
INFORMATION AND CONTROL 56, 3 4 - 5 1 (1983)

The Recognition of Deterministic CFLs
in Small Time and Space

B U R C H A R D VON B R A U N M O H L

Institut fiir Informatik,
Universitdt Bonn, Wegelerstrasse 6, 5300 Bonn, West Germany

STEPHEN COOK

Department of Computer Seienee,
University of Toronto, Toronto, M5S 1A4, Canada

KURT MEHLHORN

FB10-Inf ormatik,
Universitdt des Saarlandes, 6600 Saarbrffeken, West Germany

AND

RUTGER VERBEEK

Institut ffir Informatik,
Universitdt Bonn, Wegelerstarsse 6, 5300 Bonn, West Germany

Let S(n) be a nice space bound such that log 2 n <~ S(n) <~ n. Then every DCFL is
recognized by a multitape Turing machine simultaneously in time O(n2/S(n)) and
space O(S(n)), and this time bound is optimal. If the machine is allowed a random
access input, then the time bound can be improved so that the time-space product
is O(n~+e).

1. I N T R O D U C T I O N

It is well known that each context free language (C F L) can be recognized
by an algori thm using polynomia l t ime and n 2 space (Hopcrof t and Ullman,
1979), and by quite a different a lgori thm using superpolynomial t ime and
log2n space (Lewis et al., 1965). However, no algori thm is known for the
recognit ion of an arbi t rary C F L in polynomia l t ime and sublinear space
simultaneously.

Fo r each deterministic C F L (DCFL) , however, there is a recognit ion
algori thm which runs in polynomial t ime and log 2 n space simultaneously, as

34
0019-9958/83 $3.00
Copyright © 1983 by Academic Press, Inc.
All rights of ret~roduction in any form reserved.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/4.0/

DETERMINISTIC CONTEXT FREE LANGUAGES 35

first shown by Cook (1979). This puts each DCFL in the class SC of
languages recognizable simultaneously in polynomial time and polynomial in
log n space (Cook, 1981). In particular, Sudborough's complete language
(1978) for the class of DCFLs is in SC, and this is perhaps the most natural
language known to be in SC but not known to be recognizable in space
log n. (See Sudborough, 1978) for a discussion of whether all DCFLs can be
recognized in log n space.) In Sudborough (1980), the author describes a
family of languages complete for SC, and these provide other examples. But
these complete language are "contrived" in the sense that the function log k n
must be used explicitly to describe them.

Although we do not know whether all CFLs are in SC, Ruzzo (1979) has
shown they are all in the class NC dual to SC (Pippenger, 1979; Dymond
and Cook, 1980; Hong, 1980). Here NC is the class of languages accepted
by a multitape Turing machine in polynomial time and polynomial in log n
reversals.

Returning to DCFLs, Cook (1979) proved a time upper bound of
n 5 logZn and a space upper bound of logZn for his original recognition
algorithm. Mehlhorn (1980) improved the time bound to n z'Sv with the same
space bound by developing another algorithm for machines with a random
access input. (More generally, he described a time-space tradeoff for such
machines.) Independently von Braunmfihl and Verbeek (1980) found a
modification of Cook's algorithm which works on Turing machines in time
nZ/log 2 n and space log 2 n (more generally with a time-space product of n 2)
and on machines with a random access input in time n 1+~ and space logZn
(or in linear time and space n ~, etc.) This result is optimal in the case of
Turing machines, and for machines with random access input Verbeek
(1981) has shown that the algorithm is optimal in the class of "pebbling
strategies."

In the present paper a new algorithm for DCFL recognition is presented
with the same time and space complexity for both machine models as the
one in von Braunmfihl and Verbeek (1980). It connects the ideas in
Mehlhorn (1980) and von Braunmfihl and Verbeek (1982), and allows an
easier proof of both correctness and complexity.

The paper is organized as follows. Section 2 presents basic definitions, and
Section 3 presents a simplified version of the recognition algorithm which is
not quite optimal. Section 4 presents the final improved algorithm, yielding
the time and space bounds stated in Theorem 1 for machines with random
access input and in Theorem 2 for Turing machines.

36 BRAUNMOHL ET AL.

2. BASIC DEFINITIONS

We consider deterministic PDAs with the following restrictions:

(1) Every step is a push step (exactly one symbol is pushed onto the
stack) or a pop step (one symbol is popped).

(2) Any computation with input w contains at most I w] push steps.
Obviously every DCFL is accepted by such a DPDA P.

