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1. INTRODUCTION 

Balanced search trees provide an efficient means of storing information. B- 
trees, 2-3 trees, 1-2 brother trees, symmetric binary B-trees, AVL trees, 
weight-balanced trees, etc, are examples of balanced search trees. These 
structures have been known for many years; for example, AVL trees 
appeared in 1962 and B-trees in 1972, and their worst case behaviours are 
well known (Knuth, 1973). However, no analytical results were known about 
the expected case behaviour of balanced search trees prior to the pioneering 
work of Yao (1978) on 2-3 trees and B-trees. Yao (1978) presented a 
technique of analysis now known as fringe analysis, which he used to find 
bounds on the expected number of nodes in a B-tree. 

The fringe analysis technique is based on a method that considers only the 
bottom part or fringe of a tree. By considering only part of the nodes of a 
tree one is able to obtain bounds on most complexity measures and also 
some exact results. We show that the matrix recurrence relation related to 
fringe analysis problems converges to the solution of a linear system 
involving the transition matrix, even when the transition matrix has eigen- 
values with multiplicity greater than one, whereas Yao (1978) requires that 
the eigenvalues be pairwise distinct. 

B-trees were presented by Bayer and McCreight (1972) as a dictionary 
structure primarily for secondary storage. In a B-tree of order m each node 
has between rn + 1 and 2m + 1 subtrees, and the external nodes appear at the 
same level. The interest in B-trees has grown in the recent years to the extent 
that Comer (1979a) referred to them as ubiquitous. Comer (1979a, 1979b) 
described several systems which use B-trees. 

The 2-3 trees were introduced by  John Hopcroft in 1970 (see Knuth, 
1973, p. 468). In a 2-3 tree every internal node contains either one or two 
keys, and all leaves appear at the same level. According to this, a 2-3 tree is 
a B-tree of order m = 1, as shown in Fig. 1.1, Unlike B-trees, 2-3 trees are 
more appropriate for use in primary rather than secondary storage. For this 
reason they became equal contenders with AVL trees, often being the 
preferred data structure (Aho, Hopcroft, and Ullman, 1974; Huddleston and 
Mehlhorn 1982). 

Consider a B-tree T with N keys and consequently N + 1 external nodes. 

FIG. 1.1. A 2-3 tree with 11 keys. 
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These N keys divide all possible key values into N + 1 intervals. An insertion 
into T is said to be a random insertion if it has an equal probability of being 
in any of these N + 1 intervals. A random B-tree with N keys is a B-tree tree 
constructed by making N successive random insertions into an initially 
empty tree. In this paper we assume that all trees are random trees. Random 
2-3 trees are random B-trees of order 1. 

The first analytical results about 2-3 trees and B-trees were obtained by 
Yao (1978). Although his results were slightly extended by Brown (1979), 
many questions of interest were left open. Some of these questions are: 

(i) The expected number of nodes in a B-tree after N random 
insertions is of interest, since it indicates storage utilization. We extend and 
refine the results of Yao with regard to this measure. 

(ii) When considering insertions, the most expensive operation is 
surely that of splitting an overfull node, since this involves not only the 
creation of a new node but also an insertion into the next higher level of the 
tree. Knuth (Chvatal, Klarner, and Knuth, 1972, Problem 37) raised the 
following question related to 2-3 trees: "How many splittings will occur on 
the nth random insertion, on the average,...". We present the first partial 
analysis of this measure for 2-3 trees and B-trees. 

(iii) A different insertion algorithm for B-trees, which uses a technique 
called overflow, was presented by Bayer and McCreight (1972, p. 183) and 
also by Knuth (1973, pp. 477-478, Sect. 6.2.4). In the overflow technique, 
instead of splitting an overfull node, we look first as its sibling nodes and 
rearrange the keys when possible. The effect of the overflow technique is to 
produce trees with fewer internal nodes on the average, giving a better 
storage utilization. We present an analysis of 2-3 trees and B-trees created 
using an overflow technique which is a particular case of the overflow 
technique presented by Bayer and McCreight. 

