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According to VLSI theory, [log n, , ~ ]  is the range of computation times for 
which there may exist an A T2-optimal multiplier of n-bit integers. Such networks 
were previously known for the time range [12(log 2 n), O(,v/n)]; this theoretical 
question is settled, by exhibition of a class of AT2-optimal multipliers with 
computation times [,O(log n), O(~fff)]. The designs are based on the DFT on a 
Fermat ring, whose elements are represented in a redundant radix-4 form to ensure 
O(1) addition time. 

1. INTRODUCTION 

Research on efficient integer multiplication schemes, potentially suitable 
for direct circuit implementation, has been going on for some years. 
Investigations have focussed on both the realization of practical (and 
possibly suboptimal) networks and the more subtle question of the existence 
of optimal networks. Optimality is defined with respect to the customary 
A T 2 measure of complexity, which is central to the synchronous VLSI model 
of computation (Thompson, 1979; Brent and Kung, 1981). Here A is the 
area of the multiplier chip, while T is the computation time, i.e., the time 
elapsing between the arrival of the first input bit and the delivery of the last 
output bit. As is well known (Abelson and Andreae, 1980; Brent and Kung, 
1981), any multiplier of two n-bit integers must satisfy A T  2 =I2(n z) and 
A = .Q(n) in the V1SI model; in addition, standard fan-in constraints of the 
logic gates yield the lower bound T =  X2(log n). These three lower bounds 
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indicate that [log n, V~] is the range of computation times for which there 
may exist an A T2-optimal multiplier. 

The search for an A T2-optimal integer multiplier began with the subop- 
timal design of Brent and Kung (1981), for which AT2=O(n21og 3 n). 
Subsequently, Preparata and Vuillemin (1981b) proposed a class of optimal 
designs whose computation time could be selected in the range 
[0(log 2 n), 0(X/~)]. More recently, Preparata (1983) exhibited an optimal 
mesh-connected multiplier achieving T = O(V~ ). An intriguing feature of all 
the above optimal designs is the explicit recourse to the Discrete Fourier 
Transform (DFT), as the device used for computing convolutions. However, 
none of these optimal designs achieves the minimum computation time 
T=O(logn). On the other hand there are well-known multiplication 
algorithms which achieve optimum computation time T =  0(log n), e.g., the 
Wallace tree (1964) and Dadda counting (1965). Both algorithms are not 
easily embedded into silicon because of their irregular interconnection 
pattern. More recently, there have been proposals of desings with optimum 
computation time and nearly optimum AT2-measure (Vuillemin, 1983; 
Becker, 1982; Luk and Vuillemin, 1983; Lengauer and Mehlhorn, 1983). 
Moreover, some of these designs are eminently practical. We refer the reader 
to Luk and Vuillemin (1983) for a detailed discussion. All of these designs 
are based on divide-and-conquer techniques and achieve their speed by the 
use of a redundant operand representation, which results in O(1) addition 
time. The most efficient of these designs (Luk and Vuillemin, 1983; Lengauer 
and Mehlhorn, 1983) achieves T =  O(log n) and AT 2 = O(n2(log n)2). 

In this paper we shall exhibit a class of optimal, i.e., AT2= O(n2), designs 
realizing any computation time in the range [t'2(logn), O(V~)], thereby 
realizing the first A T2-optimal O(tog n)-time multiplier. More generally, the 
new design settles, at least theoretically, the problem of integer 
multiplication: there exist optimal designs for the entire spectrum of possible 
computation times. Our new design incorporates ideas of many of the papers 
cited above. Not unlike previous optimal designs, it makes essential use of 
the DFT over a finite ring G, which we choose as a Fermat ring. In contrast 
to previous papers, a low-order DFT is used to achieve fast computation 
time. More precisely, in order to achieve computation time O(T) we will 
resort to a T-point DFT over a ring of 2 °(n/r) elements. In Preparata and 
Vuillemin (1981b) an (n/log n)-point DFT over a ring of 2 °(l°gn) elements is 
used for all achievable values of T. Since we compute a DFT in a large ring 
of 2 °("/r) elements, efficient implementations of the ring operations and of 
the data transfer between computing elements are crucial. We borrow from 
Preparata (1983) the idea of computing the DFT on a mesh of processing 
elements. Only communication between adjacent processing elements is 
required in this case and hence we can provide for a large communication 
bandwidth without paying too high a penalty in area. Each processing 
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element of the mesh has the ability to do additions-subtractions over G and 
multiplications by powers of the root of unity. We choose a redundant 
representation for ring elements and thus achieve O(1) addition/subtraction 
time in a small area. Since ring G is a Fermat ring, i.e., the set of integers 
modulo m = 2 p + 1 for some p, and since the root of unity used in the DFT 
is a power of two, multiplication by a power of the root of unity can be 
essentially reduced to a cyclic shift and a small number of additions/ 
subtractions. We implement cyclic shifts by means of a cube-connected-cycle 
network (Preparata and Vuillemin, 1981a). Finally, general multiplications 
in G are realized by one of the fast, suboptimal designs referred to above. 
Since only O(T) general multiplicaitions of ring elements (which are essen- 
tially O(N/T)-bit numbers) are required, we will stay within the desired 
limits of time and area. 

