
INFORMATION AND CONTROL 58, 137--156 (1983)

Area-Time Optimal VLSI Integer Multiplier
with Minimum Computation Time*

KURT MEHLHORN

Universitdt der Saarlandes, Fachbereich 10, Saarb~'cken, West Germany

AND

FRANCO P. PREPARATA

Coordinated Science Laboratory, University of Illinois, Urbana, Illinois 61801

According to VLSI theory, [log n, , ~] is the range of computation times for
which there may exist an A T2-optimal multiplier of n-bit integers. Such networks
were previously known for the time range [12(log 2 n), O(,v/n)]; this theoretical
question is settled, by exhibition of a class of AT2-optimal multipliers with
computation times [,O(log n), O(~fff)]. The designs are based on the DFT on a
Fermat ring, whose elements are represented in a redundant radix-4 form to ensure
O(1) addition time.

1. INTRODUCTION

Research on efficient integer multiplication schemes, potentially suitable
for direct circuit implementation, has been going on for some years.
Investigations have focussed on both the realization of practical (and
possibly suboptimal) networks and the more subtle question of the existence
of optimal networks. Optimality is defined with respect to the customary
A T 2 measure of complexity, which is central to the synchronous VLSI model
of computation (Thompson, 1979; Brent and Kung, 1981). Here A is the
area of the multiplier chip, while T is the computation time, i.e., the time
elapsing between the arrival of the first input bit and the delivery of the last
output bit. As is well known (Abelson and Andreae, 1980; Brent and Kung,
1981), any multiplier of two n-bit integers must satisfy A T 2 =I2(n z) and
A = .Q(n) in the V1SI model; in addition, standard fan-in constraints of the
logic gates yield the lower bound T = X2(log n). These three lower bounds

* This work was supported by the National Science Foundation under Grants MCS-81-
05552 and ECS-81-06939; additional support was provided by the Deutsche Forschungs
gemeinschaft SFB 124, VLSI-Entwurf und Parallelitiit.

137
0019-9958

Copyright © 1983 by Academic Press, Inc.

All rights of reproduction in any form reserved.
Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/4.0/

138 M E H L H O R N AND P R E P A R A T A

indicate that [log n, V~] is the range of computation times for which there
may exist an A T2-optimal multiplier.

The search for an A T2-optimal integer multiplier began with the subop-
timal design of Brent and Kung (1981), for which AT2=O(n21og 3 n).
Subsequently, Preparata and Vuillemin (1981b) proposed a class of optimal
designs whose computation time could be selected in the range
[0(log 2 n), 0(X/~)]. More recently, Preparata (1983) exhibited an optimal
mesh-connected multiplier achieving T = O(V~). An intriguing feature of all
the above optimal designs is the explicit recourse to the Discrete Fourier
Transform (DFT), as the device used for computing convolutions. However,
none of these optimal designs achieves the minimum computation time
T=O(logn). On the other hand there are well-known multiplication
algorithms which achieve optimum computation time T = 0(log n), e.g., the
Wallace tree (1964) and Dadda counting (1965). Both algorithms are not
easily embedded into silicon because of their irregular interconnection
pattern. More recently, there have been proposals of desings with optimum
computation time and nearly optimum AT2-measure (Vuillemin, 1983;
Becker, 1982; Luk and Vuillemin, 1983; Lengauer and Mehlhorn, 1983).
Moreover, some of these designs are eminently practical. We refer the reader
to Luk and Vuillemin (1983) for a detailed discussion. All of these designs
are based on divide-and-conquer techniques and achieve their speed by the
use of a redundant operand representation, which results in O(1) addition
time. The most efficient of these designs (Luk and Vuillemin, 1983; Lengauer
and Mehlhorn, 1983) achieves T = O(log n) and AT 2 = O(n2(log n)2).

In this paper we shall exhibit a class of optimal, i.e., AT2= O(n2), designs
realizing any computation time in the range [t'2(logn), O(V~)], thereby
realizing the first A T2-optimal O(tog n)-time multiplier. More generally, the
new design settles, at least theoretically, the problem of integer
multiplication: there exist optimal designs for the entire spectrum of possible
computation times. Our new design incorporates ideas of many of the papers
cited above. Not unlike previous optimal designs, it makes essential use of
the DFT over a finite ring G, which we choose as a Fermat ring. In contrast
to previous papers, a low-order DFT is used to achieve fast computation
time. More precisely, in order to achieve computation time O(T) we will
resort to a T-point DFT over a ring of 2 °(n/r) elements. In Preparata and
Vuillemin (1981b) an (n/log n)-point DFT over a ring of 2 °(l°gn) elements is
used for all achievable values of T. Since we compute a DFT in a large ring
of 2 °("/r) elements, efficient implementations of the ring operations and of
the data transfer between computing elements are crucial. We borrow from
Preparata (1983) the idea of computing the DFT on a mesh of processing
elements. Only communication between adjacent processing elements is
required in this case and hence we can provide for a large communication
bandwidth without paying too high a penalty in area. Each processing

AREA--TIME OPTIMAL VLSI INTEGER MULTIPLIER 139

element of the mesh has the ability to do additions-subtractions over G and
multiplications by powers of the root of unity. We choose a redundant
representation for ring elements and thus achieve O(1) addition/subtraction
time in a small area. Since ring G is a Fermat ring, i.e., the set of integers
modulo m = 2 p + 1 for some p, and since the root of unity used in the DFT
is a power of two, multiplication by a power of the root of unity can be
essentially reduced to a cyclic shift and a small number of additions/
subtractions. We implement cyclic shifts by means of a cube-connected-cycle
network (Preparata and Vuillemin, 1981a). Finally, general multiplications
in G are realized by one of the fast, suboptimal designs referred to above.
Since only O(T) general multiplicaitions of ring elements (which are essen-
tially O(N/T)-bit numbers) are required, we will stay within the desired
limits of time and area.