A configuration of P is given by a triple C = (q~ IV, v) = (state, stack
content, position of the input head). Let Comp(P, w) = Co, C1 C m be the
computation of P with input w. C i is a push-configuration if the step from C i
to Cg+ 1 is a push move. C i is called pop-configuration if C i is followed by a
pop move. The push-time (or short time) of C~ is the number of push-
configurations Cj before C i (i.e., with j < i). (Thus a pop-configuration has
the same push-time as the succeeding push-configuration.) We intend to
describe a divide-and-conquer strategy for Comp(P, w).

Given an integer e/> 2 (to be determined later from [w] and the intended
space complexity) we define a section as a consecutive part of Comp(P, w).
All configurations with the same push-time form a section of rank O. Thus a
0-section consists of a (maybe) empty sequence of pop moves followed by
one push move. A section of rank d (or d-section) consists of e consecutive
sections of rank d - 1 and hence contains exactly e a push moves. Thus
the ith d-section contains exactly all configurations C with pushtime t,
(i-- 1). e a <~ t < i . e d.

The configuration with lowest stack height in a section (if there is more
than one, the latest) is called the representative of that section. The represen-
tative of a d-section is a d-configuration (the 0-configurations are just the
push-configurations). A configuration C i is visible from C; iff

(1) i <j ,
(2) the stack height of all Ck, i < k ~<j, is greater than that of Ci.

The cut of C is the last configuration visible from C. (Thus the cut is the last
push-configuration before C with stack-height h-- 1, where h is the stack
height of C. If W X is the stack content of C, then the stack of the cut
contains exactly W.)

A section S is called current with respect to C, if C is in S. S is completed
if C is after S. A d-section S is rightmost with respect to C (related to time
to), if the 0-section with time t o is in or before S and S is the last completed
d-section whose representative is visible from C. In other words d-section S
is rightmost with respect to C if S is completed at C and visible from C and
there is no d-section S' which is to the right of S, and which is also
completed at C and visible from C. (Thus the cut of C is the representative
of the rightmost 0-section with respect to C.)

DETERMINISTIC CONTEXT FREE LANGUAGES 37

~ height

4 -~/ c 4 rcl2

COV I i I I I I I , "
0 1 2 3 4 5 6 7 8 '9

I I I I I I I I ~ I

I, t I. ~ I - -

4

push-time

i sections

2 sections

3 sections

FIGURE 1

EXAMPLE. We illustrate these concepts with an example (see Fig. 1). Let
e = 2 .

0-sections:

1-sections:

2-sections:

3-sections:

C O, C 1 , C 2, C 3 , C4-C 7 , C s , C9-Ci0, Cll, C12-C14, C15,

Co-CI, C2-C3, C4-C 8, C9-C11, C12-C15,

C0-C3, C4-Cll, C12-C15,

Co-Cll, Clz-CIs;

C 7 is representative of 0-section C4-C v, 1-section C4-C8, 2-section C4-C11,

It is not representative of 3-section C0-Cll; Co is the representative of 3-
section Co-Cll. Configurations Co, C7, and C10 are visible from Cll. Let
C--C11. Then 1-sections Co-C1, C2-C3, C4-C8 are completed at C and 1-
section Cg-Cll is current at C. Also the rightmost d-section with respect to
C is C9-CIo for d = 0, C4-C8 for d = 1, and Co-C3 for d = 2. There is no
rightmost 3-section with respect to C related to time to -- 0.

Since a configuration in general requires space n, a space-efficient
simulation cannot store configurations. For the simulation of a push-step we
need only the configuration's surface (q, X, v) = (state, top of the stack, input
position). After a pop step the new surface contains the stack symbol below
the top, which is the stack symbol in the surface of the cut. If the cut
(surface) is not stored, we must repeat a part of the computation up to the
cut. Such reeomputations can be nested. The key to our simulation is a
strategy to remember some of the surfaces in order to avoid too many long
recomputations.

In addition to the surfaces some information necessary for the recom-
putations is stored: a marker M = (q, X, v, h, t, ct) is an extract of a
configuration containing state, top symbol, input position, stack height, push-
time, and push-time of the cut. If M is a marker then we use q(M), X(M),
v(M), h(M), t(M), ct(M) to denote the state, top symbol, input position,
stack height, push-time and push-time of the cut of marker M.