The paper is organized as follows. In Section 2 we review the arithmetic 
basis for the proposed multiplication scheme. We start with a description of 
one of the fast designs based on divide-and-conquer. Next we review how 
integer multiplication can be reduced to polynomial multiplication 
(convolution). We will then discuss the school-method (for polynomial 
multiplication) and derive from it a T =  O(log n), A = O(nZ/log n) design. 
This design is probably the most practical design proposed in this paper. 
Finally, we discuss interpolation/evaluation schemes and more specifically 
the DFT for computing convolutions efficiently. In Section 3 we describe the 
proposed multiplication scheme in detail. We first review how to compute 
the DFT on a mesh and then discuss in detail the organization of each mesh 
module. Appendix 1 contains a discussion of a redundant number represen- 
tation which we use for the algorithm and Appendix 2 shows how to 
compute the DFT on a mesh; the latter material is essentially taken from 
Preparata (1983). Appendix 3 contains a succinct review of the structure and 
operation of the cube-connected-cycles network. 

2. ARITHMETIC BACKGROUND 

In this section we briefly review the arithmetic basis of the proposed 
multiplication scheme. Specifically, we recall how integer multiplication can 
be solved by divide-and-conquer techniques and more generally by 
polynomial multiplication. We will also review a particular VLSI-design 
based on divide-and-conquer techniques. We will then show how the "school- 
method" for polynomial multiplication can be used to construct a 
T =  O(log n), A T  2 = O(n 2 log n) multiplier. Finally, we will discuss how 
convolution can be computed by an evaluation/interpolation scheme and we 
shall describe one particularly efficient specialization of the latter as a 
Discrete Fourier Transform over a Fermat ring. 
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Throughout this paper a and b are nonnegative integers in the range 
[0,2 n / 2 -  1] (n even). We use e = a  × b to denote their product and 

an_l , . . . ,a  o, bn_l , . . . ,bo,  cn_l , . . . ,eo ,  where an~ 2 . . . . .  a n l=bn /2  . . . . .  
b n_l = 0, to denote the binary representations of a, b, and e, respectively. 

2.1. Integer Multiplieation by Divide-and-Conquer 

Assume that n is divisible by 4 for the sake of simplicity. We can then 
write 

a:a12n/4 +ao, b=b12"/4 +bo, e=cz2n/2 +e12n/4 +eo 

with a I , a 0, b 1 , b 0 ~ [0, 2 n/4 - 1] and e 2 = a l b l ,  c 1 : aob I + albo,  c O : aob o. 
Hence we can compute the product of two n/2-bit numbers by computing 
four products of n/4-orbit numbers and a few sums of n-bit numbers. The 
next observation to make is that addition takes time O(1) if a suitable 
redundant representation is used (cf. Appendix 1). Hence this scheme will 
result in a T =  O(log n) multiplier. A VLSI layout with A = O(n 2 log n) is 
readily obtained and can be found in Luk and Vuillemin (1983). 

An interesting improvement upon the technique described above is due to 
Karazuba and Ofman (1962). They observed that c2 ,e  1, and e 0 can be 
expressed as 

e 2 : a l b  I e 1 = (a~ +ao)(b  I + b o ) - a l b  1 - a o b  o c o = a o b  o 

and hence three multiplications of numbers of half the length suffice. Again, 
if combined with a redundant number representation, a T =  O(logn) 
multiplier results. Also, a VLSI layout with A = O(n 2) is available and can 
be found in Luk and Vuillemin (1983), and Lengauer and Mehlhorn (1983). 
Thus A T  2 = O ( n  2 log 2 n). 

It is important to note that both of the above multipliers are pipelinable 
(in technical terms, their periods are O(1)), since at each step of the 
computation all data lie on a single level of the recursion. Thus the pipeIined 
3-multiplication multiplier (P3M) can be used to multiply O(log n) pairs of 
n-bit numbers in time O(log n). We will exploit this observation below. 

2.2. Integer Multiplication via Polynomial  Multiplication 

Integer multiplication by divide-and-conquer is a special case of integer 
multiplication via polynomial multiplication. Let k be an integer, k/> 2. For 
the divide-and-conquer scheme we have k = 2. Assume w.l.o.g that k divides 
n. We subdivide the binary representation a n_l "'" a0 of a into k strings of 
length n / k  each and consider each string as the representation of a binary 
number in the range [0, 2 n/k - 1 ]. In this way we associate with integer a the 
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FIG. 1. Illustration of the release-of-the-carries. 

polynomial A(x) k 1 = ~ i = o A j  x~ such that A] C [0, 2 "/~ 1], a = A ( 2  "/~) and 
= Y:~=0 B f  Ak/2 . . . .  Ak_ l = 0. Similarly we associate polynomial B(x)= k-1 

with b. Note that A(x) and B(x) are really of degree [k/2] - 1. Let C(x) = 
A(x) • B(x) be their product. Then C(x) is of degree k -  1 and C(2 "/k) -- 
A(2"/k)B(2"/k)=ab. Also, each coefficient of C(x) lies in the range 
[0, k22"/~- l] and can thus be expressed as a (2n/k + [logzk])-bit number. 
It follows that the product ab can be obtained by expressing each coefficient 
of C(x) as a (2n/k + [log 2 k])-bit number, by positioning the coefficients n/k 
bits apart as shown in Fig. 1 and by adding these ( k -  l) numbers. This 
transformation of C(x) into c = ab is normally referred to as the "release-of- 
the-carries" and can be performed in time O(logn) (Preparata and 
Vuillemin, 198 lb). 

