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USING PERSISTENT DATA STRUCTURES
FOR ADDING RANGE RESTRICTIONS TO SEARCHING

PROBLEMS (*) (**)

by Hans-Peter LENHOF (*) and Michiel SMID (*)

Communicated by Ph. FLAJOLET

Abstract. - The problem of adding range restrictions to decomposable searching problems is
considered. First, a gênerai technique is given that makes an arbitrary dynamic data structure
partially persistent. Then, a gênerai technique is given that transforms a partially persistent data
structure that solves a decomposable searching problem into a structure f or the same problem with
added range restrictions. Applying the gênerai technique to spécifie searching problems gives
efficient data structures, especially in case more thon one range restriction, one of which has
constant width, is added.

Résumé. - Nous nous intéressons à la question de l'ajout de restrictions de domaine aux
problèmes de recherche décomposables. D'abord, nous donnons une technique générale qui rend
partiellement persistante une structure de données arbitraire. Ensuite, nous donnons une technique
générale qui transforme une structure de données partiellement persistante résolvant un problème
de recherche decomposable, en une structure pour le même problème mais soumis à des contraintes
supplémentaires. L'application de cette technique générale à des problèmes spécifiques de recherche,
fournit des structures de données efficaces, particulièrement dans le cas où plus d'une seule restriction
de domaine est ajoutée, l'une d'entre elles ayant au moins une constante.

INTRODUCTION

In the theory of data structures, we want to design structures that store a
given set of objects in such a way that spécifie questions (queries) about
these objects can be answered efficiently. A well-known example is the member
searching problem, where we are given a set F of objects. To answer a member
query, we get an object q, and we are asked whether or not q is an element
of V. Another example is the {orthogonal) range searching problem, where we
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26 H.-P. LENHOF, M. SMID

are given a set V of points in J-dimensional space, and an axis-parallel hyper-
rectangle q=z([a1 :6J, . . ., [öd:&d]), and we are asked to détermine all points
P = (Pi, - - .,Pd) i n v> s u c h t h a t « 1 ^ 1 ^ * 1 , • • •> adtkPdèbd, i.e., all points
of V that are in the hyper-rectangle q. As a third example, in the nearest
neighbor searching problem, we are given a set V of points in the plane and a
query point q, and we are asked to find a point in V that is nearest to q.

Many gênerai techniques are known to design static and dynamic data
structures that solve such searching problems. See e.g. Bentley [1, 2],
O vermars [11].

There is a special class of searching problems that has received much
attention, the so-called decomposable searching problems. Let PR(q, V)
dénote the answer to a searching problem PR with query object q and object
set V.

DÉFINITION 1 (Bentley [1]): A searching problem PR is called decomposable,
if

PR(q, V)=B (PR(q, A), PR(q, B))9

for any partition V=A U B and any query object q, where the function D can
be computed in constant time.

For example, the member searching problem is decomposable with D= v,
the range searching problem is decomposable with D = U, and the nearest
neighbor searching problem is decomposable with D = "minimal distance".

In this paper, we consider the problem of transforming searching problems
into other problems by adding range restrictions. This transformation was
introduced by Bentley [1], and was subsequently investigated by Willard and
Lueker [17] and Scholten and O vermars [14].

If we add a range restriction to a searching problem for a set V9 then we
give each object x in F an additional parameter kx. We assume that these
new parameters are real numbers. In the transformed searching problem, we
only query objects in V that have their parameter in a given range. We define
this more precisely:

DÉFINITION 2: Let PR be a searching problem for a set V of objects. To add
a range restriction, we associate with each object x in Va real number kx. In
the transformed searching problem TPR, a query consists of a query object 'q
together with an interval [a : b\ and

T P R ( q , [ a : b ] , V ) : = P R ( q , { x e }
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ADDING RANGE RESTRICTIONS TO SEARCHING PROBLEMS 27

To illustrate the notion of adding a range restriction, consider the nearest
neighbor searching problem. Interpret each point in the set V as a city. For
each city x, define kx as the size of its population. Then in the transformed
problem we may ask for the city ha ving a population between, say, 100,000
and 500,000, that is nearest to q.

A trivial example is the rf-dimensional range searching problem, which is
obtained by adding a range restriction to the (d— l)-dimensional range search-
ing problem.

Bentley [1] gives a gênerai technique for solving searching problems that
arise by adding a range restriction to decomposable searching problems.
More precisely, suppose we have a (static) data structure DS for a decomposa-
ble searching problem PR having query time Q(n), size S(n), and that can
be built in P(n) time. Then there exists a data structure for the transformed
problem TPR for which these three complexity measures increase by a factor
of O(logn). Willard and Lueker [17] show that if the data structure DS is
dynamic, then the transformed structure can also be made dynamic. Scholten
and Overmars [14] give a gênerai technique that gives trade-offs between the
query time and the size of the transformed structure. They present both static
and dynamic solutions.

Gabow, Bentley and Tarjan [8] considered problems that can be viewed as
adding several range restrictions. An example of the problems they consider
is the problem of range searching for maximum. (See also Sections 4 and 6.)

In this paper, we give new techniques for adding range restrictions. The
main part of the paper considers the problem of adding range restrictions of
constant width. That is, in the transformed query problem TPR, we only
query with a range restriction on the associated parameter of the form
[a:a + c], where a is an arbitrary real number, but c is flxed for ail queries.
We give a gênerai technique that transforms a data structure for a problem
PR into another structure in which the transformed problem TPR can be
solved efficiently.

Applying this technique gives e.g. an optimal solution to the planar flxed
height range searching problem. (This resuit was known already.) We also
generalize the technique such that several range restrictions, only one of
which has constant width, can be added. This technique leads to interesting
results, such as a data structure for the d-dimensional fixed "height" range
searching problem.

