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We introduce BF-orderable graphs as a generalization of acyclic graphs. BF-orderable graphs 
permit a linear time solution to the single source shortest path problem. We give a graph-theoretic 
characterization of BF-orderable graphs by forbidden subgraphs. 

1. Introduction 

Let N = ( V , E , s , f )  be a network,  where ( V , E )  is a directed graph,  s e V is a 
distinguished vertex called the source, and f :  E - ,  R is a cost function on the set o f  

edges. The single source least cost path problem is to compute  for each o e V the 
cost o f  a cheapest  path f rom s to o, i.e., to compute  

l i n f { cos t (p ) ;  p is a path f rom s to o}, if o is reachable f rom s; 
d(o) = ~,~, otherwise 

for  all o e  V. The cost o f  a path P = e o e  ~ . . . e  k_ ~ is the sum o f  the costs o f  its consti- 
tuent edges, i.e., c o s t ( p ) =  k -  ~-i = o f (e i )"  

A classical a lgor i thm by Bellman and Ford solves the single source least cost path 
problem in time O(ne),  where n = ]I/I and e =  IEI; cf. [11 or [4, Section IV.7.31. In 
many  applications however,  e.g.,  in VLSI design, very large graphs  arise, and an 

O(ne)-time algori thm is unacceptable slow. It is therefore interesting to know classes 
o f  graphs for which a faster solution is possible. A wellknown such class is the class 
o f  acyclic graphs for  which an O(e)-time algori thm exists. In this paper  we study 
the following generalization o f  acyclic graphs:  

Definition 1. Let G = ( V , E )  be a directed graph and let s e  V. The graph G is BF- 

orderable (with respect to source s) if there is an ordering o f  the edges o f  G such 
that  the edges on any simple path starting in s occur  in increasing order.  More  
precisely, there is an injective mapping  n u m  : E ~  { 1 . . . . .  IE[} such that for all simple 

paths P = e o e l . . . e  k_ l starting in s, we have n u m ( e i ) < n u m ( e j )  for O < _ i < j < k - 1 .  

We shall call any such mapping  a BF-order  for G (with respect to source s). 
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Fig. 1 shows a BF-orderable graph which is not acyclic. 

5 

s ~ ~  9 
1 

Fig. I. A BF-orderable graph. A BF-order is indicated by labels. Note that no simple path starting in 

s uses the edges labelled 9 and 3 or the edges labelled 7 and 3. 

Our definition is motivated by the following observation (cf. Theorem 1): In the 
Bellman-Ford algorithm costs are propagated along edges. The O(ne) running time 
results from the fact that it may be necessary to propagate along a given edge as 
many as n times. However, if the graph is BF-orderable and edges are selected for 
propagation in some BF-order, then one needs to propagate only once  along every 

edge. 
The main contribution (Theorem 2) of  this paper is a graph-theoretic characteriza- 

tion of  BF-orderable graphs by forbidden subgraphs. We give three simple condi- 
tions which together define the class of BF-orderable graphs. The first two 
conditions impose restrictions on single simple cycles, and the third condition con- 
cerns the interaction between two simple cycles. 

Before proving Theorem 1 we discuss previous related work. Leierson and Pinter 
[2] reduced the placement problem for river routing to a single source least cost path 
problem on a restricted class of  graphs and then showed that this class of  graphs 
admits of  a linear time solution algorithm. In their algorithm they construct a BF- 
order h u m  and then use it to compute shortest paths. In other words, all graphs aris- 
ing in their problem are BF-orderable. 

The compaction problem for VLSI circuits also leads to single source least cost 
path problems. Lengauer and Mehlhorn [3] have shown that the one-dimensional 
compaction of  stick diagrams reduces to a least cost path problem on a graph with 
the property that every strongly connected component is a 'path '  of  antiparallel 
edges as shown in Fig. 2. Again, it is not difficult to come up with an appropriate 

BF-order. 
These two examples show that BF-orderable graphs occur naturally in practice 

and lead to the question of  characterizing this class of graphs. Note that the graph 
shown in Fig. 1 neither belongs to the class considered by Leierson and Pinter nor 
satisfies the strong condition on strongly connected components mentioned above. 
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Fig. 2. A strongly connected component.  
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This paper is organized as follows. In Section 2 we show that the Bel lmann-Ford 
algorithm runs in linear time on BF-orderable graphs provided that a BF-order is 
available. In Sections 3 and 4 we give two characterizations on BF-orderable graphs 
by forbidden subgraphs. In Section 5 we show that we can decide in time O(IEI 2) 
whether a graph is BF-orderable and also compute a BF-order if it is. We conjecture 
that a much faster algorithm exists. 

