
INFORMA'r]oN AYD COYTROL 64, 52 76 (1985)

Fast Triangulation of the Plane with
Respect to Simple Polygons*

STEFAN HERTEL AND KURT MEHLHORN

FB 10, Universitgtt des Saarlandes;
6600 Saarbri~cken, Federal Republic of Germany

Let P~,..., Pk be pairwise non-intersecting simple polygons with a total of n ver-
tices and s start vertices. A start vertex, in general, is a vertex both of which
neighbors have larger x coordinate. We present an algorithm for triangulating
P~,..., Pk in time O(n + s log s). s may be viewed as a measure of non-convexity. In
particular, s is always bounded by the number of concave angles + 1, and is usually
much smaller. We also describe two new applications of triangulation. Given a
triangulation of the plane with respect to a set of k pairwise non-intersecting simple
polygons, then the intersection of this set with a convex polygon Q can be com-
puted in time linear with respect to the combined number of vertices of the k + 1
polygons. Such a result had only be known for two convex polygons. The other
application improves the bound on the number of convex parts into which a
polygon can be decomposed. 1985 Academic Press, Inc.

1. INTRODUCTION

A triangulation of a finite point set V in the plane is any maximal set of

pairwise non-intersect ing straight line segments between points in this set.

A t r iangula t ion of a set P1,..., P~ of pairwise non-intersect ing simple
polygons is a t r iangula t ion of V-- V 1 t,,j - ' ' t ,_J Vk ' where Vi is the vertex set

of Pi such that all edges of the polygons are edges of the t r iangulat ion. A

t r iangulat ion of a set PI,..., Pk of polygons natural ly decomposes into an

inner and an outer part. The inner (outer) t r iangula t ion consists of exactly

those edges of the t ra ingula t ion which are conta ined in an odd (even) num-
ber of polygons. Figure 1 gives an example. Polygon edges are shown solid.

Dashed lines are inner t r iangula t ion edges, dotted lines outer t r iangula t ion
edges.

Tr iangula t ions have numerous applications, e.g., closest point problems
(Lee and Preparata, 1977; Lipton and Tarjan, 1977), and polygon
t r iangulat ions serve for area calculations as well as for solving visibility and
internal path problems (Chazelle, 1982).

* This paper is a revised and expanded version of a paper presented at the International
Conference on "Foundations of Computation Theory" held in Borgholm, Sweden, August
21-27, 1983.

52
0019-9958/85 $3.00
Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

FAST TRIANGULATION 53

k ,'," ",o," 1

• o

"' "~y/ /
" 'b o
.'. I " , "o . " ~ . " \ ~
:1 " 1 . " X / \
• .1 / - . - ' - \ ':1 ' " - / ~ \

" U . . - . ~ . . • ~ °

FIG. 1. Triangulat ion of a set of 3 polygons.

In this paper we show the following theorems. Let P~,..., Pk be a set of
pairwise non-intersecting simple polygons. Let n be the total number of
vertices, and let s be the total number of start vertices, i.e., vertices that
have smaller x coordinates than both their respective neighbors.

THEOREM. A triangulation o f PI,..., P , can be constructed in time
O(n + s log s) and space O(n).

We also describe two novel applications of triangulation.

THEOREM. Let Q be a convex polygon with m vertices. Then the intersec-
tion o f Q with P1 P , can be computed in time O(n + m + s log s).

THEOREM. Let P be a simple polygon with n vertices and s start vertices.
Then in time O(n + s log s) one can decompose P into at most 4. OPT con-
vex parts.

Previously, a linear time bound for intersecting polygons (observe that
our bound is linear if we assume a triangulation of P1,..., Pk) had been
known for two convex polygons only (Shamos, 1975). The best factor
known so far for the number of convex parts into which a simple polygon
can be decomposed was 4.333 (Chazelle, 1982).

O(n log n) algorithms to triangulate the interior of a simple n-gon have
been proposed by Garey et al. (1978) and by Chazelle (1982). It is an open
question whether the lower bound of (2(n log n) on the time for computing
any triangulation of n points in the plane (Shamos, 1975) can be beaten if
the points are vertices of a simple polygon. Some research has been direc-

54 HERTEL AND MEHLHORN

ted towards improving the time bound for special polygons, e.g., there are
linear-time algorithms for star-shaped polygons (by Schoone and
van Leeuwen, 1980).

Recently, Chazelle and Incerpi (1984) have described a divide-and-con-
quer triangulation algorithm that runs in time O(n log u), with u ~< n. The
parameter u measures the so-called sinuosity of the polygon, which is the
number of times the boundary alternates between spirals of opposite orien-
tation; u is very small for most polygons arising in practice. Depending on
the polygon parameters s and u, there are several cases in which their
algorithm is more efficient than ours. It does not handle sets of simple
polygons, however.

