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1. INTRODUCTION

Balanced search trees provide an efficient means of storing information. B-
trees, 2-3 trees, 1-2 brother trees, symmetric binary B-trees, AVL trees,
weight-balanced trees, etc, are examples of balanced search trees. These
structures have been known for many years; for example, AVL trees
appeared in 1962 and B-trees in 1972, and their worst case behaviours are
well known (Knuth, 1973). However, no analytical results were known about
the expected case behaviour of balanced search trees prior to the pioneering
work of Yao (1978) on 2-3 trees and B-trees. Yao (1978) presented a
technique of analysis now known as fringe analysis, which he used to find
bounds on the expected number of nodes in a B-tree.

The fringe analysis technique is based on a method that considers only the
bottom part or fringe of a tree. By considering only part of the nodes of a
tree one is able to obtain bounds on most complexity measures and also
some exact results. We show that the matrix recurrence relation related to
fringe analysis problems converges to the solution of a linear system
involving the transition matrix, even when the transition matrix has eigen-
values with multiplicity greater than one, whereas Yao (1978) requires that
the eigenvalues be pairwise distinct.

B-trees were presented by Bayer and McCreight (1972) as a dictionary
structure primarily for secondary storage. In a B-tree of order m each node
has between m + 1 and 2m 4 | subtrees, and the external nodes appear at the
same level. The interest in B-trees has grown in the recent years to the extent
that Comer (1979a) referred to them as ubiquitous. Comer (1979a, 1979b)
described several systems which use B-trees.

The 2-3 trees were introduced by John Hopcroft in 1970 (see Knuth,
1973, p. 468). In a 2-3 tree every internal node contains either one or two
keys, and all leaves appear at the same level. According to this, a 2-3 tree is
a B-tree of order m = 1, as shown in Fig. 1.1. Unlike B-trees, 2-3 trees are
more appropriate for use in primary rather than secondary storage. For this
reason they became equal contenders with. AVL trees, often being the
preferred data structure (Aho, Hopcroft, and Ullman, 1974, Huddleston and
Mehlhorn 1982).

Consider a B-tree T with N keys and consequently N + 1 external nodes.
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These N keys divide all possible key values into N + 1 intervals. An insertion
into T is said to be a random insertion if it has an equal probability of being
in any of these N + 1 intervals. A random B-tfree with N keys is a B-tree tree
constructed by making N successive random insertions into an initially
empty tree. In this paper we assume that all trees are random trees. Random
2-3 trees are random B-trees of order 1.

The first anaiytical results about 2-3 trees and B-trees were obtained by
Yao (1978). Although his results were slightly extended by Brown (1979),
many questions of interest were left open. Some of these questions are:

(i) The expected number of nodes in a B-tree after N random
insertions is of interest, since it indicates storage utilization. We extend and
refine the results of Yao with regard to this measure.

(ii) When considering insertions, the most expensive operation is
surely that of splitting an overfull node, since this involves not only the
creation of a new node but also an insertion into the next higher level of the
tree. Knuth (Chvatal, Klarner, and Knuth, 1972, Problem 37) raised the
following question related to 2-3 trees: “How many splittings will occur on
the nth random insertion, on the average,...”. We present the first partial
analysis of this measure for 2-3 trees and B-trees.

(ili) A different insertion algorithm for B-trees, which uses a technique
called overflow, was presented by Bayer and McCreight (1972, p. 183) and
also by Knuth (1973, pp. 477-478, Sect. 6.2.4). In the overflow technique,
instead of splitting an overfull node, we look first as its sibling nodes and
rearrange the keys when possible. The effect of the overflow technique is to
produce trees with fewer internal nodes on the average, giving a better
storage utilization. We present an analysis of 2-3 trees and B-trees created
using an overflow technique which is a particular case of the overflow
technique presented by Bayer and McCreight.

(iv) Consider the concurrency of operations on B-trees; see Kwong
and Wood (1980) for a survey of the techniques used. One basic technique
identified there was first used by Bayer and Schkolnick (1977), namely, lock
the deepest safe node on the insertion path. A node is (insertion-) safe if it
contains fewer than the maximum number of keys allowed. Then a safe node
is the deepest one on a particular insertion path if there are no safe nodes
below it. Since locking the deepest safe node effectively prevents access by
other processes it is of interest to determine how deep the deepest safe node
can be expected to be. Our results enable us to provide some insight into this
question.

Part of the results about 2-3 trees and B-trees presented in this paper
appeared in Gonnet, Ziviani, and Wood (1981), and part of the resuits
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presented in Section 2 appeared in Eisenbarth (1981). Finally, most of the
results presented in this paper appeared also in Ziviani (1982).

In Section 2 we present a fringe analysis theory containing a general
analysis of the matrices that appear in fringe analysis problems. In Section 3
we present the analysis of 2-3 trees related to the four questions considered
above, while in Section 4 we present a parallel but briefer analysis of B-trees.
Finally in Section 5 we discuss some open problems.

2. A GENERAL INVESTIGATION OF MATRICES IN
FRINGE ANALYSIS PROBLEMS

In the first part of this section we introduce the concepts and the
definitions necessary to describe the Markov chain used to model the
insertion process in search trees. In the second part we study the matrix
recurrence relation involved in the Markov process.

2.1. The Markov Process

Let us define a tree collection C as a finite collection of trees. Consider the
class of 2-3 trees of bounded height as an example. The collection of 2-3
trees of height k (k > 0) forms a different tree collection for each value of k.
Figure 2.1.1 displays the two possible types of trees in a 2-3 tree collection
of height 1. The dots represent the number of keys in each node.

The fringe of a tree consists of one or more subtrees that are isomorphic
to members of a tree collection C. Typically, the fringe will contain all
subtrees that meet this definition; for example, the fringe of a 2-3 tree is
obtained by deleting all nodes at a distance greater than k (k > 0) from the
leaves. Figure 2.1.2 shows an instance of a 2-3 tree with eleven keys in
which the fringe that corresponds to the tree collection of 2-3 trees of height
1 is encircled.

We say that a tree collection C is closed if

(i) for all T in C, an insertion into T always leads to one or more
members of C, and

(ii) the effect on an arbitrary tree, of an insertion, on the composition
of the fringe is determined solely by the subtree of the fringe in which the
insertion is performed.

£ o

typel type 2

Fic. 2.1.1. The tree collection of 2-3 trees of height 1.
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Fig. 2.1.2. A 2-3 tree and its fringe of height I subtrees.

The composition of the fringe can be described in several ways. One
possible way is to consider the probability that a randomly chosen leaf of the
tree belongs to each of the members of the corresponding tree collection. We
say a leaf is of #ype i if it belongs to a tree of type i In other words, the
probability that a leaf is of type i in.a (random) 2-3 tree of N + I leaves is

Expected number of leaves of type i in an N — key tree

2.1.1
N+1 ( )

PiN) =

Yao (1978) describes the fringe in a different way. His description of the
composition of the fringe considers the expected number of trees of type i,
while we describe it in terms of leaves as in Eq. (2.1.1). As we shall see our
description of the composition of the fringe simplifies the notation necessary
to present the fringe analysis technique, and also eases the task of deter-
mining which complexity measures can be obtained from the analysis of
each search tree.

The transitions between trees of a tree collection can be used to model the
insertion process. In an insertion of a key into a type 1 tree, see Fig. 2.1.1,
two leaves of type 1 are lost and three leaves of type 2 are obtained. In an
insertion of a key into a type 2 tree three leaves of type 2 are lost and four
leaves of type 1 are obtained as a result of node splitting.

Clearly the probability that an insertion into one tree, in a collection C,
leads to another tree in C, depends only on the types of the two trees
involved, and so the process is a Markov process (cf. Cox and Miller, 1965;
Feller, 1968). A sequence {X,}= {X,,X,,..} of random variables taking
values on a state space S is a Markov chain if '

PriXy=i|Xy_ =) Xy_2 =Jjis Xo=Jy_ 1} =PriXy=i| Xy , =]}

for all i, j, jiyes jy—1 € S. The current value of X, depends on the history of
the process only through the most recent value X, _ .

To illustrate this we consider the tree collection of 2-3 trees of height 1
shown in Fig. 2.1.1. In this context, let X, and Y, be the numbers of type 1
and type 2 leaves, respectively, after the Nth insertion into an, initially
empty, 2-3 tree. Since the tree collection is closed, the value of X, depends
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only on the value of X,,_, and as a consequence {X,} (or equivalently {¥,})
is a Markov chain.

Since {X,} and {Y}} are Markov chains we can easily compute their tran-
sition probabilities. Consider an insertion in an N-leaf 2--3 tree, that is, the
Nth insertion, then it falls into either a type | or a type 2 tree. This implies
that X,_, is either reduced by two or increased by four (by the remarks
above) to give X,,. Now the probability that the former occurs is

the number of leaves type 1~ X _;

the number of leaves - N

and the probability that the latters occurs is (N — X,_,)/N=7Y,_,/N. Thus
we obtain the conditional transition probabilities
Xy_y

N b

PriXy =Xy, — 2| Xy )=

Y
PriXy=Xy_,+4|Xy )= ]1\;;1 ,

Xy
N b

Y,
Pr(Yy=Yy_, +3‘YN41):_Ni7

or, as they are more usually written
Pr(Xy=1i|Xy_,=j)=j/N if i=j—2,
S(N—j)yN if i=j+4

Pr(Yy=Yy_,—3|Yy_ )=

and
Pr(Yy=i|Yy_,=j)=J/N if i=j—3,
=(N—j)/N if i=j4+3.
Now we wish to obtain the expected values of X, and Y, that is, E(X},)
and E(Y,). First observe, from Eq. (2.1.1), that
PN =EX)/N+1  and  p(N)=E(Y)/N+1.
Now the expected values of X, and Y, conditional on Xy_, and Y,_,, can
be expressed as

Xy_ Y,_
EXy|Xy_1, Yy_1)= }VVX Xy —2)+ NN1 Xy-1+4)

and

Y, X
r-l (YN~1"3)+ AL (YN—1+3)'

E(YN[XN—UYN—l)z N
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We wish to obtain the unconditional values of X, and Y,, that is,

E(XN) = E(E(Xy ' Xyt Yo x))
and
E(YN) = E(E(YN 5 Xy Yao 1)),

from which we derive

B =E (T~ )+ 2+ 4),

which simplifies to

2E(Xy 1) LAEN W)

E(X’V):E(XN‘l)" N N

Dividing each side by N+ 1 and replacing the expectations with
probabilities gives
(N=2)p,(N—1)+4p,(N—- 1)

N+1

(V)=

and, similarly, we can derive

3p(N-1)+ (N=3)p,(N-1)

PN) = N+
In matrix notation
N-2 4
i PRy L )
N+1 N+1
or
am) = w3 (e )
where

-3 4 1 0
H= d I= .
( 3 —4) o (0 1>
Thus the probability of an insertion occurring in cach of the subtrees of
the fringe can be obtained from the steady state solution of a matrix
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recurrence relation in a Markov chain. In general, let p(N) be an m-
component column vector containing p,{N). Then

p(N) = (I + %) PN~ 1), (2.1.2)

where I is the m X m identity matrix, and H is the transition matrix.