The objection might be raised at this point that the results are worthless in prac- 
tice because an efficient recognition algorithm for BF-orderable graphs is missing. 
There are two answers to this objection. Firstly, computing a BF-order is pre- 
processing and pays of f  if the same path problem has to be solved for many cost 
functions. Secondly, for some classes of  BF-orderable graphs (e.g. the classes 
studied by Leierson/Pinter  and Lengauer/Mehlhorn)  the conditions (BF1) to (BF3) 
(not (BF4) though) are readily verified by a human.  Thus the characterization given 
in this paper might lead to the discovery of more subclasses which are practically 
relevant and can be efficiently ordered. 

2. Single source least cost path problems on BF-orderable graphs 

Theorem 1. Let G = ( V, E, s) be a BF-orderable source graph and let en . . . . .  elE I be a 
BF-order o f  E. Then the single source least cost path problem may be solved in 
linear time for  any network (V, E , s , f ) .  

Proof .  Consider the following algorithm: 

D[sl := O; 
D[v] :=oo  for all v e  V\{s} ;  
for i from 1 to ]E I do 
let ei = (v, w); 
D[w] := min{D[w],D[v] +f(e)};  
comment  o o + a = ~  f o r a e R o d  
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For all o E V, let d(u) be as defined in the introduct ion,  and let d'(u) denote the 
final value o f  D[o] in the above algori thm. Finally, for eEE ,  the phrase "when  e 

has just been cons idered"  is shor thand  for " a t  that  point in time when execution 

reaches the end o f  the loop body  for the num(e)-th t ime" .  

C l a i m  1. d'(o)=d(o)  for  all oe  V with d ( o ) > - o o .  

P roo f .  Induct ion on i shows that for  all w e  V, any value ~ : ~  assigned to D[w] is 
the cost o f  a path f rom s to w. Hence d'(w)>_d(w) for all w e  V. If  d ( o ) >  - ~ ,  then 
d(u) is the cost o f  a simple path 

eo e, e,_~ ) 
p =  s=uo ~O 1 ~ " "  O k = O  

f rom s to o. Note that the edges on p are considered by the algori thm in the same 
order  as that in which they occur  on p.  It is now an easy induct ion on j to show 

j - I  that  when ej has just been considered, O<_j<_k, then D[oj]< ~i=of(ej) .  Hence 
d'(o)<_cost(p)=d(o), and we may  conclude that d'(o)=d(o) .  113 

C l a i m  2. Let w E V. Then d(w) = - oo i f  and only i f  there is an edge e = (u, u) E E such 
that 

(1) d ' (o )>d ' (u )+ f (e )  and 
(2) w is reachable f rom u. 

Proof .  Assume first that d(w) = - o o .  Then there is a path PlP2P3 f rom s to w such 
eo ~ ek ~ Ok) with O0 = Ok. that p :  is a cycle and cost(pz)<O. Let p:=(Uo----~o~ ... 

Since 

k - I  k - I  

(d'(°i+ I) - d'(°i) + f(ei)) = (d'(Ok) - d'(oo)) - ~ f ( e  i) 
i = 0  i = 0  

= 0 - cost(p2 ) > O, 

there is at least one i, O<_i<_k- 1, such that  d'(ui+ l )>d ' (o  i) +f(ei).  Furthermore ,  
w is clearly reachable f rom ui+~. 

