On Local Routing of Two-Terminal Nets

Michael Kaufmann and Kurt Mehlhorn
Max-Planck-Institut für Informatik, 6600 Saarbrücken, Germany
Communicated by the Managing Editors
Received April 10, 1989

Abstract

We examine the problem of finding edge-disjoint paths between pairs of vertices placed on inner as well as outer faces of a finite grid graph. For each path a global routing, which fixes the topology of the path relative to the nontrivial faces, is part of the input. We give necessary and sufficient conditions for the solvability of the problem and provide an algorithm to find a solution with running time quadratic in the size of the problem. 1992 Academic Press. Inc.

I. Introduction

The planar rectangular grid consists of vertices $\{(x, y) ; x, y \in \mathbb{Z}\}$ and edges $\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) ;\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|=1\right\}$. A routing region R is a finite subgraph of the planar rectangular grid.

In the sequel R always denotes a routing region. We call a bounded face F of R trivial if it has exactly four vertices on its boundary and nontrivial otherwise. We use M to denote the nontrivial bounded faces and \bar{M} to denote M together with the unbounded face. Let B be the set of vertices of R with degree at most three. Note that a vertex $v \in B$ lies on the boundary of a face $F \in \bar{M}$.

A local routing is a path in the routing region R connecting two vertices of B. The endpoints of the path are called its terminals. Two local routings p and q are elementarily equivalent if there are paths $p_{1}, p_{2}, q_{2}, p_{3}$ such that $p=p_{1} p_{2} p_{3}, q=p_{1} q_{2} p_{3}$, and such that $p_{2} q_{2}^{-1}\left(q_{2}^{-1}\right.$ is the reverse of path q_{2}) is a boundary cycle of a trivial face. Two elementarily equivalent paths are hence the same except that they take two different routes around a single trivial face. Two local routings p and q are equivalent if there is a sequence $p_{0}, \ldots, p_{k}, k \geqslant 0$, of paths such that $p=p_{0}, q=p_{k}$, and p_{i} and p_{i+1} are elementarily equivalent for $0 \leqslant i<k$. Note that if p and q are equivalent then p and q have the same terminals.

We use $[p]$ to denote the equivalence class of local routing p, i.e., to denote the homotopy class of path p. A global routing or net is an equiva-
lence class $[p]$; the terminals of the path p are also called the terminals of the net. We are now ready to state the local routing problem (LPR).

Input. A routing region R and a multi-set \mathscr{N} of nets.
Output. A local routing $\operatorname{lr}(N)$ for each net $N \in \mathscr{N}$ such that
(1) $\operatorname{lr}(N) \in N$ for all $N \in \mathscr{N}$
(2) $\operatorname{lr}\left(N_{1}\right)$ and $\operatorname{lr}\left(N_{2}\right)$ are edge-disjoint for $N_{1}, N_{2} \in \mathscr{N}, N_{1} \neq N_{2}$
or an indication that there is no such set of local routings.
Figure 1 gives an example. We assume that each net $N \in \mathscr{N}$ is given by one of its representatives. We use r to denote the number of vertices of R and m to denote the total length of the representatives and call $n=r+m$ the size of the problem. A local routing problem is called solvable, if an appropriate set of local routings exists, and is called unsolvable otherwise. In this paper we will prove the following theorem.

Fig. 1. A local routing problem and its solution. The global routings are shown as curves for added clarity.

Fig. 2. The multiple-source dual $D(R)$ of the routing region of Fig. 1. A cut of capacity 8 is shown wiggled.

Theorem 1. Let $P=(R, \mathcal{N})$ be an even bounded LRP of size n.
(a) P is solvable if and only if the free capacity of every cut is nonnegative.
(b) In time $O\left(r^{2}+m\right)=O\left(n^{2}\right)$ one can decide whether P is solvable and also construct a solution if it is.

It remains to define the terms "even LRP," "cut," "free capacity of a cut," and "bounded." The multiple-source dual $D(R)$ of routing region R is defined as follows (cf. Fig. 2). For every edge e of R there is a dual edge $d(e)$ with its endpoints lying in those faces of R which are separated by e. The endpoints of dual edges which lie in faces outside \bar{M} are identified, the endpoints in faces in \bar{M} are kept distinct and are called sources of the dual graph. A cut of R is a simple path in the dual graph connecting two sources. Thed capacity cap (C) of a cut C is its length ($=$ number of edges of R intersected by the cut) (cf. Fig. 2). A cut can be viewed as a polygonal line s_{1}, \ldots, s_{k}, where each s_{i} is a straightline segment and s_{i} and s_{i+1} have different directions (one horizontal, one vertical). A cut is a 1-bend cut if $k \leqslant 2$ and a 0 -bend cut if $k=1$.

Let C be a cut and let p be a path. Then $\operatorname{cross}(p, C)$ is the number of edges e of p with $d(e)$ in C, i.e., the number of times p goes across C. For a global routing $g r$ we define

$$
\operatorname{cross}(\mathrm{gr}, C)=\min \{\operatorname{cross}(p, C) ; p \in \mathrm{gr}\}
$$

The density dens(C) of cut C is defined by

$$
\operatorname{dens}(C)=\sum_{N \in \cdot 1} \operatorname{cross}(N, C)
$$

and the free capacity $\mathrm{fcap}(C)$ is given by

$$
\operatorname{fcap}(C)=\operatorname{cap}(C)-\operatorname{dens}(C)
$$

A cut C is saturated if $\mathrm{fcap}(C)=0$ and oversaturated if $\mathrm{fcap}(C)<0$.
An LRP is even if $\operatorname{fcap}(C)$ is even for every cut C and it is 1 -even if fcap (C) is even for every 1 -bend cut C.

For a vertex $v \in V, \operatorname{deg}(v)$ denotes the degree of v in the graph R and $\operatorname{ter}(v)$ denotes the number of nets having v as an endpoint. An LRP is bounded, if $\operatorname{deg}(v)+\operatorname{ter}(v) \leqslant 4$ for all vertices v.

At this point all terms are defined and we can now put our work into perspective. We view the routing problem as the problem of finding edgedisjoint paths in a grid graph. This is usually called routing in knock-knee mode, since two solution paths may both bend in the same vertex. The mode where this is excluded is called Manhattan mode. Previous work on routing problems in knock-knee mode can be found in Preparata and Lipski [PL], Frank [F], Mehlhorn and Preparata [MP], Nishizeki, Saito and Suzuki [NSS], Kaufmann and Mehlhorn [KM], Becker and Mehlhorn [BM], Kramer and van Leeuwen [KvL], and Brady and Brown [BB]. The problems considered in the first five papers are special cases of the LRP considered here. They solve the routing problem for channels [PL], switchboxes [F, MP], convex generalized switchboxes [NSS], and generalized switchboxes [MK], respectively. In a generalized switchbox problem we have $M=\varnothing$, in a convex generalized switchbox problem we have in addition that every two boundary vertices are connected by a path with at most one bend, and in a switchbox problem R is a rectangle. The time bounds obtained in thesc papers are much better than the bound in the present paper, e.g., $O\left(n(\log n)^{2}\right)$ for the generalized switchbox problem. The paper by Becker and Mehlhorn is incomparable with the present paper; it is more restrictive in some ways, since all vertices in B have to lie on the boundary of the unbounded face, and it is more general in other ways, since the routing region R may be an arbitrary even ($=$ all nodes not on the boundary of the unbounded face have even degree) planar graph, nets are simply pairs of points in B, and no homotopies are required in the input. Kramer and van Leeuwen prove that the global routing problem is NP-complete, i.e., if we drop the condition that $\operatorname{lr}(N) \in N$ for $N \in \mathscr{N}$ (in other words, a net is just a pair of vertices in B), then the problem becomes NP-complete. Finally, Brady and Brown treat the problem of layer assignment and show that any layout in knock-knee mode can be wired using four conducting layers. For channels three layers suffice [PL].

The present paper also has sources in graph theory, most notably the paper by Okamura and Seymour [OS]. They showed that the cut condition, i.e., $\mathrm{fcap}(X) \geqslant 0$ for all cuts X, is necessary and sufficient for the
solvability of even multi-commodity flow problems in planar graphs provided that all terminals lie on the same face. We drop this restriction and thus generalize their result; however, our solution only works for grid graphs. The generalization to general planer graphs remains a major challenge. A partial result was recently obtained by van Hoesel and Schrijver [HS]; they treat the case $|M|=1$. An implementations of the Okamura and Seymour result can be found in Matsumoto, Nishizeki, and Saito [MNS] and in Becker and Mehlhorn.

We also want to mention the papers by Cole and Siegel [CS] and Leiserson and Maley [LM]. They prove the same result as we do but for river routing instead of routing in knock-knee mode, i.e., they require that solution paths are vertex-disjoint. Of course, nets cannot cross in their case.

Automatic VLSI design systems, e.g., CALCOS (Lauther [L]) and PI (Rivest [R]) for integrated circuits divide the routing problem into several stages:
(1) Determine a global routing for every net.
(2) Cut the routing region into regions of simple shape, e.g., channels.
(3) Determine for every net the exact positions where it crosses channel boundaries.
(4) Route cach channel.

In some systems, e.g., CALCOS, stages (3) and (4) are combined into a single stage. Channels are routed one by one and the routings in the first i channels fix the positions of the nets which leave these channels. In all stages heuristic algorithms are usually used. The result of Kramer and van Leeuwen states that the general routing problem is NP-complete; our theorem states that the combination of stages (2) to (4) can be solved in polynomial time, at least for two-terminal nets and in knock-knee mode.

This paper is organized as follows. In Section II we give the algorithm which is then proved correct in Section III. Section IV, describes an implementation and its analysis. Section V is a short conclusion; it lists some open problems and recent extensions of the present work.

We close this section with a remark about notation. A path p is a sequence $e_{1} e_{2} \cdots e_{k}$ of edges where $e_{i}=\left(v_{i}, v_{i+1}\right)$ for $1 \leqslant i \leqslant k$. We call v_{1} the start vertex of p, v_{k+1} the end vertex of p and v_{1} and v_{k+1} its terminals; i.e., we view a path as being oriented from v_{1} to v_{k+1}. The reverse path $p^{-1}=e_{k} \cdots e_{2} e_{1}$ is then oriented from v_{k+1} to v_{1}. A net $N=[p]$ is an equivalence class of paths and therefore also oriented. The start vertex of N is the start vertex of p. The reverse net N^{-1} is the equivalence class [p^{-1}]. Of course, a routing problem changes only in an inessential way, if
the orientation of some nets is changed. We will tacitly use this fact in the following sections.

II. The Algorithm

In this section we describe an algorithm for solving local routing problems. Let $P_{0}=\left(V_{0}, E_{0}, \mathscr{N}_{0}\right)$ be an even local routing problem which satisfies the cut condition, i.e., $\operatorname{fcap}(C) \in 2 \cdot \mathbb{N}_{0}$ for every cut C. Here $2 \cdot \mathbb{N}_{0}$ denotes the set of even nonnegative integers. Our algorithm constructs a solution for P_{0} iteratively by transforming P_{0} into simpler and simpler routing problems. We will maintain the invariant that the current routing problem $P=(V, E, \mathcal{N})$ is good with respect to P_{0}.

Definition 1. A routing problem $P=(V, E, \mathscr{N})$ is good with respect to $P_{0}=\left(V_{0}, E_{0}, \mathscr{N}_{0}\right)$ if
(a) P is a routing problem with $V \subseteq V_{0}$ and $E \subseteq E_{0}$.
(b) $\operatorname{fcap}(Y) \in 2 \cdot \mathbb{N}_{0}$ for all 1 -bend cuts Y; i.e., the cut condition for 1-bend cuts is satisfied and the problem is 1 -even.
(c) P is bounded.
(d) If P is solvable then P_{0} is solvable.

Remark. For the problems P constructed by our algorithm the connection between a solution of P and a solution of P_{0} is very simple. For every net $N \in \mathscr{N}_{0}$ there will be a set $\mathscr{N}(N) \subseteq \mathscr{N}$ of nets of the current problem P and a set $E(N) \subseteq E_{0}-E$ of edges such that local routings for the nets in $\mathscr{N}(N)$ together with the edges in $E(N)$ form a local routing for N. In other words, the set $E(N)$ of edges has already been reserved for the net N and the fragments $\mathcal{N}(N)$ of net N still have to be routed. When P is trivial, i.e., $\mathcal{N}=\varnothing$, then a solution for P_{0} was found.

We will mostly use the phrase P is good instead of P is good with respect to the basic problem P_{0}.

Definition 2. An LRP P is reduced if $\operatorname{ter}(v)<\operatorname{deg}(v)$ for all $v \in V$, and there is no cut with capacity one.