Our triangulation algorithm is based on plane-sweep (Nievergelt and
Preparata, 1982; see Mehlhorn, 1984b, for a textbook discussion). In Sec-
tion 2 we will exhibit the necessary data structures and describe an
O(n log n) plane-sweep algorithm for computing an inner triangulation of a
simple polygon P. This algorithm matches the time bound of the previous
algorithms but has the additional advantage of striking simplicity.
Correctness and timing analysis are almost self-evident. In Section 3 we will
then modify the algorithm so as to achieve running time O(n + s log s) for
the inner triangulation of a simple polygon. The main additional idea is to
modify plane-sweep such that it stops the sweep line only at start vertices,
and not at all vertices. The improved algorithm constructs the same
triangulation as the basic algorithm and therefore its correctness is also
easily seen. In Sections 4 and 5 we will then modify the improved algorithm
so as to handle outer triangulation of a simple polygon (Sect. 4) and then
many polygons (Sect. 5). Section 6 is devoted to the novel applications.

2. DATA STRUCTURES AND BASIC ALGORITHM

It is our goal in this section to triangulate the interior of a simple
polygon P, i.e., to find a subdivision of P into triangles, without introduc-
ing new vertices. Vertices will be denoted by lower case letters p and q.
Figure 2 gives an example. Our algorithm will operate upon four data
structures that will be described in the first part of this section. The second
part then presents the algorithm, including its straightforward timing
analysis.

2.1. The Basic Data Structures

Our triangulation algorithm will operate upon four data structures.
Their basic form will be modified in later sections as needed. In addition to

FAST TRIANGULATION 55

the x structure and the y structure that can be found in most plane-sweep
algorithms (compare Nievergelt and Preparata, 1982; Mehlhorn, 1984b),
we introduce two specific data structures. The "c-structure" represents
those parts of the polygon to the left of the current sweeping line of which
the triangulation is not finished, yet. The "g-structure" is the desired output
structure; it represents triangles constructed so far, together with their
edges.

The x-structure X. X is a simple queue containing the vertices of the
polygon yet to be processed, sorted in order of increasing x coordinate, and
secondarily in order of increasing y coordinate. The special case of vertical
edges is detailed below. We naturally assume that the polygon boundary
does not contain three subsequent collinear vertices. Each point can then
be uniquely classified into one of three main categories:

/
start point: o ~0

end p o i n t : /
bend : / 0 ~

A start (end) point with its convex angle belonging to the interior of the
polygon is called proper, improper otherwise. At most one of the incident

P3X, ° ~ o

/ / \ / \ P32 / ~On
/ I / / IX r 30

pl 0 / \ I \\ /I / I" i-- IX

~,l ' I ', 13// " ~0
0 ~ , . \ / __O/Q I / P29

3 \ - . . o / °
\ o/'l
,'o:: ---_5o \o,'1 ~ o ~ - , ~ o / , /

/ / \ / I " . q

io.~9. \ \ ,' / / l /

P14 ~ --. ~ ~ \ o~ 14 ~ \ , k "-0/~ . I /

" ~ ~ . \ \'\ l ~ o / ° P 2 o

~ o ~
P15

FIG. 2. Inner tr iangulation of a simple 33-gon. Dashed lines are tr iangulation edges.

56 HERTEL AND MEHLHORN

edges of such a point can be vertical (special case). We associate a
predicate SPEC(p) with each point. SPEC(p) is true iff there is an edge
between p and a point with equal x coordinate and bigger y coordinate.
This other point is then called co_p. Intuitively, the idea is to always
process p and co_p together. Figure 3 gives an example of a set of four
points with identical x coordinate, containing one pair of end points and
one pair of start points.

This classification--the type of a point-- is tagged to each entry in the
queue 7(. The triangulation algorithm removes one point from X at a time.
At each point it performs a transaction as described in Section 2.2. In
Figure 3 p and co_p were processed but q and co_q are not processed yet.

The y-structure Y. Consider the state of a sweep between two points
with different x coordinates. The vertical sweep line cuts through edges of

I sweep

o co q

I

line

I . O

t,w • • •

I
c o _ p o

I

I

1
t

Fio. 3. Four points with the identical x coordinate.

FAST TRIANGULATION 57

P which partition it into intervals. If P has a set of vertices with identical x
coordinates, the sweep line consists of two vertical parts as long as the set
is only partly processed. Consult Fig. 3 for the sweep line (dashed.)
immediately before processing point q. Intervals inside P alternate with
intervals outside P, and are referred to as inintervals and outintervals,
respectively. Y describes these intervals in the following manner: It has an
entry for each edge Of P intersected by the sweep line--henceforth, we will
call those edges "active edges"--including two sentinels + oo and - o e . An
edge entry is a formula of the form y = ax + b that defines this edge. This
allows to find the y value corresponding to a given x value in constant
time. An interval bounded below by edge t and above by edge s will be
denoted by [t, s]; its type will be either in or out. Figure 4 gives an exam-
ple of the y structure between the points P13 and pl of Fig. 2. The entry e i
contains the formula of the edge between Pi 1(mode) and pi.

Y is a dictionary (see Aho, Hopcroft, and Ullman, 1974) for the interval
boundaries that supports the operations FIND, INSERT, DELETE in
time O(log k) when it contains k entries, and the operations SUCC and
PRED in time O(1), by means of additional pointers. The definition of
these standard operations is modified as follows to tailor them to the inten-
ded algorithm:

- -FIND(p) : Depending on the type of point p it delivers
- - i fp is a start point: The two edges s (above) and t (below) of the boun-

dary of P in whose interval [t, s] the point p lies,
as described in Section 2.2.