Now let e = (u, o) be an edge with d'(o) > d'(u) +f(e).  Since d(u) > d(u) +f(e)  is im- 
possible, we may conclude f rom Claim 1 that d ( u ) = - o o  or d ( u ) = - o o .  But then 
clearly d(w)= - ~  for any vertex w reachable f rom u. This completes the p r o o f  o f  
Claim 2. []  

Armed  with Claims 1 and 2, it is now easy to complete  the algori thm: 

W : = O ;  
for  all e = (u, u) E E do  

if D[o]>D[u]+f(e)  then  W : =  WU{o}  fi 
od  

D[w] : = - o o  for all w e  V reachable f rom some vertex in W; 
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This algorithm can clearly be made to run in linear time. [] 
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3. A graph-theoretic characterization of BF-orderable graphs 

We use the following graph-theoretic notations. Let G = (V, E) be a digraph and 

let s e V. For an edge e = ( o , w ) e E  we write o=source(e) and w=sink(e) and 
e -  l = (w, o) for the reverse edge. A path is a sequence e 0, el . . . . .  ek_ i of  edges with 

sink(el) = source(ei + 1) for 0_< i < k - 1. A path is an s-path if source(e o) = s. A path 
is a cycle if source(eo)=sink(ek_l) and k_>_3, i.e., antiparallel edges ee -1 are not 

considered a cycle. A simple cycle is a simple path which is a cycle. 
Let P be a set of  edges. Then V(P)= {sink(e),source(e); e e P }  is the set of end- 

points of edges in P. If W~ V is a set of nodes then we  W is an entry point of W 
if there is a simple s-path ending in w and not going through any other node of  W. 

We are now ready to define the three characterizing properties 

Definition 2. A source graph G = (I/, E, s) has property BFI if every simple cycle C 

has at most two entry points. 

Lemma 1. Every BF-orderable graph has property BF1. 

Proof. Assume otherwise, i.e. there is a simple cycle C with three entry points, say 

u, o and w. Write C--plP2P3 where Pl runs from u to o, P2 runs from 0 to w and 
p~ runs from w to u. Let p be a simple s-path which witnesses that u is an entry 

point of C. Then PPlP2 is a simple path and hence all edges in Pl must have smaller 
numbers than all edges in P2. The same reasoning applies to P2 and P3 and to P3 

and Pl. Hence the graph is not BF-orderable. 

Definition 3. Let G be a graph satisfying BF1. It is said to satisfy BF2 if for every 
simple cycle C with two entry points the two entry points of  C are neighbours on C. 

Lemma 2. Every BF-orderable graph has property BF1 and BF2. 

Proof. Similar to the proof of Lemma 1 and therefore left to the reader. [7] 

For the third property we need an additional concept. Let C be a simple cycle in 

a graph satisfying BFI and BF2. Assume that C has two entry points u, o with edge 
(u, o) being an edge of  cycle C. Then o is called the second entry point of  C and u 
is called the first entry point of  C. If a cycle C has only one entry point then call 
this point also the first entry point of  C. 

Definition 4. Let G be a graph satisfying BFI and BF2. It is said to satisfy BF3 if 
there is no pair of  simple cycles C) and C2 such that 
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(a) C I and C 2 have two entry points each; say u i is the first and oi is the second 
entry point of  Ci, i-- 1, 2. 

(b) V ( ( C ~ ) - { u l } ) N  V(C2)=0 and V(C~)N(V(C2) - {u2} )=0 ,  i.e., C~ and C2 are 
vertex disjoint except for the possibility Ul--u2. 

(c) There is a path p from u~ to u 2 and the antiparallel path p-~ from u 2 to Ul 
with V(p)("I((V(CI)-  { u l } ) U ( V ( C 2 ) -  {u/}))=0.  

(d) ol and 0 2 are entry points of  the set V(C1)U V(Cz)U V(p). 

Lemma 3. I f  G = ( V, E)  with source s e V is BF-orderable, then G satisfies BF1, BF2 
and BF3. 

Proof.  We have already shown that G satisfies BF1 and BF2. So let us assume that 

it does not satisfy BF3. Let CI, C2, ol, o2, ul, u2 and p be as in the definition of BF3, 
and let Pi be a s-path to oi which wittnesses that o i is an entry point of  V(CI)U 
V(C2) U V(p), cf. Fig. 3. Let Ci = (ui, oi)qi for i = 1, 2, i.e. qi is the part of  the cycle C i 
from oi to u i. Let e i be the first edge of qi. Next observe that the path plqlp(u2, o2)e 2 
is simple and hence num(el )<num(ez)  and that the path p2qzp-l (uj ,  oi)el is simple 
and hence num(ez)<num(el ) .  Thus G is not BF-orderable. f l 

°1 o2 

I q ~ 2 ,/ 

Fig. 3. A counterexample to BF3. 