Extensions to other tree collections with more than two types requires
consideration of a vector process {Xy}, where X, is equal to the number of
type j leaves at time M.

2.2. The Matrix Recurrence Relation

We start this section by presenting a formal definition of the components
of the matrix H in Eq. (2.1.2). In fringe analysis problems we always deal
with a tree collection C = {T'|,..., T,,} of trees. Let L, be the number of leaves
of T,. An insertion into the kth leaf, k € [1,..., L;], of T; will generate /,,(k)
leaves of type T;. As a consequence we must have

n L;
S lk)=L;+1  for 1<j<m. (2.2.1)

ji=1 k=1
This leads to
DerFINITION 2.2.1. A fringe analysis problem of site m consists of
(i) m integers L,,...,L
(i) non-negative reals /,(k), for 1 <1, j<m, 1 <k<L,, such that
1 2L
—L—j; S L) =L+1  for 1<j<m

Let p;(N) be defined as in Eq. (2.1.1). Then Eq. (2.1.2) can be written as

H,—H, —1
Py = {1+ ) v - ), 222)
where
L4
= (~ )y z,.,.(k)) ., H,=diag(L, . L,),
Lj k=1 1<i,j<m

and 7 is the m X m identity matrix.

Derinition 2.2.2.  Consider a fringe analysis problem. Equation (2.2.2)
is the associated recurrence equation, where H=H, — H,—I=(h;) is its
transition matrix and

By i 100) ~ S4(L; + 1,

where J,; is the Kronecker symbol.
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Intuitively, the elements in the diagonal of H represent the number of
leaves lost due to an insertion minus one, and off-diagonal elements represent
the number of leaves obtained for each type times the probability that each
type is reached in a transition.

DeriNiTION 2.2.3. A fringe analysis is connected if there is an
[€[1...m] such that det(H,)= 0, where H, is matrix H with the /th
column and /th row deleted.

The following theorem shows that the real part of the eigenvalues of the
transition matrix H are non-positive.

THEOREM 2.2,1. Consider a connected fringe analysis problem with an
m X m transition matrix H. Let 4,,..., A,, be the eigenvalues of H. Then they
can be ordered so that A, =0 and 0 > Rel,>Reld; > --- > Red,,.

Progf. Consider the sum of the elements in the jth column of H:

m m 1 Lj
Z hij = Z <— > lij(k) - 51’ij - 51]')
i=1 i=1 Lj[-k-?

_—_11— D 2 Liky—(L;+ 1) by Eq. (2.2.1)

ji=1 k=1

=L, +1—(L,+1)=0.

From Gerschgorin’s theorem (see Wilkinson, 1965, Chap. 2, Sect. 13) it is
known that all eigenvalues of H are contained in the union of the disks with
center h;; and radius ) ;.., | h;]. Since the sum of the elements in any column
of H is zero, the diagonal elements are negative, and the off-diagonal
elements non-negative, then

hiz’ + Z 'hijl :hii+ Z hfj=0,
J# Q%

that is, each disk does not extedn into the positive half-plane for x, therefore
all eigenvalues of H have non-positive real part.

From }'JL; h; =0, for 1 <j< m, we infer that the vector E™ = (1,..., 1)
is a left eigenvector of H with eigenvalue 0. To show that 0 is an eigenvalue
of multiplicity 1, let us look at the characteristic polynomial of H

det(H — D)= (=A)" + 8,(=1)" " + -+ + S,,_ (1) + §,, =0,

where §, is the sum of the determinants of the principal minors of order g of
the matrix H, g =1, 2,.., m (see Gantmacher, 1959, Chap. 3, Sect. 7). Since
4 =0 is a solution, this implies S, = det(H) =0, and

Sp_1=. det(H,),
i=1
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where H; is the matrix H with the ith row and the ith column deleted. H,, is
an (m— 1) X (m— 1) matrix and the Gershgorin criterion shows that all
eigenvalues of H; have non-positive real part. Thus det(H,)=
(=)™ '|det(H;). Hence S,,_,, the linear term of the characteristic
polynomial, is zero if and only if det(H;;) =0 for all i. But det(H;) + 0 for
some [ because we are dealing with a connected fringe analysis problem.
Thus the linear term of the characteristic polynomial of H is non-zero, which
implies that 0 is an eigenvalue of multiplicity 1. §

DEerFINITION 2.2.4. Let T, T; if 3 2, I, (k) > O, that is T, can produce
T;. The symbol * is the reﬂexwe transitive closure of —.

The following theorem describes a test for connectedness.

THEOREM 2.2.2. 4 fringe is connected if and only if there is a T, such
that T; 5 T, for all j€ [1 -+ m).

Proof. Consider H as in Definition 2.2.2. Let i be such that T; % T, for
all j. We will show that det(H,) # 0. Assume otherwise, that is det(H,;) = 0.
Let w= (00, #;_ 1, Uj, 15 U,,) De a left eigenvector of H,; corresponding to
eigenvalue 0. Let u, be a component of maximal absolute value in u (without
loss of generality u,=0) and let J= {j;u;=u,} < [1.-- m]— {i}. Since
T; % T, for all j € J and i & J there must be some k & J and some j € J such
that T; - T;. Hence h;; > 0. Since >"/", h;; =0 (cf. proof of Theorem 2.2.1)
we have

m
Z uzhzj_‘ Z u; u 2 U; lj
=1 led 1¢7
[+ 1+#i
>3 ughy— D Jul by
leJ gEJ.
#1

> Z h; >0, a contradiction.
I+i

The above inequality follows because u is a real vector and ;> 0 for [ € J,
[+

Assume det(H;;) # 0. We will show T, T, for all j. Assume otherwise.
Then there is some j such that 7;% T, Let J={;T;®% T,}. Then
@#J+#[1--m] and h,=0 for all k&J and 1€ We may assume
without loss of generality that J = {l,...,|J|}. Then H has the form

H’ H"
H=
< 0 H///)’

where H' is a |J| X |J| matrix. Note that det(H ;) = det(H') - det(H}}), where
H}, is H" with ith column and ith row deleted. But H’ comes from the tran-
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sition matrix of a fringe analysis problem (namely, the restriction to J) and
hence det(H’) = 0 by Theorem 2.2.1, a contradiction. §

It remains to solve Eq. (2.2.2) for connected fringe analysis problems. In a
previous version of the proof of the convergence of the matrix recurrence
relation (Gonnet et al.,, 1981, Lemma 2.1, p. 4) the eigenvalues of the tran-
sition matrix are assumed to be pairwise distinct. The following theorem
(Eisenbarth, 1981) extends the proof of the general case.

THEOREM 2.2.3. Let H be the m X m transition matrix of a connected
fringe analysis problem. Let A, ..., A, be the eigenvalues of H, where A, =0 >
Red,2Reld; > >Rel,, and let x, be the right eigenvector of H
corresponding to A, = 0. Then there is a ¢ such that for every vector p(N)

| p(N) — x| = O(N®*™),
where p(N) is defined by Eq. (2.2.2).
Progf. By the ordering of the eigenvalues N®%*2 is larger than NR¢A
{ > 3. Note also that N*¢* = N° =1, for all N. Thus proving that | p(N) —

cx,| = O(N®¢*2) proves that p(N), as given by Eq. (2.2.2), converges to cx,.
The proof proceeds as follows. First Eq. (2.2.2) which can be written as

pN)= [1 +7\7—§_1] PN +1)

can be further rewritten in terms of the function f,(x) defined as

¥, (1 + (x/1)) yielding

p(N) =/{H) p(0).
Now the limiting value of p(¥), denoted by p(o0), can be expressed as

p(e0) =S (H) p(0),

where f(x) is the limiting value of f,(x). Moreover we show that |fy(x) —
J(x)|= O(N®¢™) for Re x < 0. To prove that p(N) converges we now compute
an upper bound on the value of | p(N) — p(c0)| by computing upper bounds
for the elements of the matrices f(H) and f(H). In particular we find that

san=1-| 00

0 . 0
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and

1+ &N)eV)--- e(N)
fN(H)=T‘1( "'E(N))T,
&(N)
where &(N) = O(N®¢*2) and T and T~ ' are the matrices transforming H into
Jordan form. We also prove that Hp(co)=0, implying that p(ow) is a
multiple of x,, cx, say, since Hx, =1,x, =0 and 1, =0. Combining these
three facts we have

p(N)—p(0) =p(N) — cx,
= (H(H) —f(H)) p(0)
&N) - e(N)

= T'_l ( .

o)
S(N)
where §(N) = O(N®¢*2), since p(0) and T are constants. Thus | p(N) — cx,| =
O(NRe12) as desired.
For NEN let f,;: C > C, where C is the complex plane, be given by the

polynomial f,,(x) = [ [}, (1 + (x/1)). Let f(x) = lim,_, . f\(x). Then f(0) = 1,
f(x)=0, for Re x <0, and | f(x) — fy(x)| = O(N*¢¥) for Re x < 0, because

n= 11 (143)

i=1

) Tp(0)
e(N)

_ 1’—"1 (x+i>
ai:l i
e+ D)x+2) (x+ N)
B N!
I'N+x+1) .
= . tz, 1972, Eq. 6.1.21
Tt DI 1) (cf. Abramowitz q )
= O(N*).