(iv) Consider the concurrency of operations on B-trees; see Kwong 
and Wood (1980) for a survey of the techniques used. One basic technique 
identified there was first used by Bayer and Schkolnick (1977), namely, lock 
the deepest safe node on the insertion path. A node is (insertion-) safe if it 
contains fewer than the maximum number of keys allowed. Then a safe node 
is the deepest one on a particular insertion path if there are no safe nodes 
below it. Since locking the deepest safe node effectively prevents access by 
other processes it is of interest to determine how deep the deepest safe node 
can be expected to be. Our results enable us to provide some insight into this 
question. 

Part of the results about 2-3 trees and B-trees presented in this paper 
appeared in Gonnet, Ziviani, and Wood (1981), and part of the results 
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presented in Section 2 appeared in Eisenbarth (1981). Finally, most of the 
results presented in this paper appeared also in Ziviani (1982). 

In Section 2 we present a fringe analysis theory containing a general 
analysis of the matrices that appear in fringe analysis problems. In Section 3 
we present the analysis of 2-3 trees related to the four questions considered 
above, while in Section 4 we present a parallel but briefer analysis of B-trees. 
Finally in Section 5 we discuss some open problems. 

2. A GENERAL INVESTIGATION OF MATRICES IN 

FRINGE ANALYSIS PROBLEMS 

In the first part of this section we introduce the concepts and the 
definitions necessary to describe the Markov chain used to model the 
insertion process in search trees. In the second part we study the matrix 
recurrence relation involved in the Markov process. 

2.1. The Markov Process 

Let us define a tree collection C as a finite collection of trees. Consider the 
class of 2-3 trees of bounded height as an example. The collection of 2-3 
trees of height k (k > 0) forms a different tree collection for each value of k. 
Figure 2.1.1 displays the two possible types of trees in a 2-3 tree collection 
of height 1. The dots represent the number of keys in each node. 

The fringe of a tree consists of one or more subtrees that are isomorphic 
to members of a tree collection C. Typically, the fringe will contain all 
subtrees that meet this definition; for example, the fringe of a 2-3 tree is 
obtained by deleting all nodes at a distance greater than k (k > 0) from the 
leaves. Figure 2.1.2 shows an instance of a 2-3 tree with eleven keys in 
which the fringe that corresponds to the tree collection of 2-3 trees of height 
1 is encircled. 

We say that a tree collection C is closed if 

(i) for all T in C, an insertion into T always leads to one or more 
members of C, and 

(ii) the effect on an arbitrary tree, of an insertion, on the composition 
of the fringe is determined solely by the subtree of the fringe in which the 
insertion is performed. 

type1 type 2 

FIG. 2.1.1. The tree collection of 2-3 trees of height 1. 
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FIG. 2.1.2. A 2-3 tree and its fringe of height l subtrees. 

The composition of the fringe can be described in several ways. One 
possible way is to consider the probability that a randomly chosen leaf of the 
tree belongs to each of the members of the corresponding tree collection. We 
say a leaf is of type i if it belongs to a tree of type i. In other words, the 
probability that a leaf is of type i in,a (random) 2-3 tree of N + 1 leaves is 

Expected number of leaves of type i in an N - key tree (2.1.1) 
p~(N) = N + 1 

Yao (1978) describes the fringe in a different way. His description of the 
composition of the fringe considers the expected number of trees of type i, 
while we describe it in terms of leaves as in Eq. (2.1.1). As we shall see our 
description of the composition of the fringe simplifies the notation necessary 
to present the fringe analysis technique, and also eases the task of deter- 
mining which complexity measures can be obtained from the analysis of 
each search tree. 

The transitions between trees of a tree collection can be used to model the 
insertion process. In an insertion of a key into a type 1 tree, see Fig. 2.1.1, 
two leaves of type 1 are lost and three leaves of type 2 are obtained. In an 
insertion of a key into a type 2 tree three leaves of type 2 are lost and four 
leaves of type 1 are obtained as a result of node splitting. 

