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Fast Triangulation of the Plane with 
Respect to Simple Polygons* 

STEFAN HERTEL AND KURT MEHLHORN 

FB 10, Universitgtt des Saarlandes; 
6600 Saarbri~cken, Federal Republic of Germany 

Let P~,..., Pk be pairwise non-intersecting simple polygons with a total of n ver- 
tices and s start vertices. A start vertex, in general, is a vertex both of which 
neighbors have larger x coordinate. We present an algorithm for triangulating 
P~,..., Pk in time O(n + s log s). s may be viewed as a measure of non-convexity. In 
particular, s is always bounded by the number of concave angles + 1, and is usually 
much smaller. We also describe two new applications of triangulation. Given a 
triangulation of the plane with respect to a set of k pairwise non-intersecting simple 
polygons, then the intersection of this set with a convex polygon Q can be com- 
puted in time linear with respect to the combined number of vertices of the k + 1 
polygons. Such a result had only be known for two convex polygons. The other 
application improves the bound on the number of convex parts into which a 
polygon can be decomposed. 1985 Academic Press, Inc. 

1. INTRODUCTION 

A triangulation of a finite point  set V in the plane is any maximal  set of 

pairwise non-intersect ing straight line segments between points  in this set. 

A t r iangula t ion of a set P1,..., P~ of pairwise non-intersect ing simple 
polygons is a t r iangula t ion of V-- V 1 t,,j - ' '  t ,_J  Vk ' where Vi is the vertex set 

of Pi such that all edges of the polygons are edges of the t r iangulat ion.  A 

t r iangulat ion of a set PI,..., Pk of polygons natural ly  decomposes into an 

inner  and an outer part. The inner (outer) t r iangula t ion  consists of exactly 

those edges of the t ra ingula t ion which are conta ined in an odd (even) num-  
ber of polygons. Figure 1 gives an example. Polygon edges are shown solid. 

Dashed lines are inner  t r iangula t ion edges, dotted lines outer t r iangula t ion  
edges. 

Tr iangula t ions  have numerous  applications, e.g., closest point  problems 
(Lee and Preparata,  1977; Lipton and Tarjan,  1977), and polygon 
t r iangulat ions serve for area calculations as well as for solving visibility and 
internal  path problems (Chazelle, 1982). 

* This paper is a revised and expanded version of a paper presented at the International 
Conference on "Foundations of Computation Theory" held in Borgholm, Sweden, August 
21-27, 1983. 
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FIG. 1. Triangulat ion of a set of 3 polygons. 

In this paper we show the following theorems. Let P~,..., Pk be a set of 
pairwise non-intersecting simple polygons. Let n be the total number of 
vertices, and let s be the total number of start vertices, i.e., vertices that 
have smaller x coordinates than both their respective neighbors. 

THEOREM. A triangulation o f  PI,..., P ,  can be constructed in time 
O(n + s log s) and space O(n). 

We also describe two novel applications of triangulation. 

THEOREM. Let  Q be a convex polygon with m vertices. Then the intersec- 
tion o f  Q with P1 ..... P ,  can be computed in time O(n + m + s log s). 

THEOREM. Let  P be a simple polygon with n vertices and s start vertices. 
Then in time O(n + s log s) one can decompose P into at most 4. OPT con- 
vex parts. 

Previously, a linear time bound for intersecting polygons (observe that 
our bound is linear if we assume a triangulation of P1,..., Pk) had been 
known for two convex polygons only (Shamos, 1975). The best factor 
known so far for the number of convex parts into which a simple polygon 
can be decomposed was 4.333 (Chazelle, 1982). 

O(n log n) algorithms to triangulate the interior of a simple n-gon have 
been proposed by Garey et al. (1978) and by Chazelle (1982). It is an open 
question whether the lower bound of (2(n log n) on the time for computing 
any triangulation of n points in the plane (Shamos, 1975) can be beaten if 
the points are vertices of a simple polygon. Some research has been direc- 



54 HERTEL AND MEHLHORN 

ted towards improving the time bound for special polygons, e.g., there are 
linear-time algorithms for star-shaped polygons (by Schoone and 
van Leeuwen, 1980). 

Recently, Chazelle and Incerpi (1984) have described a divide-and-con- 
quer triangulation algorithm that runs in time O(n log u), with u ~< n. The 
parameter u measures the so-called sinuosity of the polygon, which is the 
number of times the boundary alternates between spirals of opposite orien- 
tation; u is very small for most polygons arising in practice. Depending on 
the polygon parameters s and u, there are several cases in which their 
algorithm is more efficient than ours. It does not handle sets of simple 
polygons, however. 