In each iteration of the algorithm (cf. Program 1) the routing problem is simplified in two phases (Procedures Simplifyl and Simplify2). Procedure Simplifyl eliminates all cuts with capacity one and all vertices v with $\operatorname{deg}(v)=\operatorname{ter}(v)$ and turns the routing problem into a reduced routing problem. Procedure Simplify2 works on reduced routing problems and
either discards some edges in the left upper corner of the routing region (if there is no saturated cut through the left upper corner) or it chooses a particular net to be routed through the left upper corner. In the second case a vertex v with $\operatorname{deg}(v)=\operatorname{ter}(v)$ is created and hence Simplify 1 applies in the next iteration. Thus if Simplify 2 of one iteration does not remove an edge then Simplify 1 of the next iteration will remove a vertex of the routing region and hence $O(n)$ iterations suffice to find a solution.

Program 1. $\left(* P_{0}=\left(V_{0}, E_{0}, \mathscr{V}_{0}\right)\right.$ is an even local routing problem satisfying the cut condition $*$).

```
\(P=(V, E, \mathcal{N}) \leftarrow P_{0}\)
while \(E \neq \varnothing\)
do(*P is good *)
    Simplify1;
    (* \(P\) is good and reduced *)
    Simplify2;
    (*P is good *)
od
```

Lemma 1. Let P be a 1-even local routing problem. Then $\operatorname{deg}(v)=\operatorname{ter}(v)$ mod 2 for all v. In particular, if P is bounded then $\operatorname{deg}(v)=3$ implies $\operatorname{ter}(v)=1$ and if P is reduced $\operatorname{deg}(v)=2$ implies $\operatorname{ter}(v)=0$. Also there are no vertices of degree one.

Proof. Let v be any vertex. If $\operatorname{deg}(v)=4$ then $v \notin B$ and hence $\operatorname{ter}(v)=0$ and the claim is true. So let us assume that $v \in B$. Then v lies on the boundary of c nontrivial faces, $1 \leqslant c \leqslant 3$. Thus there are c disjoint cuts X_{1}, \ldots, X_{c} which separate v from the remainder of the graph. Note that $\operatorname{deg}(v)=$ $\operatorname{cap}\left(X_{1}\right)+\cdots+\operatorname{cap}\left(X_{c}\right)$. Also $\operatorname{ter}(v)=\left(\operatorname{dens}\left(X_{1}\right)+\cdots+\operatorname{dens}\left(X_{c}\right)\right) \bmod 2$, since exactly the paths having v as a terminal cross X an odd number of times. Thus $\operatorname{deg}(v)-\operatorname{ter}(v)=\left(\mathrm{fcap}\left(X_{1}\right)+\cdots+\mathrm{fcap}\left(X_{c}\right)\right) \bmod 2$. It remains to be shown that $\operatorname{fcap}\left(X_{i}\right)=0 \bmod 2$ for all $i, 1 \leqslant i \leqslant c$. If $c \geqslant 2$ or $\operatorname{deg}(v) \leqslant 2$ then the cuts X_{i} are 1-bend cuts and hence we have fcap $\left(X_{i}\right)=0 \bmod 2$ for all i since P is 1 -even. If $c=1$ and $\operatorname{deg}(v)=3$ then X_{1} is a 2 -bend cut. We will show $\operatorname{fcap}\left(X_{1}\right)=0 \bmod 2$ in Lemma 11c of Section III.2. Thus in either case we conclude $\operatorname{deg}(v)=\operatorname{ter}(v) \bmod 2$. In a reduced routing problem we also have $\operatorname{ter}(v)<\operatorname{deg}(v)$ and in a bounded problem we have $\operatorname{deg}(v)+$ $\operatorname{ter}(v)=4$ for the vertices v with $\operatorname{deg}(v)=3$. This proves the second part of the claim.

We will next describe procedures Simplify1 and Simplify2, cf. Programs 2 and 3. In Simplify1 we distinguish two cases, namely the existence of a cut X with $\operatorname{cap}(X)=1$ or the absence of such cuts and the existence of a vertex
v with $\operatorname{deg}(v)=\operatorname{ter}(v)$. Assume first that there is a cut X with $\operatorname{cap}(X)=1$. Since P is good and hence is l-even and satisfies the cut condition for X we must have $\operatorname{fcap}(X)=0$. Thus there is a unique net N with $\operatorname{cross}(N, X)=1$. Let $e \in E$ be the edge intersected by X and let $N=\left[p_{1} e p_{2}\right]$ where $\operatorname{cross}\left(p_{1} e p_{2}, X\right)=1$. We remove edge e, reserve it for net N, and replace net N by the two nets $\left[p_{1}\right]$ and $\left[p_{2}\right]$. A solution for P is readily obtained from a solution for the modified problem which we denote by P^{\prime}. We only have to combine the local routings for $\left[p_{1}\right]$ and $\left[p_{2}\right]$ with edge e and obtain a local routing for N.

Program 2. Procedure Simplify 1

begin ($* P$ is good $*$)
while there is a cut X with $\operatorname{cap}(X)=1$ or a vertex v with $\operatorname{deg}(v)=\operatorname{ter}(v)$ do ($* P$ is good *)
if there exists a cut X with $\operatorname{cap}(X)=1$
then let X be a cut with $\operatorname{cap}(X)=1$ and let N be the unique net with $\operatorname{cross}(N, X)=1$;
let e be the edge intersected by cut X and let $N=\left[p_{1} e p_{2}\right]$ where $\operatorname{cross}\left(p_{1} e p_{2}, X\right)=1 ;$ remove edge e, reserve it for net N and replace net N by nets $\left[p_{1}\right]$ and $\left[p_{2}\right]$.
else let v be a vertex with $\operatorname{deg}(v)=\operatorname{ter}(v)$;
let $e_{i}, 1 \leqslant i \leqslant 2$, be the edges incident to v and let $N_{i}, 1 \leqslant i \leqslant 2$, be the nets incident to v where the edges are numbered as shown in Fig. 3 and N_{1} is right-of N_{2}; let $N_{1}=\left[e_{1} p_{1}\right]$, where p_{1} does not use edge e_{1}; remove edge e_{1}, reserve it for net N_{1} and replace net N_{1} by net $\left[p_{1}\right]$

fi

(*P is good *)
od
(* P is good and reduced *)
end

Fig. 3. A vertex v with $\operatorname{deg}(v)=2$ and the edges incident to it. The face in \bar{M} is shown hatched.

Lemma 2. The problem P^{\prime} defined above is good; i.e., the then-case of Procedure Simplifyl maintains the invariant.

Proof. A proof will be given in Section III.4.
Assume next that there is no cut with capcity one but that there is a vertex v with $\operatorname{deg}(v)=\operatorname{ter}(v)$. Then $\operatorname{deg}(v)=2$ and v is incident to exactly one nontrivial face. We will now define two orderings, one on the d edges incident to v and one on the d nets incident to v. We will then assign the i th edge in the ordering of edges to the i th net in the ordering of nets and simplify the routing problem in this way.

For a vertex v incident to exactly one non-trivial face an ordering on the edges incident to v is easy to define. Let $e_{i}, 1 \leqslant i \leqslant \operatorname{deg}(v)$, be the edges incident to v ordered counterclockwise around v and numbered such that the faces following $e_{i}, 1 \leqslant i \leqslant \operatorname{deg}(v)$, in counterclockwise order are trivial.

We turn to the ordering on nets next. We define this ordering in three steps. We first define an ordering on paths, then define the concept of a canonical representative of a net and then order nets via their canonical representatives.

Definition 3. (a) Let p_{1} and p_{2} be local routings with a common start vertex v. Then p_{1} is right-of p_{2} if either
$-p_{1}=p_{2}$ or

- p_{1} is a proper prefix of p_{2} and p_{2} enters the endpoint t_{1} of p_{1} through edge e_{i} and leaves it through edge e_{j} where $i>j$ and $e_{1}, \ldots, e_{d}, d \in\{2,3\}$ is the ordering of the edges incident to t_{1} defined above or
- p_{2} is a proper prefix of p_{1} and p_{1} enters the endpoint t_{2} of p_{2} through e_{i} and leaves it through edge e_{j} where $i<j$ and e_{1}, \ldots, e_{d}, $d \in\{2,3\}$ is the ordering of the edges incident to t_{2}.
$-p_{1}$ and p_{2} differ in their first edges, p_{1} starts with edge e_{i}, p_{2} starts with edge e_{j} and $1 \leqslant i<j \leqslant d$ or

Fig. 4. The various cases of Definition 3(a). The local routing p_{1} is right-of local routing p_{2}.

FIG. 5. A net and its canonical representative.
$-p_{1}$ and p_{2} have a maximal non-trivial common prefix p; i.e., $p_{1}=p q_{1}$ and $p_{2}=p q_{2}$ and the first edges of q_{1} and q_{2} are distinct, and the three edges "last edge of p," "first edge of q_{1}," "first edge of q_{2} " are ordered counterclockwise around their common endpoint.

Figure 4 illustrates this definition.
(b) Let N be a net. A path $p \in N$ is the canonical representative of net N if p is a shortest path in N and if p is right-of all other shortest paths in N. We denote the canonical representative of net N by $\operatorname{can}(N)$, cf. Fig. 5 .
(c) Let N and N^{\prime} be nets with a common start vertex terminal v. Then N is right-of N^{\prime} if $\operatorname{can}(N)$ is right-of $\operatorname{can}\left(N^{\prime}\right)$.

Remark. Definition 3(a) is long but there is a simple idea behind it. Follow the paths p_{1} and p_{2} starting in their common start vertex v. When they separate one will proceed to the right of the other one. The special cases (one prefix of the other or no common nontrivial prefix) reduce to the general case if one artificially introduces a pseudo-edge at each vertex $w \in B$ entering w from the nontrivial face and extends all paths by pseudoedges at both ends. The canonical representative of a net is unique since a net has only finitely many shortest representatives and since the relation right-of is a linear order for the paths with a common start vertex.

We are now ready for the else-case of Procedure Simplify1. Let e_{i}, $1 \leqslant i \leqslant 2$, be the edges incident to v in the ordering defined above and let $N_{i}, 1 \leqslant i \leqslant 2$, be the nets incident to v, where N_{1} is right-of N_{2}. (Here we implicitly assumed that the nets N_{i} incident to v have v as their start vertex. This might require changing the orientation of some nets. If there is a net N which has v as its start and end vertex then both orientations have to be considered, i.e., N is some N_{i} and N^{-1} is some $N_{j}, i \neq j$.) Write $N_{1}=\left[e_{1} p_{1}\right]$, where p_{1} is a path not using edge $e_{1} . N_{1}$ can be written this way because e_{1} can be replaced by an equivalent path of length three. Remove edge e_{1} from the routing region, reserve it for net N_{1} and replace net N_{1} by net $\left[p_{1}\right]$. Call the new problem P^{\prime}, cf. Fig. 6 . It is clear that a solution for P can be immediately derived from a solution for P^{\prime}; we only

Fig. 6. The else-case of procedure Simplify1.
have to add edge e_{1} to the local routing for $\left[p_{1}\right]$ and obtain a local routing for N_{1}.

Lemma 3. The problem P^{\prime} defined above is good, i.e., the else-case of Procedure Simplifyl maintains the invariant.

Proof. A proof will be given in Section II.4.
Procedure Simplify 1 leaves us with a reduced routing problem to which we apply Procedure Simplify2, cf. Program 3.

We need some additional concepts. A vertex $a=(x, y)$ of the routing region R is called the left upper corner of R if there is no vertex (x^{\prime}, y^{\prime}) of R with $y^{\prime}>y$ or with $y^{\prime}=y$ and $x^{\prime}<x$. We use b to denote the vertex $b=(x, y-1)$ and $e^{*}=(a, b)$ to denote the vertical edge incident to a. We consider 1 -bend cuts X which go through edge e^{*} and distinguish two cases: either there exists a saturated 1 -bend cut through edge e^{*} (then-case) or there exists no such cut (else-case). In the latter case we remove the four edges on the boundary cycle of the trivial face to the right of e^{*} (cf. Fig. 7).

Program 3. Procedure Simplify2.
begin (*P is good and reduced *)
let $e^{*}=(a, b)$ be the vertical edge incident to the left upper corner a;
if \exists saturated 1 -bend cut through e^{*}
then let X be the leftmost saturated 1 -bend cut through e^{*}
let ($\left[p_{1}\right],\left[p_{2}\right]$) be the rightmost decomposition with respect to X. replace net $\left[p_{1} p_{2}\right]$ by nets $\left[p_{1}\right]$ and $\left[p_{2}\right]$.
else remove the four edges on the boundary of the trivial face to the right of e^{*}
fi
(* P is good *)
end

Fig. 7. The else-case of procedure Simplify2.

Lemma 4. The else-case of procedure Simplify 2 maintains the invariant.
Proof. A proof will be given in Section III.4.
Let us consider the then-case next. We observe first that a saturated 1-bend cut through edge e^{*} must consist of two segments s_{1} and s_{2} and that the second segment runs downwards. This can be seen as follows: A horizontal cut through edge e^{*} cannot be saturated since each of the vertices of degree two in the top row are not terminal of any net and each of the l vertices of degree three is the terminal of exactly one net. Hence the capacity exceeds the density by at least two. A similar argument shows that s_{2} cannot bend upwards. So s_{2} must run downwards. Among the saturated 1-bend cuts through edge e^{*} we choose the one with the maximal segment s_{1}. We call this cut the leftmost saturated 1 -bend cut through edge e^{*}.