- - i fp i s an end point: The two edges s (above) and t (below) whose
common endpoint is p.

interval interval

boundaries types

oo

e 7

e 8

e l 3

e l 5

-oo

out

in

out

in

out

FIG. 4. Example of the y structure.

58 HERTEL AND MEHLHORN

- - i fp is a bend: The edge s whose right endpoint is p.
--INSERT(s, <t>): Given an active edge s of the boundary of P and a type

(t> (which can be either in or out) of the interval below s, i.e., of the
interval bounded above by s, insert the pair (s, (t)) at the place deter-
mined by the y value of s at the current x value.

__DELETE(s, (t)) ; Given an active edge s and a type (t) of the interval
below s, delete the pair (s, (t)) .

--SUCC(s) (Pred(s)): Given an active edge s and the current x value,
deliver the neighboring edge above (below) s.

The required dictionary can be implemented by any one of several kinds
of dynamic balanced trees (Aho et al., 1974; Mehlhorn, 1984). Binary
search for a given y value at a given position of the sweep line is performed
by evaluating the edge formulae y = ax + b along a path from the root to
the leaves.

The c-structure C. C assembles information about parts of the polygon
passed already whose triangulation depends on points unseen so far. It
records for every in-interval the status of the triangulation. More precisely,
C stores for every in-interval with upper boundary s a sequence L(s) of ver-
tices of P connected by polygon or triangulation edges. L(s) is doubly
linked by means of NEXT and PREV pointers, and starts with the left
endpoint of s (cf. Fig. 5). Intuitively, the triangulation is completed to the
left and incomplete to the right of this chain. In addition, RM(s) points to
a rightmost element of the polygonal chain L(s), i.e., to an element of L(s)
with maximal x coordinate. In Fig. 5a, RM(s) points to q2, in Fig. 5b to qo.

(a) with two convex angles (b) with one convex angle
/

qo o- /

°<,o S
!o % i o~% "---" q2] q3 o

\o / ' , /
~'~ °/ q3 I .'~"'--.. l

q 5 0 !iSrn~Pentt~ne - - ~ 1

sweeping line

FIG. 5. Forms of polygonal chains L(s). Solid lines are polygon edges, dashed ones are
triangulation edges.

FAST TRIANGULATION 59

We will maintain the following invariant for every in-interval/. Let I be
bounded above by edge s:

L(s) is a sequence of points qo,..., qm(1) with

(i) qo is left endpoint of s

(ii) q ~ / i s right endpoint of PRED(s)

(iii) qiqi+l is either a polygon or a triangulation edge for
i= 1,..., m(I) - 2.

(iv) The in-angle at qj is ~>~ (i.e., concave) for 1 <~j<~m(I)- 1.

(v) The part of the polygon bounded to the right by the
triangulation edges in L(s) is completely triangulated, already.

C is appended to the y structure, as shown in Fig. 6 for a typical
situation, between points Pll and P8 of Fig. 2. The lists L(s) are circular
lists with a specified head/tail. Two triangulation edges have been construc-
ted.

The g-structure G. The output structure G is steadily built up while the
plane is swept from left to right. It consists of two lists, a list TRI of
triangles and a list EDGES of polygon and triangulation edges. Pointers
between the two lists represent triangle-edge adjacencies. TRI is empty
initially, EDGES contains the edges of the polygon in one direction of
traversal.

2.2. The Basic Triangulation Algorithm

The algorithm for constructing triangulation edges has a simple overall
structure similar to that of several plane-sweep algorithms. We follow the
approach of Nievergelt and Preparata (1982):

procedure TRIANGULATE:
begin

X+-n given points, sorted by increasing x coordinate;
Y+- { - 0 % oo}; type ([- o % ov])*-out;
C~- ~ ;
TRI ~- ;2~;
EDGES ~-n polygon edges, given in counterclockwise order;
while x ¢ ~3 do

p +- MIN(X);
TRANSITION(p)

od
end {of TRIANGULATE }.

60 HERTEL AND MEHLHORN

,P33 ° e33
/t\ ---'-r----- o -

p1~>/ / \ I

I \ 1
p2° o--2.. .~ \ ,

e3 ~ o -M'~
P3 I e4

I

I

- - - ' - - - -q o_ o

I p8 /

P 1 4 ~ / o I - l l : L

--U

interval
boun-

daries types
RM

e33

e l

e 7

e 8

ell

el 5

-oo

FIG. 6. Structure Y-C in a typical situation.

All the work involved in moving the current sweep line across P is per-
formed by procedure TRANSITION. It is invoked exactly n times (less fre-
quently in case of vertical edges). Since each invocation will use O(log n)
time, this will result in an O(n log n) algorithm.

TRANSITION handles each of the five possible types of the "next point"
p differently. We describe each case by a figure, by a verbal exposition, and
by a high-level algorithm. The algorithms we give can serve as a guideline
for the implementer without restricting him too much. Detailed situations
for the cases of start or end points show both the normal and the special
(vertical edge) cases; the respective figures include the sweep linr
immediately after processing the point(s). In the algorithms, "o" denotes

FAST TRIANGULATION 61

the concatenation of two polygonal chains or the appending of a point p to
a polygonal chain as new head or tail, respectively (i.e., a point is con-
sidered to be naturally embedded in a singleton list).