At this point we have reduced integer multiplication to polynomial 
multiplication. The naive method for the latter problem is the school-method: 
compute the k 2 products AiBj, 0 <~ i , j  < k, and sum appropriate terms. For 
k =  2 this leads to the 4-multiplication recursive scheme described at the 
beginning of Section 2.1. 

We will next show how to combine the P3M multiplier with the "school- 
method" for convolution in order to obtain an T =  O(logn), AT2= 
O(n 2 log n) VLSI-multiplier. We will describe two quite different methods. 

• . . I >  

Multiplier Cell 

• D 

Q O O  

FIG. 2. Structure of Muller's Multiplier. 
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The first method is a hybridization with a multiplier due to Muller (1963). 
The multiplier originally proposed by Muller computes the product of two s- 
digit integers by convolving the two factors (see Fig. 2). It consists of 2s - 1 
cells, and the product is obtained in 2 s -  1 shifts and adds. In the binary 
case, the adder is a conventional full binary adder and the "elementary 
multiplier" is just an AND-gate. Suppose now we subdivide each of the n-bit 
operands into [log 2 n] strings of (n/[log2 n])-bits each to be viewed as a 
binary number. We now construct a Muller multiplier with 2[log 2 n ] -  1 
cells, each of which is adapted to process (n/[log 2 n])-bit numbers, rather 
than single bits. The adaptation consists of replacing the AND-gate by a 
P3M multiplier for n/[log 2 hi-bit numbers, and the full adder by a three- 
operand adder; the redundant representation is kept throughout, so that 
O(1)-time addition is guaranteed. The sequential feeding of the [log2n ] 
strings (each fed in parallel) provides the pipeline input to the P3M 
multipliers, so that the overall multiplication is completed in time O(log n). 
As to the chip area, each of the 2Ilog 2 n] - 1 cells has area O(nZ/log 2 n), 
thereby resulting in an overall area O(n2/logn). It follows that 
A T  2 = O(n 2 log n), as claimed earlier. 

Remark. Of course, the P3M multiplier used in the design above can be 
replaced by any other pipelinable fast multiplier. In particular, we might use 
the T =  O(log n), A = O(n 2 log n) multiplier described in Vuillemin (1983), 
Luk and Vuillemin (1983), and Becker (1982), and obtain a T =  O(log n), 
A = O(n 2) multiplier. This design is probably the most practical design 
proposed in this paper. 

An alternative approach has been described in Lengauer and Mehlhorn 
(1983) and is as follows. Divide the n-bit integers a and b into k = (log 2 n) ~/2 
strings of n/(log2n) ~/2 bits each. We now use a P3M multiplier for 
n/(log 2 n)U2-bit integers in order to compute the k 2=  log 2 n products AiB j. 
Adding up appropriate terms and releasing the carry finishes the 
multiplication. It is easily seen that the area of the design is dominated by 
the area of the P3M multiplier and hence is O(n2/logn). Thus a 
T =  O(log n), A = O(n2/log n) multiplier results. 

We have now described two alternative implementations of the school- 
method. The first one uses k = log 2 n and the second one uses k = (log2 n) 1/2. 
In the first implementation we use log n P3M multipliers to compute the 
(log2n) 2 multiplications of (n/log2n)-bit integers and in the second 
implementation we use one P3M multiplier to compute the logzn 
multiplications of n/(log z n)~/2-bit integers. 

At this point it is natural to hope that even more efficient multipliers can 
be obtained by replacing the school-method for polynomial multiplication by 
a more efficient scheme. The more efficient schemes are based on the concept 
of evaluation-interpolation and are described in the next section. 
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2.3. Polynomial Multiplication via Evaluation/Interpolation and the Discrete 
Fourier Transform 

Let G be a division ~ ring and let A(x), B(x) be polynomials of degree 
<k/2 over G. Let Xo,Xl,...,xk_ ~ be distinct elements of G. Denoting, as 
usual, by C(x) the degree-(k - 1) product A(x) .  B(x), we have 

C(xj) = A (x:). B(xj) 0 <,j <~ k - 1. 

Thus, by evaluating A(x) and B(x) at each of the values x0,..., x k_1, we 
obtain, by means of only k multiplications over G, the values C(xo),..., 
C(xk-1), from which the k coefficients of C are computed by interpolation. 