Next consider any net N. A decomposition of N with respect to vertex a is a pair $\left(\left[p_{1}\right],\left[p_{2}\right]\right)$, where p_{1} ends in vertex a, p_{2} starts in vertex a and $N=\left[p_{1} p_{2}\right]$. Let $\left(\left[p_{1}\right],\left[p_{2}\right]\right)$ be a decomposition of net N and let ($\left[q_{1}\right],\left[q_{2}\right]$) be a decomposition of N^{\prime} with respect to a. The decomposition $\left(\left[p_{1}\right],\left[p_{2}\right]\right)$ is right-of decomposition $\left(\left[q_{1}\right],\left[q_{2}\right]\right)$ if $\left[p_{2}\right]$ is right-of [q_{2}].

We are now ready for the description of the then-case. Let X be the leftmost saturated 1-bend cut through edge e^{*}. Let

$$
\begin{aligned}
D=\{ & \left(\left[q_{1}\right],\left[q_{2}\right]\right) ;\left(\left[q_{1}\right],\left[q_{2}\right]\right) \text { is the decomposition with respect to } a \\
& \text { of some net } N \text { where either } N \in \mathscr{N} \text { or } N^{-1} \in \mathscr{N} \\
& \text { and } \left.\operatorname{cross}\left(\left[q_{1} q_{2}\right], X\right)=\operatorname{cross}\left(\left[q_{1}\right], X\right)+\operatorname{cross}\left(\left[q_{2}\right], X\right)\right\} .
\end{aligned}
$$

Intuitively, in D we collect those decompositions with respect to a of the nets which do not provide additional crossings of cut X. Let $\left(\left[p_{1}\right],\left[p_{2}\right]\right) \in D$ be right-of every other element of D. We call $\left(\left[p_{1}\right],\left[p_{2}\right]\right)$ the rightmost decomposition with respect to X.

Fig. 8. The then-case of procedure Simplify2. X is the leftmost saturated 1-bend cut through edge e^{*} and ($\left[p_{1}\right],\left[p_{2}\right]$) is the rightmost decomposition with respect to X.

Remark. The set D is not-empty sinced the cut X is saturated. Let $N \in \mathscr{N}$ be a net which goes across X. We can write $N=\left[q_{1} e^{*} q_{2}\right]^{\varepsilon}$ with $\varepsilon \in\{-1,+1\}$. Then ($\left.\left[q_{1}\right],\left[e^{*} q_{2}\right]\right)$ is an element of D.

In the then-case we replace the net $\left[p_{1} p_{2}\right]$ (or $\left[p_{1} p_{2}\right]^{-1}$, whichever is in \mathcal{N}) by the nets $\left[p_{1}\right]$ and $\left[p_{2}\right]$, cf. Fig. 8. Call the modified problem P^{\prime}. It is clear that a solution for the modified problem P^{\prime} directly yields a solution for P. We also have

Lemma 5. The problem P^{\prime} defined above is good, i.e., the then-case of procedure Simplify 2 maintains the invariant.

Proof. A proof will be given in Section III.4.
Theorfm 2. Let P_{0} be a solvable even local routing problem. Then our algorithm constructs a solution in $O(n)$ iterations of the main loop.

Proof. If P_{0} is solvable then P_{0} is good (with respect to P_{0}). We infer from Lemmas 2 to 5 that all intermediate problems are good, and hence the final problem is good. The set of edges in the final problem is empty and hence our algorithm finds a solution for the routing problem. The bound on the number of iterations follows from the remark made immediately before Definition 2 .

Theorem 2 implies part (a) of Theorem 1. Clearly, if P_{0} is solvable then the cut condition holds. Conversely, if the cut condition holds then the cut condition for 1-bend cuts holds and P_{0} is good. Thus our algorithm constructs a solution.

III. Correctness

We prove the correctness of our algorithm in this section. The section is divided into four subsections. The last subsection contains the proof of Lemmas 2 to 5 of Section II; the first three subsections contain preliminary lemmas. Section III. 1 is on cuts and reduced representatives, Section III. 2 gives an alternative definition of the ordering right-of on nets which avoids the use of canonical representatives and is more amenable to counting densities, and Section III. 3 shows that the cut condition for a small subset of the 1 -bend cuts implies the cut condition for all cuts.

III.1. Cuts and Reduced Paths

Let C be a cut and let N be a net. By definition of $\operatorname{cross}(N, C)$ there is a path $p \in N$ with $\operatorname{cross}(N, C)=\operatorname{cross}(p, C)$. Figure 9 shows that for a net N and cuts C_{1} and C_{2} there is not necessarily a single representative $p \in N$

Fig. 9. Two cuts C_{1} and C_{2} and a net N which does not have a common reduced representative for both cuts.
with $\operatorname{cross}\left(N, C_{i}\right)=\operatorname{cross}\left(p, C_{i}\right), i=1,2$. We call a representation $p \in N$ reduced with respect to a set of cuts if $\operatorname{cross}(p, C)=\operatorname{cross}(N, C)$ for every cut in the set. In this section we derive sufficient conditions for the existence of such a common "reduced" representative.

Let C be a cut and let F_{1}, \ldots, F_{m} be the sequence of trivial faces through which C goes. Let $e_{1}^{(i)} p_{1}^{(i)} e_{2}^{(i)} p_{2}^{(i)}$ be the boundary cycle of face F_{i} in clockwise order where $e_{1}^{(i)}$ and $e_{2}^{(i)}$ are the edges intersected by $C, p_{1}^{(i)}$ and $p_{2}^{(i)}$ are paths, and $e_{2}^{(i)}$ and $e_{1}^{(i+1)}$ are the same edge but in opposite orientation. Then $p_{1}=p_{1}^{(1)} p_{1}^{(2)} \cdots p_{1}^{(m)}$ and $p_{2}=p_{2}^{(1)} p_{2}^{(2)} \cdots p_{2}^{(m)}$ are called the two paths along cut C, cf. Fig. 10. If x and y are vertices on path p_{1} (or p_{2}) then we call the subpath of p_{1} (or p_{2}) connecting x and y the path along C connecting x and y.

Lemma 6. Let C be a cut and let p be a path. If $\operatorname{cross}(p, C)>$ $\operatorname{cross}([p], C)$ then p can be written $p=p_{1} e_{1} p_{2} e_{2} p_{3}$, where $e_{1}=(c, d)$ and $e_{2}=(e, f)$ go across C in opposite directions, p_{2} does not intersect C, $\operatorname{cross}\left(p_{1} p_{4} p_{3}, C\right)=\operatorname{cross}(p, C)-2$, and $p_{4} \in\left[e_{1} p_{2} e_{2}\right]$, where p_{4} is the path from c to f along C.

Proof. The claim is intuitively obvious, cf. Fig. 11. A proof goes as follows. Let $q \in[p]$ be such that $m:=\operatorname{cross}(q, C)=\operatorname{cross}([p], C)$ and let q_{0}, \ldots, q_{k} be a sequence of paths such that $q=q_{0}, q_{k}=p$, and q_{i} and q_{i+1} are elementarily equivalent, $0 \leqslant i<k$. We show by induction on i that the intersections between q_{i} and C can be labelled by the labels "proper" and

Fig. 10. A cut C and the two paths along C.

Fig. 11. An illustration of Lemma 6.
"improper" such that the improper intersections can be paired and such that
(1) no pair encloses a proper intersection,
(2) the pairs form a set of properly nested parentheses, and
(3) each pair induces a cycle (consisting of the subpath of p connecting the two elements of the pair and the path along C connecting it) which is homotopic to 0 (the faces in M are, of course, the holes in the plane). Also at most m intersections are labelled proper.

For $i=0$ all intersections are labelled proper. Let us go from i to $i+1$ next. We have $q_{i}=q_{i}^{1} q_{i}^{2} q_{i}^{3}, q_{i+1}=q_{i}^{1} q_{i}^{4} q_{i}^{3}$ and $q_{i}^{2}\left(q_{i}^{4}\right)^{-1}$ is a boundary cycle of a trivial face. Clearly $\operatorname{cross}\left(q_{i}^{2} . C\right)=\operatorname{cross}\left(q_{i}^{4}, C\right) \bmod 2$ and $\operatorname{cross}\left(q_{i}^{2}, C\right)+\operatorname{cross}\left(q_{i}^{4}, C\right) \leqslant 2$, since C is a simple dual path. We thus have to distinguish four cases. If $\operatorname{cross}\left(q_{i}^{2}, C\right)=\operatorname{cross}\left(q_{i}^{4}, C\right)=0$ then there is nothing to show. If $\operatorname{cross}\left(q_{i}^{2}, C\right)=\operatorname{cross}\left(q_{i}^{4}, C\right)=1$ then the labelling and the pairing is easily modified. If $\operatorname{cross}\left(q_{i}^{4}, C\right)=2$ then we pair the two additional points of intersection and label them improper. This leaves the case $\operatorname{cross}\left(q_{i}^{2}, C\right)=2$. If both intersections are labelled proper or if both are labelled improper and are paired, then there is nothing to show.

If one is labelled proper and one improper (call the improper intersection x) then we relabel the partner of the improper intersection (call it y) proper. Note that y cannot be enclosed by a pair because this pair would also contain x (pairs were nested properly in q_{i}) and hence the intersection labelled proper in q_{i} because this intersection is an immediate neighbor of x. Thus the nesting property is again satisfied. Finally, if both intersections are improper then we pair their partners. We show that the new pairing satisfies conditions (1) and (2). Note first that if one of the partners is contained in a parenthesis then one of the disappearing intersections was and hence the other one was also, since the disappearing intersections are immediate neighbors. Thus the other partner is also contained and hence
property (2) is again satisfied. For property (1) we only observe that any proper intersection contained in the newly formed parenthesis must been contained in one of the two disappearing parentheses. We leave it to the reader to check the claim about 0 -homotopy.

The labelling and pairing with respect to q_{k} immediately yields the desired edges e_{1} and e_{2} and path p_{2}. We only have to consider a pair of improper intersections which contains no further pair.

Lemma 7. Let C be a cut and let p be a path. Then $\operatorname{cross}(p, C)=$ $\operatorname{cross}([p], C)(\bmod 2)$.

Proof. By Lemma 6 we can reduce $\operatorname{cross}(p, C)$ to $\operatorname{cross}([p], C)$ by repeatedly removing pairs of intersections.

Let C and D be two cuts and let p_{1} and p_{2} be the paths along C and q_{1} and q_{2} be the paths along D. We say that C and D do not interfere if p_{i} intersects D at most once and q_{i} intersects C at most once, $i=1,2$. A set of cuts is interferencefree if any two cuts in S do not interfere.

Lemma 8. (a) Let C and D be 1-bend cuts. C and D do not interfere if either C and D have at most one vertex v in common, C uses the dual edges d_{1}, d_{2} incident to v and D uses d_{3} and d_{4} incident to v such that d_{1}, d_{3}, d_{2}, and d_{4} are distinct and lie in that order around v or if $C=E F$ and $D=E G$, where F and G are vertex-disjoint except for their common endpoint.
(b) Let S be an interferencefree set of cuts and let N be a net. Then there is a path $p \in N$ which is reduced with respect to all cuts in S, i.e., $\operatorname{cross}(p, C)=\operatorname{cross}(N, C)$ for all $C \in S$.

Proof. (a) Obvious.
(b) Let $p \in N$ be such that $k:=\sum_{E \in S} \operatorname{cross}(p, E)$ is minimal. Assumc that p is not reduced with respect to some cut $C \in S$. Then $p=p_{1} e_{1} p_{2} e_{2} p_{3}$, where $e_{1}=(c, d)$ and $e_{2}=(e, f)$ go across C, p_{2} does not go across C, $\operatorname{cross}\left(p_{1} p_{4} p_{3}, C\right)=\operatorname{cross}(p, C)-2$, and $p_{4} \in\left[e_{1} p_{2} e_{2}\right]$, where p_{4} is the path from c to f along C; cf. Lemma 6. Let $D \in S$ be arbitrary. Then $\operatorname{cross}\left(p_{4}, D\right)$ $\leqslant 1$, since C and D do not interfere and hence $\operatorname{cross}\left(p_{1} p_{4} p_{3}, D\right) \leqslant$ $\operatorname{cross}\left(p_{4}, D\right)+1$. Since $p_{1} p_{4} p_{3} \in[p]$ we conclude $\operatorname{cross}\left(p_{1} p_{4} p_{3}, D\right) \leqslant$ $\operatorname{cross}(p, D)$ from Lemma 7 and hence $\sum_{E \in S} \operatorname{cross}\left(p_{1} p_{4} p_{3}, E\right)<k$, a contradiction.

III.2. Slicings and the Ordering of Nets

The goal of this section is a more topological characterization of the ordering right-of of nets and of the density of a cut. Whilst the notion of canonical representative gives us a concise definition of the ordering right-of on nets it is of very limited use in density arguments because

Fig. 12. A slicing S. We have parent $\left(F_{1}\right)=F_{0}$, parent $\left(F_{3}\right)=F_{2}$, and parent $\left(F_{2}\right)=F_{0}$, where F_{0} is the unbounded face.
canonical representatives are by definition unique and therefore we cannot assume them to be reduced with respect to certain cuts. The alternative definition of the ordering given in this section, albeit longer, can be used in density and ordering arguments. Throughout this section we assume that there is no cut of capacity one.