38 BRAUNMUHL ET AL.

In an obvious way we apply the terms computation, push-marker, pop-
markers, section, rank, representative, visible, cut, current, etc. to markers.
Just as for surfaces, the next marker M' can be obtained from M and the cut
of M:

i f M is a push-marker, then q(M'), v(M'), X(M') according to the
move of P, h(M') = h(M) + 1, t(M') = t(M) + 1, ct(M') =
t(M),

i f M is a pop-marker, then q(M'), v(M') according to the move of
P, X(M') from the cut, h(M')= h (M) - 1, t (M ') = t(M),
ct(M') --- ct of the cut.

(The stack of the configuration corresponding to M' is the same as the stack
of the cut-configuration.)

3. THE BASIC ALGORITHM

For the simulation of a pop-step the stored markers are used in two
different ways: If the cut is stored we can obtain the next marker from the
preceding one and the cut. If not, the last stored marker serves as a starting
point for the recomputation.

Our algorithm will have the following (storage) property that guarantees
the correctness of the simulation.

Invariant. Consider a (re-) computation with starting time t o and end
time t 1. Suppose M is the last computed marker. Let S be any d-section.
Then the representative M' of S is in storage iff

(1) M' is visible from M and S is completed at M, and

(2) the enclosing (d + 1)-section is current or rightmost wrt. M and
not before t o .

Example continued. Let to= 0, t 1 = 15 and suppose that the marker
corresponding to C 7 was computed last. Then we have:

(1) the representatives of 0-sections C 1, C2, C3,.., are not stored
because they are not visible from M;

(2) the representative of 0-section C o is stored because the enclosing
1-section Co-C1 is rightmost with respect to C6;

(3) the representative of 1-section Co-C a (which is Co) is stored
because the enclosing 2-section Co-C 3 is rightmost.

(4) the representative of 2-section Co-C 3 (which is Co) is stored
because the enclosing 3-section C0-Cll is current:

DETERMINISTIC CONTEXT FREE LANGUAGES 39

Enclosing (d + 1)-section
Thus we store is rightmost Current

0-representatives C o
1-representatives C O
2-representatives C O
3-representatives Co

The cut of M is the last visible marker and thus is contained in the current
1-section or (if no marker of that section is visible from M) in the rightmost
1-section. Hence an algorithm satisfying the invariant correctly simulates
Comp(P, w).

The invariant suggests the following storage structure: For every rank
d/> 0 (up to Llog e Iwl]) we provide two lists:

L~ for the d-markers of the rightmost (d + 1)-section,

L} for the d-markers of the current (d + 1)-section.

The markers on the lists are ordered according to their time. L a is the
concatenation of L~ and L}. If L is a list then bottom (L) is the marker with
smallest time and top (L) is the marker with largest time on L.

LEMMA 1. For every rank d >/0, every computation (starting time to),
and every time in that computation:

(a) the markers on L a, after t o, are ordered according to strictly
increasing height h,

(b) top La is representative of the rightmost d-section (related to to),

(c) bottom Lra = top Ld+ 1,

(d) every list contains at most e markers.

Proof (a) All markers on L a are visible. Thus a later marker has
greater height. Therefore increasing time implies increasing height.

(b) Obvious.

(e) If L~ 4: 0, bottom L a = bottom L~ is the lowest d-marker of the
rightmost (d + 1)-section and hence its representative is contained in the
current or rightmost (d + 2)-section. Since it is the latest visible (d + 1)-
marker in a completed (d + 1)-section, it is top La+ 1. If L~ = 0, no marker
of a completed (d + 1)-section is visible and hence Ld+I= 0.

(d) By the definition of (d + 1)-section, it contains exactly e d-
sections. Hence it contains at most e visible d-markers. I

40 BRAUNMLIHL ET AL.

h

- ~ - - i t

/ ~ i o n) new rightmost section

o~ldrightmost
section

FIGURE 2

Now it is possible to derive the algorithm from the invariant. The current
marker is not the representative of a complete 0-section. Thus we store it in a
separate register R.

(a) Suppose R contains a push-marker M (see Fig. 2). Then it is the
last marker (and representative) of a 0-section which is now completed. Thus
R has to be stored on L 0. The next marker M ' can be computed from M and
is stored in R. It is possible that the next marker belongs not only to a new
0-section but also to a new d-section for some d > 0. In this case the old
current section is now completed and hence rightmost. Suppose d is
maximal, such that a d-section is complted, d > 0 (i.e., t (M ') - 0 (mod ed),

t (M ') ~ 0 (mod ed+l)). Then, by the invariant, for every i < d the/-markers
of the old rightmost (i + 1)-section have to be deleted. The representative of
the new rightmost (i + 1)-section has to be added to L~+~. Thus the
following instructions simulate a push-step:

L~ := L~o eoncat R;
compute new R from R;
i f t(R) ==_ 0 (mod e)
then let d be maximal with t(R) ~ 0 (mode d)

for i from O to d - 1
do L~ := L~; L c := empty;

L~+ ~ := L~+, concat bottom L7
od

E x a m p l e continued. C 7 is a push-marker. The push-move from C 7 to C8
completes 0-section C 4 - C 7 (with representative C7). It does not complete a 1-
section. Hence the marker corresponding to C8 is stored in R and lists L~,
L~ are changed to

DETERMINISTIC CONTEXT FREE L A N G U A G E S 41

d L,~ L,~

0 Co Cv
1 Co
2 Co
3 Co

C s is a push-marker. The push-move from C 8 to C 9 completes 0-section C 8
and 1-section C4-C s. It does not complete a 2-section. Hence the marker
corresponding to C 9 is stored in R and lists L~, L~ are changed to

d L~ L~

0 C 7, C 8

1 Co C7
2 C o

3 C o

(b) Suppose R contains a pop-marker M. The next marker M' can be
computed from M and)Q, the cut of M, which is the last push-marker visible
from M and hence stored at the top of L o.

Since t (M') - - t (M) , no section becomes completed, but ~r becomes
invisible and has to be deleted from all the lists it appears on. (First we
delete it from L o. If L 0 is now empty and L 1 4: 0 , then, by Lemma l(c), we
have also to delete top L 1 . If L 1 is empty we delete top LzetC.) Furthermore,
if 2tl is the representative of a completed d-section (d > 0), then this (old
rightmost) seetion is no longer rightmost. Thus, by the invariant, the (d - 1)-
markers of the new rightmost section have to be recomputed.

Example continued. C 9 is a pop configuration. We can compute the
marker of Clo from the markers of C9 and Cs. Store Clo's marker in R and
change lists L~, L} to

d L;, L~,

0 C 7

1 C o C 7
2 Co
3 Co

C10 is a push-configuration and so is C l l . The move from Clo to C1~
completes a O-section and the move from Cll to C12 completes O-section C~1,

42 B R A U N M f J H L E T AL.

1-section C g - C n , 2-section C4-Cll and 3-section Co-CII. Lists L}, L} are
changed to

a L~ L~

0 C1o, Cll
1 C7, C~o
2 Co, C 7
3 C o

Also the marker corresponding to CI2 is stored in R; C12 is a pop-
configuration. We remove CII from L~ and compute Ci3's marker from R
and Cll. Next we compute the marker corresponding to C14 from R (which
contains C,3) and Clo. Also we remove C~o from L~ and L~. At this point
no marker in 1-section C9-C1, is visible any longer and hence 1-section
C9-C~ is not rightmost any longer. Rather, 1-section C4-C8 becomes
rightmost.

Let d be maximal, such that 2Q is a d-marker (see Fig. 3). Then ~Q is on
L a, but by Lemrna l(c), ~Q is not bottom L a. Thus d is the highest rank such
that h~r is on La, and the lowest rank such that, after deleting 2hr, L d is not
empty. The recomputation that restores the markers of the rightmost i-
sections (i~< d) starts from Mo, the new top-marker of L_a, which is the
representative of the d-section containing the c t (M ') = ct(M). This reeorn-

putation has rank d.

The following instructions simulate a pop-step:

compute the new marker from R and top L 0 and store it in R;
let d be minimal such that L a contains more than one marker;
for i = 0 to d do delete top Li;
i fd > 0 then perform a recomputation of rank d starting from top L d up to the

cut of M' using the algorithm recursively
I7

In our example we have M 0 = C 7 and ct(M') = C v. The recomputation from
C v to C 7 is thus trivial; we only have to store the marker corresponding to
C 7 in a copy of register R.

h
I
I

cu t ~i

/ l I M 0 l--d-section I d-sectlon

I mew rightmost 1 I I
I d-section I I

t

FIGURE 3

DETERMINISTIC CONTEXT FREE LANGUAGES 43

(c) The main computation stops, if no next step exists. A recom-
putation stops, if the cut of M' is computed and stored in R. Then the cut is
stored on L 0 and all current sections of the recomputation are completed, If
m is the rank of the recomputation, the current sections of rank 0, 1 m - 1
have to be completed before we resume the calling procedure at M' (their
sections are rightmost M'):

L 0 := L o concat R;
f o r i := O to m - l do i f i < m - l then

L~'+ ~ := L ~+ 1 concat bottom L ~ f i
L~ := Lc; L~ := empty

od

Example continued. In our example, the recomputation stops with C7 in
register R. We can now return to the main computation. This will complete
0-section C4-C 7. Hence lists L~, L~ are changed to

d Lrd L d

0 C7
1 Cv

2 Co, C7
3 C o

The complete procedure consists of these three steps. It uses the parameters
M (=starting marker), m (=rank of recomputation), and up (=time of latest
marker to be computed).