The paper is organized as follows. In Section 2 we review the arithmetic
basis for the proposed multiplication scheme. We start with a description of
one of the fast designs based on divide-and-conquer. Next we review how
integer multiplication can be reduced to polynomial multiplication
(convolution). We will then discuss the school-method (for polynomial
multiplication) and derive from it a T = O(log n), A = O(nZ/log n) design.
This design is probably the most practical design proposed in this paper.
Finally, we discuss interpolation/evaluation schemes and more specifically
the DFT for computing convolutions efficiently. In Section 3 we describe the
proposed multiplication scheme in detail. We first review how to compute
the DFT on a mesh and then discuss in detail the organization of each mesh
module. Appendix 1 contains a discussion of a redundant number represen-
tation which we use for the algorithm and Appendix 2 shows how to
compute the DFT on a mesh; the latter material is essentially taken from
Preparata (1983). Appendix 3 contains a succinct review of the structure and
operation of the cube-connected-cycles network.

2. ARITHMETIC BACKGROUND

In this section we briefly review the arithmetic basis of the proposed
multiplication scheme. Specifically, we recall how integer multiplication can
be solved by divide-and-conquer techniques and more generally by
polynomial multiplication. We will also review a particular VLSI-design
based on divide-and-conquer techniques. We will then show how the "school-
method" for polynomial multiplication can be used to construct a
T = O(log n), A T 2 = O(n 2 log n) multiplier. Finally, we will discuss how
convolution can be computed by an evaluation/interpolation scheme and we
shall describe one particularly efficient specialization of the latter as a
Discrete Fourier Transform over a Fermat ring.

140 M E H L H O R N AND P R E P A R A T A

Throughout this paper a and b are nonnegative integers in the range
[0,2 n / 2 - 1] (n even). We use e = a × b to denote their product and

an_l , . . . ,a o, bn_l , . . . ,bo, cn_l , . . . ,eo , where an~ 2 a n l=bn /2
b n_l = 0, to denote the binary representations of a, b, and e, respectively.

2.1. Integer Multiplieation by Divide-and-Conquer

Assume that n is divisible by 4 for the sake of simplicity. We can then
write

a:a12n/4 +ao, b=b12"/4 +bo, e=cz2n/2 +e12n/4 +eo

with a I , a 0, b 1 , b 0 ~ [0, 2 n/4 - 1] and e 2 = a l b l , c 1 : aob I + albo, c O : aob o.
Hence we can compute the product of two n/2-bit numbers by computing
four products of n/4-orbit numbers and a few sums of n-bit numbers. The
next observation to make is that addition takes time O(1) if a suitable
redundant representation is used (cf. Appendix 1). Hence this scheme will
result in a T = O(log n) multiplier. A VLSI layout with A = O(n 2 log n) is
readily obtained and can be found in Luk and Vuillemin (1983).

An interesting improvement upon the technique described above is due to
Karazuba and Ofman (1962). They observed that c2 ,e 1, and e 0 can be
expressed as

e 2 : a l b I e 1 = (a~ +ao)(b I + b o) - a l b 1 - a o b o c o = a o b o

and hence three multiplications of numbers of half the length suffice. Again,
if combined with a redundant number representation, a T = O(logn)
multiplier results. Also, a VLSI layout with A = O(n 2) is available and can
be found in Luk and Vuillemin (1983), and Lengauer and Mehlhorn (1983).
Thus A T 2 = O (n 2 log 2 n).

It is important to note that both of the above multipliers are pipelinable
(in technical terms, their periods are O(1)), since at each step of the
computation all data lie on a single level of the recursion. Thus the pipeIined
3-multiplication multiplier (P3M) can be used to multiply O(log n) pairs of
n-bit numbers in time O(log n). We will exploit this observation below.

2.2. Integer Multiplication via Polynomial Multiplication

Integer multiplication by divide-and-conquer is a special case of integer
multiplication via polynomial multiplication. Let k be an integer, k/> 2. For
the divide-and-conquer scheme we have k = 2. Assume w.l.o.g that k divides
n. We subdivide the binary representation a n_l "'" a0 of a into k strings of
length n / k each and consider each string as the representation of a binary
number in the range [0, 2 n/k - 1]. In this way we associate with integer a the

AREA--TIME OPTIMAL VLSI INTEGER MULTIPLIER 141

I
I

2n/k+[Iog 2 k]

I I l I

FIG. 1. Illustration of the release-of-the-carries.

polynomial A(x) k 1 = ~ i = o A j x~ such that A] C [0, 2 "/~ 1], a = A (2 "/~) and
= Y:~=0 B f Ak/2 Ak_ l = 0. Similarly we associate polynomial B(x)= k-1

with b. Note that A(x) and B(x) are really of degree [k/2] - 1. Let C(x) =
A(x) • B(x) be their product. Then C(x) is of degree k - 1 and C(2 "/k) --
A(2"/k)B(2"/k)=ab. Also, each coefficient of C(x) lies in the range
[0, k22"/~- l] and can thus be expressed as a (2n/k + [logzk])-bit number.
It follows that the product ab can be obtained by expressing each coefficient
of C(x) as a (2n/k + [log 2 k])-bit number, by positioning the coefficients n/k
bits apart as shown in Fig. 1 and by adding these (k - l) numbers. This
transformation of C(x) into c = ab is normally referred to as the "release-of-
the-carries" and can be performed in time O(logn) (Preparata and
Vuillemin, 198 lb).