Definition 4. A slicing S of the routing region R is a set $\{C(F)$; $F \in M\}$ of cuts and a function parent: $M \rightarrow \bar{M}$ such that
(1) $C(F)$ has one endpoint in face F and the other endpoint in face $\operatorname{parent}(F)$ for all $F \in M$;
(2) the function parent defines a tree on \bar{M} with the infinite face being the root;
(3) each cut $C(F), F \in M$, is a 0 -bend cut and two cuts $C(F)$ and $C(G)$ are vertex-disjoint for $F \neq G$.
Figure 12 illustrates this definition.
If S is a slicing then the removal of all edges of R which are intersected by a cut in S turns the routing region R into a routing region $R(S)$ which has only one nontrivial face, the unbounded face, of. Fig. 13. This follows from the observation that for every cut $C(F)$ of the slicing the paths along $C(F)$ are also paths in $R(S)$, since the cuts of S are pairwise vertex-disjoint.

Fig. 13. The routing region $R(S)$, where R and S are as in Fig. 12.

Fig. 14. The ordering on $B \cup C$ for the example of Fig. 12 and 13. The cyclic ordering is indicated by a heavy line with arrows.

For a cut $C(F)$ let $C(F)^{-1}$ and $C(F)^{+1}$ be two new symbols. We use the new symbols to "represent" the two sides of the cut $C(F)$. Let $C=\left\{C(F)^{-1}, C(F)^{+1} ; F \in M\right\}$ and let B be the set of vertices of R of degree three or less as defined in the introduction. We define a cyclic ordering on the set $B \cup C$ by a clockwise traversal of the boundary of the unbounded face of $R(S)$, where $C(F)^{+1}$ represents the sequence of vertices and edges used to reach face F from face parent (F) and $C(F)^{-1}$ represents the sequence of vertices and edges used to reach face parent (F) from face F. Figure 14 illustrates this definition. Note that this ordering is well defined, since no node in B can belong to the boundary of two faces in \bar{M}. Otherwise, there would be a cut of capacity one.

We can use slicings to decompose paths (and then nets) into elementary pieces. Let p be an oriented path. We can write $p=p_{1} e_{1} p_{2} e_{2} \cdots$ $p_{m} e_{m} p_{m+1}$, where e_{i} goes across a cut in S, say $C\left(F_{j i}\right)$ and the p_{i} 's do not go across cuts in S. Assume further that e_{i} crosses the cut $C\left(F_{j_{i}}\right)$ in the direction from $C\left(F_{j_{j}}\right)^{-d_{i}}$ to $C\left(F_{j_{j}}\right)^{-d_{i}}$, where $d_{i} \in\{-1,+1\}$. Then

$$
\left(s, C\left(F_{j_{1}}\right)^{d_{1}}\right),\left(C\left(F_{j_{1}}\right)^{-d_{1}}, C\left(F_{j_{2}}\right)^{d_{2}}\right), \ldots,\left(C\left(F_{j_{m}}\right)^{d_{m}}, t\right)
$$

FIG. 15. Net N_{i} connects s and t_{i}. The elementary pieces of N_{5} are $\left(s, C\left(F_{1}\right)^{+1}\right)$, $\left(C\left(F_{1}\right)^{-1}, t_{5}\right)$ and the elementary pieces of N_{4} are $\left(s, C\left(F_{1}\right)^{+1}\right),\left(C\left(F_{1}\right)^{-1}, C\left(F_{3}\right)^{+1}\right)$, $\left(C\left(F_{3}\right)^{-1}, t_{4}\right)$. Since $C\left(F_{1}\right)^{-1}, C\left(F_{3}\right)^{+1}, t_{5}$ occur in that order in the cyclic ordering of $B \cup C$ (cf. Fig. 14), N_{4} is "right-of" N_{5}. In general, N_{i} is "right-of" N_{j} for $i<j$.
is the decomposition of path p into elementary pieces; here s and t denote the start- and end-vertex of p. An elementary piece is an element of $(B \cup C)^{2}$. This definition is illustrated by Fig. 15 .

Lemma 9. Let p and q be equivalent paths and let p and q be reduced with respect to all cuts in slicing S. Then p and q yield the same sequence of elementary pieces.

Proof. Obvious. I
Lemma 9 allows us to extend the decomposition into elementary pieces from paths to nets. Let N be a net and let $p \in N$ be reduced with respect to S. Then a decomposition of N is defined as a decomposition of p.

We are now ready for the alternative definition of the ordering right-of on nets with a common start vertex. Let N_{i} be a net with start-vertex s and let $\alpha_{i 1}, \ldots, \alpha_{i k_{i}}$ be the decomposition of N_{i} into elementary pieces, $i=1,2$. Then N_{1} is "right-of" N_{2} iff there is a j such that $\alpha_{1 l}=\alpha_{2 l}$ for $l<j$, $\alpha_{1 j}=(u, v), \alpha_{2 j}=(u, w)$, where $u, v, w \in B \cup C, v \neq w$, and u, v, and w occur in that order in the cyclic ordering of $B \cup C$ (cf. Fig. 15) or if $N_{1}=N_{2}$.

Since the equivalence of this definition with our old definition of right-of still needs to be verified, we used "right-of" instead of right-of in this definition. Also note that the definition of "right-of" is with respect to a particular slicing S. We will next show that the orderings right-of and "right-or" are the same; this also implies that the ordering "right-of" is independent of the particular slicing used in its definition.

Lemma 10. Let N_{1} and N_{2} be nets with common start-vertex s. Then N_{1} is "right-of" N_{2} iff N_{1} is right-of N_{2}.

Proof. The claim is obvious if $N_{1}=N_{2}$. So let us assume that $N_{1} \neq N_{2}$ and that N_{1} is right-of N_{2}. Since both orderings are linear it suffices to show that N_{1} is "right-of" N_{2}.

Let $\alpha_{i 1}, \ldots, \alpha_{i k_{i}}$ be the decomposition of N_{i} into elementary pieces. Since $N_{1} \neq N_{2}$ there is a j such that $\alpha_{1 l}=\alpha_{2 l}$ for $l<j$ and $\alpha_{1 j}=(u, v), \alpha_{2 j}=(u, w)$ with $v \neq w$.

Let can $\left(N_{i}\right)$ be the canonical representative of net N_{i}. Since canonical representatives are shortest representatives they are reduced with respect to all 0 -bend cuts and hence with respect to all cuts in the slicing. We can therefore write

$$
\operatorname{can}\left(N_{i}\right)=p_{i 1} e_{i 1} p_{i 2} e_{i 2} \cdots e_{i k_{i}-1} p_{i k_{i}}
$$

where $e_{i l}$ goes across some cut in S and the $p_{i l}$'s do not go across cuts in S. Also, if $e_{i l}$ crosses the cut $C\left(F_{i l}\right)$ in the direction from $C\left(F_{i l}\right)^{d_{i}}$
to $\quad C\left(F_{i l}\right)^{-d_{i l}} \quad$ then $\quad \alpha_{i l}=\left(C\left(F_{i l-1}\right)^{d_{i-1}}, \quad C\left(F_{i l}\right)^{-d_{i l}}\right) \quad$ for $\quad 2 \leqslant l<k_{i}$, $\alpha_{i 1}=\left(s, C\left(F_{i 1}\right)^{d_{i l}}\right)$, and $\alpha_{i k_{i}}=\left(C\left(F_{i k_{i}-1}\right)^{d_{k_{i}-1}}, t_{i}\right)$. Thus $F_{1 l}=F_{2 l}$ and $d_{1 l}=d_{2 l}$ for $l<j$.

Let h be minimal such that $p_{1 h} e_{1 h} \neq p_{2 h} e_{2 h}$. Then clearly $h \leqslant j$. Also, we can write $p_{1 h} e_{1 h}=q r_{1 h}$ and $p_{2 h} e_{2 h}=q r_{2 h}$, where q is maximal with this property. Since N_{1} is right-of N_{2} the path $r_{1 h}$ is right-of $r_{2 h}$.

Claim 1. $r_{1 h}$ and $r_{2 h}$ are vertex-disjoint except for their common start vertex and $p_{1 l}$ and $p_{2 l}$ are vertex-disjoint for $h<l \leqslant j$.

Proof. This follows immediately from the fact that canonical representatives are shortest rightmost representatives and the observation that a point of intersection would induce a cycle which is homotopic to 0 .

Let $s_{i l}$ be the start vertex of $p_{i l}$ and let $t_{i i}$ be the end vertex of $p_{i t}$. Then $s_{1 h}=s_{2 h}$ and $\alpha_{i l}=\left(t_{i l}, s_{i l+1}\right)$. Also $s_{1 l} \neq s_{2 l}$ for $h<l \leqslant j$ and $t_{1 l} \neq t_{2 l}$ for $h \leqslant l \leqslant j$, by Claim 1. Observe next that the vertices $s_{1 h}, t_{1 h}, t_{2 h}$ appear in that order in a counterclockwise traversal of the boundary of region $R(S)$. This follows from Claim 1 and the assumption that $p_{1 h}$ is right-of $p_{2 h}$.

Claim 2. The vertices $s_{2 l}, s_{1 l}, t_{1 l}, t_{2 l}$ appear in that order in a counterclockwise traversal of the boundary of region $R(S)$ for $h<l \leqslant j$.

Proof. We use induction on l. Let $l, h<l \leqslant j$ be arbitrary. Then path $p_{i l}$ connects $s_{i l}$ and $t_{i l}$ and by Claim 1 the two paths $p_{i l}$ and $p_{2 l}$ do not intersect, i.e., $p_{1 l}$ and $p_{2 l}$ are two non-intersecting chords of region $R(S)$. We conclude that only the four orderings $s_{2 l}, s_{1 l}, t_{1 l}$ and $s_{2 l}, t_{1 l}, s_{1 i}, t_{2 l}$ and $s_{2 l}$, $t_{2 l}, s_{1 l}, t_{1 l}$ and $s_{2 l}, t_{2 l}, t_{1 l}, s_{1 l}$ are possible. It remains to argue that $s_{1 l}$ directly follows $s_{2 l}$ in a counterclockwise traversal because this will leave only the first possibilility.

By induction hypothesis the vertices $s_{2 l-1}, s_{1 /-1}, t_{1 l-1}, t_{2 l-1}$ occur in that order in a counterclockwise traversal. Also $F_{1 /-1}=F_{2 l-1}$ and hence the vertices $t_{1 l-1}, t_{2 l-1}, s_{2 l}, s_{1 l}$ occur in that order in a counterclockwise traversal of the boundary of $R(S)$. Finally, since $s_{1 l}$ and $s_{2 l}$ lie on the same side of the same cut and since the paths $\operatorname{can}\left(N_{i}\right)$ are reduced, the vertices $t_{2 l}$ and $t_{1 l}$ must follow $s_{1 /}$ in the counterclockwise travesal. This proves Claim 2.

We are now ready to complete the proof of Lemma 10 . The vertices $s_{2 j}$, $s_{1 j}, t_{1 j}, t_{2 j}$ occur in that order in a counterclockwise traversal of the boundary of $R(S), s_{2 j}$ and $s_{1 j}$ lie on the same side of the same cut and $t_{1 j}$ and $t_{2 j}$ do not. Hence $\alpha_{1 j}=(u, v), \alpha_{2 j}=(u, w), v \neq w$ and u, v, w occur in the same order in the cyclic ordering of $B \cup C$ as $s_{1 j}, t_{1 j}, t_{2 j}$ occur in a counterclock-

Fig. 16. The slicing S of Fig. 12 and two cuts X and $Y . S, X$, and Y are strongly interferencefree. The set $L(X)$ is indicated by a heavy line.
wise traversal of the boundary of $R(S)$. Thus N_{1} is "right-of" N_{2} and the proof is complete.

Lemma 10 justifies that we write right-of instead of "right-of" from now on. We will next show that slicings are a very convenient tool for counting densities.

Let X and Y be interferencefree cuts and let S be a slicing. We say that S, X, and Y are strongly interferencefree if every cut $C \in S$ is vertexdisjoint from X and Y, cf. Fig. 16.

Assume now that S, X, and Y are strongly interference-free. Then cut X splits the region $R(S)$ into two parts and in this way induces a partition ($L(X), R(X)$) of $B \cup C$. The partition ($L(Y), R(Y)$) induced by the cut Y of $B \cup C$ is defined analogously. For sets $D_{1}, D_{2} \subseteq B \cup C$ define $\overline{\operatorname{dens}}\left(D_{1}, D_{2}\right)$ as the sum over all nets $N \in \mathscr{N}$ of the number of elementary pieces (x, y) of net N, when $\left|D_{1} \cap\{x, y\}\right|=1$ and $\left|D_{2} \cap\{x, y\}\right|=1$. For $\operatorname{dens}\left(D_{1},(B \cup C)-D_{1}\right)$ we write simply $\overline{\operatorname{dens}}\left(D_{1}\right)$.