Furthermore,  p(N)= (I + (H/(N + 1))) p(N — 1) =f,(H) p(0), and
p(oo) =1limy p(N)=f(H) p(0). (cf. Gantmacher, 1959, Chap. 5). Let

J, 0

J=THT ' = J2

0 T
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be the Jordan matrix corresponding to H, where J,,...,J, are the blocks of
the Jordan matrix. We have J, = [0], i.e., J, is a one by one zero matrix.
Also

Ji= 1 with Re(l,) <0,

.y

i

where A, is an eigenvalue of multiplicity r,. Since f{x) is a polynomial in x
then

(f(‘]l) 0 )
SH)=f(T~YT) =T )T =T"" - T.
' 0 S

Next we have to compute f(J,). We have (cf. Gantmacher, 1959, Chap. 5,
Example 2)

[0 )
Ay Ly oS W
L (=1

0 e Sy
where r, is the multiplicity of 4,, and /¥’ is the kth derivative of /. Hence
f)=[1], the 1 X 1 unit matrix, since f(0)= 1, and f{J,) = [0}, the r, X r,
zero matrix, since f{(x) =0 for Re x < 0.
Thus f(H) = T 'QT, where
10 -+ O
00
o={. ]
0 - 0
and
Hp(oo) = Hf (H) p(0)= T~ 'THT'QTp(0) = T~ 'JQTp(0)

0
= T7'07p(0) =( : >
0

since JO = [0], the zero matrix.
This shows that p(eo) is a multiple of x;, say p(c0)=cx,, because
Hx = A,x,, or Hx; =0 for 4, =0, and Hp(oo)= 0. Furthermore

1 +&(N) e(N) -+ e(N)
. ) T=T"
I

S =1 (Wl) | N e )

e(}\’)
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where ¢(N) = O(N®**2), Thus

(V)
PN) = p(e0) = (f(H) —f(H)) p(0) = ( ) with 6(N) = O(NRe42),

S(N)
This finishes the proof of the theorem. |}

It is important to note that:

(i) Consider an m X m transition matrix H of a connected fringe
analysis problem. Theorem 2.2.3 says that p(N), the m-component column
vector solution of Eq. (2.2.2), converges to the solution of

Hg=0 as N-— o, (2.2.3)

where g is also an m-component column vector which is independent of N,
and

p(N)=a,x, + O(NR12), (2.2.4)

where x, is the right eigenvector of H corresponding to eigenvalue A, = 0.
Furthermore, the eigenvalues of H do not need to be pairwise distinct.

(ii) Let A,(N) be the expected number of trees of typei in a random
search tree with N keys. Let L, be the number of leaves of the type i tree. We
observe that Eq. (2.2.1) can be written as

AN L,

AN)= N
PAN) N1

(2.2.5)

3. AN ANALYSIS OF 2-3 TREES

3.1. Motivation

In a 2-3 tree every internal node contains either 1 or 2 keys, and all
external nodes appear at the same level. The class of 2-3 trees is a special
class of B-trees, and they are more appropriate for primary store.

The process of insertion of a new key consists of:

() Follow the search path until it is verified fhat the key is not in the
tree (i.e., find the place of insertion).

(ii) Insert the new key into the node. To insert into a node that
contains only one key, we insert it as the second key. If the node already
contains two keys, we split it into two one-key nodes, and insert the middle
key into the parent node. This process may propagate up if the parent node
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already contains two keys. When there is no node above we create a new
root node to insert the middle key.

Following the notation presented by Chvatal er al. (1972, Problem 37),
where the dots indicate keys, the first three steps in the growth of a 2-3 tree

B & fg}%

and the fourth step is either

©, <
oM D, or DO,
i DD sjwjupe LJ

We now define certain complexity measures:

(i) Let f(NV) be the expected number of nodes in a 2-3 tree after the
random insertion of N keys into an initially empty tree.

(il) Let Pr{;j splits} be the probability that j splits occur on the
(N + 1)th random insertion into a random 2-3 tree with N keys.

(iii) Let Pr{ or more splits} be the probability that j or more splits
occur on the (N + [)th random insertion into a random 2-3 tree with N
keys.

(iv) Let §(N) be the expected number of splits that occur in a 2-3 tree
during the random insertion of N keys into an initially empty tree.

(v) Let E[s(N)] be the expected number of splits that will occur on
the (N + 1)th insertion into a random 2-3 tree with N keys.

(vi) Let Pr(dsn at jth lowest level} be the probability that the deepest
safe node on a random search is located at the jth (j > 1) lowest level of a
random 2-3 tree with N keys.

(vii) Let Pr{dsn above jth lowest level} be the probability that the
deepest safe node on a random search is located above the jth lowest level of
a random 2-3 tree with N keys.

In Subsections 3.2, 3.3, and 3.4 we shall derive exact values for Pr{0
splits}, Pr{l split}, Pr{2 splits}, Pr{3 or more splits}, and bounds on §(¥),
E[s(N)], and improve Yao’s previous results on A(N). In Subsection 3.5 we
shall derive exact values for Pr{0 splits}, Pr{l split}, Pr(2 or more splits},
and bounds on 7I(N), §(N), and E[s(N)] for an insertion algorithm that uses
an overflow technique. In Subsection 3.6 we shall derive exact values for
Pr{dsn at Ist lowest level}, Pr{dsn at 2nd lowest level}, Pr{dsn at 3rd lowest
level}, and Pr{dsn above 3rd lowest level} for the normal insertion
algorithm, and Pr{dsn at 1st lowest level}, Pr{dsn at 2nd lowest level}, and

643/55/1-3-10
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TABLE 3.1.2

Summary of the 2-3 Tree Results Using an Overflow Technique

Second Order Analysis (N — 00)?

(N [0.63N -+ 0.13, 0.7IN — 0.29]

Pr{0 splits} 0.61
Pr{l split} 0.23
Pr{2 or more splits} 0.16

S(N) [0.63 + 0.13/N — [logy(N + 1)|/N,

0.71 — 0.29/N — [log,(N + 1)|/N]

E[s(N)} [0.55, 0.23 + 0.16{log,(N + 1)}
Pr{dsn at Ist lowest level} 0.61
Pr{dsn at 2nd lowest level} 0.23
Pr{dsn above 2nd Jowest level} 0.16

“ Results are approximated to O(N ™31,

Pr{dsn above 2nd lowest level} for the insertion algorithm using an overflow
technique. In Subsection 3.7 we discuss the possibilities of higher order
analyses.

Table 3.1.1 shows the summary of the results related to 2-3 trees using
the normal insertion algorithm. The lower order analyses are included to
indicate the improvements achieved by the third order analysis. Table 3.1.2
shows the summary of the results related to 2--3 trees using the overflow
technique.

3.2. First Order Analysis

The analysis of the lowest level of the 2-3 tree to estimate A(N), Pr{0
splits}, Pr{l or more splits}, §(¥), and E[s(N)] can be carried out in the
following way. The tree collection shown in Fig. 3.2.1 contains two members
and its corresponding transition matrix is

-3 4
H= .
iy
From Eq. (2.2.3) we have Hp(N)=0, and therefore p,(oc0)=3%, and
p,(cc) =42, Since the eigenvalues of H are 0 and —7, we observe that

AN

type 1 type 2
Fic. 3.2.1. The tree collection of 2-3 trees of height 1.
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p.(N)=1% and p,(N) =2 for N> 6. To simplify notation p;(N) is written as
p; throughout the remainder of this paper.

LemMma, 3.2.1. Let nl indicate the number of nodes at level | of a 2--3 tree
with N keys. Then the number of nodes above level [, nal, is bounded by
nl—1
2

Lnalnl—1.

Proof. Consider the level / as being the N + 1 leaves of a 2-3 tree with N
keys. (Each leaf represents a node.) The minimum and the maximum number
of nodes above the level / is obtained when each node above level / contains
2 keys and 1 key, respectively. (That is 2nal=nl—1 and nal=nl—1
respectively.) [

Lemma 3.2.1 and Eq. (2.2.5) lead to

THEOREM 3.2.2. The expected number of nodes in a random 2-3 tree
with N keys is bounded by

<1+ 2)[51 Lz](N+ )—L

<AN) <2 [ﬁl—+z—] N+1)—1 for N>1
2
that is,

1 6N 1
N <ﬁ(N)<—7—-~7 for N6

147
The remaining results are contained in the lemmas that follow.

LEMMA 3.2.3. The probability that no split occurs on the (N + 1)th
random insertion into a 2-3 tree with N keys is

Pr{Osplits} =4  for N2>6.

Proof. An insertion into a type 1 tree shown in Fig. 3.2.1 causes no split,
and the probability that a random insertion into a random 2-3 tree falls into
atypel tree is p,. [

LEMMA 3.2.4. The probability that 1 or more splits occur on the
(N + 1)th random insertion into a 2-3 tree with N keys is

Pr{l or more splits} =3  for N2>6.
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Proof. Similar to the proof of Lemma 3.2.3. §

LEMMA 3.2.5. Let A(N) denote the expected height of a random 2-3 tree

with N keys. Then the expected number of splits is
oy A @)
Ny= 2

SN =~ I

Proof. From the insertion algorithm presented in Section 4 we can see
that each time a node split occurs one new node is created, except when the
node is a root, in which case two nodes are created. B

LEMMA 3.2.6. The height of a 2-3 tree with N keys is bounded by
[logy(N + 1)] < AWV) < log,(NV + 1)),

Proof. Two lower bound and the upper bound on the height are obtained
when each node of the 2-3 tree contains 2 keys and 1 key, respectively. §

Lemmas 3.2.5 and 3.2.6 lead to

THEOREM 3.2.7. The expected number of splits in a random 2-3 tree
with N keys is bounded by

9 1 @Mgi(N)g%Q%#w for N2> 6.

14 "IN N
LemMa 3.2.8. A lower bound on the expected number of splits that occur
on the (N + 1)th insertion into a random 2-3 tree with N keys is
E[s(N)] > Pr{l or more splits}.

Proof. Similar to the proof of Lemma 3.2.3. H§

CorOLLARY. E[s(N)]>2  for N>6.

LemMMA 3.2.9. An upper bound on the expected number of splits that
occur on the (N + L)th insertion into a random 2-3 tree with N keys is

E[s(N)] < Pr{l or more splits}|log,(N + 1)].