Karazuba's 3-multiplication method is an instance of evaluation/ 
interpolation for k = 3 .  Let A ( x ) = A l X + A  o, B ( x ) = B I x + B  o be two 
polynomials of degree 1. We choose x 0 = 0 ,  x l = l  and x 2 = ~ .  Then 
A(xo)=Ao, A(Xl)=AI +Ao, A(xz)=A1, B(xo)=Bo, B(Xl)=BI +Bo, 
B(xz)=B1, and C(xo)=AoB o, C ( x 0 =  (A1 + Ao)(B1 + Bo), C(x2)=A~BI. 
Finally, the interpolation formulae are 

Co = C(xo) 

C 1 = C(x1 )  - C ( x o )  - C(x2)  

C 2 = C(x2) .  

As one can see from Karazuba's metod, the choice of points x0 ..... x k_~ is 
very crucial for the effectiveness of the evaluation/interpolation scheme. It is 
well known that for large k a good choice for the evaluation points is 
consecutive powers of an order - k primitive root of unity in G. This leads 
to the Discrete Fourier Transform (DFT) (Aho, Hopcroft, and Ullman, 
1974). 

In particular we want to choose the commutative ring G such that if co is a 
primitive root of unity of order k, multiplication of an element of G by co; 
(i = 0 ..... k -  1) can be done very efficiently. One very attrative choice is 
provided by a Fermat ring, i.e., by the set of the integers modulo a number 
of the form 2 ° +  1, for integer p: indeed, as we show in Appendix 1, 
multiplication by o9 i reduces to a minor variant of left cyclic shift. The 
suitability of a Fermat ring to our objective is demonstrated by the following 
property (see Aho et al., 1974, p. 266, Theorem 7.5): 

PROPOSITION 1. Let r and co be powers of 2 and let m = cor/2 + 1. 
Letting Z m be the ring of integers modulo m ( a Fermat ring), then r and o9 

Below, this condition on the nature of G will be relaxed. 

643/58/1 3 I0 
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have multiplicative inverses in Z m and oa is a primitive rth root of unit in 
Z m • 

The arithmetic of Fermat rings is described in Appendix 1. 
We close this section with a brief description of the construction we are 

about to describe. Let T be an integer between log n and X/rff (the symbol T 
is chosen as a reminder that this integer is the "target computation time" of 
the network). We reduce multiplication of n-bit integers to multiplication of 
polynomials of degree T with coefficients in the range [0,2"/r). 
Multiplication of polynomials is based on evaluation/interpolation over a 
Fermat ring. For the T multiplications in the ring we use one P3M multiplier 
for (n/T)-bit integers. Thus all T multiplications take time O(T + log n/T) = 
O(T) and area A = O(n2/TZ). Evaluation and interpolation are the DFT and 
its inverse. Section 3 is devoted to the computation of the order - T (DFT) 
in a ring of size 2 °("/r) in time O(T) and area O(n2/T2). 

3. THE MULTIPLIER NETWORK 

A multiplier network of the type we describe below consists of four major 
subnetworks, illustrated in Fig. 3. Operands are loaded from the left and 
intermediate results migrate to the right, residing a certain amount of time in 
each of the four major subnetworks. Operands are represented with n bits 
and, denoting by T ~  [log n, x/n)]:  apower of 2 that divides n, each operand 
is subdivided into T strings of n/T bits. For two such operands a and b we 
have 

T 1 T--1 
a= ~' ai2 "i/T, b= ~ b;2 ni/~, 

i=0 i=0 

where O<~ai, h i<2  n/v for i = 0  ..... T / 2 - 1  and a i = b i = O  for i>~T/2. 
Analogously we define c = a × b, so that 

J 

ej = ~. aibj_ i 0 < j  < T. 
i=0 

From this expression, it is obvious that 0 ~ cj < 722n/~' We now wish to 
treat the ai's, bt's, and ci's as members of a Fermat ring Z m. To find the 
smallest suitable Fermat ring it is sufficient to choose m =  2P+ 1 >~ 
kT 2"/r > max,-01 ei, which is verified by 

p = 3  [ ~ ] T  for n>/16.  

2 We shall discuss later the choice of the upper extreme of this interval. 
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FI6. 3. General scheme of the multiplier. 

Therefore, if we select 

m = 2 P +  1, 

co = 2 2p/r  = 2 6In/r2], 

we verify the hypotheses of Proposition 1 with r = T, so that o) is a primitive 
root of unity in Zm of order T. 

EXAMPLE. For n = 256 = 28, and T =  8, we have p = 96 and co -- 224. A 
128-bit operand is subdivided as illustrated below. Each of the four "chunks" 

256 ~'~_ 
o o . . .  ° l  I 

~ 0 . . .  0 

O0 .~.  0 [ 
]00 . .  • 0 

97 ~. 

is further embedded into a 97-bit string, as a member of Z296 + i .  

Each transfer of data from major subnetwork to major subnetwork (see 
Fig. 3), as well as from the input and to the output, involves O(n/T) bits at a 
time: specifically, ( p +  1) bits between modules and niT bits in I/O 
transfers. Thus each transfer uses O(T) time. 

The pipelined multiplier is a straightforward variant of a pipelined 3- 
multiplication multiplier: it uses length-(p+ 1) operands and has area 
O(nZ/T2), since p =  O(n/T). Due to its pipeline structure, it performs 
multiplications in time O(T+log(n/T))= O(T) since T/>log n. Thus, the 
pipelined multiplier subnetwork has area and time obeying the A T2= O(n 2) 
target. 

