
INFORMATION AND COMPUTATION 12, 270-282 (1987)

Area-Time Optimal Division for T=f2((log n)’ +‘)*

K. MEHLHORN

Fachhereich IO, Informarik. Universitiit des Suarlandes,
6600, Saurbriicken, West German1

AND

F. P. PREPARATA

Coordinated Science Laboratory, University oJ Illinois,
Urbana, Illinois 6 180 I

Area-time optimal VLSI division circuits are described for all computation times
in the range [Q((logn) ’ “), O(J)] for arbitrary E > 0. (1987 Acadrmx Press, Inc

1. INTRODUCTION

A simple transformation of right-shift to integer division shows that the
area-time (AT') complexity of any network for the computation of the
inverse of an n-bit number (referred to here as “divider”) is bounded from
below by a(~‘). A trivial fan-in argument also gives T= Q(log n), A family
of AT’-optimal dividers has been proposed some time ago by Mehlhorn
(1984). A network of this family can be constructed for each computation
time Tin the range [B(log’n), O(A)]. S’ mce then considerable progress
has been made in the design of faster dividers (Reif, 1983), culminating in
the result of Beame, Cook, and Hoover (1984) illustrating an O(log n)-time
divider (i.e., a time-optimal network in the hypothesis of bounded-fan-in
components). However, the Beame-Cook-Hoover network (referred to
here as the BCH network) does not achieve area optimality. Thus, it is
natural to ask the question of the existence of area-time optimal dividers
for T= o(log2 n). This paper provides an affirmative answer for
TE [Q(logn)‘+“), O(log’n)] for any positive constant cd 1. It must be
pointed out that the proposed networks are so complicated-
notwithstanding their area-time optimality-that they are exclusively of
theoretical interest.

* This work was supported by the DFG, SFB 124, TP B2, VLSI Entwurf und ParallelitCt,
and by NSF Grant ECS-8410902.

270
0890-5401/87 $3.00
CopyrIght 1‘1 1987 by Academx Press. Inc.
All rights of reproduction m any form reserved.

AREA-TIME OPTIMAL DIVISION 271

FIG. 1. Block structure of the divider

The network (see Fig. 1) consists of J+ 2 cascaded modules, where
.I- l/e. The first J modules are modified dividers of the BCH type, com-
puting a sequence of approximations of the inverse with increasing num-
bers of bits 1, d I2 6 . . . d I, < n.

The last two modules are designed to complete the buildup of the result
size from lJ to n bits by implementing the Newton approximation method,
which, at each iteration doubles the length of the result. This is carried out
in two phases, respectively executed by the “fast” and “slow”
approximators. The fast approximator basically consists of a single area-
time optimal fastest multiplier, used to execute the initial iterations; the
slow approximator is instead a cascade of affordably slow multipliers, each
executing one of the final iterations. Note that the cascade of the two New-
ton approximators structurally coincides with Mehlhorn’s (1984) divider.

The paper is organized as follows. In Section 2 we present a more
efficient implementation of the BCH method leading to a circuit referred to
as “modified BCH divider.” In Section 3 we discuss an alternative method
for the computation of the inverse, which uses the modified BCH method
as a subroutine. Finally, in Section 4 we illustrate the combination of the
previous techniques with the Newton approximation, to yield our proposed
network, while Section 5 contains a few closing remarks.

In this paper we shall frequently refer to under- and overapproximations
of the reciprocal of a number. For brevity, given an n-bit number x in the
interval [l/2, 1) (i.e., a normalized fraction with n bits to the right of the
binary point), we say that for 1 <n, v is an l-bit underinverse or an l-bit
overinverse of ,Y depending upon whether v = 12’/.~_1.2 -~’ or 11 = [2//x1.2 -‘.
Equivalently, v. x = 1 f 6, with 6 < 2 -’ or v has two significant bits to the
left and 1 significant bits to the right of the point.

2. AN EFFICIENT IMPLEMENTATION OF THE BCH METHOD

In this section we first describe (a variant of) the BCH method (Beame
et al., 1984) and then modify it so as to reduce its area requirement.