Our triangulation algorithm is based on plane-sweep (Nievergelt and 
Preparata, 1982; see Mehlhorn, 1984b, for a textbook discussion). In Sec- 
tion 2 we will exhibit the necessary data structures and describe an 
O(n log n) plane-sweep algorithm for computing an inner triangulation of a 
simple polygon P. This algorithm matches the time bound of the previous 
algorithms but has the additional advantage of striking simplicity. 
Correctness and timing analysis are almost self-evident. In Section 3 we will 
then modify the algorithm so as to achieve running time O(n + s log s) for 
the inner triangulation of a simple polygon. The main additional idea is to 
modify plane-sweep such that it stops the sweep line only at start vertices, 
and not at all vertices. The improved algorithm constructs the same 
triangulation as the basic algorithm and therefore its correctness is also 
easily seen. In Sections 4 and 5 we will then modify the improved algorithm 
so as to handle outer triangulation of a simple polygon (Sect. 4) and then 
many polygons (Sect. 5). Section 6 is devoted to the novel applications. 

2. DATA STRUCTURES AND BASIC ALGORITHM 

It is our goal in this section to triangulate the interior of a simple 
polygon P, i.e., to find a subdivision of P into triangles, without introduc- 
ing new vertices. Vertices will be denoted by lower case letters p and q. 
Figure 2 gives an example. Our algorithm will operate upon four data 
structures that will be described in the first part of this section. The second 
part then presents the algorithm, including its straightforward timing 
analysis. 

2.1. The Basic Data Structures 

Our triangulation algorithm will operate upon four data structures. 
Their basic form will be modified in later sections as needed. In addition to 
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the x structure and the y structure that can be found in most plane-sweep 
algorithms (compare Nievergelt and Preparata, 1982; Mehlhorn, 1984b), 
we introduce two specific data structures. The "c-structure" represents 
those parts of the polygon to the left of the current sweeping line of which 
the triangulation is not finished, yet. The "g-structure" is the desired output 
structure; it represents triangles constructed so far, together with their 
edges. 

The x-structure X. X is a simple queue containing the vertices of the 
polygon yet to be processed, sorted in order of increasing x coordinate, and 
secondarily in order of increasing y coordinate. The special case of vertical 
edges is detailed below. We naturally assume that the polygon boundary 
does not contain three subsequent collinear vertices. Each point can then 
be uniquely classified into one of three main categories: 

/ 
start point: o ~0 

end p o i n t  : / 
bend  : / 0 ~  

A start (end) point with its convex angle belonging to the interior of the 
polygon is called proper, improper otherwise. At most one of the incident 
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FIG. 2. Inner  tr iangulation of a simple 33-gon. Dashed lines are tr iangulation edges. 
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edges of such a point can be vertical (special case). We associate a 
predicate SPEC(p)  with each point. SPEC(p)  is true iff there is an edge 
between p and a point with equal x coordinate and bigger y coordinate. 
This other point is then called co_p. Intuitively, the idea is to always 
process p and co_p together. Figure 3 gives an example of a set of four 
points with identical x coordinate, containing one pair of end points and 
one pair of start points. 

This classification--the type of a point-- is  tagged to each entry in the 
queue 7(. The triangulation algorithm removes one point from X at a time. 
At each point it performs a transaction as described in Section 2.2. In 
Figure 3 p and co_p were processed but q and co_q are not processed yet. 

The y-structure Y. Consider the state of a sweep between two points 
with different x coordinates. The vertical sweep line cuts through edges of 
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Fio. 3. Four points with the identical x coordinate. 
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P which partition it into intervals. If P has a set of vertices with identical x 
coordinates, the sweep line consists of two vertical parts as long as the set 
is only partly processed. Consult Fig. 3 for the sweep line (dashed.) 
immediately before processing point q. Intervals inside P alternate with 
intervals outside P, and are referred to as inintervals and outintervals, 
respectively. Y describes these intervals in the following manner: It has an 
entry for each edge Of P intersected by the sweep line--henceforth, we will 
call those edges "active edges"--including two sentinels + oo and - o e .  An 
edge entry is a formula of the form y = ax  + b that defines this edge. This 
allows to find the y value corresponding to a given x value in constant 
time. An interval bounded below by edge t and above by edge s will be 
denoted by [t, s]; its type will be either in or out. Figure 4 gives an exam- 
ple of the y structure between the points P13 and pl of Fig. 2. The entry e i 
contains the formula of the edge between Pi 1(mode) and pi. 