The FFT-engines (both for the direct DFT and for its inverse) are the 
crucial components of the network and will now be described in some detail. 
Each consists of T maeromodules organized as a [V @] × [v/T] mesh (see 
Fig. 4, where we have implicitly assumed that T is a square). If the length of 
each side of the macromodule is O(n/T3/Z), then each DFT-engine has area 
O(n2/T2), sufficient to achieve A TZ-optimality. Next we shall show that this 
objective is attainable. 
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VVjRows 

• [ ~ T ]  Columns 

FIG. 4. Architecture of the FFT-engine. 

It has been shown in Preparata (1983) 3 how a mesh-connected 
architecture of s × s modules can be used to compute the FFT of s 2 elements 
in O(s) "parallel exchange steps" and O(logs) "parallel butterfly steps," 
where an exchange step involves the exchange of the operands of two 
adjacent modules and the butterfly involves a multiplication by a power co" 
of the principal root and an addition-subtraction. With this background, 
each macromodule of the mesh is designed to contain a Zm-operand 
represented in redundant radix-4 form (i.e., with 3(p/2 + 1) bits) and must 
have the following capabilities: 

1. Transfer its operand to an adjacent module (or exchange operands 
with an adjacent module); 

2. Add two operands (or, equivalently in the redundant representation, 
subtract one from the other); 

3. Multiply an operand by co; (i = 0,. . . ,-1). 

As noted earlier, we have O(x/~) operations of type 1 and O(log T) 
operations of types 2 and 3; thus, since T is our target computation time, the 
target times are O(v/T) and O(T/log T) for the two types of operations, 
respectively. 

The macromodule, which is designed to store an O(n/T)-bit operand, will 
be structured as follows. It contains niT 3/2 0(V@)-bit shift registers, as 
illustrated in Fig. 5. The length of either side of the macromodule square is 
O(n/T3/24 - T 1/2) = O(n /T  3/2) since T ~  X/if, thus attaining the desired area. 
Note that the shift-registers can always be arranged as illustrated, since the 
register length is of lower order than the length of the macromodule side for 
all T. It is also straightforward to conclude that time 0(x/~) for an exchange 
operation is achieved by the proposed structure, by shifting in parallel the 
content of each shift-register to the homologous shift-register in one of the 
adjacent macromodules. 

3 For convenience, see Appendix 2 for a review of the technique. 
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FIG. 5. Structure of a macromodule. 

The structure obtained so far is also quite adequate for the execution of 
type 2 operations (addit ions-subtract ions) ,  by simply equipping each register 
with a serial adder and introducing a few extra wires to t ransmit  the carries 
between registers and to perform R-normalizat ion,  as defined in Appendix 1. 

More delicate is the implementat ion of type 3 operations. Since 
multiplication by co i=  26 [,/r2]i is basically a left cyclic shift by O([n/T2]i) 
positions (for i = 0, 1,..., T - -  1), we must provide an interconnection capable 
of performing any one of T different cyclic shifts of data  blocks of  size 
O(n/T2). Thus the basic information unit dealt with in type 3 operations is a 
block of O(n/T 2) bits, which we stipulate to be stored in a mieromodule. 
(Thus a macromodule  consists of  T micromodules.)  For the sake of 
simplicity, we assume temporar i ly  that T<<. C2n 2/5, for some constant  C 2. 
With this hypothesis each micromodule  is an assembly of O(n/T 5/2) 
continguous registers. (C 2 is chosen so that this number  of  registers is at 
least 1.) The transfer of  the content of  a micromodule occurs, with a 
bandwidth equal to the number  of  its constituent registers, in time O(x/T) .  

To perform the desired cyclic shift, we propose to interconnect the T 
micromodules  as an appropriate  cube-connected-cycles (CCC)  network. 4 
Specifically, we shall realize a C C C  of 20 u cycles, each cycle consisting of 
2 u micromodules  (referred to as a 2 u x  2 ~-u CCC) ,  where v = log 2 T and 
u = [½ log 2 T - - l o g 2 1 o g  2 T+e], for a suitable constant  c. Since it is a 
functional requirement of  the C C C  that  2u/> v -  u (see Appendix 3), we 
have the condition 

2 [l°g2r-I°g21°gzr +c ]/2 ~ log 2 T - -  [½log 2 T log 2 log 2 T +  c 1. 

4 In Appendix 3 the reader will find a concise description of the CCC. 
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It can be easily verified that this constraint is always satisfied for T/> 4 by 
choosing e ~ 1.308. Note that this CCC has cycles of length O(,v/T/log T) 
and is capable of performing any of the T prescribed cyclic shifts in a 
number of steps also O(v@/log T). Since, as noted earlier, the total available 
time for a cyclic shift is O(T/log T), the time available for each CCC-step is 
O(v@ ), which is exactly the time used to transfer the content of a 
micromodule. Thus a CCC interconnection realizes the desired computation 
time for type 3 operations. 