In the transformations, we use partially persistent data structures, which
are dynamic structures in which we cannot only query the current version,
but also old versions, that arise by inserting objects. The main idea in the
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28 H.-P. LENHOF, M. SMID

transformation is to consider the values of the additional parameters kx as
moments in time. Note that this idea is not new. Sarnak and Tarjan [13] use
it to obtain an optimal solution for the planar point location problem.

The rest of this paper is organized as follows. In Section 1, we recall some
results on partially persistent data structures. Moreover, we use a Van Emde
Boas Tree — implemented using dynamic perfect hashing —to make arbitrary
data structures partially persistent, at the cost of a slight increase in complex-
ity, and at the cost of introducing randomization. This technique was men-
tioned by Tarjan at the FOCS 88 conference during the présentation of
Dietzfelbinger et al. [5]. Since-as far as we know-the technique has not
been published yet, and since there are some non-trivial details in the proof,
we present it hère in full detail.

In Section 2, we prove that in order to add range restrictions of constant
width, it suffices to have fast transformations that add half-infïnite range
restrictions of the form (— oo : b] and [a : oo). Section 3 gives the transforma-
tion for adding a range restriction of constant width. This transformation is
illustrated in Section 4 with some examples. We obtain e.g. an optimal
solution for the fixed height range searching problem.

Of course, the transformation can be repeated to add several range restric-
tions. In Section 5, however, we give another transformation that gives better
results. This transformation is based on range trees and fractional cascading.
We illustrate it in Section 6 with some examples. One of the results is a data
structure for the <i-dimensional fixed "height" range searching problem,
ha ving size O (n (log rif " 2) , in which queries can be solved in
O{Qogrif~2\og\ogn + k) time in the worst case, where k is the size of the
output.

In Section 7, we show how the results can be extended to arbitrary range
restrictions. We finish the paper in Section 8 with some concluding remarks.

In the rest of this paper, we use the notations Q(n), /(«), S(n) and P(ri)
to dénote the query time, insertion time, size and building time of a data
structure, respectively. We assume that all these functions are non-decreasing.
Furthermore, the functions S(ri)/n and P(ri)/n are assumed to be non-decreas-
ing.

We often state that an opération takes "expected and amortized time
O (ƒ(«))". This means that a séquence of n such opérations takes 0{nf{ri))
expected time, where the randomization is based on choices made by the
algorithm and is independent of the séquence of opérations.
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ADDING RANGE RESTRICTIONS TO SEARCHING PROBLEMS 29

1. PARTIALLY PERSISTENT DATA STRUCTURES

In gênerai, data structures are ephemeral, in the sense that queries and
updates can only be performed in the current version of the structure. In
this paper, we need data structures in which we can query the current and
oid versions, and such that we can perform updates in the current version.
Data structures in which this is possible are called partially persistent. (This
in contrast to fully persistent data structures in which we can also update
old versions). See Driscoll et al. [6], Sarnak and Tarjan [13] for these notions.

DriscoU et al f6] showed that ephemeral data structures of bounded in-
degree can be transformed into partially persistent data structures, having
the same complexity. For binary search trees, their result is as follows.

THEOREM 1 ([6]): There exists a partially persistent binary search tree, in
which we can search for the largest (resp. smallesi) element that is at most
(resp. at least) equal to a given element x, in an arbitrary version, in O(logn)
worst-case time. Also, one-dimensional range queries can be performed in an
arbitrary version, in O(}ogn + k) worst-case time, ifk is the size of the output.
An element can be inserted or deleted in the current version of the structure, in
ö(log«) worst-case time. The size of the data structure is bounded by O(ri),
Here, n is the maximal number of éléments that have been present sofar,

Unfortunately, the technique in [6] only applies to data structures of
bounded in-degree. For example, it does not apply to Van Emde Boas Trees
[15, 16] which have in-degree In. In the rest of this section, we show how
an arbitrary ephemeral data structure, in which the current version can be
queried, and in which objects can be inserted and deleted, can be transformed
into a partially persistent structure. As mentioned already, this technique was
mentioned by Tarjan during the présentation of [5]. As far as we know, a
complete description of the method and a full proof of the complexity bounds
have not appeared yet.

In order to give this transformation, we need a randomized version of the
Van Emde Boas Tree in which we insert éléments only in increasing order.
This randomized version uses dynamic perfect hashing as given by Dietzfelbin-
ger et al. [5] and is partially due to Mehlhorn and Nàher [10]:

THEOREM 2: Let n be a prime number. A randomized version of the Van
Emde Boas Tree, that stores m integers in the range [1 :n] has size O{m). In
this structure, we can search for the largest element that is at most equal to a
given integer x, in O (log log n) worst-case time. In this structure, we can insert
a new maximal element in expected and amortized 0(1) time. We canfind the

vol. 28, n° 1, 1994



30 H.-P. LENHOF, M. SMID

current maximal element in 0(1) worst-case time. The structure for the empty
set can be initialized in O(l) worst-case time.

Proof: Mehlhorn and Nâher [10] first give a so-called stratified tree. They
use the dynamic perfect hashing strategy of [5] to implement this tree. If the
set of éléments has size m and if these éléments are integers in [1 : n], this
stratified tree has size O (m log log n). Searches for arbitrary integers in [1 :n]
take O (log log n) worst-case time. The maximal element stored in the tree
can be found in O{\) worst-case time. An arbitrary integer in [1 :n] can be
inserted in expected and amortized O (log log n) time. Finally, this structure
can be initialized for the empty set in O{\) worst-case time.

As in [10, 15], we apply the method of pruning to this stratified tree. That
is, we divide the current set of m éléments into buckets of size [log log AI],
such that the éléments of the first bucket are less than those of the second
one, which in turn are less than those in the third bucket, etc. We store the
minimal element of each bucket in a stratified tree. Each bucket is stored as
an (unordered) linked list.

To search for an element, we first search in the stratified tree to locate the
appropriate bucket. Then we do a linear search in this bucket. Clearly, the
searching time is bounded by O (loglogn) in the worst case.