Clearly the probability that an insertion into one tree, in a collection C, 
leads to another tree in C, depends only on the types of the two trees 
involved, and so the process is a Markov process (cf. Cox and Miller, 1965; 
Feller, 1968). A sequence {XN} = {X0,X1,... } of random variables taking 
values on a state space S is a Markov chain if 

Pr {X N = i] X x _  l = j ,  XN_ 2 =j~ ,..., Xo =JN-~ } = Pr {X N = i] XN_ 1 =J'} 

for all i, j ,  Jl ,"',iN-~ E S. The current value of X N depends on the history of 
the process only through the most recent value XN_ ~. 

To illustrate this we consider the tree collection of 2-3 trees of height 1 
shown in Fig. 2.1.I. In this context, let X N and YN be the numbers of type 1 
and type 2 leaves, respectively, after the Nth insertion into an, initially 
empty, 2-3 tree. Since the tree collection is closed, the value of X N depends 



1 3 0  E I S E N B A R T H  ET AL.  

only on the value o fXu_  ~ and as a consequence {Xu} (or equivalently {Yu}) 
is a Markov chain. 

Since {XN} and {YN} are Markov chains we can easily compute their tran- 
sition probabilities. Consider an insertion in an N-leaf 2-3 tree, that is, the 
Nth  insertion, then it falls into either a type 1 or a type 2 tree. This implies 
that X x_j is either reduced by two or increased by four (by the remarks 
above) to give X x. Now the probability that the former occurs is 

the number of leaves type 1 Xp,,_ 

the number of leaves N 

and the probability that the latters occurs is ( N - X N _ ~ ) / N =  YN_~/N. Thus 
we obtain the conditional transition probabilities 

Xx_~ 
P r ( X u = X u - ~ - - 2 { X N - ~ ) - -  N ' 

YN-1 
P r ( X N = X N - ~ + 4 } X j v - ~ ) - -  N ' 

XN-I 
Pr(YN= YN-1 -- 31 Y N - 1 ) - -  N ' 

Vr(rN=YN ,+31rN 0 = Y~ 

or, as they are more usually written 

Pr(X u = i[ XN_ 1 = j )  = j / N  if 

= ( N - j ) / N  if 

and 

Pr(Yu = i I Yx-~ = J )  =,fiN if 

= ( N - j ) / N  if 

i = j -  2, 

i = j + 4  

i = j - -  3, 

i = j +  3. 

Now we wish to obtain the expected values of X N and YN, that is, E(XN) 
and E(YN). First observe, from Eq. (2.1.1), that 

pl(N) = E(XN)/N + 1 and p2(U) = E(YN)/N + 1. 

Now the expected values of X,v and Yu conditional on X N_ ~ and YN-1, can 
be expressed as 

Y~X E(XNI& ,,YN-O XN_~ (X,~_ 2)+----~-(N_,+4) 
-- ~ T  1 - -  

and 

E(YNIXN-1, YN-,)-- (YN- -3)+::~-~-(YN 1+3). 
S ~ 
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We wish to obtain the unconditional values of X,,,. and YN, that is, 

and 
E(X,) = E(E(& I X,- 1, Y,.- ,I> 

E(Y,J = W(L I Yv- I> L J), 

from which we derive 

(Xv-, - 2) + 
Y. 

+(x&,+4) 

which simplifies to 

Dividing each side by N + 1 and replacing the expectations with 
probabilities gives 

P,(W= 
W-~)P,(N- 1)+4~,(N- 1) 

Nfl 

and, similarly, we can derive 

p(,)_3~,(N-1)+(N--3)~,(N--I) 
z N-t1 

In matrix notation 

where 

H= (<3 T4) and I= (b y). 

Thus the probability of an insertion occurring in each of the subtrees of 
the fringe can be obtained from the steady state solution of a matrix 
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recurrence relation in a Markov chain. In general, let p(N) be an m- 
component column vector containing pi(N). Then 

p(N)= (I + N - - ~ )  p ( N - 1  ), (2.1.2) 

where I is the m × m identity matrix, and H is the transition matrix. 
Extensions to other tree collections with more than two types requires 

consideration of a vector process {Xu}, where XjN is equal to the number of 
type j leaves at time N. 