Lemma 11. Let S be a slicing and let X and Y be 1-bend cuts such that S, X, and Y are strongly interferencefree. Let $(L(X), R(X))$ and $(L(Y), R(Y))$ be the partitions of $B \cup C$ induced by X and Y. Then
(a) $\operatorname{dens}(X)=\overline{\operatorname{dens}}(L(X))$ and $\operatorname{dens}(Y)=\overline{\operatorname{dens}}(L(Y))$
(b) $\overline{\operatorname{dens}}(L(X))+\overline{\operatorname{dens}}(L(Y))$

$$
\begin{aligned}
= & \overline{\operatorname{dens}}(L(X) \cap L(Y))+\overline{\operatorname{dens}}(L(X) \cup L(Y)) \\
& +2 \overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X))
\end{aligned}
$$

(c) Let P be a 1-even local routing prohlem, let v he a vertex of degree 3 and let Z be a 2-bend cut of capacity 3 which separates v from the remainder of the graph. Then $\operatorname{fcap}(Z)=0 \bmod 2$.

Proof. (a) We show $\operatorname{dens}(X)=\overline{\operatorname{dens}}(L(X))$. Let Q be any net and let $q \in Q$ be reduced with respect to $S \cup\{X\}$. Write $q=q_{1} e_{1} q_{2} e_{2} \cdots q_{m-1} e_{m-1} q_{m}$, where the e_{i}^{\prime} 's cross cuts in S and the q_{i} 's do

Fig. 17. Cuts X and Y and the partition (G, H, I, J) of $B \cup C$.
not. Then the q_{i} 's correspond to the elementary pieces of Q. Clearly $\operatorname{cross}(Q, X)$ is the number of q_{i} which go across X. Moreover, q_{i} goes across X iff the corresponding elementary piece has exactly one end point in $L(X)$.
(b) Let $G=L(X) \cap L(Y), \quad H=L(X)-L(Y), \quad I=L(Y)-L(X)$, and $J=(B \cup C)-(L(X) \cup(L(Y))$, cf. Fig. 17. Then

$$
\begin{aligned}
\overline{\operatorname{dens}}(& L(X))+\overline{\operatorname{dens}}(L(Y)) \\
= & \overline{\operatorname{dens}}(G \cup H, I \cup J)+\overline{\operatorname{dens}}(G \cup I, H \cup J) \\
= & \overline{\operatorname{dens}}(G, I)+\overline{\operatorname{dens}}(G, J)+\overline{\operatorname{dens}}(H, I)+\overline{\operatorname{dens}}(H, J) \\
& +\overline{\operatorname{dens}}(G, H)+\overline{\operatorname{dens}}(G, J)+\overline{\operatorname{dens}}(I, H)+\overline{\operatorname{dens}}(I, J) \\
= & \overline{\operatorname{dens}}(G, I \cup J \cup H)+\overline{\operatorname{dens}}(G \cup H \cup I, J)+2 \overline{\operatorname{dens}}(H, I) \\
= & \overline{\operatorname{dens}}(L(X) \cap L(Y))+\overline{\operatorname{dens}}(L(X) \cup L(Y)) \\
& +2 \overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X)) .
\end{aligned}
$$

(c) The cut Z consists of three segments s_{1}, s_{2}, s_{3} of length one each. Consider the cuts $X=s_{1} s_{2}^{\prime}$ and $Y=s_{3} s_{2}^{\prime \prime}$, where s_{2}^{\prime} results from s_{2} by extending it beyond s_{3} until it hits a boundary and $s_{2}^{\prime \prime}$ results from s_{2} by extending it beyond s_{1} until it hits a boundary. Define the partitions ($L(X), R(X)$) and $L((Y), R(Y)$) such that $\{v\}=L(X) \cap L(Y)$ and let S be a slicing such that S, X, and Y are interferencefree. Then

$$
\begin{aligned}
\overline{\operatorname{dens}} & (L(X) \cap L(Y)) \\
= & \overline{\operatorname{dens}}(L(X))+\overline{\operatorname{dens}}(L(Y))-\overline{\operatorname{dens}}(L(X) \cup L(Y)) \\
& -2 \overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X)) .
\end{aligned}
$$

Next note that $(L(X) \cup L(Y), \quad R(X) \cap R(Y))$ is a partition which corresponds to a 0 -bend cut, say U, and that $\operatorname{cap}(U)=1+a+b$,
$\operatorname{cap}(X)=2+b$, and $\operatorname{cap}(Y)=2+a$ for some integers a and $b ; a$ is the length of s_{2}^{\prime} minus 1 and b is the length of $s_{2}^{\prime \prime}$ minus 1 . Then

$$
\begin{aligned}
\operatorname{fcap}(Z)= & 3-\overline{\operatorname{dens}}(L(X) \cap L(Y)) \\
= & (2+b-\overline{\operatorname{dens}}(L(X)))+(2+a-\overline{\operatorname{dens}}(L(Y))) \\
& -(1+a+b-\overline{\operatorname{dens}}(L(X) \cup L(Y))) \\
& +2 \overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X)) \\
= & \operatorname{fcap}(X)+\operatorname{fcap}(Y)-\mathrm{fcap}(U)+2 \overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X)) \\
= & 0 \bmod 2 .
\end{aligned}
$$

Remark. In part (c) of Lemma 11 we prove the evenness of a 2 -bend cut by expressing it as the intersection of two 1 -bend cuts. In a similar way one can express a k-bend cut as the intersection of two $(k-1)$-bend cuts. This suggests that one can prove by induction on the number of bends that in a 1 -even routing problem all cuts have even free capacity, i.e., 1 -evenness implies evenness. Such an inductive proof is not possible, however, because the slicing S in part (c) of the lemma does not necessarily exist if Z is an arbitrary cut. We want to mention, that arguments similar to the ones used in the proof of Lemma 12 can be used to prove that 1 -evenness implies evenness. We do not need that claim in the present paper and therefore do not include that proof.

Lemma 11 will play a major role in Section III. 4 .

III.3. On the Form of Cuts

This section is concerned with the form of cuts. We will first (Lemma 12(a)) show that the cut condition for 1 -bend cuts implies the cut condition for all cuts. We will then show (Lemma 12(b)) that only 0 -bend cuts and 1 -bend cuts connecting concave corners (cf. Definition 5 below) need to be considered and we will finally show that the leftmost saturated cut through edge e^{*} (the reader finds the definition of edge e^{*} in Section II immediately before Lemma 4) is a 1 -bend cut (strictly speaking, we defined leftmost cut only with respect to 1 -bend cuts; Lemma 12(c) justifies this).

Definition 5. (a) A pair $\left(\left(v^{\prime}, v\right),\left(v, v^{\prime \prime}\right)\right)$ of boundary edges of some non-trivial face is a concave corner if $\operatorname{deg}(v)=4$.
(b) A 1 -bend cut $X=s_{1}, s_{2}$ connects two concave corners $\left(\left(v^{\prime}, v\right)\right.$, $\left.\left(v, v^{\prime \prime}\right)\right)$ and $\left(\left(w^{\prime}, w\right),\left(w, w^{\prime \prime}\right)\right)$, if X intersects one edge of each pair, say (v^{\prime}, v) and (w, w^{\prime}), X is not a 0 -bend cut, $Y:=s_{1}^{\prime}, s_{2}^{\prime}$, where s_{1}^{\prime} intersects $\left(v, v^{\prime \prime}\right)$ and has the same length and direction as s_{2}, and s_{2}^{\prime} intersects ($w, w^{\prime \prime}$) and has the same length and direction as s_{1}, is a cut, and the rectangle

FIG. 18. A 1-bend cut X connecting two concave corners v and w.
formed by X and Y contains only vertices of degree 4. Figure 18 illustrates this definition.

Remark. $\quad Y=s_{1}^{\prime}, s_{2}^{\prime}$ is a cut if neither of the two line segments s_{1}^{\prime} and s_{2}^{\prime} passes through a non-trivial face. Furthermore, the rectangle formed by X and Y contains only vertices of degree 4 iff v and w are the only vertices on the boundary of a non-trivial face which lie inside the rectangle.

Lemma 12. Let P be a 1 -even bounded LRP.
(a) If there is an oversaturated cut then there is an oversaturated 1-bend cut.
(b) If there is an oversaturated cut then there is an oversturated 0 -bend cut or an oversaturated 1-bend cut connecting two concave corners.
(c) If there is a saturated cut $X=s_{1}, \ldots, s_{k}, k \geqslant 3$, through edge e^{*} then there either exists an oversaturated 1-bend cut (not necessarily through e^{*}) or a saturated 1 -bend cut $X=s_{1}^{\prime}, s_{2}^{\prime}$ through e^{*} with s_{1}^{\prime} longer than s_{1}.

Proof. (a) Let us assume the existence of an oversaturated cut. Among the oversaturated cuts let $X=s_{1}, s_{2}, \ldots, s_{k}$ be such that k is minimal and such that among the cuts with minimal k the length of s_{1} is maximal and among the cuts with minimal k and maximal s_{1} the total length of X is minimal. Let us assume for the sake of a contradiction that X is not a 1 -bend cut, i.e., $k \geqslant 3$.

Claim 1. There is no segment $s_{i}, 2 \leqslant i<k$, such that s_{i-1} and s_{i+1} lie on the same side of the line L_{i} supporting s_{i}.

Proof. Let $C=\left\{i ; s_{i-1}\right.$ and s_{i+1} lie on the same side of the line L_{i} supporting $\left.s_{i}\right\}$. For $i \in C$ call the side of L_{i} on which s_{i-1} and s_{i+1} lie the crucial side of s_{i}. We show first that there is an $i \in C$ such that there is no segment s_{j} which intersects a square one unit away from s_{i} and on the crucial side of s_{i}.

Assume otherwise. Let $i^{*} \in C$ be such that $s_{i^{*}}$ has the minimal length of
any segment in C. We may assume w.l.o.g. that $s_{i *}$ runs vertically and that the left side of s_{i}. is crucial. By the choice of s_{i}. only the segments s_{1} and s_{k} can intersect a square one unit to the left of $s_{i} *$. Let us assume w.l.o.g. that s_{1} does. Then s_{2} must extend to the left as seen from the common endpoint of s_{1} and s_{2}. Hence there must be $j, l \in C$ such that s_{j} runs vertically and the right side of s_{j} is crucial and s_{l} runs horizontally. Let j^{*}, $l^{*} \in C$ be such that s_{j}. runs vertically, its right side is crucial and s_{j}. has minimal length and $s_{l^{*}}$ runs horizontally and has minimal length. Then either $s_{j *}$ or $s_{l^{*}}$ must have the property claimed.

At this point we have the existence of an $i \in C$ such that no segment s_{j} intersects a square one unit away from s_{i} and on the crucial side of s_{i}. Assume w.l.o.g. that s_{i} extends vertically and that the left side of s_{i} is crucial.

We now move s_{i} to the left (note that each move by one unit decreases the capacity without changing the density and hence leaves us with an oversaturated cut) until either s_{i-1} or s_{i+1} becomes empty (contradiction to the minimality of k) or there are boundary points immediately to the left of s_{i} (this might be the case already initially). We now have to distinguish four cases, according to the lengths of the segments s_{i-1} and s_{i+1}. We only treat the case that s_{i-1} and s_{i+1} have both length at least two and leave the other cases to the reader.

The boundary vertices to the left of s_{i} lie in $h \geqslant 1$ segments as shown in Fig. 19. We consider cuts X_{1}, \ldots, X_{h+1} shown in the right part of Fig. 19. Then cuts X_{2}, \ldots, X_{h} are 1-bend cuts and X_{1} and X_{h+1} have less bends than X. Thus fcap $\left(X_{i}\right) \geqslant 0$ for $1 \leqslant i \leqslant h+1$. Let l_{i} be the number of vertices in the segment between a_{i} and b_{i} inclusive, $1 \leqslant i \leqslant h$. Note that $\operatorname{deg}\left(a_{i}\right)=$ $\operatorname{deg}\left(b_{i}\right)=4$ and hence $\operatorname{ter}\left(a_{i}\right)=\operatorname{ter}\left(b_{i}\right)=0$. We have

$$
\operatorname{cap}(X)=\operatorname{cap}\left(X_{1}\right)+\cdots+\operatorname{cap}\left(X_{h+1}\right)+\sum_{i=1}^{h}\left(l_{i}-2\right)+2
$$

and

$$
\operatorname{dens}(X) \leqslant \operatorname{dens}\left(X_{1}\right)+\cdots+\operatorname{dens}\left(X_{h+1}\right)+\sum_{i=1}^{h}\left(l_{i}-2\right)
$$

Figure 19

Figure 20
and hence

$$
\begin{aligned}
\operatorname{fcap}(X) & >\operatorname{fcap}\left(X_{1}\right)+\cdots+\operatorname{fcap}\left(X_{h}\right)+\operatorname{fcap}\left(X_{h+1}\right) \\
& \geqslant 0
\end{aligned}
$$

a contradiction.
We have now shown that an oversaturated cut with a minimal number of bends has the form of a staircase (cf. Fig. 20). We may assume that s_{1} is horizontal, s_{2} is vertical, starts at the right end of s_{1} and extends downwards; s_{3} extends to the right.