To insert a new maximal element, we first use the stratified tree to find
the "maximal" bucket, i.e.9 the bucket storing the largest éléments. Then,
we add the new element at the end of the list belonging to this bucket. As
soon as the maximal bucket has size 2 [loglogn], we split it in two buckets
of equal size, such that the éléments in the first bucket are smaller than those
in the second bucket. We insert the minimal element of the bucket containing
the largest éléments into the stratified tree.

If no splitting is necessary, an insertion takes 0(1) worst-case time. Other-
wise, we need O (loglogn) time to split the bucket (using a linear time
médian algorithm), and expected and amortized O (loglogn) time to insert the
minimal element of the new bucket into the stratified tree. Since this splitting
occurs only once every [loglogn] insertions, it follows that the expected and
amortized time to insert a new maximal element is bounded by O(l).

It will be clear that the current maximum can be maintained such that it
can be found in 0(1) worst-case time.

Since the stratified tree stores only m/log logn éléments, it has size O(m).
Also, the lists of the buckets together have size O(m). Hence, the entire data
structure has size O(m). This fmishes the proof. •
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ADDING RANGE RESTRICTIONS TO SEARCHING PROBLEMS 31

We take the Random Access Machine (RAM) as our model of computa-
tion. The memory of a RAM consists of an array, the entries of which have
unique addresses. Such a memory location can be accessed in constant time
if this address is known.

We assume that the total number of updates that has to be carried out in
the persistent data structure is known in advance. Call this number n. If n is
not a prime, then we apply Theorem 2 with p the smallest prime that is at
least equal to n. It is known that niLpi^ln, Therefore, all complexity bounds
of the form O (f{p)) are asymptotically equivalent to O (f(n)). We assume that
this prime p is given with n as part of the input. For practical applications, n
has at most, say, 10 décimal digits. Therefore, for these values of n, the
corresponding prime p can be found in tables.

Remark: It is not a restriction to assume that the number of updates is
known in advance. (Note that in our application, this number is known!) If
this number is not known, then we can use the Standard doubling method:
Assume we start with an empty data structure. Then we start with /t = 2.
In gênerai, after n updates, we double n, discard the data structure and
start anew by performing the first n updates again. If U(m) is the update
time of the data structure, then the amortized update time becomes

log n

llnfl2
iU(n) =

Because of this remark, we assume from now on, that if we apply
Theorem 2, n is a prime number.

Suppose we have an ephemeral data structure DS for some searching
problem PR. Let Q(m), U(m) and S(m) dénote the query time, the time to
perform an update and the size of DS, respectively. Let C(m) be the number
of memory locations that are changed during an update. (Both U(m) and
C(m) may be amortized.) We transform DS into a partially persistent data
structure.

The partially persistent data structure: Before we give the structure, note
that in the ephemeral case the (current version of the) data structure DS
would have been stored in certain memory locations of the RAM.

The persistent structure looks as follows. In each memory location i that
ever would have been used by the ephemeral structure, we store a pointer to
a randomized Yan Emde Boas Tree Tt of Theorem 2, in which we maintain
the history of this memory location. In such a tree T{, we store all "time
stamps" at which the content of memory location / was changed. These time
stamps are integers in the range [1 : «], and represent the numbers of the
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32 H.-P. LENHOF, M. SMID

updates. With each time stamp t we store the (changed) content of cell i at
time t,

The update aigorithm: We assume that we start with an empty structure,
and we number the updates 1,2, . . . Consider the t-th update. So suppose
that we perform the /-th update in the current version of the persistent data
structure. Then we simuiate the update aigorithm of the ephemeral structure:
If we want to read the content of memory celi z, then we follow the pointer
to the Van Emde Boas Tree Tu and we search for the maximal element that
is stored in this tree. With this maximum, we fmd the current content of
memory cell i. Given this content, we take the appropriate action.

If during this simulation, we want to change the content of memory
location z, then we insert the time stamp t in the corresponding Van Emde
Boas Tree Tt. With this time stamp, we store the new content of memory
location i. If in the simulated structure we would have to rewrite a memory
location i more than once, then we find out that the time stamp t is already
present in Tv In that case, we rewrite the content of location i that is stored
with time stamp t.

If the simulated structure would have needed a new memory location i,
then we initialize an empty Van Emde Boas Tree Tt, and we insert the time
stamp t together with the content of location i in Tt. In location i itself, we
store a pointer to Tt. (If a memory location is not needed any more, we keep
in it the pointer to the corresponding Van Emde Boas Tree.)

The query aigorithm: Suppose we want to perform a query in the version
of DS as it was at "time" t, i.e., after exactly t updates have been carried
out. Then we simuiate the query aigorithm of the ephemeral data structure:
If we want to read the content of memory cell /, we follow the pointer to
the corresponding Van Emde Boas Tree Tt, and we search in Tt for the
largest time stamp t' that is at most equal to /. With this time stamp, we
fïnd the content of memory cell i at time t. Given this content, we take the
appropriate action.

THEOREM 3: Suppose we start with an empty data structure DS and consider
a séquence of n updates. In the partially persistent version of DS, we can query
arbitrary versions in worst-case time O{Q{n)\og\ogn), and we can update the
current version in expected and amortized time O(U(n)). The expected size of
the persistent structure is bounded by O(S(n) + nC(n)).

Proof: Since we perform n updates, the maximal number of objects that
are represented by the data structure is at most n.
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ADDING RANGE RESTRICTIONS TO SEARCHING PROBLEMS 33

To prove the bound on the query time, observe that if we want to know
the content of memory cell i at time /, we search in the Van Emde Boas Tree
Tt for t. By Theorem 2, this takes O (log log n) time. Therefore, since we need
the content of at most Q (n) memory locations, the query time increases by a
factor of O (log log n).

To perforai an update, we have to insert time stamps in several Van Emde
Boas Trees. Note that these time stamps are new maximal éléments, because
we only allow updates to be performed in the current version of the data
structure.

