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Let S(n) be a nice space bound such that log 2 n <~ S(n) <~ n. Then every DCFL is 
recognized by a multitape Turing machine simultaneously in time O(n2/S(n)) and 
space O(S(n)), and this time bound is optimal. If the machine is allowed a random 
access input, then the time bound can be improved so that the time-space product 
is O(n~+e). 

1. I N T R O D U C T I O N  

It is well known that  each context free language ( C F L )  can be recognized 
by an algori thm using polynomia l  t ime and n 2 space (Hopcrof t  and Ullman,  
1979), and by quite a different a lgori thm using superpolynomial  t ime and 
log2n  space (Lewis et al., 1965). However,  no algori thm is known for the 
recognit ion of  an arbi t rary  C F L  in polynomia l  t ime and sublinear space 
simultaneously.  

Fo r  each deterministic C F L  (DCFL) ,  however, there is a recognit ion 
algori thm which runs in polynomial  t ime and log 2 n space simultaneously,  as 
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first shown by Cook (1979). This puts each DCFL in the class SC of 
languages recognizable simultaneously in polynomial time and polynomial in 
log n space (Cook, 1981). In particular, Sudborough's complete language 
(1978) for the class of DCFLs is in SC, and this is perhaps the most natural 
language known to be in SC but not known to be recognizable in space 
log n. (See Sudborough, 1978) for a discussion of whether all DCFLs can be 
recognized in log n space.) In Sudborough (1980), the author describes a 
family of languages complete for SC, and these provide other examples. But 
these complete language are "contrived" in the sense that the function log k n 
must be used explicitly to describe them. 

Although we do not know whether all CFLs are in SC, Ruzzo (1979) has 
shown they are all in the class NC dual to SC (Pippenger, 1979; Dymond 
and Cook, 1980; Hong, 1980). Here NC is the class of languages accepted 
by a multitape Turing machine in polynomial time and polynomial in log n 
reversals. 

Returning to DCFLs, Cook (1979) proved a time upper bound of 
n 5 logZn and a space upper bound of logZn for his original recognition 
algorithm. Mehlhorn (1980) improved the time bound to n z'Sv with the same 
space bound by developing another algorithm for machines with a random 
access input. (More generally, he described a time-space tradeoff for such 
machines.) Independently von Braunmfihl and Verbeek (1980) found a 
modification of Cook's algorithm which works on Turing machines in time 
nZ/log 2 n and space log 2 n (more generally with a time-space product of n 2) 
and on machines with a random access input in time n 1+~ and space logZn 
(or in linear time and space n ~, etc.) This result is optimal in the case of 
Turing machines, and for machines with random access input Verbeek 
(1981) has shown that the algorithm is optimal in the class of "pebbling 
strategies." 

In the present paper a new algorithm for DCFL recognition is presented 
with the same time and space complexity for both machine models as the 
one in von Braunmfihl and Verbeek (1980). It connects the ideas in 
Mehlhorn (1980) and von Braunmfihl and Verbeek (1982), and allows an 
easier proof of both correctness and complexity. 

The paper is organized as follows. Section 2 presents basic definitions, and 
Section 3 presents a simplified version of the recognition algorithm which is 
not quite optimal. Section 4 presents the final improved algorithm, yielding 
the time and space bounds stated in Theorem 1 for machines with random 
access input and in Theorem 2 for Turing machines. 
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2. BASIC DEFINITIONS 

We consider deterministic PDAs with the following restrictions: 

(1) Every step is a push step (exactly one symbol is pushed onto the 
stack) or a pop step (one symbol is popped). 

(2) Any computation with input w contains at most I w] push steps. 
Obviously every DCFL is accepted by such a DPDA P. 

A configuration of P is given by a triple C = (q~ IV, v) = (state, stack 
content, position of the input head). Let Comp(P, w) = Co, C1 ..... C m be the 
computation of P with input w. C i is a push-configuration if the step from C i 
to Cg+ 1 is a push move. C i is called pop-configuration if C i is followed by a 
pop move. The push-time (or short time) of C~ is the number of push- 
configurations Cj before C i (i.e., with j < i). (Thus a pop-configuration has 
the same push-time as the succeeding push-configuration.) We intend to 
describe a divide-and-conquer strategy for Comp(P, w). 