At this point we have reduced integer multiplication to polynomial
multiplication. The naive method for the latter problem is the school-method:
compute the k 2 products AiBj, 0 <~ i , j < k, and sum appropriate terms. For
k = 2 this leads to the 4-multiplication recursive scheme described at the
beginning of Section 2.1.

We will next show how to combine the P3M multiplier with the "school-
method" for convolution in order to obtain an T = O(logn), AT2=
O(n 2 log n) VLSI-multiplier. We will describe two quite different methods.

• . . I >

Multiplier Cell

• D

Q O O

FIG. 2. Structure of Muller's Multiplier.

142 M E H L H O R N A N D P R E P A R A T A

The first method is a hybridization with a multiplier due to Muller (1963).
The multiplier originally proposed by Muller computes the product of two s-
digit integers by convolving the two factors (see Fig. 2). It consists of 2s - 1
cells, and the product is obtained in 2 s - 1 shifts and adds. In the binary
case, the adder is a conventional full binary adder and the "elementary
multiplier" is just an AND-gate. Suppose now we subdivide each of the n-bit
operands into [log 2 n] strings of (n/[log2 n])-bits each to be viewed as a
binary number. We now construct a Muller multiplier with 2[log 2 n] - 1
cells, each of which is adapted to process (n/[log 2 n])-bit numbers, rather
than single bits. The adaptation consists of replacing the AND-gate by a
P3M multiplier for n/[log 2 hi-bit numbers, and the full adder by a three-
operand adder; the redundant representation is kept throughout, so that
O(1)-time addition is guaranteed. The sequential feeding of the [log2n]
strings (each fed in parallel) provides the pipeline input to the P3M
multipliers, so that the overall multiplication is completed in time O(log n).
As to the chip area, each of the 2Ilog 2 n] - 1 cells has area O(nZ/log 2 n),
thereby resulting in an overall area O(n2/logn). It follows that
A T 2 = O(n 2 log n), as claimed earlier.

Remark. Of course, the P3M multiplier used in the design above can be
replaced by any other pipelinable fast multiplier. In particular, we might use
the T = O(log n), A = O(n 2 log n) multiplier described in Vuillemin (1983),
Luk and Vuillemin (1983), and Becker (1982), and obtain a T = O(log n),
A = O(n 2) multiplier. This design is probably the most practical design
proposed in this paper.

An alternative approach has been described in Lengauer and Mehlhorn
(1983) and is as follows. Divide the n-bit integers a and b into k = (log 2 n) ~/2
strings of n/(log2n) ~/2 bits each. We now use a P3M multiplier for
n/(log 2 n)U2-bit integers in order to compute the k 2= log 2 n products AiB j.
Adding up appropriate terms and releasing the carry finishes the
multiplication. It is easily seen that the area of the design is dominated by
the area of the P3M multiplier and hence is O(n2/logn). Thus a
T = O(log n), A = O(n2/log n) multiplier results.

We have now described two alternative implementations of the school-
method. The first one uses k = log 2 n and the second one uses k = (log2 n) 1/2.
In the first implementation we use log n P3M multipliers to compute the
(log2n) 2 multiplications of (n/log2n)-bit integers and in the second
implementation we use one P3M multiplier to compute the logzn
multiplications of n/(log z n)~/2-bit integers.

At this point it is natural to hope that even more efficient multipliers can
be obtained by replacing the school-method for polynomial multiplication by
a more efficient scheme. The more efficient schemes are based on the concept
of evaluation-interpolation and are described in the next section.

AREA--TIME OPTIMAL VLSI INTEGER MULTIPLIER 143

2.3. Polynomial Multiplication via Evaluation/Interpolation and the Discrete
Fourier Transform

Let G be a division ~ ring and let A(x), B(x) be polynomials of degree
<k/2 over G. Let Xo,Xl,...,xk_ ~ be distinct elements of G. Denoting, as
usual, by C(x) the degree-(k - 1) product A(x) . B(x), we have

C(xj) = A (x:). B(xj) 0 <,j <~ k - 1.

Thus, by evaluating A(x) and B(x) at each of the values x0,..., x k_1, we
obtain, by means of only k multiplications over G, the values C(xo),...,
C(xk-1), from which the k coefficients of C are computed by interpolation.

Karazuba's 3-multiplication method is an instance of evaluation/
interpolation for k = 3 . Let A (x) = A l X + A o, B (x) = B I x + B o be two
polynomials of degree 1. We choose x 0 = 0 , x l = l and x 2 = ~ . Then
A(xo)=Ao, A(Xl)=AI +Ao, A(xz)=A1, B(xo)=Bo, B(Xl)=BI +Bo,
B(xz)=B1, and C(xo)=AoB o, C (x 0 = (A1 + Ao)(B1 + Bo), C(x2)=A~BI.
Finally, the interpolation formulae are

Co = C(xo)

C 1 = C(x1) - C (x o) - C(x2)

C 2 = C(x2) .