We are now ready for the main theorem. 

Theorem 2. I f  G satisfies BFI,  BF2 and BF3, then G is BF-orderable. 

Proof .  Let G = (V, E)  be a source graph. We consider the following auxiliary graph 
G '  = (E, K) with (el, e2) e K iff there is a simple s-path p = qel, e2, i.e., a simple s- 
path having el and e2 as its last two edges. Note that the vertex set o f  G '  is the edge 

set of  G. 
If  G '  were acyclic, then G is clearly BF-orderable, since a topological order of  G '  

is a BF-order of  the edges of  G. So let us assume for the sake of  a contradiction 

that G '  is not acyclic. 
Let Z=(eo, el),(el,e2) . . . . .  (ek_l,eo) be a simple cycle in G '  and let ei=(oi,  oi+l) 

where indices are m o d k .  Then p(Z)=eo,  e~ . . . . .  e k  I is a cycle in G, cf. Fig. 4. 
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Fig. 4. A cycle Z in G'. 
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The cycle p(Z)  is not necessarily simple in G. Let B(Z) be the set of  double points 
in p(Z) ,  i.e. 

B ( Z ) =  {i; :l j :  O<_j<k-  l , j ~ i ,  oi=oj} 

and let b(Z)= In(Z)l be the number of  double points in B(Z).  Note that double 
points are counted with multiplicity. Also note that k is at least three since (e, e ' )  e K 
implies sink(e) = source(e') and source(e) ~sink(e') .  From now on we consider a fix- 
ed simple cycle Z defined as follows. Z is chosen such that b(Z) is minimal. Among 
the cycles with minimal b(Z) we choose the shortest one. 

Assume first that b(Z) = 0. Then p(Z)  is a simple cycle in G. We show that p(Z)  
violates either BF1 or BF2. Assume otherwise. We may assume w.l.o.g, that o0 is 
the first entry point of  p(Z).  Then the set of  entry points of  p(Z)  is contained in 
{o0, on} or BF1 or BF2 is violated. Let q be an s-path such that qe k_ ~e o is simple. 
We can write qek_ leo=q'q"ek_leo where q '  ends in an entry point of  p(Z).  Since 
the path qek_ ~eo is simple this entry point must be different from o0 and on. Thus 
either BFI or BF2 is violated. 

It remains to consider the case that b(Z):~ O. We will first characterize the shape 
of  simple cycles in G formed by edges appearing in Z. 

Lemma 4. Let i o, i I . . . . .  ij_ n be such that C= eio, ei, . . . . .  ei, ~ is a simple cycle in G 
with first entry point source(eio). Then 

(a) it+ 1=i /+  1 (mod k ) f o r  O<_l<j- 2, i.e., the edges o f  C occur consecutively 
on p(Z).  

(b) The cycle C has two entry points and V ( C ) N B ( Z ) =  {source(eio)}, i.e., ex- 
actly the first entry point o f  C is a double point o f  p(Z) .  

Proof .  (a) Let u =source(eio) be the first entry point of  C and let q be an s-path to 
u which verifies this property.  Then qeioei,...ei, is simple for I < j - 1  and hence 
(ei, ~, ei~) e K for l < j -  1. Thus i / = it_ 1 + l (mod k) for 1 _< l < j -  1 by minimality of  
Z. It remains to show that ij_ I = ij_ 2 + 1 (mod k). Assume otherwise. By minimality 
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of  Z it suffices to show that (e,,_2, %_ , )~K.  Choose  path q such that p = qe,, 

simple s-path (cf. Fig. 5). 

Fig. 5. The cycle C in the case j = 6. 

is a J 

The path q must enter cycle C in a node different f rom u (simple p is simple). Since 

u is the first entry point,  q must enter C in node o=sink(ei,,), say q = q l q 2  with ql 

ending in o. But then qlei,...eij 2ei, , is a simple s-path and hence (eij :,% , ) e K .  
This proves part  (a) and also the claim that C has two entry points.  

(b) We have to show that the only vertex in V ( C ) N B ( Z )  is u. In order  to simplify 

notat ions we may assume w.l .o.g,  that  i t=l  for O < _ l < j -  1, i.e., C=eo,  e] . . . . .  ej 1. 