Given an integer e/> 2 (to be determined later from [ w] and the intended 
space complexity) we define a section as a consecutive part of Comp(P, w). 
All configurations with the same push-time form a section of  rank O. Thus a 
0-section consists of a (maybe) empty sequence of pop moves followed by 
one push move. A section of  rank d (or d-section) consists of e consecutive 
sections of rank d - 1  and hence contains exactly e a push moves. Thus 
the ith d-section contains exactly all configurations C with pushtime t, 
(i--  1). e a <~ t < i . e d. 

The configuration with lowest stack height in a section (if there is more 
than one, the latest) is called the representative of that section. The represen- 
tative of a d-section is a d-configuration (the 0-configurations are just the 
push-configurations). A configuration C i is visible from C; iff 

(1) i <j ,  
(2) the stack height of all Ck, i < k ~<j, is greater than that of Ci. 

The cut of C is the last configuration visible from C. (Thus the cut is the last 
push-configuration before C with stack-height h--  1, where h is the stack 
height of C. If W X  is the stack content of C, then the stack of the cut 
contains exactly W.) 

A section S is called current with respect to C, if C is in S. S is completed 
if C is after S. A d-section S is rightmost with respect to C (related to time 
to), if the 0-section with time t o is in or before S and S is the last completed 
d-section whose representative is visible from C. In other words d-section S 
is rightmost with respect to C if S is completed at C and visible from C and 
there is no d-section S' which is to the right of S, and which is also 
completed at C and visible from C. (Thus the cut of C is the representative 
of the rightmost 0-section with respect to C.) 
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EXAMPLE. We illustrate these concepts with an example (see Fig. 1). Let 
e = 2 .  

0-sections: 

1-sections: 

2-sections: 

3-sections: 

C O, C 1 , C 2, C 3 , C4-C 7 , C s , C9-Ci0, Cll,  C12-C14, C15, 

Co-CI, C2-C3, C4-C 8, C9-C11, C12-C15, 

C0-C3, C4-Cll,  C12-C15, 

Co-Cll, Clz-CIs; 

C 7 is representative of 0-section C4-C v, 1-section C4-C8, 2-section C4-C11, 

It is not representative of 3-section C0-Cll; Co is the representative of 3- 
section Co-Cll. Configurations Co, C7, and C10 are visible from Cll. Let 
C--C11. Then 1-sections Co-C1, C2-C3, C4-C8 are completed at C and 1- 
section Cg-Cll is current at C. Also the rightmost d-section with respect to 
C is C9-CIo for d = 0, C4-C8 for d = 1, and Co-C3 for d = 2. There is no 
rightmost 3-section with respect to C related to time to -- 0. 

Since a configuration in general requires space n, a space-efficient 
simulation cannot store configurations. For the simulation of a push-step we 
need only the configuration's surface (q, X, v) = (state, top of the stack, input 
position). After a pop step the new surface contains the stack symbol below 
the top, which is the stack symbol in the surface of the cut. If the cut 
(surface) is not stored, we must repeat a part of the computation up to the 
cut. Such reeomputations can be nested. The key to our simulation is a 
strategy to remember some of the surfaces in order to avoid too many long 
recomputations. 

In addition to the surfaces some information necessary for the recom- 
putations is stored: a marker M =  (q, X, v, h, t, ct) is an extract of a 
configuration containing state, top symbol, input position, stack height, push- 
time, and push-time of the cut. If M is a marker then we use q(M), X(M), 
v(M), h(M), t(M), ct(M) to denote the state, top symbol, input position, 
stack height, push-time and push-time of the cut of marker M. 
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In an obvious way we apply the terms computation, push-marker, pop- 
markers, section, rank, representative, visible, cut, current, etc. to markers. 
Just as for surfaces, the next marker M'  can be obtained from M and the cut 
of M: 

i f M is a push-marker, then q(M'), v(M'), X(M') according to the 
move of P, h(M') = h(M) + 1, t(M') = t(M) + 1, ct(M') = 
t(M), 

i f M is a pop-marker, then q(M'), v(M') according to the move of 
P, X(M') from the cut, h(M')= h (M) -  1, t ( M ' ) =  t(M), 
ct(M') --- ct of the cut. 