Y is a dictionary (see Aho, Hopcroft, and Ullman, 1974) for the interval 
boundaries that supports the operations FIND, INSERT, DELETE in 
time O(log k) when it contains k entries, and the operations SUCC and 
PRED in time O(1), by means of additional pointers. The definition of 
these standard operations is modified as follows to tailor them to the inten- 
ded algorithm: 

- -FIND(p) :  Depending on the type of point p it delivers 
- - i fp  is a start point: The two edges s (above) and t (below) of the boun- 

dary of P in whose interval [t, s] the point p lies, 
as described in Section 2.2. 

- - i fp i s  an end point: The two edges s (above) and t (below) whose 
common endpoint is p. 

interval interval 

boundaries types 

oo 
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e l  3 

e l  5 

-oo  

out 

in 

out 

in 

out 

FIG. 4. Example of the y structure. 
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- - i fp  is a bend: The edge s whose right endpoint is p. 
--INSERT(s, <t>): Given an active edge s of the boundary of P and a type 

( t>  (which can be either in or out) of the interval below s, i.e., of the 
interval bounded above by s, insert the pair (s, ( t ) )  at the place deter- 
mined by the y value of s at the current x value. 

__DELETE(s, ( t ) ) ;  Given an active edge s and a type ( t )  of the interval 
below s, delete the pair (s, ( t ) ) .  

--SUCC(s) (Pred(s)): Given an active edge s and the current x value, 
deliver the neighboring edge above (below) s. 

The required dictionary can be implemented by any one of several kinds 
of dynamic balanced trees (Aho et al., 1974; Mehlhorn, 1984). Binary 
search for a given y value at a given position of the sweep line is performed 
by evaluating the edge formulae y = ax + b along a path from the root to 
the leaves. 

The c-structure C. C assembles information about parts of the polygon 
passed already whose triangulation depends on points unseen so far. It 
records for every in-interval the status of the triangulation. More precisely, 
C stores for every in-interval with upper boundary s a sequence L(s) of ver- 
tices of P connected by polygon or triangulation edges. L(s) is doubly 
linked by means of NEXT and PREV pointers, and starts with the left 
endpoint of s (cf. Fig. 5). Intuitively, the triangulation is completed to the 
left and incomplete to the right of this chain. In addition, RM(s) points to 
a rightmost element of the polygonal chain L(s), i.e., to an element of L(s) 
with maximal x coordinate. In Fig. 5a, RM(s) points to q2, in Fig. 5b to qo. 

(a) with two convex angles (b) with one convex angle 
/ 

qo o- / 
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!o % i o~% "---" q2 ] q3 o 

\o / ' , /  
~'~ °/ q3 I .'~"'--.. l 

q 5 0  !iSrn~Pentt~ne - - ~ 1  

sweeping line 

FIG. 5. Forms of polygonal chains L(s). Solid lines are polygon edges, dashed ones are 
triangulation edges. 



FAST TRIANGULATION 59 

We will maintain the following invariant for every in-interval/. Let I be 
bounded above by edge s: 

L(s) is a sequence of points qo,..., qm(1) with 

(i) qo is left endpoint of s 

(ii) q ~ / i s  right endpoint of PRED(s)  

(iii) qiqi+l is either a polygon or a triangulation edge for 
i= 1,..., m(I) - 2. 

(iv) The in-angle at qj is ~>~ (i.e., concave) for 1 <~j<~m(I)- 1. 

(v) The part of the polygon bounded to the right by the 
triangulation edges in L(s) is completely triangulated, already. 

C is appended to the y structure, as shown in Fig. 6 for a typical 
situation, between points Pll and P8 of Fig. 2. The lists L(s) are circular 
lists with a specified head/tail. Two triangulation edges have been construc- 
ted. 

The g-structure G. The output structure G is steadily built up while the 
plane is swept from left to right. It consists of two lists, a list TRI of 
triangles and a list EDGES of polygon and triangulation edges. Pointers 
between the two lists represent triangle-edge adjacencies. TRI is empty 
initially, EDGES contains the edges of the polygon in one direction of 
traversal. 