2.2. The Matrix Recurrence Relation 

We start this section by presenting a formal definition of the components 
of the matrix H in Eq. (2.1.2). In fringe analysis problems we always deal 
with a tree collection C = {T~ ,..., Tin} of trees. Let L i be the number of leaves 
of T~. An insertion into the kth leaf, k E [1,...,Ls], of T s will generate l~s(k ) 
leaves of type T~. As a consequence we must have 

1 l~j(k)---Lj+l for l ~ j ~ < m .  
Lj i=~ k=i 

This leads to 

(2.2.1) 

DEFINITION 2.2.1. A fringe analysis problem of site m consists of 

(i) m integers L 1,..., L m, 

(ii) non-negative reals Itj(k), for 1 <~i,j<.m, 1 <<.k<~Li, such that 

1 ~ ~ lij(k)=Ly +I  for l<.j<~m. 
L j  i=l  k = l  

Let Pi(N) be defined as in Eq. (2.1.1). Then Eq. (2.1.2) can be written as 

H 2 - H  1 - I )  p ( N -  1), 
p ( N ) =  I +  N +  1 

where 

H 2 = lij(k ) , H~ = diag(L~ .... , Lm) , 
k = l  / l<i,j<~m 

and 1 is the m × m identity matrix. 

(2.2.2) 

DEFINITION 2.2.2. Consider a fringe analysis problem. Equation (2.2.2) 
is the associated recurrence equation, where H =  H z - - H ~ -  I =  (hij) is its 
transition matrix and 

1 Ls 
his = -~s k=l ~ lis(k) -- Oij(Ls + 1), 

where ~i~ is the Kronecker symbol. 
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Intuitively, the elements in the diagonal of H represent the number of 
leaves lost due to an insertion minus one, and off-diagonal elements represent 
the number of leaves obtained for each type times the probability that each 
type is reached in a transition. 

DEFINITION 2.2.3. A fringe analysis is connected if there is an 
lC  [1 ... m] such that de t (H,) :~0,  where H u is matrix H with the lth 
column and lth row deleted. 

The following theorem shows that the real part of the eigenvalues of the 
transition matrix H are non-positive. 

THEOREM 2.2.1. Consider a connected fr inge analysis problem with an 
m × m transition matrix H. Le t  2~,..., 2 m be the eigenvalues o f  H. Then they 
can be ordered so that 21 = 0 and 0 > Re 22/> Re 23 >/ . . .  >1/Re 2 m. 

Proof. Consider the sum of the elements in the j th  column of H: 

hi j = 1 2 l i j ( k )  - c~ijLj - -  OiJ 
i=1 i=1  ki 

_---- 1 ~ Iii(k) - (Lj + 1) by Eq. (2,2.1) 
L~ i--1 k = l  

=Lf+ 1-(Lj+ 1)=0. 
From Gerschgorin's theorem (see Wilkinson, 1965, Chap. 2, Sect. 13) it is 

known that all eigenvalues of H are contained in the union of the disks with 
center hii and radius ~.j~l IhijI. Since the sum of the elements in any column 
of H is zero, the diagonal elements are negative, and the off-diagonal 
elements non-negative, then 

h.+ 2 Ihd =h.+ Z h j=0, 
j~:i .]~i 

that is, each disk does not extedn into the positive half-plane for x, therefore 
all eigenvalues of H have non-positive real part. 

From ~ _ j  h i j = O  , for 1 <~j<~m, we infer that the vector E (m~ = (I ..... I) 
is a left eigenvector of H with eigenvalue 0. To show that 0 is an eigenvalue 
of multiplicity 1, let us look at the characteristic polynomial of H 

det(H--  2I) = (_~.)m + S,(__).)m-, + ... + Sm_~(--~) + S m = O, 

where Sq is the sum of the determinants of the principal minors of order q of 
the matrix H, q = 1, 2 ..... m (see Gantmacher, 1959, Chap. 3, Sect. 7). Since 
2 = 0 is a solution, this implies S m = de t (H)=  0, and 