As one can see from Karazuba's metod, the choice of points x0 x k_~ is
very crucial for the effectiveness of the evaluation/interpolation scheme. It is
well known that for large k a good choice for the evaluation points is
consecutive powers of an order - k primitive root of unity in G. This leads
to the Discrete Fourier Transform (DFT) (Aho, Hopcroft, and Ullman,
1974).

In particular we want to choose the commutative ring G such that if co is a
primitive root of unity of order k, multiplication of an element of G by co;
(i = 0 k - 1) can be done very efficiently. One very attrative choice is
provided by a Fermat ring, i.e., by the set of the integers modulo a number
of the form 2 ° + 1, for integer p: indeed, as we show in Appendix 1,
multiplication by o9 i reduces to a minor variant of left cyclic shift. The
suitability of a Fermat ring to our objective is demonstrated by the following
property (see Aho et al., 1974, p. 266, Theorem 7.5):

PROPOSITION 1. Let r and co be powers of 2 and let m = cor/2 + 1.
Letting Z m be the ring of integers modulo m (a Fermat ring), then r and o9

Below, this condition on the nature of G will be relaxed.

643/58/1 3 I0

144 MEHLHORN AND PREPARATA

have multiplicative inverses in Z m and oa is a primitive rth root of unit in
Z m •

The arithmetic of Fermat rings is described in Appendix 1.
We close this section with a brief description of the construction we are

about to describe. Let T be an integer between log n and X/rff (the symbol T
is chosen as a reminder that this integer is the "target computation time" of
the network). We reduce multiplication of n-bit integers to multiplication of
polynomials of degree T with coefficients in the range [0,2"/r).
Multiplication of polynomials is based on evaluation/interpolation over a
Fermat ring. For the T multiplications in the ring we use one P3M multiplier
for (n/T)-bit integers. Thus all T multiplications take time O(T + log n/T) =
O(T) and area A = O(n2/TZ). Evaluation and interpolation are the DFT and
its inverse. Section 3 is devoted to the computation of the order - T (DFT)
in a ring of size 2 °("/r) in time O(T) and area O(n2/T2).

3. THE MULTIPLIER NETWORK

A multiplier network of the type we describe below consists of four major
subnetworks, illustrated in Fig. 3. Operands are loaded from the left and
intermediate results migrate to the right, residing a certain amount of time in
each of the four major subnetworks. Operands are represented with n bits
and, denoting by T ~ [log n, x/n)]: apower of 2 that divides n, each operand
is subdivided into T strings of n/T bits. For two such operands a and b we
have

T 1 T--1
a= ~' ai2 "i/T, b= ~ b;2 ni/~,

i=0 i=0

where O<~ai, h i<2 n/v for i = 0 T / 2 - 1 and a i = b i = O for i>~T/2.
Analogously we define c = a × b, so that

J

ej = ~. aibj_ i 0 < j < T.
i=0

From this expression, it is obvious that 0 ~ cj < 722n/~' We now wish to
treat the ai's, bt's, and ci's as members of a Fermat ring Z m. To find the
smallest suitable Fermat ring it is sufficient to choose m = 2P+ 1 >~
kT 2"/r > max,-01 ei, which is verified by

p = 3 [~] T for n>/16.

2 We shall discuss later the choice of the upper extreme of this interval.

AREA--TIME OPTIMAL VLSI INTEGER MULTIPLIER 145

FI6. 3. General scheme of the multiplier.

Therefore, if we select

m = 2 P + 1,

co = 2 2p/r = 2 6In/r2],

we verify the hypotheses of Proposition 1 with r = T, so that o) is a primitive
root of unity in Zm of order T.

EXAMPLE. For n = 256 = 28, and T = 8, we have p = 96 and co -- 224. A
128-bit operand is subdivided as illustrated below. Each of the four "chunks"

256 ~'~_
o o . . . ° l I

~ 0 . . . 0

O0 .~. 0 [
]00 . . • 0

97 ~.

is further embedded into a 97-bit string, as a member of Z296 + i .

Each transfer of data from major subnetwork to major subnetwork (see
Fig. 3), as well as from the input and to the output, involves O(n/T) bits at a
time: specifically, (p + 1) bits between modules and niT bits in I/O
transfers. Thus each transfer uses O(T) time.

The pipelined multiplier is a straightforward variant of a pipelined 3-
multiplication multiplier: it uses length-(p+ 1) operands and has area
O(nZ/T2), since p = O(n/T). Due to its pipeline structure, it performs
multiplications in time O(T+log(n/T))= O(T) since T/>log n. Thus, the
pipelined multiplier subnetwork has area and time obeying the A T2= O(n 2)
target.

The FFT-engines (both for the direct DFT and for its inverse) are the
crucial components of the network and will now be described in some detail.
Each consists of T maeromodules organized as a [V @] × [v/T] mesh (see
Fig. 4, where we have implicitly assumed that T is a square). If the length of
each side of the macromodule is O(n/T3/Z), then each DFT-engine has area
O(n2/T2), sufficient to achieve A TZ-optimality. Next we shall show that this
objective is attainable.

146 M E H L H O R N A N D P R E P A R A T A

VVjRows

• [~ T] Columns

FIG. 4. Architecture of the FFT-engine.