Proof. The upper bound on E[s(N)] is equal to the number of splits—
insertion in the fringe plus all splits that might occur in the nodes above the
lowest level, which might be equal to the height of the tree with all nodes
binary but the nodes on the path of splitting. @
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Lemmas 3.2.8 and 3.2.9 lead to

THEOREM 3.2.10. The expected number of splits that occur on the
(N + D)th insertion into a random 2-3 tree with N keys is bounded by

E[s(VM]<3log; W+ 1)]  for N>6.

One may be tempted to conjecture that the expected -value for E[s(N)]
converges to the value of §(¥). However, we cannot prove this. For example,
E|s(N)] could oscillate between a lower bound and an upper bound, where
the lower bound is the number of splits per insertion in the fringe, and the
upper bound is the number of splits per insertion in the fringe plus the
number of splits per insertion outside the fringe. -

LemMmA 3.2.11. The expected number of keys in the fringe of a 2-3 tree
with N keys that corresponds to the tree collection shown in Fig. 3.2.1 is

= (L +2—~) N +1).

Proof. The above expression is obtained by observing Fig. 3.2.1 and by
using Eq. (2.2.5). 1

COROLLARY. f(N)= %N+ 1) for N > 6.

TueoreMm 3.2.12. The excepted height of a 2-3 tree with N keys is
bounded above by

R(N) < log,(N + 1) —0.22239.

Proof. Let nkal indicate the number of keys above the level / of a 2-3
tree. Considering the second lowest level (distance one from the leaves), and
using Lemma 3.2.6 then the height A{n) of a 2-3 tree with ¥ keys is bounded

by
[log;(nkal + 1)] + 1 < A(V) < |log,(nkal + 1)] + 1.

Considering the expected value of the right-hand side of the above inequality
then

R(N) < E[|log,(nkal + 1)] + 1] < E[log,(nkal + 1) + 1].
Using Jensen’s inequality (Feller, 1966, p. 152) we obtain

h(N) < log, E[nkal + 1] + 1. (3.2.1)
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©, <, ©, D!
Q/% ¢ &2 Ham
A u ~ J | R Y a—

type 1 type 2 type 3 type 4
D, <D <D D) D D) D)
cpooocpoooo
— ~ e — y) \—--\/-—-—J
type b type 6 type 7

FiG. 3.3.1. The tree collection of 2-3 trees of height 2; stubs indicate leaves.

But
E[nkal] = N — f(N),
where f(N) =4(N 4 1) for N> 6 (see Lemma 3.2.11). Then
Elnkal] =3(N + 1) — 1.
Substituting this equation into Eq. (3.2.1) we obtain

R(N) <log,(N + 1) —0.22239. §

3.3. Second Order Analysis

The analysis for the two lowest levels of 2-3 trees leads to better bounds
for 7(N), §(N), E[s(N)], and exact results for Pr{1 split}, and Pr{2 or more
splits}. Yao (1978) showed that there are 12 possible trees in the tree
collection of 2-3 trees of height 2, which are grouped into 7 types, as shown
in Figure 3.3.1. The corresponding transition matrix is shown in Table 3.3.1.

TABLE 3.3.1
The Transition Matrix Corresponding to the Tree Collection of 2-3 Trees of Height 2
of Fig. 3.3.1
-5 8% 3/7 4X6/8 4x6/9
5 -6 5X6/8 5%6/9
6x2/5 -7 6X6/9
6% 3/5 —7
7 7
8 x 4/7 -9

9%2/8 ~10
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Again using Eq. (2.2.3) we obtain
p,=1656/7991, 05 =1575/7991,
7, =1980/7991, DPe = 800/7991, 3.3.1)
py=5472/55937, p,=180/7991.
p,=7128/55937,

Since the eigenvalues of H are 0, —6.55 + 6.25i, —7, —9.23 + 1.37i, and
—13.44, using Eq. (2.2.3) the asymptotic values of p(N) obtained from Eq.
(2.2.4) are approximated to the O(N~%%%),

TuEOREM 3.3.1. The expected number of nodes in a random 2-3 tree
with N keys is bounded, to five decimal places, by

0.70169N + 0.20169 + O(N ~55%) K Ai(N) <
0.79273N — 0.20727 + O(N~>-%3).

Proof. Lemma 3.2.1 and Eq. (2.2.5) lead to

or, alternatively
78501N+ 11282
111874 ~ 55937

44343N 11594
55937 55937

+ O(N—5.55)

< AN) < +ON"*%). |1

LeMMA 3.3.2. The probability that 1 split occurs on the (N4 l)th
random insertion into a 2-3 tree with N keys is

13788

Pr{l split} = 55937

+ O(N—6.55).

Proof. An insertion into the type 2 tree shown in Fig. 3.3.1 causes one
split ¥ of the time, and an insertion into the type 3 shown in Fig. 3.3.1
always causes one split. Since the probability that a random insertion into a
random 2-3 tree falls into a type 2 or type 3 tree are p, and p,, respectively,
then Pr{1 split} = 3/5p, +p;. 1
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LemmA 3.3.3. The probability that 2 or more splits occur on the
(N + 1)th random insertion into a 2-3 tree with N keys is

Pr{2 or more splits} = 4333 + O(N ~¢-%%).

Proof. Similar to the proof of Lemma 3.3.2. |

Lemma 3.2.5 leads to

THEOREM 3.3.4. The expected number of splits in a random 2-3 tree
with N keys is bounded by

Titsrs + sssamw — ({log, (W + 1)]/N) + O(N~5%) L §(N)
< ??3‘;3 - #19%‘17 — ([log;(N + DY|/N) + 0(N~6.55),

and to five decimal places we have

0.20169  [log,(W + 1)
N N

0.20727  [logs(N + 1)]
N N

0.70169 + + ON ") L 5(N)

<0.79273 — + O(N %),

LEMMA 3.3.5. A4 lower bound on the expected number of splits that will
occur on the (N + 1)th insertion into a random 2-3 tree with N keys is

E[s(N)]) > Pr{l split} + 2 Pr{2 or more splits}.
Progf. Similar to the proof of Lemma 3.2.3.
LEMMA 3.3.6.  4n upper bound on the expected number of splits that will
oceur on the (N + 1)th insertion into a random 2--3 tree with N keys is
E[s(N)] < Pr{1 split} + Pr{2 or more splits}|log,(N + 1)].

Proof. Similar to the proof of Lemma 3.2.8. 1§
Lemmas 3.3.5 and 3.3.6 lead to

THEOREM 3.3.7. The expected number of splits that will occur on the
(N + D)th insertion into a random 2-3 tree with N keys is bounded by

3937 + ON" ) CE[s(N)] < 13388 + L1555 [log,(NV + 1)] + O(N~5%)
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and to five decimal places we have

0.61065 + O(N~**%) < E[s(N)] < 0.24649 + 0.18208|log,(N + 1)) +
O(N—6.55).

LemMA 3.3.8. The expected number of keys in the fringe of a 2-3 tree
with N keys that corresponds to the tree collection shown in Fig. 3.3.1 is
SIN)= 3551 (N + 1)+ O(N~*%),.

Proof. The equation

7 Ps
f(N)=< Prpg P 5P 5P g Bs g P g ) N+ 1)
L, L, L, L, L L6 (

is obtained from Fig. 3.3.1 and Eq. (2.2.5). §

THEOREM 3.3.9. The expected height of a 2-3 tree with N keys is
bounded above by

h(N) < log,(N + 1) — 0.45736.

Proof. Similar to the proof of Theorem 3.2.12. 1

3.4. Third Order Analysis

In this section we present the analysis of the three lowest levels of 2-3
trees. Brown (1979) performed a three level analysis using a transition
matrix of 978 X 978 elements, and obtained asymptotic values for the
number of nodes with one key and the number of nodes with two keys at
each of the three lowest levels. However, an equivalent three level analysis
can be performed on a smaller matrix by grouping trees into types, in the
same way the two level matrix in the previous section was reduced from
12 X 12 to 7 X 7. If we consider combinations of the 7 types of the two level
tree collection as subtrees of nodes with one and two keys then it is possible
to obtain a three level tree collection with 224 types. This may be further
reduced to 147 types as we shall see in the following. Obviously solving the
recurrence for an H which is 147 X 147 is preferable to solving it for an H
which is 978 X 978.

The idea behind our approach is to group all trees with the same number
of leaves into types. Thus the tree collection shown in Fig. 3.3.1 is reduced
from 7 types to 6 types by grouping the types 3 and 4 into one unique type,
as shown in Fig. 3.4.1. In this new tree collection the types dre numbered
sequentially from 4 to 9, where the type 4 tree has 4 leaves, the type 5 tree
has 5 leaves,..., and the type 9 tree has 9 leaves. Of course the probability
related to the type 6 shown in Fig. 3.4.1 is the sum of the probabilities
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o) O, 2 <D,
D, 22 OB OB C, O RLORRO,
Ve J | — —~ J

LN v .

type 4 type 5 type 6
) G2 2 <, D <D G2
\ ~ J — S
type 7 type 8 type 9

F1G. 3.4.1. A tree collection of 2-3 trees of height 2 obtained by grouping types 3 and 4
trees of Fig. 3.3.1 into type 6.

related to the types 3 and 4 shown in Fig. 3.3.1, and the probabilities of the
other types remain as before. (Types 4, 5, 7, 8, and 9 shown in Fig. 3.4.1
have the same probabilities as types 1, 2, 5, 6, and 7 shown in Fig. 3.3.1,
respectively.)

LEMMA 3.4.1. The two level tree collection of Fig. 3.4.1 can be used to
obtain a three level tree collection which is closed.

Proof. Simply consider the trees obtained by hanging the two-level trees
of Fig. 3.4.1 from a binary or ternary node. The resulting collection is
clearly closed. §

LEmMMmA 3.4.2. The two level tree collection of Fig. 3.4.1 can be used to
Jorm a closed three level 2-3 tree collection with 147 types.