(The stack of the configuration corresponding to M' is the same as the stack 
of the cut-configuration.) 

3. THE BASIC ALGORITHM 

For the simulation of a pop-step the stored markers are used in two 
different ways: If the cut is stored we can obtain the next marker from the 
preceding one and the cut. If not, the last stored marker serves as a starting 
point for the recomputation. 

Our algorithm will have the following (storage) property that guarantees 
the correctness of the simulation. 

Invariant. Consider a (re-) computation with starting time t o and end 
time t 1. Suppose M is the last computed marker. Let S be any d-section. 
Then the representative M'  of S is in storage iff 

(1) M'  is visible from M and S is completed at M, and 

(2) the enclosing ( d +  1)-section is current or rightmost wrt. M and 
not before t o . 

Example continued. Let to=  0, t 1 = 15 and suppose that the marker 
corresponding to C 7 was computed last. Then we have: 

(1) the representatives of 0-sections C 1, C2, C3,.., are not stored 
because they are not visible from M; 

(2) the representative of 0-section C o is stored because the enclosing 
1-section Co-C1 is rightmost with respect to C6; 

(3) the representative of 1-section Co-C a (which is Co) is stored 
because the enclosing 2-section Co-C 3 is rightmost. 

(4) the representative of 2-section Co-C 3 (which is Co) is stored 
because the enclosing 3-section C0-Cll is current: 
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Enclosing (d + 1)-section 
Thus we store is rightmost Current 

0-representatives C o 
1-representatives C O 
2-representatives C O 
3-representatives Co 

The cut of M is the last visible marker and thus is contained in the current 
1-section or (if no marker of that section is visible from M) in the rightmost 
1-section. Hence an algorithm satisfying the invariant correctly simulates 
Comp(P, w). 

The invariant suggests the following storage structure: For every rank 
d/> 0 (up to Llog e Iwl]) we provide two lists: 

L~ for the d-markers of the rightmost (d + 1)-section, 

L} for the d-markers of the current (d + 1)-section. 

The markers on the lists are ordered according to their time. L a is the 
concatenation of L~ and L}. If L is a list then bottom (L) is the marker with 
smallest time and top (L) is the marker with largest time on L. 

LEMMA 1. For every rank d >/0, every computation (starting time to), 
and every time in that computation: 

(a) the markers on L a, after t o, are ordered according to strictly 
increasing height h, 

(b) top La is representative of  the rightmost d-section (related to to), 

(c) bottom Lra = top Ld+ 1, 

(d) every list contains at most e markers. 

Proof (a) All markers on L a are visible. Thus a later marker has 
greater height. Therefore increasing time implies increasing height. 

(b) Obvious. 

(e) If L~ 4: 0,  bottom L a = bottom L~ is the lowest d-marker of the 
rightmost ( d +  1)-section and hence its representative is contained in the 
current or rightmost (d + 2)-section. Since it is the latest visible (d + 1)- 
marker in a completed ( d +  1)-section, it is top La+ 1. If L~ = 0,  no marker 
of a completed (d + 1)-section is visible and hence Ld+I= 0.  

(d) By the definition of ( d +  1)-section, it contains exactly e d- 
sections. Hence it contains at most e visible d-markers. I 
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Now it is possible to derive the algorithm from the invariant. The current 
marker is not the representative of a complete 0-section. Thus we store it in a 
separate register R. 

(a) Suppose R contains a push-marker M (see Fig. 2). Then it is the 
last marker (and representative) of a 0-section which is now completed. Thus 
R has to be stored on L 0. The next marker M '  can be computed from M and 
is stored in R. It is possible that the next marker belongs not only to a new 
0-section but also to a new d-section for some d > 0. In this case the old 
current section is now completed and hence rightmost. Suppose d is 
maximal, such that a d-section is complted, d > 0 (i.e., t ( M ' )  - 0 (mod ed), 

t ( M ' )  ~ 0 (mod ed+l)).  Then, by the invariant, for every i <  d the/-markers  
of the old rightmost (i + 1)-section have to be deleted. The representative of 
the new rightmost ( i +  1)-section has to be added to L~+~. Thus the 
following instructions simulate a push-step: 