The main procedure is:

begin M o := (q0, X0, 1, 1, 0, 0);
call sim(M 0, oo, ~)

end

The simulation is done in a recursive procedure sim.

push-step

procedure sim(M, m, up)
begin R :=M;

while t(R) < up
do co the invariant refers to this point;

t fR is a push-marker
then Leo :-Leo eoncat R;

compute new R from R;
i f t (R) =- 0 (mod e)

. / then let d be maximal with t (R) =- 0 (rood ca);
ena ~ f o r i f r o m 0 to d -- 1
oi a c c
• ~ d o L i + 1 :=Li+~ c o n c a t b o t t o m L C ;

a-sec- ~ r c c

tion] L i :=L~;L~ := empty

~f i ; od

44 BRAUNMUHL ET AL.

/fR is a pop-marker
then do compute new R from R and top L0;

let dbe minimal with]Ld[>/2;
for i from 0 to d do delete top Lj od;

pop-step recompu-(
tation I tfd > 0 then call sire(top L d, d, ct(R))fi

od

end of /fno step follows R
the then if q(R) is accepting then accept else rejectfi

simulation fi
od;

[L~ :=LeoeoneatR;
completion I for i from 0 to m - 1

ofa) do if i < m - 1 then L ~ + 1 :=L~+ 1 eoneat bottom L ~i f i ;
recomputation ~ L~ := L~; L~ := empty

od
end

The next l emma gives the space complexity of the algorithm.

LEMMA

(a)
(b)
(c)

P r o o f

e~4lwl<
not used.

(b)

2. Suppose n = l w [, r = [logan], e ~ 2 .

Only the lists L0,..., L r are used.

The depth o f recursion o f sire is at mos t r.

The space complexi ty o f the algori thm is O(e • r . log n).

(a) Comp(P , w) contains at most [w[push configurations. Since
e~+ 2, no section of rank r + 1 is completed and hence Lr+ l are

If a marker of rank d ~< r becomes invisible, a section of rank d is
recomputed, but not the representative of this section (which is the starting
marker of the recomputat ion). Thus only markers of rank d ' < d are recom-
puted and during this recomputat ion only markers of rank at most d - 1 can
become invisible.

(c) A marker is stored on space O(log n). Every list L~, L~ contains
up to e markers. In addition, every nested call of sim requires local space
O(log n). Thus S (n) = O(2e • r . log n + r . log n) = O(e • r . log n).

The time complexity is derived from a bound on the number of sections to be
computed (a d-section is computed if its representative is set on L~ or if it is
current at the end of the simulation).

LEMMA 3. Suppose d = [n/er], n, r as in L e m m a 2.

(a) For every rank d < r at most 2 • ~ . (2e) r -d sections o f rank d are

computed (or recomputed).

DETERMINISTIC CONTEXT FREE LANGUAGES 45

(b) The number of PDA-steps computed during the simulation is at
most O(n. 2r).

(c) The time complexity on a logarithmic cost RAM (Cook, 1972) is
O(n. 2 r. log n). This time bound also applies to a Turing machine with
random access input (that is, a multitape Turing machine with a special
index tape on which the position of the next input symbol to be accessed is
written).

Proof. (a) By induction on (r - d). Every marker that is set onto some
list L i may become invisible and give rise to one recomputation of rank i.

(d = r) The computation contains at most ~ sections of rank r. Thus
(including the recomputations of rank r, when their representatives become
invisible) at most 2~ sections of rank r are computed.

(d - 1) Any section of rank d contains e sections of rank d - 1. Their
representatives are laid down on L a_l and may give rise to a recomputation
of rank d - 1. Since by the induction hypothesis the number of d-sections is
at most 2g(2e) r a, at most 2e. 2~(2e)~-a= 2~(2e) t-(a-l) (d-1)-sect ions
are computed.

(b) By (a) the number of simulated push-steps (=number of 0-sections)
is at most 2~(2e) r=g-e r . 2 r+l = O (n - 2 r) . The number of pop-steps
cannot be greater than the number of push steps.