Let ei=(o i, oi÷ 1) with o j= o0= u. Assume that Z ( C ) N B ( Z )  contains a vertex dif- 
ferent f rom u. Choose  z e  V ( C ) N B ( Z ) ,  z--/:u, z = o , + l  with minimal r, i.e., z is a 
double-point  different f rom u but as close to u as possible. Then there are edges 

e,,er+ l of  C with sink(er) =z  = s o u r c e ( e ~  1) and there are edges e t , e t .  1 o f  p ( Z )  - C 

with s ink (e t )=z=source (e t+ l ) ;  (cf. Fig. 6.) 

Fig. 6. A double point. 

We observe first that  (er, e t + l ) ¢ K  and ( e t , e r+l )¢K.  Assume otherwise. If  
(e r, e~ + ]) ~ K, then e0 . . . . .  er, e~ + ], . . . ,  ek - j is a simple cycle in G '  and if (e t, e r + ] ) ~ K, 
then er~ 1, . . . ,  et is a simple cycle in G'.  In both cases we have a contradict ion to the 

minimali ty o f  Z. 
Let qetet+ i be a simple s-path.  Then qete~+ t is not  simple since (e~,e~÷ l ) ¢ K .  We 

can factor q as q=q]q2  with q] minimal ending in an entry pont  o f  C, i.e., q] ends 

in oh for h~; {0, 1}. Consider  the path p=q]e~eh+l . . . ere t+l .  
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This path cannot  be simple since (er, et+ i )¢  K. By the choice o f  ql we conclude 

that sink(et,_l) lies on qleh...er. Since qlq2etet+ 1 is simple the vertex sink(et+ i) 
must be an endpoint  o f  an edge in {eh + i . . . . .  er-I},  i.e., sink(et ~ i) must belong to 
vertex set {Oh+l . . . . .  Or} C_{ol . . . . .  Or}. Thus vertex sink(et+ 1) belongs to V(C)f) 
B(C). This is a contradict ion to the choice o f  z, because sink(el + l ) --/: u, sink(el ~ ~) :~ z 
and sink(et_t) is closer to u than z. 

We have so far shown that V(C)NB(Z)c_ {u}. Since p(Z) is not simple we have 

V(C)NB(Z)--/:O and hence V(C)NB(Z)= {u}. [ I  

Lemma 4 gives us detailed informat ion  about  the structure o f p ( Z ) .  Only consecu- 

tive edges o f  p(Z) can form a simple cycle; every such cycle has two entry points 

and exactly the first entry point is a double  point  o f  p(Z).  In particular every edge 
e o f  p(Z)  is part  o f  at most  one such cycle and two such cycles are either vertex- 

disjoint or  agree in exactly their first entry point.  We call an edge e o f  p(Z) a 
cycle edge if it is a part o f  a simple cycle formed f rom edges o f  p(Z) and a base 
edge otherwise. Consider  a base edge e = (u, w). Since p(Z) is a cycle there must be 
a simple subpath  o f  p ( Z )  which starts in w and ends in v and since e is a base edge 

this subpath can consist o f  exactly one edge. Thus,  if e is a base cdge, then e -t is 
also an edge o f p ( Z ) .  We claim that e ~ is also a base edge. Assume otherwise, i.e., 

there is a simple cycle C formed f rom edges o f  p(Z) and containing e i. Then 
{source(e),sink(e)} c_ V(C)NB(Z) ,  a contradict ion to L e m m a  4. This proves that 

e - t  is also a base edge. 

Let B be the set o f  base edges and let V(B) be the set o f  endpoints  o f  base edges. 
If  we view a pair {e,e -I  } o f  base edges as an undirected edge connect ing sink(e) 
and source(e), then (V(B), B) is a forest. Since every cycle ( formed f rom edges o f  

p(Z)) has exactly one double  point it is even a tree. We call (V(B), B) the base tree, 

(cf. Fig. 7). 

Fig. 7. The base tree and the attached cycles. 
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Let us summarize what we achieved at this point. Cycle p(Z) consists of  a base 

tree (V(B), B) and simple cycles attached to some of  the vertices of  the base tree. 
Clearly, there must be a simple cycle attached to every leaf of  the base tree because 

(e,e-~)eK for some base edge of  e otherwise. But (e,e-~)eK is impossible. Thus 
there are at least two cycles attached to the base tree. 