L~ := L~o eoncat R; 
compute new R from R; 
i f  t(R ) ==_ 0 (mod e) 
then let d be maximal with t(R) ~ 0 (mode d) 

for i from O to d - 1 
do L~ := L~; L c := empty; 

L~+ ~ := L~+, concat bottom L7 
od 

E x a m p l e  continued. C 7 is a push-marker. The push-move from C 7 to C8 
completes 0-section C 4 - C  7 (with representative C7). It does not complete a 1- 
section. Hence the marker corresponding to C8 is stored in R and lists L~, 
L~ are changed to 
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d L,~ L,~ 

0 Co Cv 
1 Co 
2 Co 
3 Co 

C s is a push-marker. The push-move from C 8 to C 9 completes 0-section C 8 
and 1-section C4-C s. It does not complete a 2-section. Hence the marker 
corresponding to C 9 is stored in R and lists L~, L~ are changed to 

d L~ L~ 

0 C 7, C 8 

1 Co C7 
2 C o 

3 C o 

(b) Suppose R contains a pop-marker M. The next marker M'  can be 
computed from M and )Q, the cut of M, which is the last push-marker visible 
from M and hence stored at the top of L o. 

Since t (M' ) - - t (M) ,  no section becomes completed, but ~r becomes 
invisible and has to be deleted from all the lists it appears on. (First we 
delete it from L o. If L 0 is now empty and L 1 4: 0 ,  then, by Lemma l(c), we 
have also to delete top L 1 . If L 1 is empty we delete top LzetC. ) Furthermore, 
if 2tl is the representative of a completed d-section (d > 0), then this (old 
rightmost) seetion is no longer rightmost. Thus, by the invariant, the ( d -  1)- 
markers of the new rightmost section have to be recomputed. 

Example continued. C 9 is a pop configuration. We can compute the 
marker of Clo from the markers of C9 and Cs. Store Clo's marker in R and 
change lists L~, L} to 

d L;, L~, 

0 C 7 

1 C o C 7 
2 Co 
3 Co 

C10 is a push-configuration and so is C l l .  The move from Clo to C1~ 
completes a O-section and the move from Cll to C12 completes O-section C~1, 
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1-section C g - C n ,  2-section C4-Cll and 3-section Co-CII.  Lists L}, L} are 
changed to 

a L~ L~ 

0 C1o, Cll 
1 C7, C~o 
2 Co, C 7 
3 C o 

Also the marker corresponding to CI2 is stored in R; C12 is a pop- 
configuration. We remove CII from L~ and compute Ci3's marker from R 
and Cll.  Next we compute the marker corresponding to C14 from R (which 
contains C,3 ) and Clo. Also we remove C~o from L~ and L~. At this point 
no marker in 1-section C9-C1, is visible any longer and hence 1-section 
C9-C~ is not rightmost any longer. Rather, 1-section C4-C8 becomes 
rightmost. 

Let d be maximal, such that 2Q is a d-marker (see Fig. 3). Then ~Q is on 
L a, but by Lemrna l(c), ~Q is not bottom L a. Thus d is the highest rank such 
that h~r is on La, and the lowest rank such that, after deleting 2hr, L d is not 
empty. The recomputation that restores the markers of the rightmost i- 
sections (i~< d) starts from Mo, the new top-marker of L_a, which is the 
representative of the d-section containing the c t ( M ' ) =  ct(M). This reeorn- 

putation has rank d. 