We must still verify that the described CCC can be embedded in the 
macromodule with an insignificant increase in the area (i.e., an area blowup 
by a constant factor). The modified layout is obtained by dilating, by a 
factor of 2, each side of the original layout. The new tracks made available 
are used to realize the CCC connections: specifically, the upper-right portion 
is used for the cycle links, whereas the lower-left portion is used for the 
lateral connections. The scheme is illustrated for a 4 × 4 CCC in Fig. 6 and 
requires no further comment. 

The same considerations apply to the FFT engine designed to implement 
the inverse FFT. (The only additional operations are the multiplication of 
each result by l / T =  --2P/T--the negative of a power of two (see Appendix 

1).) 

Remark. We now consider the case T >  C2 n2/5. In this situation each 
shift register contains O(T/n 2/5) micromodules, since a shift register holds 
O(T l/z) bits and a micromodule holds O(n/T 2) bits. Also, as before, there are 
niT 3/2 shift registers per macromodule. 

Within each macromodule we realize a CCC whose nodes are now the 
registers (not the micromodules as before). The CCC has 2 ~-u cycles, 
each cycle consisting of 2 u registers, where v =logz(n/T 3/2) and u =  
log2(T1/2/log T). In particular, the cycle length is T1/2/log T. We can clearly 
embed the CCC with only a constant blowup in area. The interconnection of 

I 
Fro. 6. Embedding of a 4 × 4 CCC into a 16-element macromodule. 
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the registers is completed by (switchable) links that have the capacity of 
reconfiguring the registers into a single (N/T)-bit cyclic shift register. 

Consider now a cyclic shift by (n/T2)i positions, 0 <~ i < T, and write 

(n/T2)i = aT 1/2 + b, 

where a and b are integers with b < T 1/2. We can realize the cyclic shift of 
the content of a macromodule by (n/TZ)i positions in two steps: 

(1) Shift by b positions. This can clearly be done in time 
O(b) = O(T U2) by using the registers reconfigured as a single shift register. 

(2) Shift by a • T 1/z positions. Since aT  1/2 is a multiple of the shift 
register length we can perform such a shift using the CCC. It takes 
O(T1/Z/log T) CCC-steps, and hence O(T/log T) time units. (Recall that shift 
registers are transferred bit-serially.) 
We conclude that the total time needed for the shift is O(T/log T). 

Since time O(T/log T) is available for each shift, as noted earlier, we 
conclude that we are operating within the desired time bound. 

One final comment is in order with regard to the transfer of data from the 
DFT-engine to the pipeline multiplier (and vice versa). Elements of Z m have 
to be transferred in parallel on the entire channel of bandwidth O(n/T), 
whereas at the completion of the DFT computation each such element is 
wholly stored in a macromodule. Therefore a preliminary data rearrange- 
ment is necessary, that will bring all microoperands of a given macromodule 
to be aligned (in a given row or column). The data paths necessary for this 
rearrangement are available, and it is left as an exercise to show that O(v/T ) 
time suffices to complete this task. 

Since all major modules of Fig. 3 have area O(n2/TZ), and the time used 
for the DFTs and the pointwise multiplications is O(T) (notice that this time 
adequately accounts for the release-of-the-carries and the conversions in Z m 
to nonredundant form), we have the followong conclusions: 

THEOREM. It is possible to construct VLSI  multipliers of  n-bit numbers 
with the optimal performance A T 2 = O(n 2) for  all computation times T such 
that O(log n) ~< T ~< O(V~ ). 

A P P E N D I X  1: THE ARITHMETIC OF FERMAT RINGS 

The operands considered in this paper are elements of a Fermat ring s Z m 
of the integers modulo m = 2 p + 1, where p is an even integer (to be chosen 
later). The operands are also represented in a redundant radix-4 form, where 

5 Fermat rings were used by Sch6nhage and Strassen (1971) in their fast multiplication 
technique. 
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aL_ 1 ..- a i ... a I a 0 + 

bL_ 1 -.- b i ... b I b 0 

% - 1  "'"  s l  " '"  

CL_ 1 ... Cl+ 1 ... c 2 c I 0 

FIG. 7. Illustration of the first step of addition for numbers in redundant radix-4 represen- 
tation. 

the digits belong to the set {-3 ,  - 2 ,  - 1 ,  0, l, 2, 3}. Thus the value of  a digit 
string (aL_ 1, aL_2,..., ao), with L =p/2 + 1, is 

L - I  

ai4i ' 
i = 0  

which yields an operand range R ~= [ - 4  L + 1, 4 L - 1 ] @ Z m. (Notice also 
that 4m > 4 L -- 1.) We shall call R-normalization the operation of  bringing a 
number within the range R modulo m, i.e., to go from x C Z to y C R with 
y = x (mod m). 

We shall discuss the operations of  addition/subtraction, multiplication and 
division by a power of  4, and conversion between redundant and irredundant 
forms. 