Assume first that s_{2} intersects no horizontal edge whose right endpoint lies on the boundary of a face in \bar{M}. We can then move s_{2} one unit to the right and obtain a cut X^{\prime} with $\operatorname{fcap}\left(X^{\prime}\right)=\mathrm{fcap}(X)$ and a longer initial segment, a contradiction. Thus there are boundary points immediately to the right of s_{2}. Let w be the lowest such boundary point. Then either the edge e_{1} directed upwards from w or the edge e_{2} directed downwards from w is a boundary edge.

Figure 21

Figure 22

Case 1. Edge e_{2} is not a boundary edge. Then $e_{1}=(w, z)$ must be a boundary edge. We consider the two cuts shown in Fig. 21. Note that X_{2} cxists, since w was chosen as the lowest boundary point to the right of s_{2}. We have

$$
\operatorname{cap}(X)=\operatorname{cap}\left(X_{1}\right)+\operatorname{cap}\left(X_{2}\right)
$$

and

$$
\operatorname{dens}(X) \leqslant \operatorname{dens}\left(X_{1}\right)+\operatorname{dens}\left(X_{2}\right)
$$

since vertex w has degree 4 , and hence $\operatorname{ter}(w)=0$. Also X_{1} has no more bends than X, has the same initial segment, and is shorter than X_{1}, and X_{2} has one bend less than X. Thus fcap $\left(X_{i}\right) \geqslant 0$ for $i=1,2$, and hence

$$
\begin{aligned}
\operatorname{fcap}(X) & \geqslant \operatorname{fcap}\left(X_{1}\right)+\operatorname{fcap}\left(X_{2}\right) \\
& \geqslant 0,
\end{aligned}
$$

a contradiction.
Case 2. The edge e_{2} is a boundary edge and hence s_{3} cuts only one edge. If edge e_{1} is also a boundary edge then we can certainly shorten X

Figure 23

Figure 24
and still have an oversaturated cut, a contradiction. So let us assume that edge e_{1} is not a boundary edge. Let z be the boundary point which lies above w and is closest to w. Then z either lies above the horizontal line supporting s_{1} or it does not.

Case 2.1. z lies in the top row of R, cf. Fig. 22. Consider cut Y as shown in Fig. 23. Then $\operatorname{dens}(X)=\operatorname{dens}(Y)$, since $\operatorname{ter}(w)=0$ (note that $\operatorname{deg}(w)=4)$ and $\operatorname{cap}(X)=\operatorname{cap}(Y)$. Thus Y is oversaturated and a 1-bend cut, a contradiction.

Case 2.2. $\quad z$ does not lie above the horizontal line supporting s_{1} (cf. Fig. 24). Consider cuts X_{1} and X_{2} as indicated in Fig. 25. We have $\operatorname{cap}(X)=\operatorname{cap}\left(X_{1}\right)+\operatorname{cap}\left(X_{2}\right)$ and $\operatorname{dens}(X) \leqslant \operatorname{dens}\left(X_{1}\right)+\operatorname{dens}\left(X_{2}\right)$. Also X_{2} is 1-bend and X_{1} has as many bends as X, the same initial segment and is shorter. Thus fcap $\left(X_{i}\right) \geqslant 0$ for $i=1,2$, and hence fcap $(X) \geqslant 0$, a contradiction.

Figure 25

Fig. 26. Cuts X_{1} and X_{2}.
(b) Let us assume that there is no saturated 0 -bend cut or oversaturated 1 -bend cut connecting two concave corners but there is an oversaturated 1-bend cut. Let $X=s_{1}, s_{2}$ be an oversaturated 1-bend cut of minimal length. We may assume w.l.o.g. that s_{1} is horizontal, s_{2} is vertical, and the upper endpoint of s_{2} and the right endpoint of s_{1} coincide. Let (v, v^{\prime}) be the vertical boundary edge intersected by s_{1} with v below v^{\prime} and let (w, w^{\prime}) be the horizontal boundary edge intersected by s_{2} with w left of w^{\prime}.

Assume first that $v=w$. Then $\operatorname{cap}(X)=2$ and $\operatorname{dens}(X) \geqslant 3$. Since $\operatorname{deg}(v)=4 \quad(\operatorname{deg}(v)=2 \quad$ implies $\quad \operatorname{dens}(X) \leqslant \operatorname{ter}(v) \leqslant \operatorname{deg}(v)$ and thus is impossible; $\operatorname{deg}(v)=3$ implies the existence of an 0 -bend cut of capacity 1 , and hence density 1 , and thus is impossible) and since X is not a 0 -bend, the vertex v must lie on the boundary of at least two non-trivial faces, cf. Fig. 26a. Note that these faces are not necessarily distinct. Form $Y=s_{1}^{\prime}, s_{2}^{\prime}$ as described in Definition 5. If Y is a cut, i.e., v lies on the boundary of exactly two non-trivial faces, then all conditions of Definition 5 are satisfied and X connects two concave corners. If Y is not a cut, i.e., v lies on the boundary of three non-trivial faces, then consider the two 0 -bend cuts $Y_{1}=s_{1}^{\prime}$ and $Y_{2}=s_{2}^{\prime}$. We have $\operatorname{dens}\left(Y_{1}\right)+\operatorname{dens}\left(Y_{2}\right)=\operatorname{dens}(X) \geqslant 3$, since $\operatorname{ter}(v)=0$ and hence the existence of an oversaturated 0 -bend cut. This completes the discussion of the case $v=w$.

Assume next that $v \neq w$. The cut X starts in some non-trivial face, say F. Let $\left(v, v^{\prime \prime}\right)$ be the other boundary edge of F incident to v. Define edge $\left(w, w^{\prime \prime}\right)$ analogously. We observe first $\left(\left(v^{\prime}, v\right),\left(v, v^{\prime \prime}\right)\right)$ and $\left(\left(w^{\prime}, w\right),\left(w, w^{\prime \prime}\right)\right)$ are concave corners. Otherwise we could obtain shorter saturated cuts by arguments as in Claims 1 and 2 of part (a). Let $Y=s_{1}^{\prime}, s_{2}^{\prime}$ be defined as in Definition 5 . If Y is not a cut or if Y is a cut and the rectangle formed by X and Y contains a vertex of degree less than four then the rectangle formed by X and Y must contain a boundary point different from v and w. Let z be such a boundary point with maximal y-coordinate and, among such points, with maximal x-coordinate. Then $\operatorname{deg}(z)=4$ and hence $\operatorname{ter}(z)=0$. Consider the cuts X_{1} and X_{2} shown in Fig. 26b (the case that the y-coordinate of z lies strictly between the y-coordinates of v and w is shown
in that figure. The case that z has the same x-coordinate as v and the same y-coordinate as w is similar). Both of them are 1 -bend and shorter than X. Hence fcap $\left(X_{i}\right) \geqslant 0$ for $i=1,2$. Also, fcap $(X) \geqslant \operatorname{fcap}\left(X_{1}\right)+\mathrm{fcap}\left(X_{2}\right) \geqslant 0$, a contradiction. This proves part (b).
(c) Among the saturated cuts through e^{*} let $X=s_{1}, \ldots, s_{k}$ be such that k is minimal and such that among the cuts with minimal k the length of s_{1} is maximal and among the cuts with minimal k and maximal s_{1} the total length of X is minimal, of. part (a). Let us assume also that there is no oversaturated cut. We will now argue almost as in part (a). The differences are as follows. In Claim 1, from the fact that $0>f \operatorname{cap}(X)>$ fcap $\left(X_{1}\right)+\cdots+\operatorname{fcap}\left(X_{n+1}\right)$ we conclude the existence of an oversaturated cut. In Claim 2, Case 1, we infer that X_{1} is saturated, contradicting the choice of X. In Case 2.1, we conclude that Y is saturated and has the desired form, and in Case 2.2, we conclude that X_{1} is saturated, contradicting the choice of X.

III.4. Proofs of Lemmas 2 to 5

In this section we will finally prove the correctness of our algorithm by filling in the proofs of Lemmas 2 to 5 . Throughout this section we will use the following convention on notation. P, P^{\prime}, and $P^{\prime \prime}$ are local routing problems. If X is a cut then dens (X), dens ${ }^{\prime}(X)$, and dens" (X) denote the density of X with respect to P, P^{\prime}, and $P^{\prime \prime}$, respectively. Similar conventions are used for the capacity and free capacity.

Lemma 2. The then-case of procedure Simplifyl turns a good LRP into a good LRP.

Proof. Let P be a good LRP and let X be the cut of capacity one which was chosen in the then-case. Let P^{\prime} be the modified problem. Then $\operatorname{cap}^{\prime}(Y)=\operatorname{cap}(Y)$ and $\operatorname{dens}^{\prime}(Y)=\operatorname{dens}(Y)$ for all cuts $Y \neq X$. This shows that P^{\prime} is 1 -even and satisfies the cut condition for all 1 -bend cuts. Also a solution to P^{\prime} directly yields a solution for P as argued in Section II and P^{\prime} is bounded. Thus P^{\prime} is good.

Lemma 3. The else-case of procedure Simplifyl turns a good LRP into a good LRP.

Proof. Let P be a good LRP having no cut with capacity one and let v be a vertex with $\operatorname{deg}(v)=\operatorname{ter}(v)=2$. Let $e_{i}, 1 \leqslant i \leqslant 2$, be the edges incident to v and let $N_{i}, 1 \leqslant i \leqslant 2$, be the nets incident to v. The numbering is as defined in Section II. Let $N_{1}=\left[e_{1} p_{1}\right]$, where p_{1} does not use edge e_{1}. It was argued in Section II that such a representation of net N_{1} exists. We obtain problem P^{\prime} be removing edge e_{1} and replacing net N_{1} by net $\left[p_{1}\right]$.

Figure 27
In order to show that P^{\prime} is good we consider an intermediate problem $P^{\prime \prime}$. $P^{\prime \prime}$ is obtained from problem P by replacing net N_{1} by nets $\left[e_{1}\right]$ and $\left[p_{1}\right]$ and leaving the routing region unchanged. It is clear that P^{\prime} is good if $P^{\prime \prime}$ is good, since P^{\prime} results from $P^{\prime \prime}$ by removing net [e_{1}] and edge e_{1}. It therefore suffices to show that $P^{\prime \prime}$ is 1 -even and satisfies the cut condition for 1-bend cuts.

Let Y be any 1 -bend cut. If Y does not go through edge e_{1} then fcap" $(Y)=\mathrm{fcap}(Y) \in 2 \cdot \mathbb{N}_{0}$ and we are done. So let us assume that Y goes through edge e_{1}. Then $\operatorname{cross}\left(\left[p_{1}\right], Y\right)=\operatorname{cross}\left(N_{1}, Y\right)+\varepsilon$ with $\varepsilon \in\{+1,-1\}$ and hence $\mathrm{fcap}^{\prime \prime}(Y)=\mathrm{fcap}(Y)-\varepsilon-1$. We conclude that $P^{\prime \prime}$ is 1 -even and fcap" $(Y) \in 2 \cdot \mathbb{N}_{0}$ if either $\varepsilon=-1$ or $\operatorname{fcap}(Y)>0$. This leaves the case $\operatorname{fcap}(Y)=0$ and $\operatorname{cross}\left(\left[p_{1}\right], Y\right)=\operatorname{cross}\left(N_{1}, Y\right)+1$. Let Z be the cut obtained from Y by replacing the dual edge $d\left(e_{1}\right)$ by the dual edge $d\left(e_{2}\right)$, cf. Fig. 27. Then $\operatorname{cap}(Z)=\operatorname{cap}(Y)$.
We claim that $\operatorname{dens}(Z)=\operatorname{dens}(Y)+2$ and hence $\operatorname{fcap}(Z)=$ $\operatorname{fcap}(Y)-2=-2$. Thus Z is oversaturated and hence the problem P was not good by Lemma 12(a). It remains to show that $\operatorname{dens}(Z)=\operatorname{dens}(Y)+2$. Let S be any slicing such that S, Y, and Z is strongly interferencefree and let $\alpha_{i 1}, \ldots, \alpha_{i k_{i}}$ be a decomposition of N_{i} with respect to $S, 1 \leqslant i \leqslant 2$. Define partitions ($L(Y), R(Y)$) and ($L(Z), R(Z)$) of $B \cup C$ such that $v \in R(Y) \cap L(Z)$. Then the cuts Y and Z partition $B \cup C$ into the three sets $\{v\}, L(Y), R(Z)$, cf. Fig. 27. Also, $\alpha_{11}=\left(v, w_{1}\right)$, where $w_{1} \in R(Z)$, since $\operatorname{cross}\left(\left[p_{1}\right], Y\right)=\operatorname{cross}\left(N_{1}, Y\right)+1$. Next observe that N_{1} is right-of N_{2} and hence $\alpha_{21}=\left(v, w_{2}\right)$, where $w_{2} \in R(Z)$. This implies $\operatorname{dens}(Z)=$ $\operatorname{dens}(Y)+2$.

