Verlag, Berlin.

(1991). “A Proof Theory for General Unification,”
Birkhduser, Boston.

. Wos, L. T., Robinson, G. A., Carson, D. F., and Shalla, L. (1967). The

concept of demodulation in theorem proving, J. Assoc. Comput. Mach.
14, 698--709.

. Wos, L. (1988), “Automated Reasoning: 33 Basic Research Problems,”

Prentice-Hall, Englewood Cliffs, NJ.

(1988), “Reduction, Superposition, and Induction:
Automated Reasoning in an Equational Logic,” Ph.D. Thesis,
Rensselaer Polytechnic Institute.