In most cases, TRANSITION makes use of a procedure CHAIN_TRI
that will be specified later. CHAIN_TRI(e, dir) starts at a point p at one
end of a polygonal chain L(e), where e is a polygon edge in the y structure,
and it triangulates along L(e) as far as possible. If dir = "cc,"p is the head
of L(e) and the triangulation proceeds counterclockwise. If dir = " c , " p is
the tail of L(e) and we traiangulate in clockwise direction.

Case "proper start" (Fig. 7a). p lies in an out-interval It, s] (Fig. 7a). We
simply split the out-interval into three intervals of types out, in, out and
associate a chain only consisting of node p (in special case, of nodes p and
co_p) with the in-interval. Also, p is the rightmost node of that chain
(Figs. 7b, c).

f

J

J

I

OUt

o o/bT"

o u t I

I

b

I
t

out

p 0 ;~'~k (h)

I

t

l

I

c I
"-"-------4.-.-&

Ih
c o p O ~

out I~ (h)
P 0 ~ IL

I

FIG. 7. (a) Transition for a '°proper start"; (b), (c) detailed situation for a "proper start."

62 HERTEL AND MEHLHORN

ALGORITHM.

begin
FIND(p); {delivers the two adjacent active edges t and s in whose inter-

val [t, s] p lies (cf. Figs. 7b.c)}
I ~ low edge starting at p;
h ~- if SPEC(p) then high edge starting at co_p

else high edge starting at p;
INSERT((1,out));
INSERT((h,in));
if SPEC(p) then L(h) ~- co_/, op

else L(h) ~ p;

R M (h) ~- p

end {of the case "proper start"}

Case "bend" (Fig. 8a). Let s be the edge ending in p and let t be the edge
starting in p. Then s is on the boundary of an in-interval; let vl,..., vt be the
associated polygonal chain, where v l is the other endpoint of edge s. We
add triangulation edges P/~2,.--, ~ , until -~ (p, vi, v i+1)~> 7z and change the
associated polygonal chain into p, vi,..., v~. p becomes the new rightmost
node of this chain (Figs. 8b).

FIG. 8.

o I in

\ ,

i: ol /,
o____o/O I

in

!
/

l
/

I
/

/
0

I

h t
o u t I

t,I t

L(S) {L(t)

I

(a) Transition for a "bend"; (b) detailed situation for a "bend,"

FAST TRIANGULATION 63

ALGORITHM.

begin
F I N D (p) ; {delivers the uniquely determined edge s of which the right

endpoint is p (cf. Fig. 8b)}
t +-- edge starting at p;
1 *- PRED(s) ;
h +-- SUCC(s);
if type([1, s]) = in

then begin L (t) ~ p o L(s);
replace s by t in Y;
CHAIN_TRI (t , "cc");
R M (t) +-- p

end
else begin {type(I s , h]) = in }

L(h) L(h)op;
replace s by t in Y;
CHAIN_TRI(h , "c");
R M (h) ~ p

end
end { of the case "bend" }

a t

\ J
o i n / I

0"--44..0
out o t~.---"~ P

N 0

0~_.~0/0

I

o J

o
, t

%

' o p l i~
/

/
/

/
~ o

o ~ - - - o ~

FIG. 9.
end."

b 1 c

I
"--Z.. I

°u ~t " [Oco p

/t °Pl in out I ? in
I .~op

I L j L

i I
(a) Transition for an "improper end"; (b), (c) detailed situation for an "improper

643/64/1-3-5

64 HERTEL AND MEHLHORN

Case"improper end" (Fig. 9a). s, the upper edge ending at p
(resp. co_p,), bounds an in-interval from below; t, the lower edge ending at
p, bounds an in-interval from above. We can interpret p as a bend for both
associated polygonal chains, and can triangulate along both chains
analoguously to the case above. Then we merge both in-intervals by
deleting edges s and t from the y structure. Also, we concatenate both
associated chains, using p as a connecting element, p (resp. co/) ,) becomes
the new rightmost element of this chain (Figs. 9b,c).

ALGORITHM.

begin
FIND(p); {delivers the two active edges t and s of which the common

endpoint i s p; if SPEC(p) the two edges with right endpoints
p and co_p (c~ Figs. 9b,c)}

l ~ PRED(t);
h ~- SUCC(s);
if SPEC(p) then begin

end
else begin

end;
CHAIN TRI(t, "cc");
L(h) +- L(h)o L(t);

L(h) e- L(h)o co/) ;
CHAIN_TRI(h, "c");
L (t) ~ p o L (t)

L(h) ~ L(h)op;
CHAIN_TRI(h, "c");
remove tail p from L(h);
L(t) ,--poL(t)

if SPEC(p) then RM(h) ~ co/) ;
else RM(h) ~ p;

DELETE((t, in));
DELETE((s, out))

end { of the case "improper end" }

Case"improper start" (Fig. 10a). p lies in the in-interval It, s] with
associated polygonal chain vl vt that has Vz as its rightmost node. We
can certainly add edge ~ to the triangulation. Analoguously to the case
"bend," we then triangulate along the chain in both directions, starting
from p via v=. Now we split the in-interval into three intervals of types in,
out, in and split the polygonal chain appropriately between the two new in-
intervals, p (resp. co/) ,) becomes the rightmost node of both in-intervals
(Figs. 10b, c).