2.2. The Basic Triangulation Algorithm 

The algorithm for constructing triangulation edges has a simple overall 
structure similar to that of several plane-sweep algorithms. We follow the 
approach of Nievergelt and Preparata (1982): 

procedure TRIANGULATE:  
begin 

X+-n  given points, sorted by increasing x coordinate; 
Y+- { - 0 %  oo}; type ( [ - o %  ov])*-out;  
C~- ~ ;  
TRI ~- ;2~; 
EDGES ~-n polygon edges, given in counterclockwise order; 
while x ¢ ~3 do 

p +- MIN(X); 
TRANSITION(p)  

od 
end {of TRIANGULATE }. 
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FIG. 6. Structure Y-C in a typical situation. 

All the work involved in moving the current sweep line across P is per- 
formed by procedure TRANSITION. It is invoked exactly n times (less fre- 
quently in case of vertical edges). Since each invocation will use O(log n) 
time, this will result in an O(n log n) algorithm. 

TRANSITION handles each of the five possible types of the "next point" 
p differently. We describe each case by a figure, by a verbal exposition, and 
by a high-level algorithm. The algorithms we give can serve as a guideline 
for the implementer without restricting him too much. Detailed situations 
for the cases of start or end points show both the normal and the special 
(vertical edge) cases; the respective figures include the sweep linr 
immediately after processing the point(s). In the algorithms, "o" denotes 
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the concatenation of two polygonal chains or the appending of a point p to 
a polygonal chain as new head or tail, respectively (i.e., a point is con- 
sidered to be naturally embedded in a singleton list). 

In most cases, TRANSITION makes use of a procedure CHAIN_TRI 
that will be specified later. CHAIN_TRI(e,  dir) starts at a point p at one 
end of a polygonal chain L(e), where e is a polygon edge in the y structure, 
and it triangulates along L(e) as far as possible. If dir = "cc,"p is the head 
of L(e) and the triangulation proceeds counterclockwise. If dir = " c , " p  is 
the tail of L(e) and we traiangulate in clockwise direction. 

Case "proper start" (Fig. 7a). p lies in an out-interval It, s] (Fig. 7a). We 
simply split the out-interval into three intervals of types out, in, out and 
associate a chain only consisting of node p (in special case, of nodes p and 
co_p) with the in-interval. Also, p is the rightmost node of that chain 
(Figs. 7b, c). 
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FIG. 7. (a) Transition for a '°proper start"; (b), (c) detailed situation for a "proper start." 
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ALGORITHM. 

begin 
FIND(p);  {delivers the two adjacent active edges t and s in whose inter- 

val [t, s] p lies (cf. Figs. 7b.c)} 
I ~ low edge starting at p; 
h ~- if SPEC(p) then high edge starting at co_p 

else high edge starting at p; 
INSERT((1,out)); 
INSERT((h,in)); 
if SPEC(p) then L(h) ~- co_/, op 

else L(h) ~ p; 

R M ( h )  ~- p 

end {of the case "proper start"} 

Case "bend" (Fig. 8a). Let s be the edge ending in p and let t be the edge 
starting in p. Then s is on the boundary of an in-interval; let vl,..., vt be the 
associated polygonal chain, where v l is the other endpoint of edge s. We 
add triangulation edges P/~2,.--, ~ ,  until -~ (p, vi, v i+1)~> 7z and change the 
associated polygonal chain into p, vi,..., v~. p becomes the new rightmost 
node of this chain (Figs. 8b). 
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ALGORITHM. 

begin 
F I N D ( p ) ;  {delivers the uniquely determined edge s of which the right 

endpoint  is p (cf. Fig. 8b)} 
t +-- edge starting at p; 
1 *- PRED(s) ;  
h +-- SUCC(s);  
if type( [  1, s ] )  = in 

then begin L (  t ) ~ p o L(s); 
replace s by t in Y; 
CHAIN_TRI ( t ,  "cc"); 
R M ( t )  +-- p 

end 
else begin {type( I s , h ]  ) = in } 

L(h) L(h)op; 
replace s by t in Y; 
CHAIN_TRI(h ,  "c"); 
R M ( h )  ~ p 

end 
end { of the case "bend" } 
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Case"improper end" (Fig. 9a). s, the upper edge ending at p 
(resp. co_p,), bounds an in-interval from below; t, the lower edge ending at 
p, bounds an in-interval from above. We can interpret p as a bend for both 
associated polygonal chains, and can triangulate along both chains 
analoguously to the case above. Then we merge both in-intervals by 
deleting edges s and t from the y structure. Also, we concatenate both 
associated chains, using p as a connecting element, p (resp. co/) ,)  becomes 
the new rightmost element of this chain (Figs. 9b,c). 