(c) The only statements that cost more than O(log n) are the for
statements. Their cost depends on the rank d of the section that is completed
or of the recomputation that is started and is O(d • e • log n). Thus the total
costs for these statements or (Zd=l ~ (2e) ~-a e d log n) 0(2 r n O r ~ • •

log n • Y~¢=1 e .d/(2e) a) = O(n. 2 ~. log n). II

4. IMPROVED ALGORITHM

The improved algorithm differs from the basic algorithm mainly in the
treatment of markers of rank 0. We will show how to treat rank 0 markers
such that:

(1) A rank 0 marker takes space O(1) instead of space O(log n) as for
the other markers. (This will allow us to increase the length of 1-sections
without destroying the space bound, thereby reducing the number of
recursive calls.)

(2) A 1-section can be simulated in time linear in its length instead of
time O(e log n) as in the basic algorithms. Since most of the time is spent in
simulating 1-sections this will, together with the observation in (1), improve
the time bound.

46 BRAUNMUHL ET AL.

The details are as follows:

(1) For markers of rank 0 (except for bottom L~ and the current
register R) only the stack symbol is stored. Moreover, a 1-section consists of
s (instead of e) consecutive 0-sections. Here s is the intended space bound of
the algorithm. For d) 2, a d-section consists of e (d - 1)-sections. Parameter
e is chosen below as e = [s(n)/log 2 n]. Note that the markers of rank 0 form
a contiguous top part of the pushdown store.

(2) The current register R holds the current values of q, X, v, and t.
Note that ct is not stored. For C := bottom L~ we store the state q and infor-
mation about v(C) and t(C). Instead of storing v(C) and t(C) directly we
store Av = v = v(C) and At = t - t(C), and only compute v(C) and t(C) when
a 1-section is completed.

Storing v(C) and t(C) implicity is motivated as follows. Note that v(C)
and t(C) can change frequently during the simulation of a 1-section, namely
whenever L~ becomes empty. If v(C) and t(C) were stored explicitly then
every such change would cost O(log n) and 1-sections could not possibly be
simulated in linear time. With the implicit storage scheme v and t are only
increased, and Av and At are only increased and sometimes reset to zero. The
following fact is well known.

FACT. Let N ~ ~. Counting from 0 to N in binary takes time O(N) on a
TM.

Thus the implicit storage scheme allows us to handle quantities v, t, Av,
and At in average time O(1) per simulated move.

(3) Whenever a 1-section is completed we need to flesh out leftmost
L~ to a complete marker C, i.e., we need to compute q(C), X(C), v(C), t(C),
h(C), and ct(C). Quantities q(C), x (c) , v(C), and t(C) are readily available
in time O(log n). Furthermore, h(C) can be computed as h(top L 1) + [L~[in
time O(s + log n). Note that IL~[~< s. However, ct(C) is not available and
cannot be computed. For this reason we redefine the cut time of a marker as

ct(M) = push-time of rightmost 1-marker preceding M.

With this new definition of cut-time we can compute ct(C) as t (top L1). The
discussion above is captured in the following definition of function leftmost
(M is the starting marker)

bottomL~ if i > 0

leftmost(L~) := (q(C), X(C), v - A v , h(top L1) + IL~o[, t - A t , t(top L1))
if i = 0 and L~4: empty

M if i = 0 and L 1= empty.

DETERMINISTIC CONTEXT FREE LANGUAGES 47

The modification in the definition of cut-time forces us to look for a new
criterion for the end of a recomputation. If the cut marker (i.e., the 1-marker
with time up) is computed, continue the recomputation to the end of the 1-
section (in the basic algorithm we stopped when the true cut marker was
reached). Then delete the part of L 0 that is invisible from the current marker
of the calling procedure. To this end we add its height to the parameter list
of sim,.

The new main procedure is

push-step

pop-step

beg inM o := (qo,X0, 1, i, O, 0);
call s ims(M o, oo, oo, oo)

end

procedure sims(M, up, m, h0)
begin q := q(M); X :=X(M); v := v(M); t := t(M); rt := t mod s;

C := (q, X); Av := O; At := O;
co Ccontains q, X of the rightmost lowest marker M~ of the current

1-section, Av = v - v(M O, At = t - t(Ml);
while t < up or rt < s - 1 or a pop follows
do Ifa push follows

then tfLeo = empty
then C := (q ,X); Av := O; At := 0

fi;
L~ := Leo eoneat X;

compute new q, X , v, Av from q, X, v;
t : = t + 1 ; A t : = A t + 1;rt : = r t + 1;
/ f r t = S
then let d b e maximal with t --- 0 (rood s • ed);

end f o r i f rom 0 to d do L ~ + 1 := L ~i + ~ coneat
of a leftmost L~;

r , c. c . _ (d + 1)- L t . = L i , L i .-- empty
sec- od;
tion rt := 0

jr
jr;
~ p o p follows
then compute new q, v, dv from q, X, v;