FAST TRIANGULATION 65

I

\I
I i n /,
I

o

2 .

I .

I

o ~ ~

o I in

\ ,
° I

' / \ \ I / / ' ' ' ,)
0

. \ / f out

o ~ ~ ° ' + ' ~ l

I

o

\o
o

\

\

\\' / out
o-- p

I

b I
I s

t L (s) t i n

i h

P o u t

t I 1

I L(1) in

I

c

t L (s) i n
~ . ~ h

CO p

- l I o u t
P °~-U ' t

I.
t

t L (L) [i n

t
I

FIc. 10. (a) Transition for an "improper start"; (b), (c) detailed situation for an
improper start."

66 HERTEL AND MEHLHORN

ALGORITHM.

begin
FIND(p) ; {delivers the two neighboring active edges t and s in whose

interval It, s / p lies (cf. Figs. 10b,c)}
l ~ low edge starting at p;
h ~ if SPEC(p) then high edge starting at co_p

else high edge starting at p;
q ~ RM(s);
"add ~-fi to EDGES";
INSERT((/, in));
INSERT((h, out));
RM(s) ~- if SPEC(p) then co /)

else p;
RM(I) ~ p;
L(l) *--p o"remainder of L(s) starting at q';
L(s) ~ "L(s) up to and including q" op;
if SPEC(p) then L(s) ~ L(s)oco_p;
CHAIN TRI(s, "c");
CHAIN_TRI(I, "cc")

end {of the case "improper start"}

Case"proper end" (Fig. l la). p lies in an in-interval [t ,s] with
associated polygonal chain L(s). The invariant of Section 2.1 guarantees
that we can finish off the triangulation of L(s) since we can "see" all its
nodes from p (resp. from one of p and co_p,). Then we delete the edges t
and s from Y and merge the two adjacent out-intervals (Figs. l lb , c).

ALGORITHM.

begin
FIND(p) ; {delivers the two active edges t and s whose common

endpoint is p (p and c o p , respectively;
cf. Figs. l lb,c)}

l ,-- PRED(t);
h *-- SUCC(s);
L(s) ~ if SPEC(p) then co po L(s) op

else p o L(s);
CHAIN_TRI(s, "cc");
if SPEC(p) then CHAIN_TRI(s, "c");
DELETE((t, out));
DELETE((s, in))

end {of the case "proper end" }

F A S T T R I A N G U L A T I O N 67

a 1

\ io

I

b I

P ,~ (triangulation

of this

in-interval

completed)

c
I

I ~ co'p

in ~ . o P i n [o u t

1 i
l l

I I
FlG. 11. (a) Transition for a "proper end"; (b), (c) detailed situation for a "proper end."

The procedure C H A I N TRI(e , dir) starts at a point p at one end of a
polygonal chain L(e), e being an active edge, and it t r iangulates "a long"
L(e) as far as possible. Tr iangula t ion proceeds counterclockwise f rom the
head of L(e) (dir = "cc"), or clockwise f rom the tail of L(e) (dir = "c"). As
long as the in-angle at the next point on L(e) is convex, a new
tr iangulat ion edge is drawn.

procedure C H A I N _ T R I (e , dir):
begin

if dir = "cc" then begin p ~- head of L(e);
q ~ N E X T (p)

end
else begin p ~- tail of L(e);

q +- P R E V (p)
end;

while ([L(e)l > 2) and (the in-angle at q is convex) do
begin w ~ if dir = "cc" then N E X T (q)

else PREV(q) ;
"draw a t r iangulat ion edge f rom p to w, add it and the new

triangle to the output structure G";
"delete q f rom L(e)";

end
end {of C H A I N _ T R I }.

68 HERTEL A N D M E H L H O R N

The procedure CHAIN_TRI is correct if edges of L(e)and new
triangulation edges are pairwise non-intersecting. This, however, follows
from proposition (iv) of the invariant for L(e) that was given in Section 2.1.

THEOREM 1. The running time of the algorithm TRIANGULATE for
triangulating a simple n-gon is O(n log n).

Proof. The initial sorting takes time O(n log n), It should be clear that
the construction of a new triangulation edge and the updating of the
appropriate polygonal chain, as well as of G can be done in time O(1). Thus
the running time of CHAIN_TRI is proportional to the number of new
triangulation edges, and the total time spent in CHAIN_TRI is O(n). A
dictionary operation on Y takes time O(log n) at most; thus one call to
TRANSITION takes time O(logn), apart from the time spent in
CHAIN_TRI. This yields an overall running time of O(n log n). |

3. I M P R O V E M E N T OF THE A L G O R I T H M

The algorithm TRIANGULATE needed time O(nlogn) even for
"trivial" non-convex polygons like the one in Fig. 12; which could be easily
triangulated in linear time, starting from the sole non-convex angle. This is
due to the required sorting and to the consideration of n transitions. Our
goal is to drastically reduce the number of points where we spend "much"
time. Therefore we will drop the "bends" from explicit consideration and
handle them "on the go." Only "start" and "end" points remain transitions.
It is easy to see that any simple polygon has exactly as many start points as
end points (counting a vertical edge as one start or end point). Let s be the
number of start points. The improved algorithm TRIANGULATION will
then work in time O(n + s log s).