The following instructions simulate a pop-step: 

compute the new marker from R and top L 0 and store it in R; 
let d be minimal such that L a contains more than one marker; 
for i = 0 to d do delete top Li; 
i fd > 0 then perform a recomputation of rank d starting from top L d up to the 

cut of M' using the algorithm recursively 
I7 

In our example we have M 0 = C 7 and ct(M')  = C v. The recomputation from 
C v to C 7 is thus trivial; we only have to store the marker corresponding to 
C 7 in a copy of register R. 

h 
I 
I 

cu t  ~i 

/ l I M 0 l--d-section I d-sectlon 

I mew rightmost 1 I I 
I d-section I I 

t 

FIGURE 3 
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(c) The main computation stops, if no next step exists. A recom- 
putation stops, if the cut of M' is computed and stored in R. Then the cut is 
stored on L 0 and all current sections of the recomputation are completed, If 
m is the rank of the recomputation, the current sections of rank 0, 1 ..... m - 1 
have to be completed before we resume the calling procedure at M' (their 
sections are rightmost M'): 

L 0 := L o concat R; 
f o r  i := O to m - l do i f  i < m - l then 

L~'+ ~ := L ~+ 1 concat bottom L ~ f i  
L~ := Lc; L~ := empty 

od 

Example continued. In our example, the recomputation stops with C7 in 
register R. We can now return to the main computation. This will complete 
0-section C4-C 7. Hence lists L~, L~ are changed to 

d Lrd L d 

0 C7 
1 Cv 

2 Co, C7 
3 C o 

The complete procedure consists of these three steps. It uses the parameters 
M (=starting marker), m (=rank of recomputation), and up (=time of latest 
marker to be computed). 

The main procedure is: 

begin M o := (q0, X0, 1, 1, 0, 0); 
call sim(M 0, oo, ~ )  

end 

The simulation is done in a recursive procedure sim. 

push-step 

procedure sim(M, m, up) 
begin R :=M; 

while t(R ) < up 
do co the invariant refers to this point; 

t fR is a push-marker 
then Leo :-Leo eoncat R;  

compute new R from R; 
i f  t (R ) =- 0 (mod e) 

. / then let d be maximal with t (R)  =- 0 (rood ca); 
ena ~ f o r  i f r o m  0 to d -- 1 
oi a c c 
• ~ d o L i +  1 :=Li+~ c o n c a t b o t t o m L C ;  

a-sec- ~ r c c 

tion ] L i :=L~;L~ := empty 

~f i ;  od 
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/fR is a pop-marker 
then do compute new R from R and top L0; 

let dbe minimal with ]Ld[ >/2; 
for i from 0 to d do delete top Lj od; 

pop-step recompu-( 
tation I tfd > 0 then call sire(top L d, d, ct(R))fi 

od 

end of /fno step follows R 
the then if q(R) is accepting then accept else rejectfi 

simulation fi 
od; 

[ L~ :=LeoeoneatR; 
completion I for i from 0 to m - 1 

ofa ) do if i < m - 1 then L ~ + 1 :=L~+ 1 eoneat bottom L ~i f i  ; 
recomputation ~ L~ := L~; L~ := empty 

od 
end 

The next l emma gives the space complexity of  the algorithm. 

LEMMA 

(a) 
(b) 
(c) 

P r o o f  

e~4lwl< 
not used. 

(b) 

2. Suppose  n = l w [ ,  r =  [logan], e ~ 2 .  

Only the lists L0,..., L r are used. 

The depth o f  recursion o f  sire is at  mos t  r. 

The space complexi ty  o f  the algori thm is O(e • r .  log n). 

(a) Comp(P ,  w) contains at most  [w[ push configurations. Since 
e~+ 2, no section of rank r + 1 is completed and hence Lr+ l ..... are 

If  a marker  of  rank d ~< r becomes invisible, a section of rank d is 
recomputed,  but not the representative of  this section (which is the starting 
marker  of  the recomputat ion).  Thus only markers  of  rank d '  < d are recom- 
puted and during this recomputat ion only markers  of  rank at most  d -  1 can 
become invisible. 

(c) A marker  is stored on space O(log n). Every list L~, L~ contains 
up to e markers.  In addition, every nested call of  sim requires local space 
O(log n). Thus S ( n )  = O(2e • r .  log n + r .  log n) = O(e • r .  log n). 

The time complexity is derived from a bound on the number  of  sections to be 
computed (a d-section is computed if its representative is set on L~ or if it is 
current at the end of  the simulation). 

LEMMA 3. Suppose  d = [n/er], n, r as in L e m m a  2. 

(a) For  every rank  d < r at most  2 • ~ .  (2e) r -d  sections o f  rank  d are 

computed (or recomputed).  
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(b) The number of PDA-steps computed during the simulation is at 
most O(n. 2r). 