Proof. Following the notation presented in Fig. 3.4.2, the 147 types of

a D (- > (o2

>, £oo o ¢ ) ) e s £ (2
COC €00 CICICIED O €Y € CY €N D €3 Ea e
[ A ) . ~ )

type 44 type 45 type 99
b ) >
© e © e 3 D)
CACIEIEN D (A EI LR EIER R C ER D
A J (N J
type 444 type 999

FiG. 3.4.2. A tree collection of 2-3 trees of height 3 (type 44 is formed by two subtrees
with 4 leaves each, type 45 is formed by two subtrees with 4 and 35 leaves each, etc.) (a)
Types formed by two height 2 subtrees under binary roots; there are 21 types in this case. (b)
Types formed by three height 2 subtrees under ternary roots; there are 126 types in this case.
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F1G. 3.4.3. Diagrams for transitions. (a) Transitions related to the tree collection shown
in Fig. 3.3.1. (b) Transitions related to the tree collection shown in Fig. 3.4.1.

the three level tree collection are represented either as type ij (4 <i <9 and
i<j<9) for the tree types with binary roots, or as type ijk (4<i<9,
4 <7< 9, and i < k < 9) for the tree types with ternary roots. The number of
tree types with binary roots is 21, and the number of tree types with ternary
roots is 126, which gives a total of 147 types. N

Notice that the trees with ternary roots must have 4 /<9 (and not
I<j<9 and j<k<9). Consider, for example, types 459 and 495. These
must be treated as different types because an insertion into the teftmost leaf
of the middle subtree of type 495 gives types 44 and 56, and an insertion
into the leftmost leaf of the right subtree of type 459 gives types 45 and 46.

LemMma 3.4.3.  The transitions related to the 6 types of the tree collection
shown in Fig. 3.4.1 are equivalent to the transitions related to the 7 types of
the tree collection shown in Fig. 3.3.1 when both are used as subtrees of
nodes with one or two keys in order to obtain a three level tree collection.

Proof. Figures 3.4.3a and b show the transitions related to the tree
collections shown in Figs. 3.3.1 and 3.4.1, respectively. It is irrelevant
whether we use the 6 types of the tree collection shown in Fig. 3.4.1 or the 7
types of the tree collection shown in Fig. 3.3.1 as subtrees of nodes with one
or two keys. In the case we choose the former types we have to remember
that (i) the type 6 shown in Fig. 3.4.3b is composed by types 3 and 4 shown
in Fig. 3.4.3a, and (ii) from Eq. (3.3.1) that types 3 and 4 shown in Fig.
3.4.3a occur with probabilities 472/55937 and 7128/55937, respectively. I

Using Eq. (2.2.3) for the 147 X 147 transition matrix 7 we obtain a linear
system of 147 unknowns, which was solved using an algebraic manipulation
language called MAPLE, developed by Geddes and Gonnet (1981). An
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advantage of using such a system is that we obtain rationals instead of real
numbers, avoiding computational errors. The 147 p/s obtained contain
integer numbers in the numerator and in the denominator, with approx-
imately 90 digits each. Since the eigenvalues of H are 0, —4.37 £ 8.23i,...
—31.49 + 2.92i, and —33.27, the asymptotic values for p(N) obtained from
Eq. (2.2.4) are approximated to the O(N~*?7).

We shall see that the analysis for the three lowest levels of 2--3 trees leads
to better results for A(N), S(N), E[s(N)], and exact results for Pr{2 splits},
and Pr{3 or more splits}.

LemMma 3.4.4. Let nn(i) indicate the number of nodes qf the type i tree in
the tree collection shown in Fig. 3.4.1. Then

nn(i) = 3 Jor 4<iLS,
nn(6)3 X 3500 + 4 X 12600
on(i) =4 Jor T<Lig0O.

Proof. For i=4,5,7,8,9, from Fig. 3.4.1 the values for nn({) are
immediate. For i = 6, consider the two trees of type 6 shown in Fig. 3.4.1.
We know from Eq. (3.3.1) that the tree with 3 nodes occur with probability
5472/55937, and the tree with 4 nodes occur with probability 7128/55937.
Normalising the probabilities we obtain

nn(6) = 3 X 500 + 4 X 172162080 i

Let L indicate the number of leaves of the type ijk tree (4<i<9,
1<j<9) shown in Fig. 3.4.2. Let L, indicate the number of leaves of the
type ik tree (4 <i<9, 4< /<9, i<k<9)shown in Fig. 3.4.2. The proof
of Theorem 3.4.5 is similar to the proof of Theorems 3.2.2 and 3.3.1. Note
that the double summation contains the number of nodes of type i
(4 <i<9), plus the number of nodes of type j (i <7< 9), plus the binary
root node (see Figs. 3.4.1 and 3.4.2), plus 3 for the lower bound (1 for the
upper bound) due to the number of nodes outside the fringe (cf. Theorem
3.2.1). The triple summation is similar.

THEOREM 3.4.5. The expected number of nodes in a random 2-3 tree
with N keys is bounded by'

0.72683N + 0.22683 + O(N ~3-%7)
< A(N) < 0.76556N — 0.23444 + O(N*-*7)

! All the results of this section are presented as real numbers because the exact rationals
are too long to be printed. As a curiosity, the exact lower bound on A(N) is

7798599314290913080528407272219562346225636732529793818193768842065373374529713557457734066
10729604856083907760988691252514032168089885375054384827047705340026365840593873897782021229

=0.72683 00574 80536....




152 EISENBARTH ET AL.

Proof. The above remarks lead to

[Z 3 (an() +mn(j) + 1+ D(py/Ly)

i=4 j=i

FYS Y (nn(z'>+nn(j)+nn(k)+1+%)<p,-,-k/L,~,-k>} W41yt

i=4 j=4 i

<Y Y @nG) + on(j) + 2)(p,/Ly)

i J=1

£33 3 )+ () + 006+ oL | W+ D 1. B

Experimental results show that 7(N) is approximately 0.75N. The
maximum and the maximum number of internal nodes possible in any 2-3
tree with N keys are 0.5V and N, respectively.

LeMmA 3.4.6. The probability that 2 splits occur on the (N + 1)th
random insertion into a 2-3 tree with N keys is

Pr{2 splits} = 0.1046 + O(N ~*%7).

Proof. Similar to the proof of Lemma 3.3.2. 1

LEMMA 3.4.7. The probability that 3 or more splits occur on the
(N + 1)th random insertion into a 2-3 tree with N keys is

Pr{3 or more splits} = 0.07745 + O(N~**7).

Proof. Similar to the proof of Lemma 3.3.2. 1

Lemma 3.2.5 leads to

THEOREM 3.4.8. The expected number of splits in a random 2-3 tree
with N keys is bounded by

0.22683  |log,(N + 1)]

—4.37
0.72683 + —— o)
23444 [log,(V + 1

<5(V) < 076556 — 023444 | °g3(N+ 1 O(N"‘ ),

LEMMA 3.4.9. A lower bound on the expected number of splits that will
occur on the (N + 1)th insertion into a random 2-3 tree with N keys is

E[s(N)] > Pr{1 split} + 2 Pr{2 splits} + 3 Pr{3 or more splits|.
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Proof. Similar to the proof of Lemma 3.2.3.

LEMMA 3.4.10. An upper bound on the expected number of splits that
will occur on the (N + 1)th insertion into a random 2-3 tree with N keys is

E[s(N)] < Pr{1 split} + 2 Pr{2 splits} + Pr{3 or more splits}|log,(N + 1)|.

Proof. Similar to the proof of Lemma 3.2.8. |

Lemmas 3.4.9. and 3.4.10 lead to

THEOREM 3.4.11. The expected number of splits that will occur on the
(N + 1)th insertion into a random 2-3 tree with N keys is bounded by

0.68810 + O(N ~*37)
< E[s(N)] < 0.45575 + 0.07745]log,(N + 1)} + O(N 7).

LEMMA 3.4.12. The expected number of keys in the fringe of a 2-3 tree
with N keys that corresponds to the tree collection shown in Fig. 3.4.2 is
S(N)=0.92255(N + 1) + O(N*37).

Proof.

f(Nz(i N (4= (£2)

J j=i ij

=4

9 9 9 p

+) 2 3 (i+j+k——1)(—i">>(N+1)
i=4 j=4 k=i Lijk

S

is obtained from Fig. 3.4.2 and Eq. (2.2.5). §

THEOREM 3.4.13. The expected height of a 2-3 tree with N keys is
bounded above by

h(N) < log,(N + 1) — 0.69054.

Proof. Similar to the proof of Theorem 3.2.12. §

It is important to note that the values for A(N), §(N), E[s(N)], Pr{J splits},
and Pr{j or more splits} for one and two level analysis can be obtained
using the 147 probabilities we obtained from the three level analysis. Among
other verifications, this is what we did in order to check the results of this
section.
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type 1 type 2 type 3 type 4
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type 5 type 6 type 7

F1G. 3.5.1. Tree collection of 2-3 trees of height 2 using overflow technique.

3.5. 2-3 Trees with an Overflow Technique

The overflow technique was first presented by Bayer and McCreight
(1972, p. 183). The idea, when applied to 2-3 trees, is the following: Assume
that a key must be inserted in a node already full because it contains 2 keys;
instead of splitting it, we look first at its brother node on the right. If this
node has only one key, a simple rearrangement of keys makes splitting
unnecessary. If the right brother node is also full (or does not exist), we can
look at its left brother in essentially the same way.

The object of this section is to present a second order analysis of the 2-3
tree insertion algorithm using an overflow technique that is simpler than the
one proposed by Bayer and McCreight. In order to make the analysis
possible we restrict the overflow technique to the lowest level, and moreover,
we only split a node when an insertion is performed in a full node and its
closest brother is also full. If this node is the middle node of a ternary
subtree then the closest non-full brother may be located either to the right or
to the left of it. Otherwise a rearrangement of keys is performed and the
closest non-full brother node will accommodate one more key. Figure 3.5.1
shows the two level tree collection, and Table 3.5.1 shows its corresponding
transition matrix.

TABLE 3.5.1
Transition Matrix Corresponding to the Tree Collection of 2-3 Trees of Height 2 Shown in
Fig. 3.5.1
-5 4x3/8 4% 6/9
5 —6 5x3/8 10 X 3/9
6 =7 6 X 6/9
7 —8
8x5/7 -9
8x2/7 -9

9%x5/8 9  —10
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Using Eq. (2.2.3) we obtain

p,=1584/15949,  p, = 2000/15949,
p,=2970/15949,  p, = 800/15949,
p,=3600/15949,  p,=45/389,

Py = 3150/15949,

Since the eigenvalues of H are 0, —6.81 + 5.96i, —8.51 + 2.97i, —9.0, and
—14.37, the asymptotic values. of p(N) obtained from Eq. (2.2.4) are approx-
imated to the O(N~%*h).