It has been shown in Preparata (1983) 3 how a mesh-connected
architecture of s × s modules can be used to compute the FFT of s 2 elements
in O(s) "parallel exchange steps" and O(logs) "parallel butterfly steps,"
where an exchange step involves the exchange of the operands of two
adjacent modules and the butterfly involves a multiplication by a power co"
of the principal root and an addition-subtraction. With this background,
each macromodule of the mesh is designed to contain a Zm-operand
represented in redundant radix-4 form (i.e., with 3(p/2 + 1) bits) and must
have the following capabilities:

1. Transfer its operand to an adjacent module (or exchange operands
with an adjacent module);

2. Add two operands (or, equivalently in the redundant representation,
subtract one from the other);

3. Multiply an operand by co; (i = 0,. . . ,-1).

As noted earlier, we have O(x/~) operations of type 1 and O(log T)
operations of types 2 and 3; thus, since T is our target computation time, the
target times are O(v/T) and O(T/log T) for the two types of operations,
respectively.

The macromodule, which is designed to store an O(n/T)-bit operand, will
be structured as follows. It contains niT 3/2 0(V@)-bit shift registers, as
illustrated in Fig. 5. The length of either side of the macromodule square is
O(n/T3/24 - T 1/2) = O(n /T 3/2) since T ~ X/if, thus attaining the desired area.
Note that the shift-registers can always be arranged as illustrated, since the
register length is of lower order than the length of the macromodule side for
all T. It is also straightforward to conclude that time 0(x/~) for an exchange
operation is achieved by the proposed structure, by shifting in parallel the
content of each shift-register to the homologous shift-register in one of the
adjacent macromodules.

3 For convenience, see Appendix 2 for a review of the technique.

A R E A - - T I M E O P T I M A L V L S I I N T E G E R M U L T I P L I E R 147

O Q O

• ° [•

I~-~(~) I • n lines

FIG. 5. Structure of a macromodule.

The structure obtained so far is also quite adequate for the execution of
type 2 operations (addit ions-subtract ions) , by simply equipping each register
with a serial adder and introducing a few extra wires to t ransmit the carries
between registers and to perform R-normalizat ion, as defined in Appendix 1.

More delicate is the implementat ion of type 3 operations. Since
multiplication by co i= 26 [,/r2]i is basically a left cyclic shift by O([n/T2]i)
positions (for i = 0, 1,..., T - - 1), we must provide an interconnection capable
of performing any one of T different cyclic shifts of data blocks of size
O(n/T2). Thus the basic information unit dealt with in type 3 operations is a
block of O(n/T 2) bits, which we stipulate to be stored in a mieromodule.
(Thus a macromodule consists of T micromodules.) For the sake of
simplicity, we assume temporar i ly that T<<. C2n 2/5, for some constant C 2.
With this hypothesis each micromodule is an assembly of O(n/T 5/2)
continguous registers. (C 2 is chosen so that this number of registers is at
least 1.) The transfer of the content of a micromodule occurs, with a
bandwidth equal to the number of its constituent registers, in time O(x/T) .

To perform the desired cyclic shift, we propose to interconnect the T
micromodules as an appropriate cube-connected-cycles (CCC) network. 4
Specifically, we shall realize a C C C of 20 u cycles, each cycle consisting of
2 u micromodules (referred to as a 2 u x 2 ~-u CCC) , where v = log 2 T and
u = [½ log 2 T - - l o g 2 1 o g 2 T+e], for a suitable constant c. Since it is a
functional requirement of the C C C that 2u/> v - u (see Appendix 3), we
have the condition

2 [l°g2r-I°g21°gzr +c]/2 ~ log 2 T - - [½log 2 T log 2 log 2 T + c 1.

4 In Appendix 3 the reader will find a concise description of the CCC.

148 MEHLHORN AND PREPARATA

It can be easily verified that this constraint is always satisfied for T/> 4 by
choosing e ~ 1.308. Note that this CCC has cycles of length O(,v/T/log T)
and is capable of performing any of the T prescribed cyclic shifts in a
number of steps also O(v@/log T). Since, as noted earlier, the total available
time for a cyclic shift is O(T/log T), the time available for each CCC-step is
O(v@), which is exactly the time used to transfer the content of a
micromodule. Thus a CCC interconnection realizes the desired computation
time for type 3 operations.

We must still verify that the described CCC can be embedded in the
macromodule with an insignificant increase in the area (i.e., an area blowup
by a constant factor). The modified layout is obtained by dilating, by a
factor of 2, each side of the original layout. The new tracks made available
are used to realize the CCC connections: specifically, the upper-right portion
is used for the cycle links, whereas the lower-left portion is used for the
lateral connections. The scheme is illustrated for a 4 × 4 CCC in Fig. 6 and
requires no further comment.

The same considerations apply to the FFT engine designed to implement
the inverse FFT. (The only additional operations are the multiplication of
each result by l / T = --2P/T--the negative of a power of two (see Appendix

1).)

Remark. We now consider the case T > C2 n2/5. In this situation each
shift register contains O(T/n 2/5) micromodules, since a shift register holds
O(T l/z) bits and a micromodule holds O(n/T 2) bits. Also, as before, there are
niT 3/2 shift registers per macromodule.

Within each macromodule we realize a CCC whose nodes are now the
registers (not the micromodules as before). The CCC has 2 ~-u cycles,
each cycle consisting of 2 u registers, where v =logz(n/T 3/2) and u =
log2(T1/2/log T). In particular, the cycle length is T1/2/log T. We can clearly
embed the CCC with only a constant blowup in area. The interconnection of

I
Fro. 6. Embedding of a 4 × 4 CCC into a 16-element macromodule.