(c) The time complexity on a logarithmic cost RAM (Cook, 1972) is 
O(n. 2 r.  log n). This time bound also applies to a Turing machine with 
random access input (that is, a multitape Turing machine with a special 
index tape on which the position of the next input symbol to be accessed is 
written). 

Proof. (a) By induction on (r - d). Every marker that is set onto some 
list L i may become invisible and give rise to one recomputation of rank i. 

(d = r) The computation contains at most ~ sections of rank r. Thus 
(including the recomputations of rank r, when their representatives become 
invisible) at most 2~ sections of rank r are computed. 

( d -  1) Any section of rank d contains e sections of rank d -  1. Their 
representatives are laid down on L a_l and may give rise to a recomputation 
of rank d -  1. Since by the induction hypothesis the number of d-sections is 
at most 2g(2e) r a, at most 2e. 2~(2e)~-a= 2~(2e) t-(a-l) (d-1)-sect ions 
are computed. 

(b) By (a) the number of simulated push-steps (=number of 0-sections) 
is at most 2~(2e ) r=g-e  r .  2 r+l = O ( n - 2 r ) .  The number of pop-steps 
cannot be greater than the number of push steps. 

(c) The only statements that cost more than O(log n) are the for 
statements. Their cost depends on the rank d of the section that is completed 
or of the recomputation that is started and is O(d • e • log n). Thus the total 
costs for these statements or (Zd=l  ~ (2e) ~-a e d log n) 0(2 r n O r . . . .  ~ • • 

log n • Y~¢=1 e .d/(2e) a) = O(n. 2 ~. log n). II 

4. IMPROVED ALGORITHM 

The improved algorithm differs from the basic algorithm mainly in the 
treatment of markers of rank 0. We will show how to treat rank 0 markers 
such that: 

(1) A rank 0 marker takes space O(1) instead of space O(log n) as for 
the other markers. (This will allow us to increase the length of 1-sections 
without destroying the space bound, thereby reducing the number of 
recursive calls.) 

(2) A 1-section can be simulated in time linear in its length instead of 
time O(e log n) as in the basic algorithms. Since most of the time is spent in 
simulating 1-sections this will, together with the observation in (1), improve 
the time bound. 
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The details are as follows: 

(1) For markers of rank 0 (except for bottom L~ and the current 
register R) only the stack symbol is stored. Moreover, a 1-section consists of 
s (instead of e) consecutive 0-sections. Here s is the intended space bound of 
the algorithm. For d ) 2, a d-section consists of e ( d -  1)-sections. Parameter 
e is chosen below as e = [s(n)/log 2 n]. Note that the markers of rank 0 form 
a contiguous top part of the pushdown store. 

(2) The current register R holds the current values of q, X, v, and t. 
Note that ct is not stored. For C := bottom L~ we store the state q and infor- 
mation about v(C) and t(C). Instead of storing v(C) and t(C) directly we 
store Av = v = v(C) and At = t - t(C), and only compute v(C) and t(C) when 
a 1-section is completed. 

Storing v(C) and t(C) implicity is motivated as follows. Note that v(C) 
and t(C) can change frequently during the simulation of a 1-section, namely 
whenever L~ becomes empty. If v(C) and t(C) were stored explicitly then 
every such change would cost O(log n) and 1-sections could not possibly be 
simulated in linear time. With the implicit storage scheme v and t are only 
increased, and Av and At are only increased and sometimes reset to zero. The 
following fact is well known. 

FACT. Let N ~ ~. Counting from 0 to N in binary takes time O(N) on a 
TM. 

Thus the implicit storage scheme allows us to handle quantities v, t, Av, 
and At in average time O(1) per simulated move. 

(3) Whenever a 1-section is completed we need to flesh out leftmost 
L~ to a complete marker C, i.e., we need to compute q(C), X(C), v(C), t(C), 
h(C), and ct(C). Quantities q(C), x ( c ) ,  v(C), and t(C) are readily available 
in time O(log n). Furthermore, h(C) can be computed as h(top L 1 ) +  [L~[ in 
time O(s + log n). Note that IL~[ ~< s. However, ct(C) is not available and 
cannot be computed. For this reason we redefine the cut time of a marker as 

ct(M) = push-time of rightmost 1-marker preceding M. 