The original BCH method computes the n-bit underinverse of an n-bit
number x by adding the first n powers of u = 1 -x and truncating the n2-
bit result to its leading n-bits. Each power of u is computed individually
and the n powers are subsequently added together. A power uk is computed

272 MEHLHORNAND PREPARATA

by taking the “logarithm” of U, multiplying it by k, and then taking the
“antilogarithm.”

Since taking logarithms of large numbers is very hard, the method
resorts to a modular representation and works as follows:

ALGORITHM INVERSE 1 (x).

Input: an n-bit number x in the range [l/2, 1). Given are m (small,
possibly consecutive) primes p1 ,..., pm such that

fi pi > 2’n?) (Note that m ‘v n’/log n)
,=I

(n is assumed to be a power of two)
output: an (n + 2)-bit number u in the range (1,2), so that

uxx= 1 +6 with 6~2~”

(1) begin

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13) end

u := (1 -.u) 2”; (*u is an integer *)

for j, 1 djdm

pardo hi := u mod pi;

compute r, so that a?= bj, where
ai is a generator of the multiplicative group of Z*p,;

for I=0 to logn- 1
do ,!O .= aQ’mo4p, ~ 1)

I’ I (*ml” = u” mod p,*)

od;

v, := #‘?J’; ~ 1 (mj’) + 2”*‘) mod pj
(*v, = 2”(‘* ~ ‘). I;&’ (u/2”)’ mod pi*)

V, :=v,M,mod(p,...p,)
(* first step of Chinese remaindering *)

odpar;

v :=Cy=, V,mod(p, . ..p,); (* second step of Chinese
remaindering*)

v := truncate u to the first n + 1 bits, insert one 0 to the left,
and set point after the second bit from the left

Let us next describe the different steps of this algorithm in more detail.
In this description we will make frequent use of the following two facts:

(1) One can multiply two k-bit integers in time T and area A, where
AT’=O(k2) and TE [sZ(log k), O(,,/%)]. This is the result of (Mehlhorn
and Preparata, 1983).

AREA-TIME OPTIMAL DIVISION 213

(2) One can add m k-bit integers in time O(log m + log k) and area
O(km . log m). This can be achieved by expressing the m integers in redun-
dant representation (see, e.g., [4-61) and then adding them in a tree-like
fashion. The tree has depth O(log m) and requires area O(m log m) for
every bit position. Each level of the tree introduces a delay of just O(1)
thanks to the redundant number representation.

We are now ready to describe the circuit in more detail. We start with
the parallel loop, lines 2-10.

Line 3. This line is easily executed in time O(log n) and area
O(n (log n)‘) for each pi by expressing u by its binary expansion
u = C;:d ~,2~, U, E (0, 1 }, storing the numbers 2’ mod pi in a table and
performing the required additions in redundant number representation. We
leave the details of this step to the reader.

Line 4. Step 4 is realized by a table loop-up, i.e., by a look-up in a table
which gives the value of r, for each possible value of hi. Since p, can cer-
tainly be expressed using 2-log n bits this table has n’ entries of 2 log n bits
each. We realize this table by 2 log n H-trees each requiring area O(n’).
Thus the total area is O(n’ log n) for each p,, and a table look-up takes
time O(log n).

Note that the 2 log n slices of the table are accessed in parallel. Also note
that this circuit can be pipelined (its period is 0(1) in technical terms) and
therefore O(log n) look-ups can also be performed in time O(log n) using
the same area. This observation is important for step 6.

Lines 5, 6, 7. Consider a fixed I first. We first compute

Rj” = r,2’ mod (pi - 1)

as outlined in line 3. Note that the I-place shift does not have to be
executed explicitly; it only determines which powers of two need to be

“I looked-up. The computation of Rj takes time O(log n) and area
O(n(log n)‘). We perform this computation in parallel for all 1,
O<l<logn- 1.

The integer m)‘) is computed from (” R, by look-up in a table of
“antilogarithms.” The log n look-ups are pipelined and take time O(log n)
and area O(n2 log n) for each pi (refer to the description of line 4).

Finally note that ml’) = u~2’mod(f’~ ~ ’) = hf’ mod pi = a” mod pi.

Line 8. We use a tree of multipliers. This tree has depth O(log log n)
and has log n nodes. Each node contains a circuit multiplying two 2 log n
bit numbers and reducing the result mod pi in time O(log log n) and area
0((log n)‘). This shows that step 8 takes time O(log n) and area O(n). Both
estimates are very generous.