The time to perform an update in the current version of the data structure
is proportional to the update time of the ephemeral structure plus the number
of memory locations in which the content is changed multiplied by the time
needed to update the corresponding Van Emde Boas Trees.

Note that in the insertion algorithm of the structure of Theorem 2 we
perform [loglog/z]-l insertions at constant cost, and then one insertion at
an expected and amortized cost of O (log log n).

Now consider a séquence of n updates, starting with an empty structure.
n

It takes YJ U(J) time t o simulate the update algorithm of the ephemeral
J = I

structure. If during the séquence of updates there are nx changes in memory
location z, then the total expected time needed to update the Van Emde Boas
Tree Tt is bounded by

T "' ]xO(loglogW) = O(«,.).
L[loglog«]J

It follows that the total expected time for this séquence of n updates is
bounded by

where the variable i in the second summation ranges over all memory
locations that would ever have been used by the ephemeral structure. The
fïrst summation is bounded by O in U(n)). To bound the second summation,
note that it is equal to the total number of memory changes that occur
during the n updates. Since during n updates we can change at most n U(ri)
memory locations, the second summation is also bounded by O (n U(n)). This
proves that the amortized expected update time of the partially persistent
structure is bounded by O(U(n)).
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34 H.-P. LENHOF, M. SMID

Since there at most n éléments present, the ephemeral structure would use
at most S(ri) memory eells. Hence, there are at most S(n) pointers to Van
Emde Boas Trees. So we are left with the total size of the randomized Van
Emde Boas Trees. If we change the content of a memory location during an
update, we add an expected and amortized amount of 0(1) information to
the corresponding Van Emde Boas Tree, because we spend expected and
amortized 0(1) time. (Note that such a tree has a size that is linear in the
number of stored éléments, not in the size of the universel) Therefore, in a
séquence of n updates, the expected amount of information we add to all
these trees is bounded by O(nC(n)). Hence, the expected size of these trees
together is bounded by 0(nC(n)). This complètes the proof. D

We can apply Theorem 3 with DS a randomized Van Emde Boas Tree. If
this data structure stores a set of m integers in the range [1 :«], then we can
search for the predecessor of an element in O (log log n) time, we can insert
or delete an element in O (log log n) amortized and expected time, an update
causes an expected and amortized number of O (log log n) memory modifica-
tions, and the structure uses O (m) space.

Hence, Theorem 3 applied to this data structure gives a partially persistent
version that uses O (m log log n) space, such that we can query any version in
O ((log log n)2) time. For this special data structure, however, Dietz and
Raman [4] prove that if only insertions are performed, a better solution is
possible:

THEOREM 4 ([4]): There exists a partially persistent version of the Van Emde
Boas Tree having size O(m) if it stores m integers in the range [1 :#]. In this
structure, we can insert an element in the current version in O (log log n)
amortized and expected time. Moreover, we can solve a one-dimensional range
query in an arbitrary version in O (log log n + k) time, if k is the size of the
output.

Proof In [4], the bounds on the space and update time are proved. It is
also proved there, that we can search in an arbitrary version for the smallest
resp. largest element that is at least resp. at most equal to a query element̂
in O (log log n) time. In order to support range queries, we maintain a partially
persistent list keeping the current éléments in sorted order. This list is obtained
by applying the method of [6]. Each element in the Van Emde Boas Tree
contains a pointer to its occurrence in this list. Then a range query in the t-
th version with query interval [a : b] is solved by searching in the r-th version
of the Van Emde Boas Tree for the smallest element, say x, that is at least
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ADDING RANGE RESTRICTIONS TO SEARCHING PROBLEMS 35

equal to a. Then, we follow the pointer from x to the list, walk along the t-
th version of this list and report all éléments that are at most equal to b. In
this way, we solve a range query in O (log log n + k) time. D

2. IT SUFFICES TO CONSIDER HALF-INFINITE RANGE RESTRICTIONS

As we said already, we restrict ourselves to decomposable searching prob-
lems, and we only add range restrictions of constant width. In this section,
we show that it is sufficient to consider the case where we add half-infinite
range restrictions, i. e., range restrictions of the form (— oo : b] and [a : oo).

Let PR be a decomposable searching problem for a set V of objects. Let
each object x in V have an additional parameter kx. Let TPR be the searching
problem that is obtained by adding a range restriction to PR.

Suppose we have a data structure DS that stores the set F, such that
queries TPR(q, [a: oo), V) can be solved in Q(n) time. Let S(ri) and P(n) be
the size and the building time of the structure DS, respectively.

It is clear that by replacing the values kx by —kx, we can store F in a
structure DS' of the same type as DS, such that queries TPR(q, (— oo : b], V)
can be solved in time Q{n). Also, the size resp. building time of DS' is S(n)
resp. P(n).

We give a data structure that solves queries TPR(q, [a:a+c], V), where
c —the width of the range restriction — is a fixed real number.

Partition the reals into intervals It : = [ie, (/+ 1) c) of length c, where i ranges
over the integers. Next, partition the set F into subsets Vt: = {xe V: kxelt}.

The data structure: For each index /, for which Vt is not empty, there are
two data structures DSt and DS\, both storing Vt. In the structure DSh we
can answer queries with a range restriction [a:oo). In the other structure
DS[, we can answer queries with range restriction (— oo : b].

There is a balanced binary search tree T that contains all indices i for
which Vi is not empty. Each such index i contains pointers to the structures
DSt and DS[.

The query algorithm: To answer a query TPR(q, [a:a + c], V), do the
following. Let i: = [a/c\. Then search in the tree T for i. If i is not present,
then there are no objects in V having their additional parameter in the
interval [ie, (z+ l)c). Otherwise, if i is present, do a query TPR(q, [a: oo), V)
in the structure DSt. Next, search for z + 1 in the tree T. If it is not present, we
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36 H.-P. LENHOF, M. SMID

are finished. Otherwise, do a query TPR{q, (— oo :a + c], F) in the structure

Finally, use the merge operator D belonging to PR to combine the answers
obtained by these two queries, to obtain the final answer to the query.