ALGORITHM. 

begin 
FIND(p);  {delivers the two active edges t and s of which the common 

endpoint i s p; if SPEC(p) the two edges with right endpoints 
p and co_p (c~ Figs. 9b,c)} 

l ~  PRED(t); 
h ~- SUCC(s); 
if SPEC(p) then begin 

end 
else begin 

end; 
CHAIN TRI(t, "cc"); 
L(h) +- L(h)o L(t); 

L(h) e- L(h)o co/) ;  
CHAIN_TRI(h, "c"); 
L ( t ) ~ p o L ( t )  

L(h) ~ L(h)op; 
CHAIN_TRI(h, "c"); 
remove tail p from L(h); 
L(t) ,--poL(t) 

if SPEC(p) then RM(h)  ~ co/) ;  
else RM(h)  ~ p; 

DELETE((t,  in)); 
DELETE((s, out)) 

end { of the case "improper end" } 

Case"improper start" (Fig. 10a). p lies in the in-interval It, s] with 
associated polygonal chain vl ..... vt that has Vz as its rightmost node. We 
can certainly add edge ~ to the triangulation. Analoguously to the case 
"bend," we then triangulate along the chain in both directions, starting 
from p via v=. Now we split the in-interval into three intervals of types in, 
out, in and split the polygonal chain appropriately between the two new in- 
intervals, p (resp. co/) ,)  becomes the rightmost node of both in-intervals 
(Figs. 10b, c). 
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ALGORITHM. 

begin 
FIND(p) ;  {delivers the two neighboring active edges t and s in whose 

interval It, s / p  lies (cf. Figs. 10b,c)} 
l ~ low edge starting at p; 
h ~ if SPEC(p)  then high edge starting at co_p 

else high edge starting at p; 
q ~ RM(s); 
"add ~-fi to EDGES"; 
INSERT((/, in)); 
INSERT((h, out)); 
RM(s)  ~- if SPEC(p)  then co / )  

else p; 
RM(I)  ~ p; 
L(l) *--p o"remainder of L(s) starting at q'; 
L(s) ~ "L(s) up to and including q" op; 
if SPEC(p) then L(s) ~ L(s)oco_p; 
CHAIN TRI(s, "c"); 
CHAIN_TRI(I, "cc") 

end {of the case "improper start"} 

Case"proper end" (Fig. l la). p lies in an in-interval [t ,s]  with 
associated polygonal chain L(s). The invariant of Section 2.1 guarantees 
that we can finish off the triangulation of L(s) since we can "see" all its 
nodes from p (resp. from one of p and co_p,). Then we delete the edges t 
and s from Y and merge the two adjacent out-intervals (Figs. l lb ,  c). 

ALGORITHM. 

begin 
FIND(p) ;  {delivers the two active edges t and s whose common 

endpoint is p (p and c o p ,  respectively; 
cf. Figs. l lb,c)} 

l ,-- PRED(t);  
h *-- SUCC(s); 
L(s) ~ if SPEC(p)  then co po L(s) op 

else p o L(s); 
CHAIN_TRI(s,  "cc"); 
if SPEC(p)  then CHAIN_TRI(s,  "c"); 
DELETE((t,  out)); 
DELETE((s, in)) 

end {of the case "proper end" } 
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FlG. 11. (a) Transition for a "proper end"; (b), (c) detailed situation for a "proper end." 

The procedure  C H A I N  TRI(e ,  dir) starts at a point  p at one end of a 
polygonal  chain L(e), e being an active edge, and it t r iangulates "a long"  
L(e) as far as possible. Tr iangula t ion  proceeds counterclockwise f rom the 
head of L(e) (dir = "cc"), or  clockwise f rom the tail of L(e) (dir = "c"). As 
long as the in-angle at the next point  on L(e) is convex, a new 
tr iangulat ion edge is drawn. 

procedure C H A I N _ T R I ( e ,  dir): 
begin 

if dir = "cc" then begin p ~- head of L(e);  
q ~ N E X T ( p )  

end 
else begin p ~- tail of L(e);  

q +- P R E V ( p )  
end; 

while ([ L(e)l > 2) and (the in-angle at q is convex)  do 
begin w ~ if dir = "cc" then N E X T ( q )  

else PREV(q) ;  
"draw a t r iangulat ion edge f rom p to w, add it and the new 

triangle to the output  structure G"; 
"delete q f rom L(e)";  

end 
end {of C H A I N _ T R I  }. 
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The procedure CHAIN_TRI is correct if edges of L(e)and  new 
triangulation edges are pairwise non-intersecting. This, however, follows 
from proposition (iv) of the invariant for L(e) that was given in Section 2.1. 