(i) Addition-subtraction in Z m.  Since a = Y ~ - l a i  4e means - a =  
~_-1 (_ai) 4 i, subtraction reduces trivially to addition. Suppose then we 
wish to add modulo m the two numbers in R 

L - 1  L--1  

a= ~" ai 4i and b = E bi 4i 
i = 0  i = 0  

so that their sum is also normalized in R. Referring to Fig. 7, for each 
i = 0 , . . . , L - 1 ,  we first compute the digit pair (s*,ci+l) from the pair 
(a i,bi), according to Table I. Notice that a i+ b i=s*  + 4ci+~, 
s * C { - 2 , - 1 , 0 , 1 , 2 }  and c i + ~ { - 1 ,  O, 1}. To obtain the final sum, we 
distinguish various cases: 

TABLE I 

a i + b i 6 - 5  - 4  - 3  - 2  - 1  0 1 2 3 4 5 6 

s* - 2  - 1  0 1 - 2  - 1  0 1 2 - 1  0 1 2 

ci+ l - 1  - t  - I  - 1  0 0 0 0 0 1 1 1 1 
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1. e L = 0. In this case, the integer represented by 

(s z_  ~ ..... So), s i = s* + e i ( - 3  ~ s i <~ 3, i = 0 ..... L - 1) 

is a legitimate representation of the sum (a + b) rood m in the range R. 

2. e L 4:0.  In this case the result does not belong to R, so that a 
correction is necessary to accomplish R-normalization. Specifically, we have 

L--1 
(a + b) mod m = ( j~  ° sj4 j +eL4Lmodm)modm 

L--I 
----(j~-o- sj4J-4Q)m°dm 

since 4 L = 2 p + 2  = - 4  rood m. We further distinguish two subcases: 

2.1. eLs I 4 : - 3 .  In this case the final sum is obtained by simply 
replacing s 1 with s~ = sl - e L, since - 3  ~< s I - e L ~< - 3 .  

2.2. eLS ~ = - - 3 .  In this case s ~ -  e L = - - 4  or 4, so the correction of  
case 2.1 is not applicable. We then apply the same technique to perform the 

_ V ~ L -  1~ 4 j addition ( S + C )  mod m, where S-z_, j .=0oj  and C = - 4 e  L. Letting 
sl - et = s** + e~, we note that s**  = 0 (since sl - e L = - 4  or 4), whence 
in forming the final sum case 2.2 cannot arise again. 

It follows from the preceding discussion that addition can be done in O(1) 
time. 

L-- I  (ii) Mult ipl icat ion and  division by a p o w er  o f  4. Let a = Y~j=0 aj 4J 

and consider the product a • 4 ~ rood m, for some integer s. We have 

L--1 

a4 s m o d m =  ~ aj4  . i + s m o d m  
j - 0  

L i L - - l + s  

= (Z Z  4 modm)mod 
h = s  h = L  

L - 1  s - 1  

( ' t  = 2 a h - ,  4h + ~ aL '+ i  4 ( - 4 )  m o d m  
h = s  i = 0  

m 

since 4 L mod m = - - 4 .  Thus multiplication by 4 ' is equivalent to: 

( a )  cyclically shifting to the left the L-digit string by s digit positions; 

(b) changing the sign of  the s least significant digits of  the string 
obtained in (a) and shifting them one position to the left; 
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s•-L Digits ,' • L D i g i f s ~  
p * - s ~  1 

(a) (b) 

FIG. 8. Illustration of multiplication and division by a power of 4. 

(c) adding the two resulting numbers with the method described 
above. 

These opereations are illustrated schematically in Fig. 8a. 
With regard to divisions by powers of 4, we know that any power of two 

2 s (s ~<p) has a multiplicative inverse in Z m ,  given by 2P+ 1 -  2 p-s. The 
inverse of a power of two in Zm, however, is not a power of two, and so 
multiplication by it does not exhibit the interesting feature described above. 
However, since we chose to represent the elements of Z m in R, we represent 
the multiplicative inverse of 2 s as - 2  p-~, so that multiplication by it 
becomes a right cyclic shift by s digit positions, with subsequent negation of 
the s most significant digits and their shift one further position to the right, 
as shown in Fig. 8b. 

Since sign changes and additions are performed in constant time, the 
computation time is dominated by the time used by the shift operations. 

(iii) Multiplications in Z m. Whatever multiplication scheme we adopt 
(see Section 2), the result p is a 2L-digit number. To bring it within range R 
(L-digit numbers), we operate as follows: 

p =  
2L 1 

Z 
i = 0  

L 1 L - - I  

Pi 4i= Z Pi 4i+ Z PL+i 4L+i 
i - O  i = o  

L 1 L--1 

= ~ pi 4 i -  ~" PL+i 4i m o d m  
i 0 i = 0  

L 1 L - I  

= Z Pi 4i -- Z PL l+~ 4i + 4p2L-I mod m. 
i - o  i - O  

Thus, to perform the R-normalization of the product we must perform a shift 
and two additions over Z m. 

(iv) Conversion between binary form and redundant radix-4 
form. Without loss of generality, we assume that the input binary numbers 
are nonnegative and represented in 2's complement form with p + 2 bits 
bp+~ ..... b 0 (bp+~ = 0  is the sign bit). The conversion to radix-4 form is 
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trivially accomplished by inserting 0 to the left of b2i+l for i = 0, 1,...,p/2, in 
constant time. 