Assume next that there are two simple cycles C and C '  with first entry points u 

and u '  and second entry points o and o' such that o and o'  are entry points of  
V(p(Z)). Let p be the simple path of  base edges from u to u'. Then p-~ is a path 

of  base edges from u '  to u and hence C, C '  together with path p form a contradiction 

to property BF3. In view of  this argument the proof  of  Theorem 2 is now completed 

by 

Lemma 5. Let C with first entry point u and second entry point o be one of  the sim- 
ple cycles formed by the edges of p(Z). Then o is an entry point of V(p(Z)). 

Proof.  We assume otherwise and derive a contradiction. Let Q = {q; q is a simple 
s-path ending in 0 and not going through u}. Then Q * 0  since 0 is an entry point 
of  C. Let q • Q be arbitrary. Since 0 is not an entry point of  V(p(Z)) we can write 

q = ql q2 where source(q2)• V(p(Z)), q2 ~ e, and no intermediate vertex of  q2 is in 

V(p(Z)). Define vertex a(q) as source(q2). Then a(q)=~o and a(q)~u. 
We will next select a particular p • Q  as follows. If there is a q • Q  with 

a(q) ¢ B(Z), then let p be such a path. If a(q) • B(Z) for all q • Q, then let p • Q be 

such that there is no q ' • Q  such that the simple base path from u to a(q') goes 
through a(q). In other words, if we view the base tree as a rooted tree with root u, 

then the subtree with root a(p) does not contain a(q') for any q ' •  Q. 
Let p be as defined above. Let a=a(p), write p=pl(a,x)P2 and let (b,a) be the 

last edge on the base path from u to a (if a • B(Z)) or the unique edge in p(Z) ending 

in a (if aCB(Z)), cf. Fig. 8. 

f~ ,< \ 

$ 
Fig. 8. The notation in lemma 5. 



BF-orderable graphs 325 

Claim. ((b, a), (a, x)) e K. 

Proof .  If there is a simple s-path having (b, a) as its last edge and not going through 
x, then ((b,a),(a,x))eK. So let us assume that every simple s-path having (b,a) as 
its last edges goes through x. Since ((b, a), (a, c)) e K where (a, c) is the edge following 
(b,a) on p(Z) there is at least one such path. Let r be any such path. Write r=rlr 2 
with x =source(r2). 

Consider s-path rip 2. This path is not necessarily simple. We can write rip 2 = 
rlr~r ~ where r~r~ is a simple s-path to o and hence q :=r~r~ ~ Q. Also r~ is a prefix 

of  r I and r~ is a suffix of  P2. 
Let d=a(q) and write q=q~qz with source(q2)=d. We observe first that ql is a 

proper prefix of  r~ (if P2 = e and hence x =  o this follows from the fact that q2:~e 
by definition of  a(q). I f Pz ~: e and hence x ~i V(p(Z)) this follows from the fact that 
only the last point ofpz and hence r~ is in V(p(Z)).). We observe next that ql does 
not go through either x, a or b. (It does not go through x since x=sink(r 0 and q 
is a proper prefix of  r I and it does not go through a and b because (b,a) was the 
last edge of  the simple s-path r=rlr2.) 

Let q3 be the unique simple path from d to a formed from edges of  p(Z). Then 
(b,a) is the last edge of  q3. This can be seen as follows. If  a¢B(Z),  then (b,a) is 
clearly the last edge of  q3 since (b,a) is the only edge of p(Z) ending in a. If  
aeB(Z) ,  then d e B ( Z )  by our choice of  a and q3 in a path of  base edges. Also, if 
(a, b) were not the last edges of  q3, then d lies in the subtree of  the base tree rooted 
at a, contradicting the choice of  a. Thus (b,a) is the last edge of q3. 

Finally, consider path qlq3. It does not go through x and has (b,a) as its last 
edge. Thus ((b, a),(a,x))E K and the claim is proved. [] 

The proof  of  Lemma 5 is now readily completed. Let t be the subpath of p(Z) 
starting in o and having (b,a) as its last edge. Consider cycle t(a,x)p2. Then 
(e, e ' )  e K for consecutive edges of  this cycle except maybe for the last edge of  P2, 
say e, and the first edge of  t, say e'. But pe' is a simple path and hence (e, e ' ) e  K 
since p is a simple path ending in o, not going through u and since u and o are the 
only entry points of  C. Thus t(a,x)P2 = p ( Z ' )  where Z '  is a simple cycle in G'. Also 
b(Z')<b(Z) since no vertex o f p z  is a double point of  Z' and since the multiplicity 
of  u as a double point is one less in Z '  then in Z. This contradicts the choice of  Z 
and hence completes the proof  of  Lemma 5 and Theorem 2. ,~ [] 

4. An alternative characterization 

In this section we derive an alternative characterization. 