274 MEHLHORN AND PREPARATA

Finally note that

log II ~ I n-1

,! (2
0 + ,;y, = ‘yf ’ (2”2’ + uq = pn- I).

/=O
,F, (u/W.

Line9. Let M,=[(p,...p,)/pilpi-‘mod(p,...p,,). Then Mi is the
coefficient of u, required for Chinese remaindering (Knuth, 1981). The
number M, is precomputed and stored in a register of length O(n’). We
multiply u, by M, by dividing A4, into n’/log n pieces of length O(log n),
performing n’/log n multiplications in parallel and then summing the
results. This can certainly be done in time O(log n) and area O(n2 log n).
Also the reduction mod(p, . . . p,) can be done in that area and time.
Indeed, let q be an integer in [0, 2”Z+‘ogn) and M P p, “‘pm; then
q mod M = q - Lq/MJ . M. Thus we perform, in time O(log n) and area
O(n2), a multiplication of q by an approximation of l/M of precision
2P”‘P’0g’f (having only O(log n) significant bits), followed by a mul-
tiplication of M by Lq/MJ.

Summar)>. Lines(3) to (9) take time O(log n) and area O(n2 log n) for
each p,. Since u” has n’ bits we have m = O(n’/log n) and each modulus is
representable in 2 log n bits. We realize loop (2) to (10) by having a
module for each modulus and hence the loop takes time O(log n) and area
O(n’).

Line 11. In line 11 we add m numbers of n2 bits each and reduce
mod(p, . ..p.,,). This takes time O(log n) and area O(m log ~1. n2) = O(n4).

LEMMA 1. There exists a circuit which computes the n-bit inverse of an
n-bit number in time O(log n) and area O(n4).

Proqf Immediate from the discussion above. 1

The enormous space requirement of the method sketched above is essen-
tially due to the fact that the powers of u are computed with Q(n’) bits of
precision. However, only the leading n + log n bits are truly needed for the
computation of v. This observation is the key to the “modified” BCH
method, to be described next. In the modified method we compute the
powers of an f-bit integer u in m rounds (this m has nothing to do with the
IPI in algorithm INVERSE 1), where m is a design parameter to be selected.
In each round we compute the sum of s = (I)““’ consecutive powers using
the method of Lemma 1. We call s the depth of the method. This takes time
O(log I) and area 0((Is)‘) and yields a result of 0(/s) bits. The space
requirement results from the fact that only Is/log(ls) different prime moduli,
each of length 2 log(ls) bits, must be used. We truncate this result to
1+ [log 12ml bits and start the next round. The details are as follows.

AREA-TIME OPTIMAL DIVISION 275

ALGORITHM INVERSE 2(x)

Input: an I-bit number XE [l/2, 1) and an integer s= (I)““.
Output: an (I + 2)-bit number u E (1,2)

begin u0 := 1 - x;
fori=Otom-1 do

begin
0, :=x;:-; u;’

ui+1 := truncate uf to q = I+ rlog 12ml bits right of point;
end;

v := truncate ~~0~ ... CT,,-, to I bits right of point;
end.

To prove te correctness of this algorithm we must show that v gives the
(I-C 2) leading bits of l/(1 - u) (of which the rightmost 1 bits represent the
fractional part). To this end, we must show that the error of the underap-
proximation is < 2 --‘.

For any variable a used by the above algorithm let (r denote the
corresponding exact value (note that, since all numbers are nonnegative,
the truncation mechanism gives c? 2 a), and 6(a) the absolute error on a,
such that a = a” - d(a). Recall also that &a. h) -C 6(a) &+ d(6) 5 and that
&a + b) = 6(a) + 6(b). Using these relationships, we readily have

Since 3,. . . c?,, ~ 1 < 3 and 3, > 1 (i = 0 ,..., m - 1), we obtain

6(a,...o, -,)<3(6(a,)+ .‘. +&a,- I)).