The conversion to binary form is somewhat more complex. One possible 
implementation consists of forming two redundant radix-4 numbers a+ and 
a_ ,  consisting respectively of the positive and negative digits of the given 
number a. Next, each digit of a+ and a is converted to the binary represen- 
tation of its modulus, thereby obtaining two binary numbers a~ and a '  ; all 
of these operations take time O(1). 

' - a '  by a binary subtraction (in time Finally we compute a * =  a+ _ 
O(logp). Notice that a* belongs to R but not necessarily to Zm: so, to 
compute a* mod m (Zm-normalization) it may be necessary to add/subtract 
m at most four times, since 4m > 4 L - 1. 

A P P E N D I X  2: A M E S H - C O N N E C T E D  NE T WORK FOR THE DISCRETE 

FOURIER TRANSFORM 6 

Let G be a commutative ring containing a primitive root of unity, co, of 
order k = m 2 in G. We then have the following two facts: 

A1. The DFT (Ao,A 1 ..... Ak_l) of a vector (a0,a  1 ..... ak 1) can be 
obtained as a two-dimensional DFT, by arranging the vector in row-major 
order as m × m matrix A = ][aij.[], where aij=ami+j (j  < m). (Note that 
indexing starts from 0 rather than from 1.) Letting Ar~ = A m r + s  , w e  then 
have 

a co(mi+j)(mr+s)  ~- ( c o m y r  COsj m is A r s = Z  ij aij(co . (1) 
ij j=0  i=0 

The latter expression suggests the following algorithm 

m - I  

D1. A~j ~ ,~m,is t ~ a i j (  ) 
i = 0  

fI)sJA I. 

m - - I  

D3. A~'~- ~. ,, mj¢ a,j(co ) 
j - 0  

(Note that A "  = A ,  ; i.e., the algorithm obtains in reality the transpose of 
the desired matrix.) This method has already been used in Brent and Kung 
(1981), where, however, the DFT itself was obtained through matrix 
multiplication. 

(DFT of each column of the matrix); 

(local multiplication); 

(DFT of each row of the matrix). 

6 Preparata (1983). 
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A2. A unidimensional m-module array (where m = 2 r for convenience) 
can be used to compute the DFT of an m-vector, as has been shown in 
Preparata and Vuillemin (1981a, b). This computation uses O(m) exchange 
steps and 0(log m) "butterfly" steps. 

Thus, if we have an m × m mesh of k modules, the columns of the mesh 
are first used to execute in parallel Step D 1 according to the scheme alluded 
to in A2, and--following the local multiplication D2- - t he  rows of the mesh 
are finally used to execute in parallel Step D3 (again using the scheme A2). 

A P P E N D I X  3: STRUCTURE AND OPERATION OF THE 

CUBE-CONNECTED-CYCLES NETWORK 

The 2 u × 2 ~-~ cube-connected-cycles (CCC) 7 is a network of 2 ~ modules, 
which can be conveniently thought of as a 2" × 2 ~ ~ array of processors 
P[i,j] (0 ~< i < 2 u, 0 ~<j < 2~-u), arranged as a matrix where j grows from 
left to right and i grows from bottom to top. The CCC-processor P[i,j] has 
number h = j  • 2" + i. The columns of the 2" × 2 ~ ~ arrays are connected as 
cycles; i.e., there is a connection between P[i,j] and P[(i + 1) rood 2~,j] for 
0 ~< i '< 2 u, 0 ~<j < 2 ~-". Furthermore, there is a link between processors 
P[i,j] and P[i,j'], i.e., processors in the same row, if the binary represen- 
tations o f j  and j '  differ exactly in bit position i; these links are called lateral 
connections. A 4 × 4 CCC is shown in Fig. 9. 

It has been shown 7 that a 2~-processor CCC emulates the v-dimensional 
binary cube architecture, in executing the algorithms that requires the 
successive use of the cube dimensions {E 0 ..... E~_I}, either in the order 
E o , . . . , E v _  1 (ASCEND) or in the reverse order (DESCEND). (Such an 
algorithmic paradigm has been referred to as "recursive combination.") In 
more detail, and referring for concreteness to the ASCEND schedule, the 
CCC cycles emulate cube dimensions Eo,E 1 .... , Eu 1 (cycle dimensions), 
whereas the lateral connections are used to emulate cube dimensions Eu, 
E,+ 1 ..... Ev_ ~ (lateral dimensions). It is therefore clear that, due to the 
assignment of rows to dimensions, a cycle must contain at least as many 
processors as there are lateral dimensions; that is, 

2 U ) v - u .  

The time used by the CCC to carry out an ASCEND or DESCEND 
algorithm is proportional to the CCC cycle length. 

The operation of cyclic shift has been shown to be a representative of the 
recursive combination paradigm, and therefore can be executed by the CCC. 

Preparata and Vuillemin (1981a). 
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FIG. 9. 

© 
® 

®, 

A 4 × 4 CCC. Processors are labelled with their numbers (v = 4, u = 2). 
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