AREA--TIME OPTIMAL VLSI INTEGER MULTIPLIER 149

the registers is completed by (switchable) links that have the capacity of
reconfiguring the registers into a single (N/T)-bit cyclic shift register.

Consider now a cyclic shift by (n/T2)i positions, 0 <~ i < T, and write

(n/T2)i = aT 1/2 + b,

where a and b are integers with b < T 1/2. We can realize the cyclic shift of
the content of a macromodule by (n/TZ)i positions in two steps:

(1) Shift by b positions. This can clearly be done in time
O(b) = O(T U2) by using the registers reconfigured as a single shift register.

(2) Shift by a • T 1/z positions. Since aT 1/2 is a multiple of the shift
register length we can perform such a shift using the CCC. It takes
O(T1/Z/log T) CCC-steps, and hence O(T/log T) time units. (Recall that shift
registers are transferred bit-serially.)
We conclude that the total time needed for the shift is O(T/log T).

Since time O(T/log T) is available for each shift, as noted earlier, we
conclude that we are operating within the desired time bound.

One final comment is in order with regard to the transfer of data from the
DFT-engine to the pipeline multiplier (and vice versa). Elements of Z m have
to be transferred in parallel on the entire channel of bandwidth O(n/T),
whereas at the completion of the DFT computation each such element is
wholly stored in a macromodule. Therefore a preliminary data rearrange-
ment is necessary, that will bring all microoperands of a given macromodule
to be aligned (in a given row or column). The data paths necessary for this
rearrangement are available, and it is left as an exercise to show that O(v/T)
time suffices to complete this task.

Since all major modules of Fig. 3 have area O(n2/TZ), and the time used
for the DFTs and the pointwise multiplications is O(T) (notice that this time
adequately accounts for the release-of-the-carries and the conversions in Z m
to nonredundant form), we have the followong conclusions:

THEOREM. It is possible to construct VLSI multipliers of n-bit numbers
with the optimal performance A T 2 = O(n 2) for all computation times T such
that O(log n) ~< T ~< O(V~).

A P P E N D I X 1: THE ARITHMETIC OF FERMAT RINGS

The operands considered in this paper are elements of a Fermat ring s Z m
of the integers modulo m = 2 p + 1, where p is an even integer (to be chosen
later). The operands are also represented in a redundant radix-4 form, where

5 Fermat rings were used by Sch6nhage and Strassen (1971) in their fast multiplication
technique.

1 5 0 M E H L H O R N A N D P R E P A R A T A

aL_ 1 ..- a i ... a I a 0 +

bL_ 1 -.- b i ... b I b 0

% - 1 "'" s l " '"

CL_ 1 ... Cl+ 1 ... c 2 c I 0

FIG. 7. Illustration of the first step of addition for numbers in redundant radix-4 represen-
tation.

the digits belong to the set {-3 , - 2 , - 1 , 0, l, 2, 3}. Thus the value of a digit
string (aL_ 1, aL_2,..., ao), with L =p/2 + 1, is

L - I

ai4i '
i = 0

which yields an operand range R ~= [- 4 L + 1, 4 L - 1] @ Z m. (Notice also
that 4m > 4 L -- 1.) We shall call R-normalization the operation of bringing a
number within the range R modulo m, i.e., to go from x C Z to y C R with
y = x (mod m).

We shall discuss the operations of addition/subtraction, multiplication and
division by a power of 4, and conversion between redundant and irredundant
forms.

(i) Addition-subtraction in Z m. Since a = Y ~ - l a i 4e means - a =
~_-1 (_ai) 4 i, subtraction reduces trivially to addition. Suppose then we
wish to add modulo m the two numbers in R

L - 1 L--1

a= ~" ai 4i and b = E bi 4i
i = 0 i = 0

so that their sum is also normalized in R. Referring to Fig. 7, for each
i = 0 , . . . , L - 1 , we first compute the digit pair (s*,ci+l) from the pair
(a i,bi), according to Table I. Notice that a i+ b i=s* + 4ci+~,
s * C { - 2 , - 1 , 0 , 1 , 2 } and c i + ~ { - 1 , O, 1}. To obtain the final sum, we
distinguish various cases:

TABLE I

a i + b i 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6

s* - 2 - 1 0 1 - 2 - 1 0 1 2 - 1 0 1 2

ci+ l - 1 - t - I - 1 0 0 0 0 0 1 1 1 1

A R E A - - T I M E O P T I M A L VLSI I N T E G E R M U L T I P L I E R 1 5 1

1. e L = 0. In this case, the integer represented by

(s z_ ~ So), s i = s* + e i (- 3 ~ s i <~ 3, i = 0 L - 1)

is a legitimate representation of the sum (a + b) rood m in the range R.

2. e L 4:0. In this case the result does not belong to R, so that a
correction is necessary to accomplish R-normalization. Specifically, we have

L--1
(a + b) mod m = (j~ ° sj4 j +eL4Lmodm)modm

L--I
----(j~-o- sj4J-4Q)m°dm

since 4 L = 2 p + 2 = - 4 rood m. We further distinguish two subcases:

2.1. eLs I 4 : - 3 . In this case the final sum is obtained by simply
replacing s 1 with s~ = sl - e L, since - 3 ~< s I - e L ~< - 3 .

2.2. eLS ~ = - - 3 . In this case s ~ - e L = - - 4 or 4, so the correction of
case 2.1 is not applicable. We then apply the same technique to perform the

_ V ~ L - 1~ 4 j addition (S + C) mod m, where S-z_, j .=0oj and C = - 4 e L. Letting
sl - et = s** + e~, we note that s** = 0 (since sl - e L = - 4 or 4), whence
in forming the final sum case 2.2 cannot arise again.