J
o /

O •

° j °

\

o - ~ . . - _ ~ _ o

\
o

o

/
FIG. 12. "Tr iv ia l " n o n - c o n v e x po lygon .

FAST TRIANGULATION 69

Refinement of the Data Structures

As mentioned above, the x structure now contains only the 2s start and
end points. The y structure now is different from that in algorithm
TRIANGULATE in that it does not simply reflect the status of the sweep
line any longer. Instead, the y structure consists of vertical parts, hen-
ceforth to be called "local sweep lines," some of which may lag behind the
global sweep line. The global sweep line refers to the sweep line of our
original algorithm TRIANGULATE. There is one local sweep line for each
in-interval. As before, we associate a polygonal chain and a pointer to the
rightmost node on the chain with each in-interval. Also, the invariant given
in Section 2.1 stays valid for the polygonal chains.

We introduce a second invariant that refers to the ordering of active
edges in the y structure. Note that the number of in-intervals changes only
after start and end points. Thus, if we conceptually follow the boundary of
polygon P from each of the active edges stored in the y structure to the
right until the global sweep line is reached, we can associate a point on the
sweep line with every active edge in the y structure. We maintain the
invariant that the ordering of active edges in the y structure coincides with
the ordering of the associated points on the global sweep line. Briefly, the
ordering of in-intervals is the same as it would have been in the basic
algorithm TRIANGULATE.
Parts (a) and (c) of Fig. 13 illustrate the new concept. Figure 13a shows the
situation after processing point Pl of Fig. 2; P13 is still unprocessed since the
local sweep line for the low in-interval lags behind. Figure 13c shows a
possible situation after processing point P9. Here, the four bends in the
upper in-interval are unprocessed.

Relating a New Point p to Y

If the relative position of a new point p with respect to the current inter-
vals is to be found, we are confronted with the problem that not all inter-
vals necessarily extend to the global sweep line. Thus, comparing p with
active edges does not always help us.

The solution we propose is to extend some polygonal chains locally,
while searching for p in the balanced tree Y. We start at the root and
search down the tree. Whenever we encounter an edge es that does not
extend to the global sweep line, we walk from this edge along the polygon
boundary to the right, adding new edges to the triangulation, as long as
the x coordinate is smaller than that of p, and proceed, "in parallel," in the
same manner with the other end of the polygonal chain of the in-interval
adjacent to e,. This way, we close the gap between a local sweep line and
the global sweep line. We only encounter bends in this process, and handle
them exactly in the same way as we did in the previous algorithm

70 HERTEL AND MEHLHORN

p+>/ I

, I I

I
I

0
0

P 7 ° ~
Q
I

0 i #

p o IP131

o I

(a)

P33 I 0

U
PI°~ I

I
0 o . ~ _.~o p4

\
P3 i\

0 o/O

° ~ ~-'~'--~ D 0
P7 ~ ~ ~ ~ 0 0

~ o - - --0-o p
P8 / 0 9

o/° 0 0

P °~° °/Pl I D 0
14 " ~ P 1 2 0

(b) 0"

FIG. 13. Possible situations in sample polygon: the dashed line is the global sweep line;
heavily dashed lines represent local sweep lines.

T R I A N G U L A T E , except that we need not search for them. Figure 13b
shows a situation immediately before finding point P9. We have extended
the local sweep lines for the two low in-intervals to the current global
sweep line, and can now process P9. This creates the triangulation edge

PT P9.
The correctness of this method follows from the fact that the transition

at bends was completely local, and that the ordering of in-intervals is the
same as at the corresponding state of T R I A N G U L A T E . We only process
some points at a different time.

THEOREM 2. The algorithm T R I A N G U L A T I O N runs in time
O(n + s log s) and needs space O(n) for simple n-gons with s start points.

Proof. All the points processed "on the go" as described above are
bends. We find each one of them in time O(1) by walking along the
polygon boundary, and then they are handled like bends in Section 2.2. For
an edge starting at a bend, we have to find its successor and its predecessor.

FAST TRIANGULATION 71

INSERT/DELETES are not necessary; thus, processing a bend takes time
O(1) apart from the time spent in CHAIN_TRI.

Since the number of in-intervals is bounded by the number of start
points, Y has at most O(s) entries, and one operation on Y can be
implemented to work in O(log s) time. Thus, processing one of, the O(s)
points in X takes time O(log s) apart from the time for processing bends
and for triangulating. The latter amounts to a total of O(n), yielding an
overall time bound for our algorithm of O(n+slogs). The space
requirement clearly is O(n). |

4. CONSTRUCTING AN OUTER TRIANGULATION

It is our goal in this section to find an outer triangulation for a simple n-
gon P, as defined in Section 1. Figure 14 gives an example, including
"triangulating edges" that extend from the vertices of the convex hull of P
to infinity.