THEOREM 1. The running time of the algorithm TRIANGULATE for 
triangulating a simple n-gon is O(n log n). 

Proof. The initial sorting takes time O(n log n), It should be clear that 
the construction of a new triangulation edge and the updating of the 
appropriate polygonal chain, as well as of G can be done in time O(1). Thus 
the running time of CHAIN_TRI is proportional to the number of new 
triangulation edges, and the total time spent in CHAIN_TRI is O(n). A 
dictionary operation on Y takes time O(log n) at most; thus one call to 
TRANSITION takes time O(logn), apart from the time spent in 
CHAIN_TRI. This yields an overall running time of O(n log n). | 

3. I M P R O V E M E N T  OF THE A L G O R I T H M  

The algorithm TRIANGULATE needed time O(nlogn) even for 
"trivial" non-convex polygons like the one in Fig. 12; which could be easily 
triangulated in linear time, starting from the sole non-convex angle. This is 
due to the required sorting and to the consideration of n transitions. Our 
goal is to drastically reduce the number of points where we spend "much" 
time. Therefore we will drop the "bends" from explicit consideration and 
handle them "on the go." Only "start" and "end" points remain transitions. 
It is easy to see that any simple polygon has exactly as many start points as 
end points (counting a vertical edge as one start or end point). Let s be the 
number of start points. The improved algorithm TRIANGULATION will 
then work in time O(n + s log s). 
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FIG. 12. "Tr iv ia l "  n o n - c o n v e x  po lygon .  
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Refinement of  the Data Structures 

As mentioned above, the x structure now contains only the 2s start and 
end points. The y structure now is different from that in algorithm 
TRIANGULATE in that it does not simply reflect the status of the sweep 
line any longer. Instead, the y structure consists of vertical parts, hen- 
ceforth to be called "local sweep lines," some of which may lag behind the 
global sweep line. The global sweep line refers to the sweep line of our 
original algorithm TRIANGULATE.  There is one local sweep line for each 
in-interval. As before, we associate a polygonal chain and a pointer to the 
rightmost node on the chain with each in-interval. Also, the invariant given 
in Section 2.1 stays valid for the polygonal chains. 

We introduce a second invariant that refers to the ordering of active 
edges in the y structure. Note that the number of in-intervals changes only 
after start and end points. Thus, if we conceptually follow the boundary of 
polygon P from each of the active edges stored in the y structure to the 
right until the global sweep line is reached, we can associate a point on the 
sweep line with every active edge in the y structure. We maintain the 
invariant that the ordering of active edges in the y structure coincides with 
the ordering of the associated points on the global sweep line. Briefly, the 
ordering of in-intervals is the same as it would have been in the basic 
algorithm TRIANGULATE.  
Parts (a) and (c) of Fig. 13 illustrate the new concept. Figure 13a shows the 
situation after processing point Pl of Fig. 2; P13 is still unprocessed since the 
local sweep line for the low in-interval lags behind. Figure 13c shows a 
possible situation after processing point P9. Here, the four bends in the 
upper in-interval are unprocessed. 

Relating a New Point p to Y 

If the relative position of a new point p with respect to the current inter- 
vals is to be found, we are confronted with the problem that not all inter- 
vals necessarily extend to the global sweep line. Thus, comparing p with 
active edges does not always help us. 

The solution we propose is to extend some polygonal chains locally, 
while searching for p in the balanced tree Y. We start at the root and 
search down the tree. Whenever we encounter an edge es that does not 
extend to the global sweep line, we walk from this edge along the polygon 
boundary to the right, adding new edges to the triangulation, as long as 
the x coordinate is smaller than that of p, and proceed, "in parallel," in the 
same manner with the other end of the polygonal chain of the in-interval 
adjacent to e,. This way, we close the gap between a local sweep line and 
the global sweep line. We only encounter bends in this process, and handle 
them exactly in the same way as we did in the previous algorithm 
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FIG. 13. Possible situations in sample polygon: the dashed line is the global sweep line; 
heavily dashed lines represent local sweep lines. 