Definition 5. A source graph G has property BF4 if there is no pair e, e '  of  edges 
such that there are simple s-paths p=plep2e' and p'=p[e'p~e. [] 
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Theorem 3. A graph is BF-orderable i f f  it satisfies conditions BFI and BF4. 

Proof. If a graph does not satisfy BF4, then it is clearly not BF-orderable. So let 
us assume that source graph G = (V, E, s) satisfies BFI and BF4. We will show that 
G satisfies BF2 and BF3 and hence is BF-orderable. 

Assume first that it does not satisfy BF2. Then there is a cycle C having entry 
points x l,x2 which are not neighbors on C. Let e and e'  be the edges of  C starting 
in xl and x 2 respectively and let pj and p~ be paths which verify that xl and x2 are 

i I r p p 

entry points of  C. Let C=eP2eP2. Then the paths p~ep2e' and p~ep 2 are simple 
and hence BF4 is violated. 

Assume next that G does not satisfy BF3. Let C1, C2, ul, u2, 01, 02, and p be defin- 
ed as in the definition of  property BF3. Let PI(P2) be an s-path which verifies that 
01(02) is an entry point of  set V(CI)U V(C2)U V(p) and let e(e ')  be the edge of  
CI(C 2) starting in vj(o2). Then the paths pje (part of  CI from ol to ul)p(u2, v2)e' 
and p2e" (part of C2 from 02 to u2) p l(ul,ol)e are simple and hence BF4 is vio- 
lated. [] 

Theorem 3 can also be formulated as follows. Consider the following auxiliary 
graph. G ,  = ( E , E , )  where (e ,e ' )eE,  if there is a simple s-path pleP2e'. It is clear 
that G is BF-orderable iff  G ,  is acyclic. Theorem 3 states: if G satisfies BFI,  then 
G ,  is acyclic if it contains no cycle of  length two. 

5. Complexity 

We gave two characterizations of  BF-orderable graphs by forbidden subgraphs. 
The proof  of Theorem 2 also yields an O(IEI 2) algorithm for deciding whether a 
graph is BF-orderable and computing a BF-order if it is. This can be seen as follows. 
In the proof  of  Theorem 2 we considered the auxiliary graph G ' =  (E,K) where 
(e~,e2)eK iff there is a simple s-path pele2. The graph G'  has size O(IE[ 2) and G 
is BF-orderable iff G'  is acyclic. Also a topological sort of  G'  yields a BF-order of 
G. It is therefore sufficient to show that G '  can be computed in time O(IEI2). For 
a fixed edge e2eE let Pred(e2)= {el eE; (el,e2)eK}. We show how to compute 
Pred(e2) by depth-first-search (cf. [4, Section IV.5I) on a graph (~ in time O(IEI). 
The graph G is obtained from G by deleting all edges leaving source(e 2) and by 
deleting vertex sink(e2) with all its incident edges. Next perform a depth-first- 
search with start vertex s on G. Then source(e2) is a leaf of  the DFS-tree and hence 
Pred(e2) is exactly the set of tree, forward and cross edges ending in source(e2). 
This shows that Pred(e2) can be computed in time O(IEI) and hence G'  can be com- 
puted in time O(IEI2). Finally, a topological sort of  G'  can be computed in time 
O([E[ + IKI)=O(IEI2); cf. I4, Section IV.2]. Thus we can decide in time O([EI 2) 
whether a graph G = (V, E, s) is BF-orderable. We believe that this time bound can 
be improved considerably by checking directly whether properties BFI, BF2, and 
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BF3  a r e  s a t i s f i e d .  H o w e v e r ,  we  h a v e  n o t  b e e n  a b l e  to  d o  so  ye t  a n d  l eave  it as  a 

c h a l l e n g e  to  t h e  r e a d e r .  
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