\ /
\ t
\ I /

p3~'o o ~ ° ~ o ,

Pl ~ \ / /
I I \ /°\P29
I l o - - o / \

I ! P3 / "~ ~ / \ ~ ~. P22 ~
I I I / "~'~.. ~ o / % "~ ° ~

I~ t / "," -, ~ \ ; o C |
I : 1 / - " 3 \ , " . ' \ | , ;, , , _2.o . .O - - : . . . , ; . . .o

, , I , , ~ o I
t u~ I

p . C / j . - - - - - - ' ~ o

,o I
I I l x / z l \ I /
" t x / t \,/ I

0 ~ • / 0 0

10j ~ \

P15'

I

FIG. 14. Outer triangulation of a simple 33-gon.

72 HERTEL AND MEHLHORN

We will reduce outer to inner triangulation. To achieve this result, we
conceptually add two edges to P that extend from LM(P) , the leftmost ver-
tex of P, i.e., the point of P with lowest x coordinate, to y = - o e and
y = + o% respectively, and that do not intersect any edge of P. (If there are
several leftmost points, we conceptually connect them by vertical edges.)
Compare Fig. 15 that shows the "conceptual leftmost edges" and the types
of the intervals in the y structure after processing the leftmost point.

After having processed LM(P), both the interval above the high edge
starting at LM(P) and the interval below the low edge starting at L M(P)
must now be considered as in-intervals. Our algorithm proceeds as in Sec-
tion 3, but it constructs an outer triangulation of P. After all points of P
have been processed, one in-interval is left; its associated polygonal chain is
the convex hull of P.

To find "infinite triangulation edges" as mentioned above, we simply
choose an interior point of the convex hull, construct rays from there
through the corners of the hull and drop the ray segments inside P.

We have achieved the following result.

THEOREM 3. An outer trMngulation of a simple n-gon with s start vertices
can be constructed in time O(n + s log s) and space O(n).

1 i \

/ ' ~ -o ~-'~°

\

\

i

FIG. 15. "Conceptual edges" for outer triangulation.

FAST TRIANGULATION 73

5. TRIANGULATING A SET OF POLYGONS

We return to our original problem of triangulating a set of k pairwise
non-intersecting simple polygons with a total of n vertices and s start ver-
tices.

With the results of Sections 3 and 4, such a triangulation does not pose
any additional difficulties. We solve the problem in two passes. First we
construct an inner triangulation, using the methods of Section 3. Since the
y structure stores only edges and knows about in-intervals, it constructs,
for a set of intervals being part of different polygons, the same
triangulation as if the intervals were connected with each other somewhere
"further to the right." A proper right endpoint of an embedded polygon, for
example, is handled in exactly the same manner as is an endpoint of an in-
interval of just one polygon.

In a second pass, we construct an outer triangulation, applying the
methods of Section 4. The same arguments as for the inner triangulation
are valid and show the correctness of this procedure.

This leads to our final result.

THEOREM 4. Let P1,...,Pk be a set of pairwise non-intersecting simple
polygons with a total of n vertices and s start vertices. A triangulation of this
set can be constructed in time O(n + s log s) and space O(n).

6. APPLICATIONS

6.1. Intersection of a Set of k Polygons and a Convex Polygon Q

Shamos (1975) showed how to compute the intersection of two convex
polygons in linear time. We extend his result as follows.

THEOREM 5. Let P1 P~ be a set of simple polygons with a total of n
vertices, and let Q be a convex m-gon: Assume that a triangulation of the
plane with respect to P1 P~ is available. Then (P1 w "" u Pk) ~ Q can be
computed in linear time, i.e., in time O(m + n).

Proof. Let T be a triangulation of the plane with respect to P1,..-, Pk,
given as in Section 2. In time O(n) we can certainly add the "infinite
triangles" outside the convex hull (cf. Sect. 4, Fig. 14). This yields a division
of the plane into a total of 2n-2 triangles.

We start with the observation that the intersection has "size" O(n). Note
that the triangulation consists of O(n) line segments. Each such line
segment can intersect the convex polygon Q in at most 2 points, Hence the
total number of intersections between edges of T and edges of Q is O(n).

74 HERTEL AND MEHLHORN

Let v 1,..., Vm be the vertices of Q. We can certainly find the triangle con-
taining vl in time O(n). Also, knowing the triangle containing vi, we can
find all intersections between T and line segment vivi+l in time O(s~+ 1),
where si is the number of such intersections. Hence the total time needed to
find all points of intersection is

O(m + Z s~) = O(m + n), by the argument above. |

COROLLARY. Let P~ P, be a set of simple polygons with a total of n
vertices and s start vertices. Let Q be a convex polygon with m vertices. Then
(P l u ... u P k) n Q can be computed in time O(n + m + s logs) and space
O(n).

The best solution hitherto known required time O((n +m) log(n + m))
(Bentley and Ottmann, 1979; Brown, 1981).

6.2. Decomposing a Simple Polygon into Convex Parts

In general, convex geometric objects are easier to handle than non-con-
vex ones. As for polygons, Chazelle (1982) showed how to decompose, in
time O(n log n) and space O(n), a simple n-gon P into fewer than 4.333
OPT convex pieces, without introducing new vertices, where OPT is the
minimum number of convex pieces necessary to partition P. Chazelle
obtains his results by applying a separator theorem recursively. Given the
convex parts, it is, of course, easy to obtain a triangulation. We proceed
the other way round and start with a triangulation. This yields a solution
that improves upon Chazelle's result.