From Zi = Cf:d ii/ we have

.> 1 s -. I
&a,)= C 6(u/)< C jC :- ‘cqu;) < S(u,)/(1 - ii,)2 < 46(Ui),

i=O ,=o

since iii < 4 for i = l,..., m - 1. (Obviously 6(u,) = 0.)
Thus 6(co.. . @m ~ ,) < 12m max 6(ui) and the condition

12m max 6(ui) < 2-’

ensures the correctness of the method. We claim that S(ui) < 2-y as a result
of truncating to q bits right of the point. Indeed 6(u,) < 2 Py, trivially. For
i> 1, assuming 6(u,) < 2Py, let UT+ I = u; (before the truncation). Then

276 MEHLHORNAND PREPARATA

since ui < i for i > 1. If we assume s 2 2, then S(u,*, ,) < 2-4, which shows
that its q bits to the right of the point are correct. Thus, the prescribed
truncation yields 6(uj+ ,) < 2 Py, and the induction step is complete. In
conclusion, we choose

q>l+log 12m.

(Note that for any choice of s, [log 12ml< 4 + log log I by the definition of
m.1

Noting that m . O(log I) = O(log2 l/log s), we have:

LEMMA 2. For any 2 <s 6 1 there exists a circuit computing the l-bit
inverse of an l-bit number in time O(log’ l/log s) and with area O((~S)~).

The Ai”‘-performance of the above circuit is given by

By choosing the depth s as s = I” (E > 0), the resulting circuit achieves
T=O((l/s)logI) and AT2=0(12(‘+‘)), i.e., it is a moderately AT’-
suboptimal divider still achieving T = O(log I), for fixed E. We are aware
that this result had been previously obtained by Leighton (1985),
presumably by a similar argument.

We close this section by noting that if v is an l-bit underinverse of
x E [t, 1) then v + 2-’ is an I-bit overinverse of x.

3. A TECHNIQUE OF SUCCESSIVE REFINEMENTS

We now describe an alternative approach to the computation of the
inverse of an I-bit number, which uses the BCH method as a subroutine.
Informally, this approach begins by computing a (small length) coarse
overapproximation of the inverse of x, and subsequently refines it by mul-
tiplicative factors, which are all inverses of numbers very close to 1 (from
above). Therefore, the first approximation takes advantage of the small
operand length, whereas the subsequent refinements exploit the presence of
leading zeros in the representation of the number to be inverted. This
method is best described for an I-bit integer XE [l, 2). (Note the modified
range of normalization.)

The number x E [1,2) can be written as

x=x, +2-‘I-“. w,

where x, is an (II + 2)-bit number (the leading I, + 2 bits of x) and w is an
(I-I,-2)-bit number (the trailing l-f,-2 bits ofx). Then X,E [l, 2) and

AREA-TIME OPTIMAL DIVISION 277

w E [0,2). Let u,. 2 be an (1i + 1)-bit overinverse to x1. 2-l (i.e.,
x,ui=l+~, 1~2~‘I-‘).Then

u,,~=v,x,+u,w2~“~2=l+~+u,w2--“-2<1+4~2~”-2=1+2~” ,

since rj <2-‘lP2, u, < 1, and w < 2. This means that u,.\: has at least 1, - 1
consecutive O’s immediately to the right of the point. Define

Then, if u2 denotes an approximation of l/z,, we have ~~-1~ 1: l/x. Also, if
uZz2 = 1 + q’ then u, u2x = 1 + q’, i.e., u, v2 is an overapproximation of l/x
of precision $. The process can be iterated thereby obtaining

l/x 2 U,U?” Uk.

This leads to the following algorithm:

ALGORITHM INVERSE 3(x)

Input: an l-bit number XE [I, 2) and an integer sequence
1, cl+ . . . < I, = 1.

Output: an I-bit number u E (l/2, 11, such that ux = 1 + E, E < 2 -’

(1) begin ~:=l

(2) for i=l tokdo

(3) begin ti :=leftmost (I, + 2) bits of X;

(4) 2; := ut,;

(5) .yi := leftmost (li + 1) bits of 2,;

(6) ui :=2-.I((/, + 1)-bit overinverse of .uj2 ‘):

(7) 0 := v vi

end;

end

The correctness of the method is established by showing that the error is
bounded from above by 2-‘. Indeed, note that t, = x, so that (line (4))
:k=vkp,“‘u,.x, and Zkvk = (Uk. ’ 'U,)X. But (line(5)) .u,=z,--,,,,
ylk<2-‘-’ and (line(6)) xkuk= 1 +6k, 6,<2-‘--‘. We conclude

Since 6,+ylkvk<2-‘-‘+2~‘~‘=2-‘. This shows that uk”‘u, is the
desired overapproximation of the inverse of X.