X :-- top L0; delete top L0;
~ L 0 = empty

then h :=h(top L~); up' := ct(top LI);
start let dbe minimal with ILa] >/2;
of a f o r i from 1 to d do delete top L i od;

recomp, call sims(to p Ld, up ' , d, h)
ly

jr;
end of the t ~ n o step follows

simulation ~ then i fq is accepting then accept else rejectfi

jr
od;

643/56/1-2-4

48 BRAUNMUHL ET AL.

end of a
recomp.

end

/ L0:= L o concat X;
for i from O to m - 1 do if i < m - 1

then L T + 1 := L ~ + 1 eoneat
leftmost L c

L~ := LC; L c := empty

od;
for h from h(top L1) +]L0] - 1 to h o step -1

do delete top
L o od

The same argument as for Lemma 3 shows that O ((n / s) . 2 r) 1-sections
are computed (r = [loge(n/s)J + 1). The lists L I Lr are updated only
before the beginning of a recomputation and at the end of a 1-section; this
updating costs O(s + e . r • log n) steps. The counters t, rt, At, Av are only
increased and the costs for updating C are O(1); therefore the simulation of
the push steps of a 1-section costs O(s) steps. If we add the costs of the pop-
steps to the costs of the corresponding push-steps, the total costs are
O((n / s) . 2 ~ • (s + e . r . log n)). Thus we have

LEMMA 4. Suppose r = lloge(n/s)] + 1, e • r . log n <. s. Then the space

and t ime complexit ies o f sim s on a logari thmic cost R A M or a TM with

random access input are

Space(n) = O(s), Time(n) = O (n . 2r). |

We call a function s acceptable if Is(n)] is tape constructable in time O(n),

n > / s (n)) 2 log2n for almost all n, and s is nondecreasing. (For example
2 log 2 n, n 1/log log,, n , are acceptable.)

THEOREM 1. I f s is acceptable, then every D C F L can be recognized on a

mult i tape TM with random-access input s imul taneously in t ime
O (n . n 1/tl°g stn)-ZJog log n)) and space O(s(n)) .

Proof. Choose e -- [s(n)/ log 2 n], r = [loge(n/s(n)) j + 1. Then

e . r . log n ~ e . log 2 n ~ 2s(n)

and

r -- 1 4 log~(n/s(n)) = (log n - log s (n)) / log e

(log n - log s (n)) / (log s(n) - 2 log log n)

< log n/(log s(n) -- 2 log log n).

DETERMINISTIC CONTEXT FREE LANGUAGES 49

By Lemma 4, Space(n) = O(s(n)), Time(n) = O (U . n), and

2 r < 2 • 2 l°gn/(l°gs(n)-zl°gl°gn)

= 2 • n 1 / (l ° g s (n) - z l ° g l ° g n) m

EXAMPLE 1.

Space(n) = k . log 2 n, k >/2

e = k, r -- [log n/log k]

Time(n) = O(n 1+ 1/1og k)

For any e > 0, DCFL _ Time-Space(n ~+~, log 2 n).

EXAMPLE 2.

Space(n) = n 1/k,

e = [n]/k/log 2 n],

r = log n~k-l~/k/[log(nl/k/log 2 n)] + 1 ~< k + 1,

Time(n) - 0(2 ~. n).

For any e > 0, DCFL _c Time-Space(n, n~).

EXAMPLE 3.

Space(n) = 2 I°vq~ • log 2 n

e = 2 r I°v'Y6~]=nfl/ Iv%~l, r = [~ J + l .

Time(n) = O(n . 2r) = O(n 1+ 1/io9~),

Time(n) • Space(n) = O(n 1+2/1°9~ • log z n) (minimal space-time product).

In the following we consider ordinary multitape Turing machines with a 2-
way input tape. Lemma 5 gives a lower bound for this case that is much
greater than the upper bound of Theorem 1.

LEMMA 5. I f DCFL ~ Time-Space(t(n), s(n)), then

n = o (t (n) , s(n)) .

Proof A standard argument on crossing sequences shows for the
language {wc~] w E {a, b}* } and one-tape TMs, Time(n) > /e . nZ/log [Q[,
e > 0, where Q is the set of states. Thus for a multitape TM and log n ~<

50 BRAUNMUHL ET AL.

S(n) ~ n, T(n) >/e I • nZ/log(I QI " cS(")) >/e. n2/S(n), e > 0. (See Cobham,
1966.) |

On a multitape TM, algorithm sim s takes much time for the moves of the
input head at the beginning and the end of a recomputation. This time is
estimated in the next lemma.