It follows from the preceding discussion that addition can be done in O(1)
time.

L-- I (ii) Mult ipl icat ion and division by a p o w er o f 4. Let a = Y~j=0 aj 4J

and consider the product a • 4 ~ rood m, for some integer s. We have

L--1

a4 s m o d m = ~ aj4 . i + s m o d m
j - 0

L i L - - l + s

= (Z Z 4 modm)mod
h = s h = L

L - 1 s - 1

(' t = 2 a h - , 4h + ~ aL '+ i 4 (- 4) m o d m
h = s i = 0

m

since 4 L mod m = - - 4 . Thus multiplication by 4 ' is equivalent to:

(a) cyclically shifting to the left the L-digit string by s digit positions;

(b) changing the sign of the s least significant digits of the string
obtained in (a) and shifting them one position to the left;

1 5 2 M E H L H O R N A N D P R E P A R A T A

s•-L Digits ,' • L D i g i f s ~
p * - s ~ 1

(a) (b)

FIG. 8. Illustration of multiplication and division by a power of 4.

(c) adding the two resulting numbers with the method described
above.

These opereations are illustrated schematically in Fig. 8a.
With regard to divisions by powers of 4, we know that any power of two

2 s (s ~<p) has a multiplicative inverse in Z m , given by 2P+ 1 - 2 p-s. The
inverse of a power of two in Zm, however, is not a power of two, and so
multiplication by it does not exhibit the interesting feature described above.
However, since we chose to represent the elements of Z m in R, we represent
the multiplicative inverse of 2 s as - 2 p-~, so that multiplication by it
becomes a right cyclic shift by s digit positions, with subsequent negation of
the s most significant digits and their shift one further position to the right,
as shown in Fig. 8b.

Since sign changes and additions are performed in constant time, the
computation time is dominated by the time used by the shift operations.

(iii) Multiplications in Z m. Whatever multiplication scheme we adopt
(see Section 2), the result p is a 2L-digit number. To bring it within range R
(L-digit numbers), we operate as follows:

p =
2L 1

Z
i = 0

L 1 L - - I

Pi 4i= Z Pi 4i+ Z PL+i 4L+i
i - O i = o

L 1 L--1

= ~ pi 4 i - ~" PL+i 4i m o d m
i 0 i = 0

L 1 L - I

= Z Pi 4i -- Z PL l+~ 4i + 4p2L-I mod m.
i - o i - O

Thus, to perform the R-normalization of the product we must perform a shift
and two additions over Z m.

(iv) Conversion between binary form and redundant radix-4
form. Without loss of generality, we assume that the input binary numbers
are nonnegative and represented in 2's complement form with p + 2 bits
bp+~ b 0 (bp+~ = 0 is the sign bit). The conversion to radix-4 form is

AREA--TIME OPTIMAL VLSI INTEGER MULTIPLIER 153

trivially accomplished by inserting 0 to the left of b2i+l for i = 0, 1,...,p/2, in
constant time.

The conversion to binary form is somewhat more complex. One possible
implementation consists of forming two redundant radix-4 numbers a+ and
a_ , consisting respectively of the positive and negative digits of the given
number a. Next, each digit of a+ and a is converted to the binary represen-
tation of its modulus, thereby obtaining two binary numbers a~ and a ' ; all
of these operations take time O(1).

' - a ' by a binary subtraction (in time Finally we compute a * = a+ _
O(logp). Notice that a* belongs to R but not necessarily to Zm: so, to
compute a* mod m (Zm-normalization) it may be necessary to add/subtract
m at most four times, since 4m > 4 L - 1.

A P P E N D I X 2: A M E S H - C O N N E C T E D NE T WORK FOR THE DISCRETE

FOURIER TRANSFORM 6

Let G be a commutative ring containing a primitive root of unity, co, of
order k = m 2 in G. We then have the following two facts:

A1. The DFT (Ao,A 1 Ak_l) of a vector (a0,a 1 ak 1) can be
obtained as a two-dimensional DFT, by arranging the vector in row-major
order as m × m matrix A =][aij.[], where aij=ami+j (j < m). (Note that
indexing starts from 0 rather than from 1.) Letting Ar~ = A m r + s , w e then
have

a co(mi+j)(mr+s) ~- (c o m y r COsj m is A r s = Z ij aij(co . (1)
ij j=0 i=0

The latter expression suggests the following algorithm

m - I

D1. A~j ~ ,~m,is t ~ a i j ()
i = 0

fI)sJA I.

m - - I

D3. A~'~- ~. ,, mj¢ a,j(co)
j - 0

(Note that A " = A , ; i.e., the algorithm obtains in reality the transpose of
the desired matrix.) This method has already been used in Brent and Kung
(1981), where, however, the DFT itself was obtained through matrix
multiplication.

(DFT of each column of the matrix);

(local multiplication);

(DFT of each row of the matrix).

6 Preparata (1983).

154 MEHLHORN AND PREPARATA

A2. A unidimensional m-module array (where m = 2 r for convenience)
can be used to compute the DFT of an m-vector, as has been shown in
Preparata and Vuillemin (1981a, b). This computation uses O(m) exchange
steps and 0(log m) "butterfly" steps.