Step 6 is the crucial action in the above algorithm; we realize it by
making use of the BCH method. To analyze its performance, we need

278 MEHLHORN AND PREPARATA

LEMMA 3. If an l-bit number XE [t, 1) has I’ - 1 zeros immediately to the
right of the leading 1, the l-bit inverse of x can be computed in time
T= O(log(l/l’) . log I/log s) and area A = O((Is)‘), for any 2 <s < l/l’. (Note
that this result subsumes Lemma 2 for 1’ = 1.)

ProoJ Indeed u = 1 - 2x is a (nonpositive) proper fraction whose
absolute value has I’ zeros immediately to the right of the point. This
implies that lu”““l < 2-‘, so that only the first [l/l’] consecutive powers of
u need to be computed. u

The numbers .Y;, i = l,..., k, used in Step 6 meet the conditions of
Lemma 3, since ot;- 1 is a (nonnegative) number with lie, leading zeros
(1, = 0, by convention). Step 6 is therefore carried out by applying
Algorithm INVERSE 2 so that the ith iteration is characterized by length li
and depth si. An implementation of this technique is therefore completely
specified by the two sequences:

and
1, , lz,..., 1,

.y,, s2 ,..., Sk.

Before closing this section we note that Step 7 involves a multiplication
of O(li)-bit numbers at the ith iteration; thus this operation is no more
complex than the execution of the homologous Step 6, and will not be
further mentioned in this discussion.

4. THE DIVIDER NETWORK

We have all the premises to illustrate in detail the structure of the divider
sketched in Fig. 1.

The first J stages are collectively designed to implement the successive
refinement technique; each module implements the modified BCH
algorithm. For i= 1, 2,..., J, let 1; be the (output) operand length, si the
depth, A ,,; the area, and T,.i the time of the ith module. We seek a solution
where all such modules have identical area (i.e., A ,,, = A’ for i= l,..., J)
and identical computation time, equal to the target time (i.e.,
T,,, = 8((log n)’ +‘), i = l,..., J). By the requirement of optimality, we have

We also choose
&=C= (log”n)l+~.

II= (log ;; I + es,’

(2)

(3)

(4)

AREA-TIME OPTIMAL DIVISION 279

The parameter J is chosen as the largest value of i for which si 2 2, and is
readily found to be O(l/s). Also note that 2 < sJ = s$‘“+g;‘)’ < 2(‘Og “I’. Since the
area of the ith module is O((lisj)2), condition (2) is obviously verified.
From (3) and (4) we obtain I, = (n/(log H)‘+‘)‘/~, and from Lemma 2:

From Lemma 3, for i = 2 ,..., J,

since l,s, = li- , s, ~ ,

since sj 3 2

= 0 log n.
(

2(log ?z)“‘iP ”
2(log ?z)c’iP 2’ >

= O((log n)’ +>:)

thus verifying the objective for the computation time.
With these choices, each module of the chain is AT’-optimal, and the

global computation time is c, (l/s)(log n)’ +I = @((log n)’ +l.), for some con-
stant c,. The value of I,, the number of bits of the result, is approximately

This value I, represents the length of the operand supplied to the cascade
of the two Newton approximators, to be described next. Notice that, since
each Newton iteration doubles the number of accurate bits, if we start with
1, accurate bits, only (1 + E) log log n Newton iterations are needed to
complete the task.

Starting with the downstream approximator, we recall (see Fig. 2) that
this module is in turn the cascade of p submodules (p is an integer to be
defined shortly), where the ith submodule has area and time A,,i and T,,,,
respectively, and

A3.i=2A3,;-Ir T3.f = Jz T,.i- I 3 i = 2, 3 ,..., p.

280

n
t

1st submodule

MEHLHORN AND PREPARATA

FIG. 2. The module structure of the slow “Newton approximator.”