T R I A N G U L A T E ,  except that we need not search for them. Figure 13b 
shows a situation immediately before finding point P9. We have extended 
the local sweep lines for the two low in-intervals to the current global 
sweep line, and can now process P9. This creates the triangulation edge 

PT P9. 
The correctness of this method follows from the fact that the transition 

at bends was completely local, and that the ordering of in-intervals is the 
same as at the corresponding state of T R I A N G U L A T E .  We only process 
some points at a different time. 

THEOREM 2. The algorithm T R I A N G U L A T I O N  runs in time 
O(n + s log s) and needs space O(n) for simple n-gons with s start points. 

Proof. All the points processed "on the go" as described above are 
bends. We find each one of them in time O(1) by walking along the 
polygon boundary, and then they are handled like bends in Section 2.2. For  
an edge starting at a bend, we have to find its successor and its predecessor. 
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INSERT/DELETES are not necessary; thus, processing a bend takes time 
O(1) apart from the time spent in CHAIN_TRI. 

Since the number of in-intervals is bounded by the number of start 
points, Y has at most O(s) entries, and one operation on Y can be 
implemented to work in O(log s) time. Thus, processing one of, the O(s) 
points in X takes time O(log s) apart from the time for processing bends 
and for triangulating. The latter amounts to a total of O(n), yielding an 
overall time bound for our algorithm of O(n+slogs). The space 
requirement clearly is O(n). | 

4. CONSTRUCTING AN OUTER TRIANGULATION 

It is our goal in this section to find an outer triangulation for a simple n- 
gon P, as defined in Section 1. Figure 14 gives an example, including 
"triangulating edges" that extend from the vertices of the convex hull of P 
to infinity. 
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FIG. 14. Outer triangulation of a simple 33-gon. 
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We will reduce outer to inner triangulation. To achieve this result, we 
conceptually add two edges to P that extend from LM(P) ,  the leftmost ver- 
tex of P, i.e., the point of P with lowest x coordinate, to y = - o e  and 
y = + o% respectively, and that do  not intersect any edge of P. (If there are 
several leftmost points, we conceptually connect them by vertical edges.) 
Compare Fig. 15 that shows the "conceptual leftmost edges" and the types 
of the intervals in the y structure after processing the leftmost point. 

After having processed LM(P),  both the interval above the high edge 
starting at LM(P)  and the interval below the low edge starting at L M(P)  
must now be considered as in-intervals. Our algorithm proceeds as in Sec- 
tion 3, but it constructs an outer triangulation of P. After all points of P 
have been processed, one in-interval is left; its associated polygonal chain is 
the convex hull of P. 

To find "infinite triangulation edges" as mentioned above, we simply 
choose an interior point of the convex hull, construct rays from there 
through the corners of the hull and drop the ray segments inside P. 

We have achieved the following result. 

THEOREM 3. An outer trMngulation of  a simple n-gon with s start vertices 
can be constructed in time O(n + s log s) and space O(n). 
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FIG. 15. "Conceptual edges" for outer triangulation. 
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5. TRIANGULATING A SET OF POLYGONS 

We return to our original problem of triangulating a set of k pairwise 
non-intersecting simple polygons with a total of n vertices and s start ver- 
tices. 

With the results of Sections 3 and 4, such a triangulation does not pose 
any additional difficulties. We solve the problem in two passes. First we 
construct an inner triangulation, using the methods of Section 3. Since the 
y structure stores only edges and knows about in-intervals, it constructs, 
for a set of intervals being part of different polygons, the same 
triangulation as if the intervals were connected with each other somewhere 
"further to the right." A proper right endpoint of an embedded polygon, for 
example, is handled in exactly the same manner as is an endpoint of an in- 
interval of just one polygon. 

In a second pass, we construct an outer triangulation, applying the 
methods of Section 4. The same arguments as for the inner triangulation 
are valid and show the correctness of this procedure. 

This leads to our final result. 

THEOREM 4. Let P1,...,Pk be a set of  pairwise non-intersecting simple 
polygons with a total of  n vertices and s start vertices. A triangulation of  this 
set can be constructed in time O(n + s log s) and space O(n). 