THEOREM 3.5.1. The expected number of nodes in a random 2-3 tree
with N keys is bounded by

0.63248N +0.13248 + O(N~*") < /i(N) < 0.71384N—0.286 16+ O(N ~>5).

Proof. Lemma 3.2.1 and expression Eq. (2.2.5) lead to

O3 2D () (5 B o3

<AN) < 34 (}32 %)Jrs (27 %)g(zv+1)_1

i=4 i

which in turn gives

23011978591\ -+ 125191439 + O _5.81) < AN )< 1115398456V - 145596449 - oW 75'81)- |
This estimate should be compared to

0.72683N -+ 0.22683 + O(N~*37)
< A(N) < 0.76556N — 0.23444 + O(N~*+37),

which is the third order approximation of 7(N) for the non-overflow
algorithm.

LEmMMA 3.5.2.  The probabilities that no split, 1 split, and 2 or more splits
occur on the (N + 1)th insertion into a 2-3 tree with N keys using an
overflow technique are, respectively,

(a) PY{O Splits} = 195795449 + O(Nﬁ'“),
(b) PI‘{I Spll[} = 135690409 + 0(N~6.81)’
(¢) Pr{2or more splits} = 235 + O(N 531,

643/55/1-3-11
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Progf. The proofs of (a)-(c) are similar to those of Lemmas 3.2.3, 3.3.2,
and 3.3.3, respectively. §

Lemma 3.2.5 leads to

THEOREM 3.5.3. The expected number of splits in a random 2-3 tree
with N keys using an overflow technique is bounded by

20175 + 2113

31898 T 159498 — ([logz(N—i— I)J/N) + O(N—G-Sl) )
<155 — wiaser — ([logy(V + 1)I/N) + O(N~*51),

To five place decimals we have

0.13248  [log,(N + 1)

0.63248 —6:81) < 5
+— ¥ + O(N~531) < §(N)
<£0.71384 — O'Zf\fm — “O&(xJ“ D] + O(N %8,

which should be compared to the bounds

0.2268 N+

0.72683 + 2222 _ j10g, W+ 1) ; U o+ <stv)
2

<076556 — SEH “"gs(x*“ DI, o+,

which are the third order approximation of §(V) for the non-overflow
algorithm.

LemMmA 3.54. A lower bound on the expected number of splits that will
occur on the (N + 1)th insertion into a random 2-3 tree with N keys using
an overflow technique is

E[s(N)] > Pr{1 split} + 2 Pr{2 or more splits}.
Proof. Similar to the proof of Lemma 3.2.3. §
LemMmA 3.5.5. An upper bound on the expected number of splits that will

occur on the (N + 1)th insertion into a random 2-3 tree with N keys using
an overflow technique is

E[s(N)] < Pr{l split} + Pr{2 or more splits}|log,(N + 1)].

Proof. Similar to the proof of Lemma 3.2.8. 1§
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Lemmas 3.5.4 and 3.5.5 lead to
THEOREM 3.5.6. The expected number of splits that will occur on the

(N + 1)th insertion into a random 2-3 tree with N keys using an overflow
technique is bounded by

185799409 + O(N\6'81) <E[s(M)] < 135690409 + 125599459 [log,(N + 1) + O(N_M“)-
To five place decimals we have

0.55113 4 O(N~%%1)
< E[s(N)] € 0.22572 + 0.16270]log,(N + 1)] + OV~ *").

3.6. Concurrency of Operations on 2-3 Trees

A 2-3 tree node is insertion-safe if it contains only one key. When
considering concurrency of operations on 2-3 trees, one possible technique
to permit simultaneous access to the tree by more than one process is to lock
the deepest safe node on the insertion path. (A safe node is the deepest one in
a particular insertion path if there are no safe nodes below it.) The object of
this section is to give a probability distribution of the depth of the deepest
safe node.

3.6.1. Deepest Safe Node in 2-3 Trees with Normal Insertion Algorithm. In
the following lemma we use the p’s obtained in Subsections 3.2, 3.3, and 3.4.

LemMa 3.6.1.1. The probabilities that the deepest safe node is located at
the 1st, the 2nd, and the 3rd lowest level, and above the 3rd lowest level of a
2-3 tree with N keys are, respectively,
(a) Pr{dsn at 1st lowest level} = 3,

(b) Pr{dsn at 2nd lowest level} = 43355 + O(N %),
P
Prf

(¢) Pr{dsn ar 3rd lowest level} = 0.10462 + O(N ~*37),
(d) Pr{dsn above 3rd lowest level} = 0.07745 + O(N —**7),

Proof. Tt is not difficult to see that the probability that the deepest safe
node is located at jth (j>> 1) lowest level is equal to the probability that
exactly j— 1 splits occur on the (¥ + 1)th random insertion (see Lemmas
3.2.3, 3.3.2, 3.4.6, and 3.4.7 for the proof of items (a)—(d), respectively). §

From Lemma 3.6.1.1(d), we can see that in only 8% of the time the
deepest safe node is above the 3rd lowest level of a random 2-3 tree. In
other words by locking the deepest safe node on the insertion path we lock at
most height 3 fringe subtrees 92% of the time.



158 EISENBARTH ET AL.

3.6.2. Deepest Safe Node in 2-3 Trees with Querflow Technique. In the
following lemma we use the p’s obtained in Subsection 3.5.

LemMmA 3.6.2.1. The probabilities that the deepest safe node is located at
the 1st and the 2nd lowest level, and above the 2nd lowest level of a 2-3 tree
with N ke;ys using an overflow technique are, respectively,

(a) Pr{dsn at 1st lowest level} = 555 + O(N~%81),
(b) Pr{dsn at 2nd lowest level} = 3555 + O(N~5*1),
(c) Pr{dsn above 2nd lowest level} = %5555 + O(N %),

Proof. Similar to the proof of Lemma 3.6.1.1 (see Lemma 3.5.2 in
Subsection 3.5 for the proof of items (a)—(c)). 1

3.7. Higher Order Analysis

-Yao (1978, p. 165) predicted that an analysis for the k lowest levels would
be difficult to carry out for k=3 and virtually impossible to carry out for
k > 4. However, if we apply the same technique used to obtain the three level
tree collection with 147 types then it is possible to consider a fourth order
analysis. , ,

In order to obtain a four level tree collection we define a 20 type three
level tree collection containing trees with 8, 9, 10,..., 27 leaves, in a way
similar to the way we obtained the 6 types two level tree collection shown in
Fig. 3.4.1. This three level tree collection can be used to obtain a four level
tree collection with 4410 types, by considering combinations of the 20 types
as subtrees of nodes with one and two keys. Thus the fourth order analysis
will require the solution of a 4410 X'4410 linear system.

Again if we apply the same technique it is possible to obtain a five level
tree collection with 148137 types, which is practically impossible to handle.
Table 3.7.1 compares the sizes of the tree collections used by Yao, Brown,
and ourselves, for various levels of analysis.

TABLE 3.7.1
Sizes of the Tree Collections Used by Brown (1979, p. 57), Yao (1978, p. 165), and in this
Paper

Analysis Brown Yao Ours

First order 2 2 2
Second order 9 . 7 6

Third order 978 . 224 147
Fourth order 3.3%x10° 5.67 x 10° ‘ 4410

Fifth order — ~9.11x 10" 148137
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Finally, we want to say something more about the expected height of 2-3
trees.

LemMa 3.7.1. Let I; indicate the number of nodes at the jth (j>1)
lowest level of a random 2-3 tree with N keys. Then
(i) [, =N+1,
() L=3N~+1)for N
(i) L=33FN+1+ O(N 8-53),
(iv) 1,=0.07745(N + 1) + O(N~**").
Proof. Case (i) is obvious: the number of external nodes is equal to the
number of keys in the tree plus one. In cases (ii}-(iv) we just count the

number of trees in the fringe that correspond to the three collection of Figs.
3.2.1, 3.3.1, and 3.4.2, respectively. These yield

(£ 2o

Z%) ~N+1). B

B
|
+
5
S
=
+
W

Table 3.7.2 shows the ratio of the expected numbers of nodes at two
consecutive levels for the four lowest levels of a random 2-3 tree with N
keys. Assuming that this ratio is approximately the same for the other levels
of the tree, we derive

Conjecture 3.7.2. The expected height of a random 2-3 tree with N keys
is

h(N) = log, 5(N + 1).

TABLE 3.7.2

Ratio of the Expected Numbers of Nodes at Two Consecutive Levels

Lowest Level L<i<4) li(z <G <4)
i1
4th 0.07745(N + 1) 0.42538
;rg SN 4 1) 0.42485
;‘t N+ 1) 0.42857
S

N+1 —
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4. AN ANALYSIS OF B-TREES

4.1. Motivation

According to Bayer and McCreight (1972) a B-tree of order m is a
balanced multiway tree with the following properties: (a) The leaves are null
nodes which all appear at the same depth. (b) Every node has at most
2m + 1 sons (c) Every node except the root and the leaves has at least m + 1
sons; the root is either a leaf or has at least two sons.? Consequently, a 23
tree is a B-tree of order m = 1.

The process of insertion of a new key starts with the search for the place
of insertion, followed by the insertion of the key into a node. To insert a new
key into a node that contains less than 2m keys we just insert it into the
other keys. If the node already contains 2m keys, we split it into two m-keys
nodes, and insert the middle key into the parent node, repeating the process
again with the parent node. When there is no node above we create a new
root node to insert the middle key.

The complexity measures used in this section are exactly the same
complexity measures defined for 2-3 trees in Subsection 3.1. They are
written in this section with a subscript m. The only new complexity measure
is:

Let 7,,(N)/|N/(2m)] be the storage used by a B-tree T of order m, where
N/(2m) represents the number of nodes when all the nodes of 7' contain 2m
keys.

In Subsection 4.2 we shall derive exact values for Pr{0 splits},,, Pr{l or
more splits}, , and bounds on 7,(N) by considering the lowest level of a
random N key B-tree of order m obtained using the insertion algorithm
described above. It is convenient throughout Section 4 to refer to n,(N)/N
rather than 77,,(V) alone. In Subsection 4.3 we shall derive exact values for
Pr{0 splits},,, Pr{l split},, Pr{l or more splits},, Pr{2 or more splits},,,
and bounds on 7,(N) for an insertion algorithm for B-trees that uses an
overflow technique, by considering the lowest two levels of a random N key
B-tree of order m. In Subsection 4.4 we shall derive exact values for Pr{dsn
at lst lowest level}, and Pr{dsn above lst lowest level}, for the normal
insertion algorithm, and Pr{dsn at 1st lowest level},,, Pr{dsn at 2nd lowest
level},,, and Pr{dsn above 2nd lowest level},, for the insertion algorithm
using an overflow technique.