THEOREM 5: In the above data structure, queries with range restriction of
constant width c can be answered in O (Q (n) + log n) time. The size resp. building
time of the data structure is bounded by O(S(n)) resp. O(n\ogn + P(ri)).

Proof: It is clear that the range restriction [a\a + c\ overlaps only two
intervals It and Ii + U where i = [a/c]. Therefore, we only have to consider
objects in Vi and Vi + X. Since Iir}[a:a+c] = [a:(i+l)c), and since all objects
in V( have additional parameters that are less than (z+l)c<a + c, it suffices
to query all objects in Vt with range restriction [a\ oo). Similarly, it suffices
to query the objects in Vi+1 with range restriction (—oo:a + c]. This proves
that the query algorithm is correct.

The time for a query is bounded by O(logn + g( | KÉ|) + g( | Vi+1\)). Since
both Vi and Vi+1 have size at most n, and since we assumed that the query
time is non-decreasing, the bound on the query time follows.

The size of the data structure is bounded by

o( n+ E S(\V,\S).
i:Vi*0 /V

We assumed that S(ri)/n is non-decreasing. Therefore,

It follows that the size of the data structure is bounded by

The bound on the building time follows in a similar way. Here, the
O (n log n) term is the building time of the tree T. D

3. ADDING A RANGE RESTRICTION OF CONSTANT WIDTH

We now use the results of the preceding sections to transform a data
structure that solves a decomposable searching problem into a structure that
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solves the same problem with an added range restriction of constant width.
By Theorem 5, it suffices to consider the case where the range restriction is
half-infinite.

Let PR be a decomposable searching problem for a set V of n objects. Let
DS be a partially persistent data structure that stores V. Let Q(n) be the
time needed to query an arbitrary version, let I{n) be the time needed to
insert an object in the current version, and let S(ri) be the size of the data
structure.

Each element x of V gets an additional parameter kx. Let TPR be the
searching problem obtained by adding a range restriction to PR,

We give a data structure TDS that solves the problem TPR for range
restrictions of the form (— oo : b].

The data structure: Order the objects in V according to their additional
parameters kx. (Equal parameters are ordered in arbitrary order.) Let
kxlf±kX2S - • • èkXfi be this order. Store the parameters kx for xeV, in this
order, in an array V{\ :n).

Then, insert the objects, one after another, into the initially empty partially
persistent data structure DS, in the order xu . . ., xn.

The query algorithm: To answer a query TPR(q, (—oo:b], F), do the
following. Search for b in the array F. Let i be the position of b, i. e,,

)

We have to solve the searching problem PR for all objects in F that have
an additional parameter that is at most equal to b. But these are exactly the
objects that were present in DS after i insertions, L e., at "time" L Therefore,
query the persistent structure DS at time L

THEOREM 6: The data structure TDS allows queries with range restrictions
of the form (— oo :b] to be solved in O(\ogn + Q(n)) time, has size O(S(n)),
and can be built in O(n log n + nl(n)) time:

Proof: It is clear that the query algorithm is correct. The time to locate b
in the array Fis bounded by O (log ri). Once we have located b, we know its
position i and we can query the structure DS at time z, in Q (n) time. The
size of the data structure is bounded by O(ri) for the array K, plus S(n) for
the structure DS. Because S(n) is at least linear, the size of the en tire data
structure is bounded by O(S(ri)). To build the structure, we order the objects
in V in order of increasing additional parameter, and we build the array F.
This takes O(n\ogn) time. Finally, we insert the objects in increasing order
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in the structure DS. This takes £ I(i) time. Since we assumed the function
t = i

/ ( . ) to be non-decreasing, this sum is bounded by nl(n). This complètes the
proof. •

Applying Theorem 5 leads to the main resuit of this section.

THEOREM 7: For the searching problem TPR, there exists a data structure
that allows queries with range restrictions of constant width to be solved
in O(\ogn + Q(ri)) time, that has size O(S(n)), and that can be built in
O{n\ogn + nl(ri)) time.

4. EXAMPLES

In this section, we give some applications of Theorem 7. As a first applica-
tion, consider the fixed height range searching problem. Here we are given a
set V of points in the plane. A query consists of an axis-parallel rectangle
[a1:b1]x[a2:a2 + c] of fixed height c, and we have to fïnd all points
p — (p1,p2)

 m y that a r e m this rectangle, i.e., satisfy a^px^bv and
a2 f^p2^a2 + c. Clearly, this is an example of a one-dimensional range search-
ing problem with the addition of a constant width range restriction.

So, in the above terminology, let PR be the one-dimensional range search-
ing problem. Let DS be the partially persistent search tree of Theorem 1.
This structure allows one-dimensional range queries in arbitrary versions to
be solved in Q (n) = O (log n + k) time in the worst case, éléments can be
inserted in the current version in I(ri)=O(\ogn) time in the worst case, and
it has size S(n) = O (n).

Use this partially persistent structure DS for the first coordinates of the
points in V. Each first coordinate x has as additional parameter kx the
corresponding second coordinate. In this way, the problem TPR — with a
constant width range restriction — is the fixed height range searching problem.

Applying Theorem 7 to DS gives the following result:

THEOREM 8: For the fixed height range searching problem, there exists a
data structure having a worst-case query time of O(\ogn + k), where k is the
number of answers to the query, that has size O («), and that can be built in
O(nlogri) time.

This gives an optimal solution for the fixed height range searching problem.
Note that Klein et al. [9] even give a fully dynamic solution to this problem.
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The above solution can be generalized to higher dimensions. Let V be a
set of points in d-dimensional space. A query consists of a hyper-rectangle
[a1 : è j x . . . x [ad_x :&d_J x [ad:ad + c] of fixed "height" c, and we have to
fïnd all points of V that are in the hyper-rectangle. Take the data structure
of Theorem 8 for the last two dimensions, and add the first d— 2 dimensions
using the technique of Bentley [1], This leads to the following result:

THEOREM 9: Let d^/1. For the d-dimensional range searching problem, where
the query rectangles have constant width in one fixed dimension, there exists a
data structure having a worst-case query time of O ((log nY'1 + &), where k is
the number of answers to the query, that has size O(n(\ogn)d~2), and that can
be built in O(n\ogn)d~x) time.