Thus, if we have an m × m mesh of k modules, the columns of the mesh
are first used to execute in parallel Step D 1 according to the scheme alluded
to in A2, and--following the local multiplication D2- - t he rows of the mesh
are finally used to execute in parallel Step D3 (again using the scheme A2).

A P P E N D I X 3: STRUCTURE AND OPERATION OF THE

CUBE-CONNECTED-CYCLES NETWORK

The 2 u × 2 ~-~ cube-connected-cycles (CCC) 7 is a network of 2 ~ modules,
which can be conveniently thought of as a 2" × 2 ~ ~ array of processors
P[i,j] (0 ~< i < 2 u, 0 ~<j < 2~-u), arranged as a matrix where j grows from
left to right and i grows from bottom to top. The CCC-processor P[i,j] has
number h = j • 2" + i. The columns of the 2" × 2 ~ ~ arrays are connected as
cycles; i.e., there is a connection between P[i,j] and P[(i + 1) rood 2~,j] for
0 ~< i '< 2 u, 0 ~<j < 2 ~-". Furthermore, there is a link between processors
P[i,j] and P[i,j'], i.e., processors in the same row, if the binary represen-
tations o f j and j ' differ exactly in bit position i; these links are called lateral
connections. A 4 × 4 CCC is shown in Fig. 9.

It has been shown 7 that a 2~-processor CCC emulates the v-dimensional
binary cube architecture, in executing the algorithms that requires the
successive use of the cube dimensions {E 0 E~_I}, either in the order
E o , . . . , E v _ 1 (ASCEND) or in the reverse order (DESCEND). (Such an
algorithmic paradigm has been referred to as "recursive combination.") In
more detail, and referring for concreteness to the ASCEND schedule, the
CCC cycles emulate cube dimensions Eo,E 1 , Eu 1 (cycle dimensions),
whereas the lateral connections are used to emulate cube dimensions Eu,
E,+ 1 Ev_ ~ (lateral dimensions). It is therefore clear that, due to the
assignment of rows to dimensions, a cycle must contain at least as many
processors as there are lateral dimensions; that is,

2 U) v - u .

The time used by the CCC to carry out an ASCEND or DESCEND
algorithm is proportional to the CCC cycle length.

The operation of cyclic shift has been shown to be a representative of the
recursive combination paradigm, and therefore can be executed by the CCC.

Preparata and Vuillemin (1981a).

AREA--TIME OPTIMAL VLSI INTEGER MULTIPLIER 155

FIG. 9.

©
®

®,

A 4 × 4 CCC. Processors are labelled with their numbers (v = 4, u = 2).

RECEIVED August 11, 1983; ACCEPTED December 21, 1983

REFERENCES

ABELSON, H. AND ANDREAE, P. (1980), Information transfer and area-time trade-offs for
VLSI multiplication, Comm. A CM 23, No. 1, 20-22.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1974), "The Design and Analysis of
Computer Algorithms," Addison-Wesley, Reading, Mass.

BECKER, B. "Schnelle Multiplizierwerke fiir VLSI--Implementierung," Technical Report, Uni.
des Saarlandes, 1982.

BRENT, R. P., AND KUNO, H. T. (1981), The chip complexity of binary arithmetic, J. Assoc.
Comput. Maeh. 28, 521-534.

DADDA, L. (1965), Some schemes for parallel multipliers, Alta Frequenza 34, 343-356.
KARAZUBA, A AND OFMAN, Y. (1962), Multiplication of multidigit numbers on automata,

DokL Akad. Nauk SSSR 145, 293-294.
LENGAUER, T., AND MEHLHORN, K. (1983), VLSI complexity theory, efficient VLSI

algorithms and the HILL design system, in "The International Professorship in Computer
Science: Algorithmics for VLSI" (Trullemans, Ed.), Academic Press, New York, in press.

LUK, W. K., AND VUILLEMIN, J. E. (1983), "Recursive Implementation of Optimal Time VLSI
Integer Multipliers," VLSI 83, Trondheim, Norway, September.

MULLER, D. E. (1963), Asynchronous logic and application to information processing, in
"Switching Theory in Space Technology" (Aiken and Main, Eds.), Stanford Univ. Press,
Stanford, Calif.

PREPARATA, F. P. (1983), An area-time optimal mesh-connected multiplier of large integers,
IEEE. Trans. Comput. C-32, No. 2, 194-198.

PREPARATA, F. P., AND VUILLEMIN, J. (1981a) The cube-connected-cycles: A versatile
network for parallel computation, Comm. A CM 24, No. 5, 300-309.

PREPARATA, F. P., AND VUILLEMIN, J. (1981b), Area-time optimal VLSI networks for
computing integer multiplication and discrete Fourier transform, in "Proceedings,
I.C.A.L.P., Haifa, Israel," pp. 2940.

SCHONHAGE, A., AND STRASSEN, g. (1971), Schnelle Multiplikation grosser Zahlen,
Computing 7, 281-292.

156 MEHLHORN AND PREPARATA

THOMPSON, C. D. (1979), Area-time complexity fo r VLSI, in "Proceedings, l lth Annual
ACM Symposium on the Theory of Computing (SIGACT)," pp. 81-88.

VUmLEMIN, J. E. (1983), A very fast multiplication algorithm for VLSI implementation,
Integration, VLSI J. 1, No. 1, 33-52.

WALLACE, C. S. (1964), A suggestion for a fast multiplier, IEEE Trans. Comput. EC-13, No.
2, 14-17.