Lemma 4. The else-case of procedure Simplify 2 maintains the invariant.
Proof. Let P be a reduced good routing problem and let $e^{*}=(a, b)$ be as defined in Section II. In the else-case there is no saturated cut through edge e^{*}. We obtain problem P^{\prime} by deleting the boundary cycle of the trivial face to the right of e^{*} (cf. Fig. 7). We need to show that P^{\prime} is good. Let Y
be any 1-bend cut. If Y does not start in any of the new dual sources then $\mathrm{fcap}^{\prime}(Y)=\mathrm{fcap}(Y)$ and we are done. If Y does start in one of the new dual sources then Y can be extended to a cut Z through e^{*} and to a l-bend cut Z^{\prime} in problem P with $\operatorname{cap}(Z)=\operatorname{cap}\left(Z^{\prime}\right)=\operatorname{cap}^{\prime}(Y)+2$ and $\operatorname{dens}(Z)=$ $\operatorname{dens}\left(Z^{\prime}\right)=\operatorname{dens}^{\prime}(Y)$. Thus fcap $(Y)=\mathrm{fcap}(Z)-2=\mathrm{fcap}\left(Z^{\prime}\right)-2$. Since P is 1-even, fcap $\left(Z^{\prime}\right)$ and hence $\mathrm{fcap}^{\prime}(Y)$ are even. Also, by Lemma 12(c) there is no saturated cut through edge e^{*} and hence fcap $(Z)>0$. This implies fcap $^{\prime}(Y) \geqslant-1$ and since $\operatorname{fcap}^{\prime}(Y)$ is even, also $\operatorname{fcap}^{\prime}(Y) \geqslant 0$. Thus P^{\prime} is good.

Lemma 5. The then-case of procedure Simplify 2 maintains the invariant.
Proof. Let P be a reduced good routing problem and let $e^{*}=(a, b)$ be as defined in Section II. Let X be the leftmost saturated 1-bend cut through edge e^{*} and let ($\left[p_{1}\right],\left[p_{2}\right]$) be the rightmost decomposition of any net with repsect to X. We obtain the problem P^{\prime} from the problem P by replacing the net $N=\left[p_{1} p_{2}\right]$ by the nets $\left[p_{1}\right]$ and $\left[p_{2}\right]$. It is clear (cf. Section II) that a solution for P can be obtained from a solution for P^{\prime}. It remains to show that P^{\prime} is 1 -even and satisfies the cut condition for 1 -bend cuts. Note that since P is reduced we have $\operatorname{ter}(a)=\operatorname{ter}(c)=0$ and $\operatorname{ter}(v)=1$ for all other vertices v between a and c in the top row. While proceeding from P to P^{\prime} we change the ter-value only for vertex a, i.e., $\operatorname{ter}^{\prime}(a)=2$, $\operatorname{ter}^{\prime}(c)=0$, and $\operatorname{ter}^{\prime}(v)=1$ for all other vertices v in the top row.

Let Y be any 1 -bend cut. Let $q_{i} \in\left[p_{i}\right]$ be such that $\operatorname{cross}\left(q_{i}, Y\right)=$ $\operatorname{cross}\left(\left[p_{i}\right], Y\right)$. Then $q_{1} q_{2} \in\left[p_{1} p_{2}\right]$ and hence $\operatorname{cross}\left(q_{1}, Y\right)+\operatorname{cross}\left(q_{2}, Y\right)$ $=\operatorname{cross}\left(q_{1} q_{2}, Y\right) \bmod 2=\operatorname{cross}\left(\left[p_{1} p_{2}\right], Y\right) \bmod 2$ by Lemma 7 . This shows that the problem P^{\prime} is 1 -even.

We turn to the cut condition next. Let us assume for the sake of a contradiction that the 1 -bend cut Y is oversaturated, i.e., fcap ${ }^{\prime}(Y)<0$. We will next show in a series of lemmas that there is also an oversaturated cut of a very restricted form.

Lemma 13. There is an oversaturated cut (in P^{\prime}) which is either 0-bend or connects two concave corners. Furthermore the cut does not go through edge e^{\prime}, where $e^{\prime}=(c, d)$ is vertical and c has maximal x-coordinate among all vertices conected to a by horizontal edges; cf. Fig. 28.

Proof. The first claim follows immediately from Lemma 12(b) and our assumption that there is an oversaturated cut. So let us assume that the

Fig. 28. Vertices a, b, c, d and a 0 -bend cut Y.

Fig. 29. The cuts Y and Z.
oversaturated cut Y is either a 0 -bend cut or a 1 -bend cut which connects two concave corners and that Y goes through edge e^{\prime}. In the former case, we have $\operatorname{ter}^{\prime}(a)=2, \operatorname{ter}^{\prime}(c)=0$, and $\operatorname{ter}^{\prime}(v)=1$ for all other vertices v between a and c in the top row. Hence fcap ${ }^{\prime}(Y) \geqslant 0$, cf. Fig. 28. In the latter case Y consists of a horizontal segment s_{1} through edge e^{\prime} and a vertical segment s_{2} directed downwards. We claim that the 0 -bend cut Z obtained from s_{2} by extending s_{2} by one edge at its top is also oversaturated, cf. Fig. 29. Let l be the length of segment s_{1}. Then $\operatorname{dens}^{\prime}(Z) \geqslant \operatorname{dens}^{\prime}(Y)-$ $(l-1)$, since all vertices v above s_{1} except c have $\operatorname{ter}(v)=1$ and $\operatorname{ter}(c)=0$. Also $\operatorname{cap}(Z)=\operatorname{cap}(Y)-l+1$ and hence $\mathrm{fcap}^{\prime}(Z)=\mathrm{fcap}^{\prime}(Y)<0$. This shows that we have a cut of the desired form which does not go through edge e^{\prime}.

By Lemma 13 we may assume that the oversaturated cut Y does not go through edge e^{\prime} and is either a 0 -bend cut or a 1 -bend cut which connects two concave corners. In the latter case the cut Y cannot intersect the top row, since no edge of the top row participates in a concave corner.

Lemma 14. X and Y do not interfere.
Proof. We show that X and Y satisfy the hypothesis of Lemma 8(a). If Y has a vertex in common with the horizontal segment of X then Y must be either 0-bend or must go through edge e^{*} (note that Y does not go through e^{\prime} and is 0 -bend if it intersects the top row.). In either case the hypothesis of Lemma 8(a) is clearly satisfied. If Y does no have a vertex in common with the horizontal part of X then the hypothesis is also satisfied. So X and Y do not interferc.

Let $q \in\left[p_{1} p_{2}\right]$ be reduced with respect to X and Y. Write $q=e_{1} e_{1} q_{2}$, where q_{1} is the maximal prefix of q such that $\operatorname{cross}\left(q_{1}, X\right)=\operatorname{cross}\left(\left[p_{1}\right], X\right)$. Then the edge $e_{1}=(v, w)$ crosses the cut X. Let r_{1} be the path from v to a which runs along X and let r_{2} be the path from b to w which runs along X, cf. Fig. 30. Then $\left[p_{1}\right]=\left[q_{1} r_{1}\right]$ and $\left[p_{2}\right]=\left[e^{*} r_{2} q_{2}\right]$. Since X and Y do

Figure 30
not interfere, the path $r_{i}, i=1,2$, can cross Y at most once. Thus $\operatorname{cross}\left(\left[p_{1}\right], Y\right)+\operatorname{cross}\left(\left[p_{2}\right], Y\right) \leqslant \operatorname{cross}\left(q_{1} r_{1} e^{*} r_{2} q_{2}, Y\right) \leqslant \operatorname{cross}\left(q_{1} e_{1} q_{2}, Y\right)+3$ $=\operatorname{cross}(q, Y)+3$ and, since $q_{1} r_{1} e^{*} r_{2} q_{2}$ and q are equivalent, we even have $\operatorname{cross}\left(q_{1} r_{1} e^{*} r_{2} q_{2}, Y\right) \leqslant \operatorname{cross}(q, Y)+2$ by Lemma 7. This proves $\operatorname{fcap}^{\prime}(Y) \geqslant \mathrm{fcap}(Y)-2$ and hence $\operatorname{fcap}(Y)=0$, $\mathrm{fcap}^{\prime}(Y)=-2$. Recall that we assumed fcap' $(Y)<0$. Also the cuts X and Y cannot be vertex-disjoint because then $\operatorname{cross}\left(q_{1} r_{1} e^{*} r_{2} q_{2}, Y\right)=\operatorname{cross}\left(q_{1} e_{1} q_{2}, Y\right)$ and hence $\operatorname{fcap}^{\prime}(Y)=\operatorname{fcap}(Y) \geqslant 0$.

Lemma 15. X and Y have exactly one vertex in common.

Proof. Let us assume that X and Y have more than one vertex in common. Assume first that Y does not go through e^{*}. Since X and Y do not infer, we conclude that the vertical segments of X and Y have a common tail. Also at most one of the paths r_{1} and r, can intersect Y and none of them does if e_{1} does not intersect Y. Hence $\operatorname{cross}\left(q_{1} r_{1} e^{*} r_{2} q_{2}, Y\right) \leqslant$ $\operatorname{cross}\left(q_{1} e_{1} q_{2}, Y\right)$ and hence fcap $(Y) \geqslant \mathrm{fcap}(Y)$, a contradiction.

Let us assume next that Y goes through edge e^{*} and that the horizontal segment of Y is not shorter than the horizontal segment of X. Then either

Fig. 31. The paths r_{1}, r_{2}, and r_{3}.
$X=Y$ and hence $\operatorname{fcap}^{\prime}(Y)=\mathrm{fcap}(Y)$, a contradiction, or X is not the leftmost saturated cut, a contradiction. This leaves the case that Y goes through e^{*} and has a shorter horizontal segment than X. Then $\operatorname{cross}\left(q_{1} r_{1} e^{*} r_{2} q_{2}, Y\right)=\operatorname{cross}(q, Y)+2$ is only possible if the edge $e_{1}=(v, w)$ does not cross Y and hence the path r_{2} does. Consider the path r_{3} shown in Fig. 31. It connects a and w and does not cross Y. Also $\left[p_{1}\right]=\left[q_{1} r_{1}\right]$ and $\left[p_{2}\right]=\left[r_{3} q_{2}\right]$ and hence $\operatorname{cross}\left(\left[p_{1}\right], Y\right)+$ $\operatorname{cross}\left(\left[p_{2}\right], Y\right) \leqslant \operatorname{cross}\left(q_{1} r_{1} r_{3} q_{2}, Y\right)=\operatorname{cross}(q, Y)$. Thus $\operatorname{fcap}^{\prime}(Y)=\mathrm{fcap}(Y)$, a contradiction.

At this point we severely restricted the shape of the cut $Y: Y$ has exactly one vertex v in common with X and X and Y do not interfere.

Let S be a slicing such that S, X, and Y are strongly interferencefree. Note that S exists because Y is either 0 -bend or 1 -bend connecting two concave corners, and hence every face can be connected by a sequence of 0 -bend cuts with the unbounded face. We split X at vertex v into pieces X_{1} and X_{2} and Y at vertex v into pieces Y_{1} and Y_{2}, where X_{1} goes through edge e^{*} and $X_{1}, Y_{1}, X_{2}, Y_{2}$ occur clockwise around v. Let $Z_{1}=X_{1} Y_{1}$ and $Z_{2}=X_{2} Y_{2}$ and let ($L(X), R(X)$) and ($L(Y), R(Y)$) be the partitions of $B \cup C$ induced by the cuts X and Y, where $a \in L(X) \cap L(Y)$, cf. Fig. 32. Then

$$
\begin{aligned}
\operatorname{dens}(X)+\operatorname{dens}(Y)= & \overline{\operatorname{dens}}(L(X))+\overline{\operatorname{dens}}(L(Y)) \\
= & \overline{\operatorname{dens}}(L(X) \cap L(Y))+\overline{\operatorname{dens}}(L(X) \cup L(Y)) \\
& +2 \overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X)) \\
= & \operatorname{dens}\left(Z_{1}\right)+\operatorname{dens}\left(Z_{2}\right) \\
& +2 \overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X))
\end{aligned}
$$

Suppose now that $\overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X))=0$. Then fcap $\left(Z_{1}\right)+$ $\mathrm{fcap}\left(Z_{2}\right)=\mathrm{fcap}(X)+\mathrm{fcap}(Y)=0$ and thus either $\mathrm{fcap}\left(Z_{1}\right) \leqslant 0$ or

Fig. 32. The cuts X, Y, Z_{1}, and Z_{2}.
fcap $\left(Z_{2}\right)<0$. In the former case there is a saturated 1-bend cut through e^{*} with a longer horizontal segment than X by Lemma 12(c), a contradiction to the choice of X; and in the second case we have a contradiction to the invariant by Lemma 12(a).