? Knuth (1973, p. 473) presented a slightly different definition of B-trees. In Knuth’s
definition every node in a B-tree of order m has at most m — | and at least [m/2 — 1] keys.
Knuth’s definition considers B-trees of order 2i, i > 2 (B-trees containing at least 7 keys and at
most 2i — 1 keys), while the above definition does not consider such trees. However, these
trees present a disadvantage: the split operation divides the node into two nodes with a
different number of keys in each one, which implies that a decision about which node will
contain more keys has to be taken.
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TABLE 4.1.1
Summary of the B-Tree Results

First Order Analysis (N — o0)

_ 1 L1 1
S PR
- G\ §m2 7 Ty O )
! + + O( ‘3)]
Qin2m 82y mt "
_ 1 1 ( 11 ) 1 om-)
PriOsplits}, Qinm \8m2 2/ Gapym V"
P i : + ( : ! ) L, om™*)
b YL o
r{1 or more splits},, Qinom 8wz 2/ mym
1
Storage used w3t o(m™")
1 oo 1
Pr{dsn at Ist 1. level}, I — G 2m 4(81n2~_2—) W2)m +0(m—-13)
1 L1 1 .
Pr{dsn above Is 1. level},, m+ ( 52 —7> 2y m +0(m ™)

Table 4.1.1 shows the summary of the results related to B-trees using the

normal insertion algorithm, and Table 4.1.2 shows the summary of the
results related to B-trees using an overflow technique.

4.2. First Order Analysis

The tree collection of B-trees of order m and height 1 contains m + |

types. Figure 4.2.1 shows the one level tree collection of B-trees of order
m=73.

The transition matrix H corresponding to the one level tree collection of

B-trees of order m is

—~(m +2) 20m + 1)
m+2 —(m+3)
H= m+3.‘ —(m+4),.__

2m 41 —(2m +2)

type 4 type b type 7
F1G. 4.2.1. Tree collection of B-tree of order m = 3 and height I.
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TABLE 4.1.2
Summary of the B-Tree Results Using an Overflow Technique

Second Order Analysis (N — o)

[1 (3 1)1+0 -
m Sz ) PO )

&) 1 301y 1 »
N ot (g7 7) e o)
Pr{0 splits},, l_ﬁ“(g“lln_z‘%);lﬁo(’”ﬂ
Pr{1 split},, _21? <*§T;_2"%>Elf+o(m4)
Pr{1 or more splits},, ﬁ+<ﬁ_ 4)%+O(m’3)
Pr{2 or more splits},, G 1n12)m2+0(m_3)

3 Iy 1
Storage used 1 ( __)w Oo(m™?
iz 2)m o)
Pr{dsn at 1st lowest level},, 1_L_< 1 —L)—l—+0(m‘3)
2m \8lm2 4/ m’
1 1 Iy 1
Pr{dsn at 2nd lowest level} P (v___,_)_,_,_o -3
" Fm2 7 e o)
1 5
- 4+ 0m™}
Gy T o)

Pr{dsn above 2nd lowest level},,

Let H, denote the harmonic numbers, H, = >"7_, 1/i, for n > 1. From Eq.
(2.2.3) we have Hp(N) =0, and therefore

1
Prm1= (m+2)Hypyy — Hpys1)

1
ey = (4.2.1)
P2 = G £ 3)(Hopra— Hypr 1)

1
p m = .
el @m+2)(H, 0 — Hpyy o)

LEmMMA 4.2.1. The probability that 1 or more splits occur on the

(N + 1)th random insertion into a B-tree of order m with N keys is

1
Pr{1 or more splits}, = (2m + 2)(Hypy— Hypr1)




FRINGE ANALYSIS THEORY 163

Proof. In the lowest level of a B-tree of order m a split occurs when an
insertion happens in a node with 2m keys, and such nodes correspond to the
type 2m + 1 of the tree collection of B-trees of order m and height 1. Thus,
Pr{l or more splits},, =p,, ;- N

LEMMA 4.2.2. The probability that no split occurs on the (N + 1)th
random insertion into a B-tree of order m with N keys is

1
(2m+ 2)(H2m+2-Hm+1).

Pr{0 splits}, =1
Proof. Pr{0 splits}, =1 — Pr{l or more splits},,. }
It is well known that H,=Inm+y+ (1/2m)— (1/12m*) + O(m %),
where y = 0.57721... is Euler’s constant (Knuth, 1968, Sect. 1.2.7). Then

COROLLARY,

, 1 1 1 »
Pr{lormorespllts}mw (21n2)m+<81n2_7>W+0(m )

LEMMA 4.2.3.  Let nl,, be the number of nodes at level | of an order m B-
tree. Then the number of nodes above the level I, nal,,, is bounded by

nl, —1 nl, —1
—— <« nal,, £ .
2m m

Proof. Consider the level ! as being the N + 1 leaves of a B-tree with N
keys. (Each leaf represents a node.) The minimum and the maximum number
of nodes above the level / is obtained when each node above the level /
contains 2m and m keys, respectively. (That is, 2m X nal,,=nl,, — 1 and
m X nal,, =nl, — 1, respectively.) [

THEOREM 4.2.4. The expected number of nodes in a random B-tree of
order m with N keys is bounded by

1 1 1 1 (N
Q2 © (81112_?) inaym® PO )<=y

1 1
<
S@m2m | 8n2)m

++0(m )

and the storage used is (1/In2) + O(m ™).
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Proof. Lemma 4.2.3 and Eq. (2.2.5) leads to

()E Bt

i=m+1 i

<A (N)< (1 +%)< mZH f) N+1)—1

i=m+1 i

and

((4m2+4m§?;1jm1+2_1{m+1)) (1—ﬁ) S+ OVR) < m]&]N)

1 1 1
< SR R Rel
h (zm(H2m+2_Hm+l) ) (1 N) N * O(N )’

where Re 4, < 0. I

The values obtained for the storage used (cf. definition of storage used in
Subsection 4.1) are between 1 and 2. The value 1 corresponds to the B-tree
with all nodes having 2m keys, and the value 2 corresponds to the B-tree
with all nodes having m keys. Yao (1978) used a different measure. He
defined storage utilization as [N/(2m)]/f,,(N), where N/(2m) represents the
number of nodes when all the nodes contain 2m keys. However, it is know
that, in general,

£(7)w
E(X)
for a random variable X. Furthermore, by using the Kantorovich inequality
(see Clausing, 1982, pp. 314-330) we have

1<EX)XE ( 1) % (4.2.2)

which yields:

CoROLLARY. The storage utilization for a random B-tree of order m with
N keys is bounded by

In 2 + O(m~") < storage utilization <3In2+0(m™").

4.3. B-Trees with an QOuverflow Technique

In this subsection we present a second order analysis of the B-tree
insertion algorithm using the following overflow technique. We restrict the
overflow technique to the lowest level, and moreover, we only split a node



165

FRINGE ANALYSIS THEORY
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FiG. 4.3.1. Transition diagram representing the two level tree collection for B-trees of
order m =2 using overflow technique (e.g., type 335 corresponds to the height 2 type tree
containing a root node with 3 descendants, the first one with 3 leaves, the second one also
with 3 leaves, and the third one with 5 leaves).

when an insertion is performed in a full node and all its brothers are also
full; otherwise a rearrangement of keys is performed and the closest non-full
brother node will accommodate one more key.

Any tree collection of B-trees of order m using the overflow technique
described above contains (m + 1)(2m + 1) types. Figure 4.3.1 shows the
transition diagram corresponding to the two level tree collection of B-trees of
order m = 2. The transition matrix H corresponding to the two level tree
collection of B-trees of order m using the overflow technique described above
is shown in Table 4.3.1.

In order to obtain the vector p(N) from Eq. (2.2.3), we make’
Pams nameny = 1 and solve for all the other p’s. After this we normalise the
p’s by dividing each one by their sum. Then

Pom+nemen = 1,

_@m+D)2m+ 1)+ 1 Am’ +4m 42
p(2m)+2m(2m+1)_ (2m+ 1)(2m+ 1) - (2m+ 1)(2m+ 1)’

4m* 4 4m + 2
Pom—1+amam+n = (2m) + 2m(2m + 1)’

 dm 4+ dm 42
Pamems 0 = om + D+ 1

4m* +dm + 2
Pom + am-1y@m+ 1) :m’

(4.3.1)

: Pam+ny@meny MEANS Doy i miys - +amen» Where (2m + 1) appear 2m + 1 times.
Applying this notation to the B-tree of order m = 2 shown in Fig. 4.3.1, p,sss is equivalent to

Dam+ yam+1y» P3as 15 equivalent t0 Py, 1y gmy 1) 4 im— 1y(2m+ 1y €LC-
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_ 4mP+4Am+2
p(m+l)(2m+1)— (m+ 1)(2}?’1 i 1)+ 1’

1
p(zm)+m(2m+1): (m+ 1)(2m+ 1)

2m
(2 1
e (m D)m 1)

X [4m2+4m+2—

_2m'+2m+2
C(m+DH2m+1)°

2m* +2m+2
Pontysmeam+n = m+2)+ m2m+ 1)

1
P+ n+@m+(m-1@m+1) = (m+1)+mQ2m+ 1) X

[2m2+2m+2

—2m+1(m+l—|—m(2m+]))}

B (4m® + 2m? + 2m)/(2m + 1)
 (m+ D+ m@2m+ 1)

4

_ (4m® + 2m* + 2m)/(2m + 1)
Pt 4+ m++im-n2m+1) = M+ )+ m+3)+m—12m+ 1)
(4m*® + 2m* + 2m)/(2m + 1)
m+ 1)+ (m+2)+(m—1D2m+1)

Pt v me Dim—nam+1n =

Let § be the sum of all p’s above. Then

am® + 2m* + 2m
S = ( 2m + 1 ) [H2m2+2m+l _H2m1+m+l]

+ (2’”2 +2m + 2)[H2m2+3m+1 ~Hypm s 2ms 1] (4.3.2)
+{(Cm+ D2m+ 1)+ DH oy ami s — Hopr a1 )

To obtain the final probabilities all the above p’s have to be divided by S.