With this new definition of cut-time we can compute ct(C) as t (top L1). The 
discussion above is captured in the following definition of function leftmost 
(M is the starting marker) 

bottomL~ if i > 0 

leftmost(L~) := (q(C), X(C), v - A v ,  h(top L1) + IL~o[, t - A t ,  t(top L1) ) 
if i =  0 and L~4: empty 

M if i =  0 and L 1= empty. 
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The modification in the definition of cut-time forces us to look for a new 
criterion for the end of a recomputation. If the cut marker (i.e., the 1-marker 
with time up) is computed, continue the recomputation to the end of the 1- 
section (in the basic algorithm we stopped when the true cut marker was 
reached). Then delete the part of L 0 that is invisible from the current marker 
of the calling procedure. To this end we add its height to the parameter list 
of sim,. 

The new main procedure is 

push-step 

pop-step 

beg inM o := (qo,X0, 1, i, O, 0); 
call s ims(M o, oo, oo, oo) 

end 

procedure sims(M, up, m, h0) 
begin q := q(M); X :=X(M); v := v(M); t := t(M); rt := t mod s; 

C := (q, X); Av := O; At  := O; 
co Ccontains q, X of the rightmost lowest marker M~ of the current 

1-section, Av = v - v(M O, At  = t - t(Ml); 
while t < up or rt < s - 1 or a pop follows 
do Ifa push follows 

then tfLeo = empty 
then C := (q ,X);  Av := O; At  := 0 

fi; 
L~ := Leo eoneat X;  

compute new q, X ,  v, Av from q, X, v; 
t : = t +  1 ; A t : = A t +  1;rt  : = r t +  1; 
/ f r t  = S 
then let d b e  maximal with t --- 0 (rood s • ed); 

end f o r  i f rom 0 to d do L ~ + 1 := L ~i + ~ coneat 
of a leftmost L~; 

r ,  c. c . _  (d + 1)- L t . = L i , L  i .-- empty 
sec- od; 
tion rt := 0 

jr  
jr; 
~ p o p  follows 
then compute new q, v, dv from q, X, v; 

X :-- top L0; delete top L0; 
~ L  0 = empty 

then h :=h(top L~); up'  := ct(top LI); 
start let dbe  minimal with ILa] >/2; 
of a f o r  i from 1 to d do delete top L i od; 

recomp, call sims(to p Ld, up ' ,  d, h) 
ly 

jr; 
end of the t ~ n o  step follows 

simulation ~ then i fq  is accepting then accept else rejectfi 

jr  
od; 

643/56/1-2-4 
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end of a 
recomp. 

end 

/ L0:= L o concat X; 
for i from O to m - 1 do if  i < m - 1 

then L T + 1 := L ~ + 1 eoneat 
leftmost L c 

L~ := LC; L c := empty 

od; 
for h from h(top L1) + ]L0] - 1 to h o step -1  

do delete top 
L o od 

The same argument as for Lemma 3 shows that O ( ( n / s ) .  2 r) 1-sections 
are computed ( r =  [loge(n/s)J + 1). The lists L I ..... Lr  are updated only 
before the beginning of  a recomputation and at the end of  a 1-section; this 
updating costs O(s + e .  r • log n) steps. The counters t, rt, At,  Av are only 
increased and the costs for updating C are O(1); therefore the simulation of  
the push steps of  a 1-section costs O(s) steps. If  we add the costs of  the pop- 
steps to the costs of  the corresponding push-steps, the total costs are 
O((n / s )  . 2 ~ • (s + e . r . log n)). Thus we have 

LEMMA 4. Suppose  r = lloge(n/s)] + 1, e • r .  log n <. s. Then the space 

and  t ime complexit ies o f  sim s on a logari thmic cost R A M  or a TM with 

random access input are 

Space(n) = O(s), Time(n) = O ( n .  2r). | 

We call a function s acceptable if Is(n)] is tape constructable in time O(n), 

n > / s ( n ) ) 2  log2n for almost all n, and s is nondecreasing. (For example 
2 log 2 n, n 1/log log,, n , are acceptable.) 