It remains to show that $\overline{\operatorname{dens}}(L(X)-L(Y), L(Y)-L(X))=0$. Assume otherwise. Let (x, y) be an elementary piece of some net Q with $x \in L(X)-L(Y)$ and $y \in L(Y)-L(X)$. We can decompose Q with respect to vertex a into ($\left[q_{1}\right],\left[q_{2}\right]$), where (a, y) is the first elementary piece of [$\left.q_{2}\right]$. Let (a, z) be the first, elementary piece of $\left[p_{2}\right]$. Since r_{1} and r_{2} intersect Y (recall that fcap' $(Y)=-2$) we must have $z \notin L(Y)-L(X)$. Thus decomposition ($\left[q_{1}\right],\left[q_{z}\right]$) of Q is right-of decomposition ($\left[p_{1}\right],\left[p_{2}\right]$) of N, a contradiction to the choice of N. This completes the proof of Lemma 5.

IV. Implementation

The input to our routing algorithm is a routing region R and a set \mathcal{N} of nets. The routing region is given by its set of vertices and edges and their embedding into the plane and each net $N \in \mathscr{N}$ is given by some representative $\operatorname{rep}(N) \in N$. We use r to denote the number of vertices of R and m to denote the total length of the representatives rep (N). Then $r+m=n$.
In the implementation we represent nets by their decomposition with respect to a particular slicing S which we define next. For each face $F \in M$, $C(F)$ is a 0 -bend vertical cut extending downwards from F. This choice ensures that S and X arc vertex-disjoint for any 1 -bend cut X through edge e^{*}.

The implementation is a fairly direct realization of the algorithm of Section II. The major question left open there is the choice of the data structures used to represent nets. We use the following data structures:
(1) Each net is represented in both its orientations by the linear list of its elementary pieces. The two occurrences of any elementary piece in its two orientations are linked.
(2) For each element $v \in B \cup C$ we have a linked list of all occurrences of elementary pieces (v, w).

Lemma 16. (a) The data structures can be constructed in time $O(n)$ from the input. Moreover, if the problem is solvable then their space requirement is $O(r)$. (b) The cyclic ordering on $B \cup C$ can be computed in time $O(r)$.

Proof. (a) Color the edges of R which are intersected by some cut in S red and color all other edges black. Then trace the representatives
$\operatorname{rep}(N), N \in \mathcal{N}$, and decompose them into elementary pieces. Finally, reduce the decomposition by the operation:

$$
\text { Replace }\left(v, C(F)^{d}\right),\left(C(F)^{-d}, C(F)^{-d}\right),\left(C(F)^{d}, w\right) \text { by }(v, w) ;
$$

i.e., eliminate unnecessary crossings with slicing cuts. All of this takes time $O(r+m)=O(n)$. For net $N \in \mathcal{N}$ let $l(N)$ be the number of elementary pieces in the decomposition of N. Clearly, every path $p \in N$ has length at least $l(N)$ and hence $\sum\{l(N) ; N \in \mathcal{N}\}=O(r)$ if the problem is solvable.
(b) In order to compute the cyclic ordering on $B \cup C$ we remove all edges intersected by a cut in S (the red edge of part (a)) and then perform a clockwise traversal of the boundary of the unbounded face. All of this clearly takes time $O(r)$.
We argued already that there are at most $O(r)$ calls to procedures Simplify1 and Simplify2. We will show below that a call Simplify1 has cost $O((1+k) r)$, where k is the number of edges of R which are removed by the call and that a call of Simplify 2 has cost $O(r)$. We will also show that a call of Simplify 1 increases the number of elementary pieces by at most k and a call of Simplify 2 increases the number of elementary pieces by at most one. Thus the number of elementary pieces is always $O(r)$. Note that it is $O(r)$ initially by Lemma 16 , if the problem is solvable. Thus total running time is $O\left(n+r^{2}\right)=O\left(n^{2}\right)$ and Theorem $1(\mathrm{~b})$ is shown.

Lemma 17. A call of Simplifyl has cost $O((1+k) r)$, where k is the number of edges of R which are removed by the call. Also the number of elementary pieces is increased by at most k.

Proof. We first check whether there is a cut of capacity one (by inspecting all dual edges) or a vertex v with $\operatorname{deg}(v)=\operatorname{ter}(v)$ (by inspecting all vertices). This takes clearly time $O(r)$. Assume first that there is a cut, say X, of capacity one. Let us assume further that X is not a slicing cut; the case that X is a slicing cut is simpler and therefore left to the reader. We show first how to find in time $O(r)$ the elementary piece which goes across X. The cut X divides $B \cup C$ into parts $L(X)$ and $R(X)$. In time $O(r)$ we can clearly label the elements of $L(X)$ red and the elements of $R(X)$ black. We then only have to run through all elementary pieces and check the color of the endpoints until a bicolored piece is found. We next split this elementary piece at the edge intersected by X and remove this edge, say f, from the routing region. The edge f separated two faces F and G. If $F=G$ then we are done. If $F \neq G$ then we may assume w.l.o.g. that F is not an ancestor of G with respect to the function parent (cf. Definition 4 in Section III.2.). We have to remove the cut $C(F)$ from our set of slicing cuts and hence to change the decomposition into elementary pieces of all nets. This can be
done easily in time $O(r)$. We only have to replace all pairs $\left(x, C(F)^{d}\right)$, $\left(C(F)^{-d}, y\right)$ of elementary pieces by the single elementary piece (x, y).

Assume next that there is no cut of capacity one but a vertex v with $\operatorname{deg}(v)=\operatorname{ter}(v)$. We first number the elements of $B \cup C$ in counterclockwise order starting at some arbitrary vertex. Using this numbering one can decide the cyclic ordering of three elements u, v, w of $B \cup C$ in time $O(1)$. It is now easy to find the rightmost net starting in v by tracing the nets and always selecting the rightmost possible continuation. Again this clearly takes time $O(r)$.

Lemma 18. A call of Simplify2 takes time $O(r)$. Also the number of elementary pieces is increased by at most one.

Proof. Let X_{i} be the 1-bend cut through edge e^{*} where the horizontal segment has length exactly i. We can clearly compute $\operatorname{cap}\left(X_{i}\right)$ for all i in total time $O(r)$. We will next show how to compute dens $\left(X_{i}\right)$ for all i in time $O(r)$. Number $B \cup C$ in counterclockwise order starting at vertex b. Let (L_{i}, R_{i}) be the partition of $B \cup C$ induced by X_{i} with $b \in L_{i}$. Then $L_{i} \subseteq L_{i+1}$ for all i and hence

$$
\begin{aligned}
\operatorname{dens}\left(X_{i+1}\right) & =\overline{\operatorname{dens}}\left(L_{i+1}, R_{i+1}\right) \\
& =\overline{\operatorname{dens}}\left(L_{i} \cup\left(L_{i+1}-L_{i}\right), R_{i+1}\right) \\
& =\overline{\operatorname{dens}}\left(L_{i}, R_{i+1}\right)+\overline{\operatorname{dens}}\left(L_{i+1}-L_{i}, R_{i+1}\right) \\
& =\overline{\operatorname{dens}}\left(L_{i}, R_{i}-\left(L_{i+1}-L_{i}\right)\right)+\overline{\operatorname{dens}}\left(L_{i+1}-L_{i}, R_{i+1}\right) \\
& =\overline{\operatorname{dens}}\left(X_{i}\right)-\overline{\operatorname{dens}}\left(L_{i}, L_{i, 1}-L_{i}\right)+\overline{\operatorname{dens}}\left(L_{i+1}-L_{i}, R_{i+1}\right) .
\end{aligned}
$$

Thus dens $\left(X_{i+1}\right)$ can be computed from dens $\left(X_{i}\right)$ in time proportional to the number of elementary pieces incident to $L_{i+1}-L_{i}$. Note that using the numbering of $B \cup C$ one can decide in time $O(1)$ whether an element of $B \cup C$ belongs to L_{i} or R_{i+1}. Thus dens $\left(X_{2}\right)$, dens $\left(X_{3}\right), \ldots$ can be computed in time $O(r)$ once dens $\left(X_{1}\right)$ is known. Finally dens $\left(X_{1}\right)$ can be computed in time $O(r)$ by checking all elementary pieces.

We have now computed fcap $\left(X_{i}\right)$ for all i in time $O(r)$. If no X_{i} is saturated then we are almost done. We only have to remove the four edges on the boundary cycle of the trivial face to the right of e^{*}. Also if this merges two nontrivial faces then we have to remove a slicing cut as described in the proof of Lemma 17. Otherwise let X be the leftmost saturated cut through e^{*}. We first find all α 's going across X in time $O(r)$ and then trace nets starting with these pieces in order to find the rightmost decomposition. This is done as follows: Let $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right), \ldots$ be the pieces which go across X with $v_{j} \in R(X), w_{j} \in L(X)$. These pieces can be found in time $O(r)$ by first coloring the elements of $L(X)$ red and the
elements of $R(X)$ black and then checking all elementary pieces. Each such piece (v_{i}, w_{i}) defines a decomposition (p_{i}, q_{i}) of some net with respect to the cut X. For two decompositions (p_{i}, q_{i}) and (p_{j}, q_{j}) we can clearly determine which one is right-of the other one in time $\min \left(l\left(q_{i}\right), l\left(q_{j}\right)\right)$ by simply tracing q_{i} and q_{j}. Here, $l\left(q_{i}\right)$ is the number of elementary pieces q_{i} consists of. Thus the rightmost decomposition can be computed in time $O\left(\sum l\left(q_{i}\right)\right)=O(r)$.

V. Conclusion

We showed that the local routing problem for two-terminal nets is solvable in quadratic time. Recently, an alternative and considerably more complex algorithm with linear running time $O(n)$ has been found; cf. the first author's Ph .D. thesis [K] and [KM2]. In [K] it has also been shown that the technique described above can be applied almost directly to other grids like the hexagonal grid and the octo-square grid, which are based on the square grid extended by diagonals in one or both directions. There are three major open problems:
(1) Allow more general routing regions than grid graphs. In particular, prove a similar result for arbitrary planar graphs.
(2) Extend the result to nets with more than two terminals. It is known [S], that multiterminal net routing is NP-complete. An approach for the multiterminal net routing might be to partition each multiterminal net into a collection of two-terminal nets and then to use the result in this paper as a heuristic. To find a good approximation algorithm is still open.
(3) Construct layouts which are provably 3-layer wirable. Using Brady and Brown's result we can only guarantee a 4 -layer wiring. But for very simple routing regions (channels) [PL] we know how to construct layouts which are 3-layer wirable.

References

[BB] M. Brady and D. Brown, VLSI routing: Four layers suffice, Adv. Comput. Res. 2 (1984), 245-258.
[BM] M. Becker and K. Mehlhorn, Algorithms for routing in planar graphs, Acta Inform. 23 (1986), 163-176.
[CS] R. Cole and A. Siegel, River routing every which way, but loose, in " 25 th Found. Comput. Sci.," pp. 65-73.
[F] A. Frank, Disjoint paths in rectilinear grids, Combinatorica 2, No. 4 (1982), 361-371.
[HS] C. van Hoesel and A. Schrijver, Edge-disjoint homotopic paths in a planar graph with one hole. J. Combin. Theory Ser. B 48 (1990), 77-91.
[K] M. Kaufmann, "Über lokales Verdrahten von 2-Punkt-Netzen," Dissertation 1987, Universität des Saarlandes.
[KM] M. Kaufmann and K. Mehlhorn, Routing through a generalized switchbox, J. Algorithms 7 (1986), 510-531.
[KM2] M. Kaufmann and K. Mehlhorn, "A Linear-Time Algorithm for the Homotopic Routing Problem in Grid Graphs," Technical Report, Saarbrücken, 1988.
[KvL] M. E. Kramer and J. van Leeuwen, The complexity of wire routing and finding minimum area layouts for arbitrary VLSI circuits, Adv. Comput. 2 (1984), 129-146.
[L] U. LaUther, The SIEMENS CALCOS system for computer aided design of cell based IC layout, Proc. in "Proceeddings, 1st ICCC, 1980," pp. 768-771.
[LM] Ch. Leiserson and F. M. Maley, Algorithms for routing and testing routability of planar VLSI layouts, in 17th STOC, 1985," pp. 69-78.
[MNS] K. Matsumoto, T. Nishizeki, and N. Saito, An efficient algorithm for finding multicommodity flows in planar networks, SICOMP, Vol. 15, No. 2 (1986), 495-510.
[MP] K. Mehlhorn and F. Preparata, Routing through a rectangle, J. Assoc. Comput. Mach. 33 (1986), 60-85.
[NSS] T. Nishizeki, N. Saito, and K. Sijzifki, A linear-time routing algorithm for convex grids, IEEE Trans. Comput. Aided Design CAD-4 (1985), 68-76.
[OS] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory Ser. B 31 (1981), 75-81.
[PL] F. Preparata and W. Lipski, Jr., Three layers are enough, "23rd Found. Comput. Sci., 1982," pp. 350-357.
[R] R. L. Rivest, The "PI" (placement and interconnect) system, in "19th Design Automation Conference, 1982," pp. 475-481.
[S] M. Sarrafzadeh, Channel-routing problem in knock-knee mode is NP-complete, IEEE Trans. Comput. Aided Design CAD-6 (1987), 503-506.