Next, we consider the problem of range searching for minimum. Let V be
a set of n points in the plane. A query consists of a "rectangle"
[al : oo)x [a2 ;a2 + c] for some fixed c. We have to find a point in V
that is lying in this rectangle, with minimal first coordinate. That is,
among all points p = (p1,p2) in V> such that a1^p1, and a2^p2^a2-\-c,
find one for which p1 is minimal (This is a two-dimensional generalization
of a problem that was considered by Gabow, Bentley and Tarjan [8].
They consider the problem of searching for the point in the région
( - oo : oo) x [a2 : b2] x . . . x [ad : bd] having minimal first coordinate. In
Section 6, we consider the generalization of this higher dimensional problem.)

In this case, let PR be the following searching problem. We are given
a set of real numbers. A query consists of a real number a, and we
have to find the smallest p in the set that is at least equal to a. Note
that PR is decomposable. Again, we take for DS the partially persistent
structure of Theorem 1. This structure solves problem PR with complexity
Q(n) — O(\ogn) in the worst case, I(n) = O (logn) in the worst case, and

We use this structure DS for the first coordinates of the points in V. Each
first coordinate x of these points has as additional parameter kx the point's
second coordinate. In this way, the problem TPR is the problem of range
searching for minimum.

Applying Theorem 7 leads to the following result:

THEOREM 10: For the problem of range searching for minimum, where the
query régions have constant height, there exists a data structure having a worst-
case query time of O(logrc), that has size O(n), and that can be built in
O(n\ogn) time.
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We can generalize Theorem 10 to higher dimensions in the same way as
we did in Theorem 9. Then, for each dimension we add, we get an additional
factor of O(\ogn) in the complexity bounds.

5. ADDING SEVERAL RANGE RESTRICTIONS

We now generalize the results to the case where more than one range
restriction is added. We assume that one of the restrictions has constant
width, say the last one.

We first consider the case, where we add two range restrictions. Let PR
be a decomposable searching problem for a set V, Let DS be a partially
persistent data structure that stores V, Let Q (ri) be the time needed to query
an arbitrary version, let I(n) be the time needed to insert an object in the
current version, and let S(ri) be the size of the data structure.

Each element x of V gets two additional parameters kx and lx, taken from
the real numbers. We consider the set V as a planar point set, where the k-
values resp. /-values are the first resp. second coordinates. Let TPR be the
transformed searching problem that is obtained by adding two range restric-
tions, Le.,

TPR(q9[al:b1]x[a2:b2l V): = PR(q, {xeV:a^kx^bu a2^lx^b2}).

We give a data structure that solves the problem TPR for range restrictions
in which the second one has the form [a2 : a2 + c] for a fixed c. It can be
shown in exactly the same way as in Section 2 that it suffices to consider
range restrictions in which the last one is half-infinite, say of the form
(-oo:62] .

The data structure: Store the points of F in a range tree. See [1, 17]. We
briefly repeat the notion of this data structure. The points of V are stored in
the leaves of a balanced binary search tree —called the main tree — ordered
according to their first coordinates kx, Each node w in this main tree contains
an associated structure, defïned as follows. Let Vw be the points of V that
are in the subtree rooted at w. Then node w contains a pointer to an array
Vw that stores the points of Vw ordered according to their second coordinates

We apply the technique of fractional cascading {see Chazelle and
Guibas [3]) to this structure: Each array entry in an associated structure
contains — besides a point of F—two pointers. Let x be the point of V that
is stored in such an array location, and let w be the node of the main tree
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whose associated structure we are considering. Then one pointer points to
the point having largest second coordinate that is at most equal to lx and
that is stored in the associated structure of the left son of w. The other
pointer has the same meaning for the right son of w.

Finally, for each node w of the main tree, there is a partially persistent
data structure DSW, that is obtained as follows. The objects of Vw are inserted
in the initially empty structure DSW, one after another, in order of non-
decreasing second coordinate, i.e., in order of non-decreasing /-parameter.

The query algorithm: To answer a query TPR(q, [ax :bx] x (— oo :b2], V),
do the following, Find <9(logrç) nodes wu w2, . . . in the main tree, such that
the sets Vw. partition all points in V that have their fïrst coordinates in the
interval [a1:b1]. Then search in the associated structure of the root of the
main tree for b2. By following pointers between associated structures, find in
the associated structure of each wt the point with largest second coordinate
that is at most equal to b2.

This gives ö(logw) positions in the associated structures of the wt
9s. For

each such position we have to solve the searching problem PR for all points
that have a second coordinate that is at most equal to b2. If the position in
such an associated structure — of, say node wt of the main tree —is tt, then
we query the partially persistent data structure DSW. at "time" tt.

Finally, use the merge operator D belonging to PR to combine the answers
obtained by these O(\ogri) queries, to get the final answer to the query.

THEOREM 11: For the searching problem TPR with two range restrictions,
the second one of which has constant width, there exists a data structure that
allows queries to be solved in O{Q{n)\ogri) time, that has size O(S{ri)\ogri),
and that can be built in O(nl(ri)\ogn) time.

Proof: We saw already that it suffices to prove this theorem for range
restrictions of the form [a1 : bx] x (— oo : b2].