With this choice (originally proposed in (Mehlhorn, 1984)), the global
area and time of the slow approximator are respectively proportional to
the area A + and time T,,p of the pth (last) submodule. Since we are aiming
for an A T’-optimal network with computation time O(T), we must have

Aj.P z:,, = O(n2)

and

This condition enables us to specify the parameter p. Indeed, the speed of
the submodules increases as we proceed upstream (by decreasing sub-
module index), and each submodule must satisfy the condition that its mul-
tiplication time is at least logarithmic in the operand length. Since the
operand length is halved in going from index i to index i- 1 (due to the
mechanism of the Newton approximation), and the most stringent
condition occurs for i = 1, we have

T n
(&)p-, 3log 2”1 ’ (>

which is certainly satisfied if we select p as

p-1=2log T
() log n

= 2~ log log n, (5)

or p = 1 + 2~ log log n.
Finally we turn our attention to the “fast approximator.” This module

receives an approximation of length I,> n/(log n)’ +‘. 2(logn)” and delivers
an approximation of length n/2(log n)2E. (Note that this is exactly the
input operand length of the first module of the slow Newton approxi-
mator discussed earlier.) Thus, this module must execute at most
(log n)’ + (1 -.a) loglog n iteration steps, each of them within time @(log n).
The module essentially consists of a “fastest” multiplier, i.e., time O(log n),

AREA-TIME OPTIMAL DIVISION 281

of numbers of length n/(log PI)*‘, and can be realized with area A2 such that
A,(log n)‘= O((n/(log n)“)‘) and hence A, = O((n/(log n)“2’)2). Thus,
the resulting AT’-measure for this module is

(lognn),+,i.(logn).(logn)” = O(n2)

and the optimality condition is clearly satisfied.
Since each of the three major units of our divider--the chain of modified

BCH dividers, the fast Newton approximator and the slow Newton
approximator-has area O((n/(log n)’ +‘)?) and time O((log n)’ +‘), we
conclude with

THEOREM 1. For any fixed 1 > F > 0, the n-bit inverse of an n-bit number
can be calculated with optimal AT=-performance,for any TE [Q((log n)’ +I’),
O((log n)‘)l.

5. CONCLUSION

We constructed an AT’-optimal divider with computation time
(log n)’ +C for any E > 0. The reader may wonder whether one can choose e
as a decreasing function of n (tending to zero as n goes to infinity). This is
indeed the case if the construction is slightly modified. In the construction
as it is now we use a chain of modified BCH dividers each with the same
area and speed. Thus both area and time grow as l/s and hence AT* grows
(at least) as (11~)~.

If E is chosen as a function of n, then this simple chain of equally sized
modules does not suffice. Rather one has to use a chain of increasingly
larger (and slower) modules as we did for the Newton iteration. Omitting
the tedious and not particular illuminating details we have

THEOREM 2. There is an AT’-optimal divider for n-bit integers ,for any
TE [SZ(logn.2”“g’“g”“‘4), O((logn)‘)].

Note that 20% ‘W n I3 4 = 0((log n)‘) for any E > 0.

RECEIVED August 1985; ACCEPTED October 1986

REFERENCES

MEHLHORN K. (1984), AT*-optimal VLSI integer division and integer square rooting,
Integration 2, 163-167.

f&IF, J. (1983). Logarithmic depth circuits for algebraic functions, in “Proceedings, IEEE 24th
Found. of Comput. Sci.,” pp. 138-145.

643 7: 3-R

282 MEHLHORN AND PREPARATA

BEAME. P. W., COOK, S. A.. AND HOOVER, H. J. (1984) Log depth circuits for division and
related problems, in “Proceedings, IEEE 25th Found. of Comput. Sci.,” pp. l-6.

LUK, W. K., AND VUILLEMIN, J. (1983), Recursive implementation of optimal time VLSI
integer multipliers, in “VLSI 83,” Trondheim, Norway.

SPANIOL, 0. (1976). “Arithmetik in Rechenanlagen.” Teubner, Stuttgart.
MEHLHORN, K., AND PREPARATA, F. P. (1983) AT’-optimal VLSI integer multiplier with

minimum computation time, Icfornr. und Confrol58, Vol. 1-3, 137-156.
KNUTH. D. E. (1981) “The Art of Computer Programming, Vol. 2., Seminumerical

Algorithms,” 2nd. ed.. Addison-Wesley, Reading, Ma.
LEIGHTON, F. T. (1985) personal communication, May.