LeMMmA 4.3.1. The probability that 1 or more splits occur on the
(N + 1)th random insertion into an N-key random B-tree of order m using an
overflow technique is

1

1 1 1
Pr{l or more Splll‘S}m:ﬂ-{— [m—f] ? + O(m"3).
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Progf.

Pr{1 or more splits},, =P,y nomin T Pmsnamin T T Pam+ vams

_i[(2m+1)(2m+1)+1
S 2m+ 1

m+1 1

X2 )+ (fm + 1))],

where Y70 1/[(m + §) + (1/2m + 1))] = w(2m + 2 + (1/2m + 1))) —
w(m+ 1+ (1/(2m + 1))), where S is as defined in Eq. (4.3.2) and y(Z) is
the Psi function I"(Z)/I'(Z) (Abramowitz and Stegun, 1972, Sect. 6.3.1).

It is well known (Abramowitz and Stegun, 1972, Sect. 6.3.18) that

L
M -4,
vimy=Inm = =g T O™

Which yields the result. 1
LEMMA 4.3.2. The probability that 1 split occurs on the (N4 1)th

random insertion into an N-key random B-tree of order m using an overflow
technique is

Pr{l split},, =

1 [@m+1)@2m+1)+1
S[ 2m+1 ]

1 1
2m + 1 — 1+—1 |,
X[q/<m+ +2m+1) l//<m+ +2m+1)]

where S is as defined in Eq. (4.3.2).

Proof. The only difference from the proof of Lemma 4.3.1 is that

Pr{lsplit}, =P+ nem+n T Pmsnamen T " T Pam+amam+ - i

1 1 1y 1
CoRroLLARY. Pr{l split},, = P + <~ Smz T) T +0(m™?).

LEMMA 4.3.3. The probability that 2 or more splits occur on the
(N + 1)th random insertion into an N-key random B-tree of order m using an
overflow technique is

1
-+ 0(m ).

Pr{2 or more splits}, = W
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Proof.

Pr{2 or more splits},, = Pr{1 or more splits},, — Pr{1 splits},,

N (2m+1)(2m+1)+1]
_f[ 2m+ 1

X[q/ <2m+2+2m+1)

1 1
where S is as defined in Eq. (4.3.2). H§

LEMMA 4.3.4. The probability that no split occurs on the (N + 1)th

random insertion into an N-key random B-tree of order m using an overflow
technique is

1 I 1 l
p jts}, =1 —— — | —— — — | — + O(m ).
{0 splits},, [81n2 4J o +O0(m™°)

Proof.
Pr{0 splits},, = 1 — Pr{l or more splits},,

1 I [Cm+1D(2m+ 1)+ 1
- ‘5[ 2m+ 1 ]

1 1
X[W (2m+2+2m+1>—l//(m+!+m>],

where S is as defined in Eq. (4.3.2). B

THEOREM 4.3.5. The expected number of nodes in a random B-tree of

order m with N keys using an overflow technigue is bounded by

1 3 171 9 171 ()
T PR B AT B <
2m+[81n2 4]m2+[ 321n2+8}m3+0(m STy

c L3 1 5 L1 L o
S 82 d W T B TE e O
and the storage used =1+ ((3/4 In 2) — 1)(1/m) + O(m ~?).

Proof. Lemma 4.2.3 and Eq. (2.2.5) lead to

AQmMYN + 1) = 3 <A N) SA(m)(NV + 1) — 1,
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where

1 1 p —
A(X) = — m+2+— (m+D+m+ D+ m—-D2m+ 1)
) S g( )[(m+1)+(m+1)+(m—1)(2m+1)

Pmivy+men+m—1@2m+1) Fo Pm+nam+1) ]
m+D)+m+2)+(m—-1)2m+1) (m+1D2m+1)

1 p .
+ Im 3_|_ (m+ 1)+ (m+1)+mQ2m+ 1)
< * )[(m+1)+(m+1)+m(2m+1)

n P+ h+m+)+m@m+ 1) T Pm+nam+1) ]
m+1)+(m+2)+m2m+1) (m+2)2m+1)

1 P+ D+im+ ) +@m-1)@m+1)
2 2
* <m+ X )[(m+1)+(m+1)-|—(2m—1)(2m+1)

Pt n+m+2+@m—n@m+ 1)

(m+1)+(m+2)+(2m—1)(2m+1)

Pominem+y ]
(m + D)(2m + 1)

and § is as defined in Eq. (4.3.2).
Substituting Eq. (4.3.1) in the above expression gives

B(2m) (1 —%) 2§v + O < ](VN)
< B(m) (1 —%) —~% +OWRh),  Red, <0,
where
o= |2 [ ()

1 1
X <<m+1)+<m+1>+(m—1)<2m+1)” (m+1)+m(2m+1))

2 1 1
+ (2m* +2m +2) <(m+1)+m(2m+l) _(m+1)(2m+1)>

2 : 1
+ (4m* + 4m + 2) <(m+1)(2m+1)x (m+1)(2m+1)+1)>]
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m+ 3+ (1/X)
m+D+m+1D+m@m+1)

2m + 2+ (1/X)
S Qm+ D2m+ 1)+ 1

N wlm+1+(1/2m+ 1)) —w(im+ 2+ (1/2m + 1)))} €

+(4m2+4m+2)[

2m+ 1
or
1 (1 8m*+10m+6 4m*+4m+2
BX)=— {—+ 2
S (X 2m+ 3m+ 2 2m+ 1
2 1+ ‘ +24 ! >>> [ ]
— m .
Xw(m+ MHJ) W( 1))

CoroLLARY. The storage utilization for a random B-tree of order m with
N keys using an overflow technique is bounded by

3 1y 1 .,
(gm0

e 9 3 Iy 9 B
< storage utilization < 3 (m — 7) —+0(m ™ ?).

Progf.  The above bounds are obtained by using Eq. (4.2.2) and the
result of the previous corollary. §

Notice that the expected storage utilization is essentially one for large m,
when the overflow technique is used.

4.4. Concurrency of Operations on B-trees

A node of a B-tree of order m is insertion safe if it contains fewer than 2m
keys. A safe node is the deepest one in a particular insertion path if there are
no safe nodes below it. The object of this section is to derive probabilities
related to the depth of the deepest safe node.

4.4.1. The Deepest Safe Node in B-Trees with the Normal Insertion
Algorithm.

LEmMmAa 4.4.1.1. The probabilities that the deepest safe node is located at

the 1st lowest level and above the 1st lowest level of an N-key random B-tree
of order m are, respectively,

643/55/1-3-12
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(a) Pri{dsn at 1st lowest level},,=1—(1/(2In2)ym)— ((1/8In2) —
(1/(n2) m*) + O(m ™),
(b) Pr{dsn above 1st lowest level},, = (1/(21n2)m)+ ((1/81n2)—
1(1/(n2) m*) + O(m ).
Proof. Similar to the proof of Lemma 3.6.1.1. we obtain

(a) Pr{dsn at 1st lowest level}, =1 — (1/(2m + 2X(H,, 10— Hpr 1))s

(b) Pr{dsn above Ist lowest level},, = (1/2m + 2)
(H2m+2’_Hm+1))- I

This analysis shows that complicated solutions for the use of concurrency
of operations on B-trees are rarely of benefit, since the solution analysed in
this paper will lock height 1 fringe subtrees most of the time.

4.4.2. The Deepest Safe Node in B-Trees with an Overflow Technique.

Lemma 4.4.2.1. The probabilities that the deepest safe node is located at
the 1st and the 2nd lowest level, and above the 2nd lowest level of an N-key
random B-tree of order m using an overflow technique are, respectively,

(@) Pridsn at st lowest level},,=1—(1/2m)—((1/81n2)—
N(A/m*) +0(m™),

(b) Pr{dsn at 2nd lowest level},, = (1/2m)+ (—(1/81n2) —
DA/m*) +0(m™?),

(c) Pr{dsn above 2nd lowest level}, = (1/(41n2) m*)+ O(m*).

Proof. Similar to the proof of Lemma 3.6.1.1. we obtain

(a) Pr{dsn at lst lowest level},,=1—(1/S)[((2m+ 1)2m + 1)+
1)/@m + D][w@m + 2+ (1/2m + 1)) = w(m + 1 + (1/2m + 1))],

(b) Pr{dsn at 2nd Ilowest levell, = (1/S)[(2m+ 1)2m +1)
11)/2m + D][y@m+ 1+ (1/2m + 1))) — w(m + 14 (1/2m + 1)))],

(¢) Pr{dsn above 2nd lowest level},, = 1/S, where S is as defined in
Eq. (4.3.2). 1

5. CONCLUSIONS AND OPEN PROBLEMS

In Section 2 we have shown that the matrix recurrence relation related to
fringe analysis problems converges to the solution of a linear system
involving the transition matrix, even when the transition matrix has eigen-
values with multiplicity greater than one (i.e., the cigenvalues of the tran-
sition matrix do not need to be pairwise distinct). This makes our fringe



FRINGE ANALYSIS THEORY 173

analysis theory flexible and general enough to permit its application in the
analysis of many different classes of search trees.

In Section 3 an analysis for the three lowest levels of 2-3 is accomplished.
We have discussed, in Section 3, how the same techniques might be extended
to enable an analysis for the four lowest levels to be carried out. This will
require the solution of a 4410 X 4410 linear system.

In Section 4 an analysis of B-trees is performed. Information about the
operation of splitting an overfull node and the concurrency of operations are
some of the results presented there. In particular for large order B-trees it is
shown that the storage utilization is, essentially, 1, when using the described
overflow technique.

Clearly a central open problem is to analyze the behaviour of balanced
trees under both random insertions and deletions. Whether or not fringe
analysis techniques can be extended to accomplish this remains to be seen.
The basic obstacle is that deletions do not preserve randomness, although a
first step has been made by Melhorn (1982).

Finally, the original problem, namely, carry out a true analysis of 2-3
trees under random insertions, is still open. Our analysis is merely an
approximation to the true analysis which can be viewed as an infinite order
fringe analysis. Whether or not fringe analysis theory can be extended to this
limiting case is also open.
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