It is clear that the above query algorithm is correct. The time to locate
the O(logn) positions in the associated structures is bounded by O(\ogri).
Once these locations have been located, we can query the persistent structures
DSW. in Q(n) time per query. This proves that the query time is bounded by

The size of the data structure is bounded by O (n log n) for the range tree,
plus the total sizes of all persistent data structures. Consider a fixed level in
the main tree, and let uu . . ., um be the nodes on this level. The total size
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of the persistent structures at this level is equal to £ S(\ ^«J)- Since the

function S(n)/n is assumed to be non-decreasing, this sum is bounded above
by

But the sets Fu. partition the set F. Therefore, the above sum is equal to
S(n). Hence, each level of the main tree contributes an amount of S(n) to
the size of the complete data structure. This proves that the total amount of
space is bounded by O (n log n + S (ri) log ri) = O (S(n) log ri), because
S(n) = Q(/i).

To build the structure, we first build the range tree in O(n\ogri) time.
(Use presorting, see Bentley [2].) Then for each node w of the main tree, we
insert the objects of Vw in order of non-decreasing /-value in the structure
DSW. (Note that the objects in Vw are ordered already according to these l-
parameters.) For each level of the main tree, there are exactly n insertions,
each taking at most I(n) time. Therefore, the time needed to build all
persistent structures is bounded by O (n I(ri) log n). This proves the
theorem. •

We now generalize Theorem 11. Let PR be a decomposable searching
problem for a set V. Let DS be a partially persistent data structure that
stores V, Let Q(n), I(ri) and S(ri) be the time needed to query an arbitrary
version, the time needed to insert an object in the current version, and the
size of DS, respectively. Each element x in V gets d parameters kx

u . . ., kx
d,

taken from the real numbers. We consider F as a point set in <i-dimensional
space.

Let TPR be the transformed searching problem, L e.,

\ £=1 /

We give a data structure that solves TPR for range restrictions in which
the last one has the form [ad:ad + c] for a fixed c. As before, it suffices to
consider the case where the last restriction is half-infïnite, say of the form
(-oo :6J .

If d=2, we take the structure given above. Otherwise, if d>2, we store
the set V in the above structure, taking only the parameters kd_t and kd into
account. Then we use the technique of Bentley [1] to add the first d— 2
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additional parameters. For each added parameter, the complexity bounds
increase by a factor of O(logn).

The result is given in the following theorem, the proof of which is left to
the reader.

THEOREM 12: Let d^2. For the searching problem TPR with d range
restrictions, the last one of which has constant width, there exists a data
structure that allows queries to be solved in O(Q(n)(logn)d~x) time, that has
size O (S (n) (log nf'1), and that can be built in 0(«/(^(log/i)*"1) time.

6. EXAMPLES ES fflGHER DIMENSIONAL SPACE

In this section, we consider the J-dimensional versions of the problems we
considered in Section 4.

First we consider the fixed "height" range searching problem. Let F be a
set of n points in d-dimensional space. To answer a query, we get a hyper-
rectangle [ax :bx] x . . . x [ad_2 :bd_2] x [ad_x : ad_x + c] x [ad: bd], where c is a

fixed real number. We have to find all points of V that are in this rectangle.

We "normalize" the set V as follows. Store the points of V in the leaves
of a balanced binary search tree, ordered according to their d-th coordinates.
With each point, we store its rank in this order. That is, for each d-th
coordinate pd of any point p in V, we store the number of points that have a
d-th coordinate that is at most equal to pd.

To answer a query, we search in this search tree for the values ad and bd

of the last range restriction. This gives us the ranks r(ad) and r(bd) of these
numbers in the set of d-th coordinates of points in V. It is clear that if we
now query the normalized set, Le., the set where the d-th coordinates are
replaced by their ranks, with the rectangle

[a1:b1]x...x [ad_2:bd_2] x [ad_1:ad.1 + c] x [r (ad) : r (bd)l

we get the right answer to the query.
So, we may assume that the d-th coordinates of the points in V have

integer values in the range [l:n]. We give a data structure that solves this
normalized problem.

In Theorem 4, we saw a partially persistent version of the Van Emde Boas
Tree. This structure stores a set of m integers in the range [1 :n] in O(m)
space. A one-dimensional range query in an arbitrary version can be solved
in O (log log n + k) time, k being the size of the output. Moreover, an element
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can be inserted in the current version in O (log log n) amortized and expected
time.

We apply Theorem 12, as follows. We take for PR the one-dimensional
range searching problem for a set of integers in the range [1 : «]. Let DS be
the partially persistent Van Emde Boas Tree. Use this structure to store the
normalized d-th coordinates of the points in V, Then we add d— 1 range
restrictions. The first d— 2 are for the fïrst d— 2 coordinates, the (d— l)-th
restriction — this one has constant width — is for the [d— l)-th coordinates.

The transformed problem TPR is exactly the normalized fixed height range
searching problem. Applying Theorem 12 gives:

THEOREM 13: Let d^2. For the d-dimensional range searching problem,
where the query rectangles have constant width in one fixed dimension, there
exists a data structure

1. having a worst-case query time of O (log n -+• (log n)d ~~2 log log n + k), where
k is the number of answers to the query,

2. that has size O(n(logn)d~2\

3. and that can be built in expected time O(n(logn)d~2\oglogn

Proof: The proof follows from Theorem 12. The first term in the query
time is the time needed to find the ranks of the endpoints of the d-th range
restriction. The third term in the query time is k, because the sets of answers
that are reported by the various persistent structures are disjoint. The
O (n log n) term in the building time is needed to cover the case that d=2. D

A similar result is present implicitly in Overmars [12]. He gives a determinis-
tic data structure that stores a set of n points of the integer grid [1 :n]2, that
has size O (n) and in which range queries with query régions [a1 : bx] x [a2 : oo)
can be solved in O (log log n + k) time. If we combine this result of Overmars
with the technique of normalizing, Theorem 5 and Bentley's method of adding
range restrictions, then we get a deterministic data structure for the d-
dimensional fixed height range searching problem, having the same size and
query time as in Theorem 13.

Next, we consider the problem of range searching for minimum. As men-
tioned already, this is a generalization of a problem considered by Gabow,
Bentley and Tarjan [8]. Let F be a set of n points in d-dimensional space.
A query consists of a région
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and we have to find a point of V in this région having minimal d-th
coordinate.