THEOREM 6. Let P be a simple n-gon, and let U be an interior
triangulation of P. Then a convex decomposition of P with at most 4" O PT
pieces can be constructed in time O(n).

Proof Let r be the number of convave in-angles of P. Observe that
OPT ~> r/2 + 1 since one partitioning edge is necessary for each convave
angle. We will partition P into at most 2r + 1 convex subpolygons.

To do this, scan the n - 3 triangulation edges one by one. Drop an edge
if it divides a convex angle. Call edge e essential for point p if it cannot be
dropped because it divides a concave angle at point p. The following
lemma completes the proof.

LEMMA. Not more than two triangulation edges are essential for each
point with concave in-angle.

Proof Let p be common endpoint of polygon edges el and e2. Let p
have a concave in-angle, and let tl, t2, t3 be three different triangulation
edges that are essential for p.

FAST TRIANGULATION

It 3
l

e2~-~ pll

out / ~ l l l ~ "~ ~t2

I
e t

1 1

FIGURE 16

75

Given two edges a and b with common endpoint p, let g (a, b) the angle
resulting from turning edge b counterclockwise around p towards a. The
following then holds (compare Fig. 16):

"~ (el, e2) > 0,

(e2, t2) ~> ~ (since t3 is essential),

(t3, t l) / > 7~ (since t 2 is essential),

(t2, e~) ~> ~ (since t~ is essential).

Hence g(e2, el)~>2~z, a contradiction. Thus not
triangulation edges are left in the decomposition. |

more than 2r

COROLLARY. Let P be a simple n-gon with s start vertices. Then P can be
decomposed into .fewer than 4 " O P T convex subpolygons in time
O0I + s log s) and space O(n).

Note added in proof: Theorem 2 has been obtained independently by Dan Gordon. His
result is described in D. Gordon: "The Critical Points Method in Computational Geometry,"
Tech. Report, Dept. of Computer Science, Univ. of Cincinnati, Cincinnati, Ohio, 45221.

REFERENCES

AHO, A. V., HOPCROFT, J. E., ULLMAN, J. D. (1974), "The Design and Analysis of Computer
Algorithms," Addison Wesley, Reading, Mass.

BENTLEY, J. L. AND OTTMANN, T. A. (1979), Algorithms for reporting and counting geometric
intersections, IEEE Trans. Comput. C-28, No. 9, 643 647.

BROWN, K. Q. (1981), Comments on algorithms for reporting and counting geometric inter-
sections, 1EEL Trans. Comput. C-30, 147 148.

CHAZELLE, B. (1982), A theorem on polygon cutting with applications in "Proc. 23rd IEEE
Sympos. Found. of Comput. Sci," pp. 339 349.

76 HERTEL AND MEHLHORN

CHAZELLE, B. AND][NCERPI, J. (1984), "Triangulation and Shape-Complexity," Technical
report, Dept. of Comput. Sci., Brown Univ., Providence, R.I. 02912.

GAREY, M. R., JOHNSON, D. S., PREPARATA, F. P., AND TARJAN, R. E. (1978), Triangulating a
simple polygon, Ir~form. Process. Lett. 7 No. 4, 175-179.

HERTEL, S. (1984), "Sweep-Algorithmen fi.ir Polygone und Polyeder," Ph.D. Dissertation FB
10, Univ. des Saarlandes, Saarbriicken.

HERTEL, S., AND MEHLHORN, K. (1983), Fast triangulation of simple polygons, in "Proc. 1983
Int. Conf. Found. of Comput. Theory." KARPINSKI, M. Ed.), Lecture Notes in Computer
Sci. Vol. Conf. Found. of Comput. Theory," Lecture Notes in Computer Sci. Vol. 158,
pp. 207518, Springer Verlag, Berlin/New York.

LEE, D. T. AND PREPARATA, F. P. (1977), Location of a point in a planar subdividion and its
applications, S I A M J. Comput. 6 594-606.

LIPTON, R. J., TARJAN, R. E. (1977), Applications of a planar separator theorem, in "Proc.
18th IEEE Sympos. Found. ofComput. Sci.," pp. 162 170.

MEHLHORN, K. (1984a), Data structures and algorithms 1: Sorting and searching, EATCS
Monographs on Theoret. Comput. Sci. Vol. 1, Springer Verlag, Berlin/New York.

MEHLHORN, K. (1984b), Data structures and algorithms 3: Multi-dimensional searching and
computational geometry, EATCS Monographs on Theoret. Comput. Sci. Vol. 3. Springer
Verlag, Berlin/New York.

NIEVERGELT, J., AND PREPARATA, F.P. (1982), Plane-sweep algorithms for intersecting
geometric figures, Comm. A C M 25, No. 10, 739-747.

SHAMOS, M. I. (1975), Geometric complexity, in "Proc. 7th ACM Sympos. Theory of Com-
put." pp. 224-233.

SCHOONE, A. A., AND LEEUWEN, J. v. (1980), "Triangulating a Star-shaped polygon," Techn.
Report RUU-CS-80-3, Dept. of Comput. Sci., Univ. of Utrecht, April.