6. APPLICATIONS 

6.1. Intersection of  a Set of  k Polygons and a Convex Polygon Q 

Shamos (1975) showed how to compute the intersection of two convex 
polygons in linear time. We extend his result as follows. 

THEOREM 5. Let P1 ..... P~ be a set of  simple polygons with a total of  n 
vertices, and let Q be a convex m-gon: Assume that a triangulation of  the 
plane with respect to P1 ..... P~ is available. Then (P1 w "" u Pk) ~ Q can be 
computed in linear time, i.e., in time O(m + n). 

Proof. Let T be a triangulation of the plane with respect to P1,..-, Pk, 
given as in Section 2. In time O(n) we can certainly add the "infinite 
triangles" outside the convex hull (cf. Sect. 4, Fig. 14). This yields a division 
of the plane into a total of 2n-2 triangles. 

We start with the observation that the intersection has "size" O(n). Note 
that the triangulation consists of O(n) line segments. Each such line 
segment can intersect the convex polygon Q in at most 2 points, Hence the 
total number of intersections between edges of T and edges of Q is O(n). 
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Let v 1,..., Vm be the vertices of Q. We can certainly find the triangle con- 
taining vl in time O(n). Also, knowing the triangle containing vi, we can 
find all intersections between T and line segment vivi+l in time O(s~+ 1), 
where si is the number of such intersections. Hence the total time needed to 
find all points of intersection is 

O(m + Z s~) = O(m + n), by the argument above. | 

COROLLARY. Let P~ ..... P,  be a set of  simple polygons with a total of  n 
vertices and s start vertices. Let Q be a convex polygon with m vertices. Then 
( P l u  ... u P k ) n  Q can be computed in time O(n + m + s logs)  and space 
O(n). 

The best solution hitherto known required time O((n +m) log(n  + m ) )  
(Bentley and Ottmann, 1979; Brown, 1981). 

6.2. Decomposing a Simple Polygon into Convex Parts 

In general, convex geometric objects are easier to handle than non-con- 
vex ones. As for polygons, Chazelle (1982) showed how to decompose, in 
time O(n log n) and space O(n), a simple n-gon P into fewer than 4.333 
OPT convex pieces, without introducing new vertices, where OPT is the 
minimum number of convex pieces necessary to partition P. Chazelle 
obtains his results by applying a separator theorem recursively. Given the 
convex parts, it is, of course, easy to obtain a triangulation. We proceed 
the other way round and start with a triangulation. This yields a solution 
that improves upon Chazelle's result. 

THEOREM 6. Let P be a simple n-gon, and let U be an interior 
triangulation of  P. Then a convex decomposition of  P with at most 4" O PT  
pieces can be constructed in time O(n). 

Proof Let r be the number of convave in-angles of P. Observe that 
OPT ~> r/2 + 1 since one partitioning edge is necessary for each convave 
angle. We will partition P into at most 2r + 1 convex subpolygons. 

To do this, scan the n -  3 triangulation edges one by one. Drop an edge 
if it divides a convex angle. Call edge e essential for point p if it cannot be 
dropped because it divides a concave angle at point p. The following 
lemma completes the proof. 

LEMMA. Not more than two triangulation edges are essential for each 
point with concave in-angle. 

Proof Let p be common endpoint of polygon edges el and e2. Let p 
have a concave in-angle, and let tl, t2, t3 be three different triangulation 
edges that are essential for p. 
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Given two edges a and b with common endpoint p, let g (a, b) the angle 
resulting from turning edge b counterclockwise around p towards a. The 
following then holds (compare Fig. 16): 

"~ (el, e2) > 0, 

(e2, t2) ~> ~ (since t3 is essential), 

(t3, t l ) / >  7~ (since t 2 is essential), 

(t2, e~) ~> ~ (since t~ is essential). 

Hence g(e2,  el)~>2~z, a contradiction. Thus not 
triangulation edges are left in the decomposition. | 

more than 2r 

COROLLARY. Let P be a simple n-gon with s start vertices. Then P can be 
decomposed into .fewer than 4 " O P T  convex subpolygons in time 
O0I + s log s) and space O(n). 

Note added in proof: Theorem 2 has been obtained independently by Dan Gordon. His 
result is described in D. Gordon: "The Critical Points Method in Computational Geometry," 
Tech. Report, Dept. of Computer Science, Univ. of Cincinnati, Cincinnati, Ohio, 45221. 
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