LEMMA 6. Suppose e > 2. Then during a simulation, the number of
moves of the input head is at most O(n2/s).

Proof During a computat ion of n push-steps, at most n/s markers of
rank 1 or greater are computed, not counting recomputations. Thus at most
n/s recomputations are caused by this computation. Before the beginning of
a recomputation the input head is moved to the input position of the starting
marker and at the end it is moved back from the input position of the cut to
the old one. Thus for every call of sim s up to 2n moves have to be done (not
counting the moves inside the recursive call). Thus the number of these
moves is 2nZ/s. The same argument yields O(I2/s) moves for every recom-
putation of length l.

Suppose 1 < 4 = rn/(s • er - I)] ~< e. The same argument as for Lemma 3(a)
shows that at most #(2e) r -d markers of rank d are set on L d (d>~ 1). Any of
these may cause a recomputation of rank d and length s . ea-l<~
2n/(#. er-d). Thus the number of all input moves is

s T 7 - s e

= O(n2/s). |

THEOREM 2. Suppose s is acceptable. Then every D C F L can be
recognized on a multitape TM simultaneously in time O(n2/s(n)) and space
O(s(n)) and this time bound is optimal up to a constant factor. |

RECEIVED: June 15, 1982; ACCEPTED: April 6, 1983

REFERENCES

BRAUNM/.JHL B. VON AND VERBEEK, R. (1980), A recognition algorithm for deterministic
CFLs optimal in time and space, in "Proceedings, 21st Annual Symposium on Foun-
dations of Computer Science," pp. 411-420.

COBHAM, A. (1966), The recognition problem for the set of perfect squares, in "IEEE
Conference Record of 1966 Seventh Annual Symposium on Switching and Automata
Theory," pp. 78-87.

COOK, S. (1972), Linear time simulation of deterministic two-way pushdown automata,
Inform. Process. Lett. 71, 85-80.

DETERMINISTIC CONTEXT FREE LANGUAGES 5 1

COOK, S. (1979), Deterministic CFLs are accepted simultaneously in polynomial time and log
squared space, in "Proceedings, 1 lth Annual ACM Symposium on Theory of Computing,"
pp. 338-345.

COOK, S. (1981), Towards a complexity theory of synchronous parallel computation, L'En-
seignement Math~matique, Vol. XXVII, fasc. 1-2, pp. 99-124.

DYMOND, P., AND COOK, S. (1980), Hardware complexity and parallel computation, in
"Proceedings, 21st Annual Symposium on Foundations of Computer Science," pp. 360-
372.

HoNa, J. W. (1980), On similarity and duality of computation, in "Proceedings, 21st Annual
Symposium on Foundations of Computer Science," pp. 348-359.

HOPCROFT, J. AND ULLMAN, J. (1979), "Introduction to Automata Theory, Languages, and
Computation," Addison-Wesley, Reading, Mass.

LEWIS, P., STEARNS, R., AND HARTMANIS, J. (1965), Memory bounds for recognition of
context-free and context-sensitive languages "IEEE Conference Record on Switching
Circuit Theory and Logical Design," pp. 191-202.

MEHLHORN, K. (1980), Pebbling mountain ranges and its application to DCFL recognition,
in "Proceedings, 7th International Colloquium on Automata, Languages and
Programming," Lecture Notes in Computer Science, Vol. 85, pp. 422-435.

P1PPENGER, N. (1979), On simultaneous resource bounds (preliminary version), in
"Proceedings, 20th Annual Symposium on Foundations of Computer Science," pp. 307-
311.

Ruzzo, W. L. (1979), On uniform circuit complexity (extended abstract), in "Proceedings,
20th Annual Symposium on Foundations of Computer Science," pp. 312-318.

SUDBOROUGH, I. H. (1978), On the tape complexity of deterministic context-free languages, J.
Assoc. Comput. Much. 25 (3), 405-414.

SUDBOROUGH, I. H. (1980), Efficent algorithms for path system problems and applications to
alternating time-space complexity classes, in "Proceedings, 21st Annual Symposium on
Foundations of Computer Science," pp. 62-73.

VERBEEK, R. (1981), Time-space tradeoffs for general recursion, in "Proceedings, 22nd
Annual Symposium on Foundations of Computer Science," pp. 228-234.