THEOREM 1. I f  s is acceptable,  then every D C F L  can be recognized on a 

mult i tape TM with random-access  input s imul taneously  in t ime 
O ( n .  n 1/tl°g stn)-ZJog log n)) and  space O(s(n)) .  

Proof.  Choose e -- [s(n)/ log 2 n], r = [loge(n/s(n)) j + 1. Then 

e .  r .  log n ~ e .  log 2 n ~ 2s(n) 

and 

r -- 1 4 log~(n/s(n))  = (log n - log s (n) ) / log  e 

(log n - log s (n) ) / ( log  s(n)  - 2 log log n) 

< log n/(log s(n)  -- 2 log log n). 
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By Lemma 4, Space(n) = O(s(n)), Time(n) = O ( U .  n), and 

2 r < 2 • 2 l°gn/(l°gs(n)-zl°gl°gn) 

= 2 • n 1 / ( l ° g s ( n ) - z l ° g l ° g n )  m 

EXAMPLE 1. 

Space(n) = k .  log 2 n, k >/2 

e = k, r -- [log n/log k] 

Time(n) = O(n 1+ 1/1og k) 

For any e > 0, DCFL _ Time-Space(n ~+~, log 2 n). 

EXAMPLE 2. 

Space(n) = n 1/k, 

e = [n]/k/log 2 n], 

r = log n~k-l~/k/[log(nl/k/log 2 n)] + 1 ~< k + 1, 

Time(n) - 0(2  ~. n). 

For any e > 0, DCFL _c Time-Space(n, n~). 

EXAMPLE 3. 

Space(n) = 2 I°vq~ • log 2 n 

e = 2 r  I°v'Y6~]=nfl/ Iv%~l, r = [ ~ J + l .  

Time(n) = O(n . 2r) = O(n 1+ 1/io9~), 

Time(n) • Space(n) = O(n 1+2/1°9~ • log z n) (minimal space-time product). 

In the following we consider ordinary multitape Turing machines with a 2- 
way input tape. Lemma 5 gives a lower bound for this case that is much 
greater than the upper bound of Theorem 1. 

LEMMA 5. I f  DCFL ~ Time-Space(t(n), s(n)), then 

n = o ( t ( n ) ,  s(n)) .  

Proof  A standard argument on crossing sequences shows for the 
language {wc~ ] w E {a, b}* } and one-tape TMs, Time(n) > /e .  nZ/log [Q[, 
e > 0, where Q is the set of states. Thus for a multitape TM and log n ~< 
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S(n) ~ n, T(n) >/e I • nZ/log(I QI " cS(")) >/e.  n2/S(n), e > 0. (See Cobham, 
1966.) | 

On a multitape TM, algorithm sim s takes much time for the moves of  the 
input head at the beginning and the end of  a recomputation. This time is 
estimated in the next lemma. 

LEMMA 6. Suppose e > 2. Then during a simulation, the number of 
moves of the input head is at most O(n2/s). 

Proof During a computat ion of  n push-steps, at most n/s markers of  
rank 1 or greater are computed, not counting recomputations. Thus at most 
n/s recomputations are caused by this computation. Before the beginning of  
a recomputation the input head is moved to the input position of the starting 
marker and at the end it is moved back from the input position of  the cut to 
the old one. Thus for every call of  sim s up to 2n moves have to be done (not 
counting the moves inside the recursive call). Thus the number of these 
moves is 2nZ/s. The same argument yields O(I2/s) moves for every recom- 
putation of  length l. 

Suppose 1 < 4 =  rn/(s • er - I ) ]  ~< e. The same argument as for Lemma 3(a) 
shows that at most  #(2e) r -d  markers of  rank d are set on L d (d>~ 1). Any of 
these may cause a recomputation of  rank d and length s .  ea-l<~ 
2n/(#. er-d). Thus the number of  all input moves is 

s T 7  - s e 

= O(n2/s). | 

THEOREM 2. Suppose s is acceptable. Then every D C F L  can be 
recognized on a multitape TM simultaneously in time O(n2/s(n)) and space 
O(s(n)) and this time bound is optimal up to a constant factor. | 
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