Again, we normalize the d-th coordinates of the points in V, i.e., we
replace each d-th coordinate/^ by its rank. Clearly, if we query the normalized
set, we get the right answer.

We apply Theorem 12 as follows. We take for PR the one-dimensional
problem for a set of integers in the range [1 : n], that asks for finding a
minimal element that is at least equal to a given query value a. Let DS be
the partially persistent version of the Van Emde Boas Tree with universe
[1 :«]. (See Theorem 4.) This structure solves PR. A query can be solved in
an arbitrary version in O (log log n) time in the worst case, an element can
be inserted in O (log log n) amortized and expected time, and the size of the
structure is bounded by O (m) if it stores a set of size m.

We use DS for the normalized d-th coordinates of the points in V. Then
we add d— 1 range restrictions as in the previous example. This leads to the
following result:

THEOREM 14: Let d^2. For the d-dimensional problem of range searching
for minimum, where the query régions have constant width in one fixed dimen-
sion, there exists a data structure

1. in which queries can be solved in worst-case time

O ((log n)d " 2 log log n + log n),

2. that has size O(n(\ogn)d~2),

3. and that can be built in expected time O (n(\ogn)d~2\oglogn + nlogri).

7. ADDING ARBITRARY RANGE RESTRICTIONS

Until now we added range restrictions, one of which was of constant width.
We now show that once a data structure for half-infinite range restrictions is
available, we can get a structure for arbitrary range restrictions. The method
is due to Edelsbrunner [7], who used it to get an efficient data structure for
the range searching problem.

Let PR be a decomposable searching problem for a set V, Each object x
in V has an additional parameter kx. Let TPR be the searching problem that
is obtained by adding a range restriction to PR.

Suppose we are given a data structure DS storing the set F, such that
queries TPR(q, [a: oo), V) can be solved in Q(n) time. Let S(n) and P{n) be
the size and the building time of the structure DS, respectively. Let DS' be
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the data structure of the same type, in which queries TPR(q, (— oo :b], V)
can be solved. This structure has the same complexity measures Q(n), S(ri)
and P(n).

We give a data structure that solves queries TPR (q, [a : b], V), where the
range restriction is arbitrary.

The data structure: There is a balanced binary search tree T that stores
the objects of V in its leaves, ordered according to their additional
parameters kx. Each non-root node w in Tcontains a pointer to an associated
structure that is defïned as follows. Let Vw be the subset of V that is stored
in the subtree of w. If w is a left son, then this associated structure is a data
structure DSW storing the set Vw that allows queries with range restrictions
[a: oo) to be solved. Otherwise, if w is a right son, the associated structure is
a structure DS'W for the set Vw that allows queries with range restrictions
(— oo : b] to be solved.

The query algorithm: To answer a query TPR(q, [a : b\ F), do the following.
Search in the tree T for a and b. Let u be that node in T for which the
search path to a proceeds to its left son v, and the search path to b proceeds
to its right son w. Then do a query TPR(q, [a: oo), V) in the structure DSV,
and do a query TPR(q, (—co:b],V) in the structure DSf

w. Use the merge
operator D belonging to PR to combine the answers obtained by these two
queries, to obtain the final answer to the query.

THEOREM 15: In the above data structure, queries with an arbitrary range
restriction can be answered in O(Q(n)-\-\ogn) time. The size resp. building
time of the data structure is bounded by O(S(ri)logri) resp. O(P(n)\ogn).

Proof: The proof is of the same form as the previous ones, and is, therefore,
left to the reader. In [7], the theorem is proved for the case where PR is the
range searching problem. •

To illustrate Theorem 15, consider the d-dimensional range searching prob-
lem. In Theorem 13, we have given a data structure for this problem, in case
one range restriction is half-infïnite. Applying Theorem 15 to this structure
gives the following result:

THEOREM 16: Let d^2. For the d-dimensional range searching problem, there
exists a data structure

1. having a worst-case query time of O (log n + (log n)d~2 log log n + k), where
k is the number of answers to the query,

2. that has size O(n(logn)d~l),
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3. and that can be built in expected time O («(logn)4"1 log log n).

This result is similar to a resuit of Overmars [12]. He has, however, a
deterministic data structure.

Finally, we apply Theorem 15 to the problem of range searching for
minimum. Now, we combine Theorems 14 and 15, to obtain the following
result:

THEOREM 17: Let d^2. For the d-dimensional problem of range searching
for minimum, there exists a data structure

1. in which queries can be solved in worst-case time

O ((log nf ~ 2 log log n + log n),

2. that has size O (n (log n)d~ *),

3. and that can be built in expected time O(n(logn)d~1loglogri).

8. CONCLUDING REMARKS

We have introduced new techniques for adding range restrictions to
decomposable problems. The techniques give especially interesting results if
we add several range restrictions, one of which has constant width. The
techniques show the close relation between partially persistent data structures
and structures for problems with constant width range restrictions.

We have given a gênerai technique to make arbitrary data structures
partially persistent. In Overmars [11, p. 158-159], another technique is given
that works for static data structures that solve decomposable searching
problems. The structures that result from this technique are almost identical to
Bentley's structure for adding a half-infinite range restriction to decomposable
searching problems. (See [1].) Hence, the relation between adding range
restrictions and partially persistent data structures was already present in the
literature.

We have given only few applications of our transformations. It should be
possible to find other applications. Especially for problems that can be
"normalized", new results may be obtained.

The most interesting results are obtained for range restrictions, one of
which has constant width. In case arbitrary range restrictions are added, the
space requirement increases by a factor of O (log n). (See Theorem 15) An
interesting direction for further research is to investigate whether in this case
the space requirement can be reduced.
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Finally, the data structures présentée here are static. An interesting research
direction is to investigate whether the techniques can be adapted to obtain
dynamic structures.
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