S r n _  1 = ~. det(Hu), 
i=1  
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where H u is the matrix H with the ith row and the ith column deleted. H ,  is 
an ( m -  1)X ( m -  1) matrix and the Gershgorin criterion shows that all 
eigenvalues of Hi,. have non-positive real part. Thus d e t ( H , ) =  
(-1) '~-~ldet(Ha)  I. Hence Sm_ ~, the linear term of the characteristic 
polynomial, is zero if and only if det(Hi`.) = 0 for all i. But det(H;~) 4= 0 for 
some i because we are dealing with a connected fringe analysis problem. 
Thus the linear term of the characteristic polynomial of H is non-zero, which 
implies that 0 is an eigenvalue of multiplicity 1. | 

Y',k= ~ lij(k) > 0, that is Tj can produce DEFINITION 2.2.4. Let Tj ~ T`. if Lj 
T i. The symbol *~ is the reflexive transitive closure of-~. 

The following theorem describes a test for connectedness. 

THEOREM 2.2.2. A fringe is connected i f  and only i f  there is a T i such 
that Tj ~ T i for  all j E [ 1 ... m]. 

Proof. Consider H as in Definition 2.2.2. Let i be such that Tj. *~ T i for 
all j. We will show that det(H,)  4: 0. Assume otherwise, that is det(Hu) = O. 
Let u = (ul ..... u`._ 2, ui+~ ..... urn) be a left eigenvector of H u corresponding to 
eigenvalue 0. Let Uq be a component of maximal absolute value in u (without 
loss of generality Uq=0)  and let J =  { j ;u j=Uq} ~ [1  " "  m ]  - -  { i} .  Since 
Tj ~ T i for all j C J and i ~! J there must be some k ~ J and some j E J such 
that Tj--. T k. Hence hkj. > 0. Since ~ '~1  hij = 0 (cf. proof of Theorem 2.2.1) 
we have 

ulhij = u`.hii + uihii 
1=1 l~d l ~ J  
l:/-j `.~ei 

>t 2 uqhij- lu`.1% 
l~ J  / ~ J  

> ~ hij ~> 0, a contradiction. 
I ~ i  

The above inequality follows because u is a real vector and h o. >/0 for l ~ J, 
14:i. 

Assume det(Hu)4= 0. We will show Tj *~ T i for all j. Assume otherwise. 
Then there is some j such that T j * ~ T  i. Let J = { / ; T j * ~ T t } .  Then 
O¢J=/=[1  . . .m]  and hkz=0 for all k q ~ J  and l ~ J .  We may assume 
without loss of generality that J = { 1,..., [J[ }. Then H has the form 

(o ") H =  H . . . .  

where H '  is a IJI × IJI matrix. Note that det(Hn) = det(H')  • det(H~}), where 
H;} is H"  with ith column and ith row deleted. But H '  comes from the tran- 
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sition matrix of a fringe analysis problem (namely, the restriction to J) and 
hence de t (H ' )=  0 by Theorem 2.2.1, a contradiction. III 

It remains to solve Eq. (2.2.2) for connected fringe analysis problems. In a 
previous version of the proof of the convergence of the matrix recurrence 
relation (Gonnet et al., 1981, Lemma 2.1, p. 4) the eigenvalues of the tran- 
sition matrix are assumed to be pairwise distinct. The following theorem 
(Eisenbarth, 1981) extends the proof of the general case. 

THEOREM 2.2.3. Let H be the m X m transition matrix of  a connected 
fringe analysis problem. Let 21 ,..., )% be the eigenvaIues of  H, where 21 = 0 > 
Re,a, 2>/Re£ 3>~... >~Re2 m, and let x I be the right eigenveetor of  H 
corresponding to 2~ = O. Then there is a e such that for  every vector p(N) 

l p(N) -- cx~ I = O(NRea2), 

where p(N) is defined by Eq. (2.2.2). 

Proof By the ordering of the eigenvalues N uea2 is larger than N Re-i, 
i>~ 3. Note also that N aea~ -----NO= 1, for all N. Thus proving that I p ( N ) -  
CXll= O(NRea 0 proves that p(N), as given by Eq. (2.2.2), converges to cx~. 

The proof proceeds as follows. First Eq. (2.2.2) which can be written as 

p ( N ) =  1+ ~ p (N  + 1) 

can be further rewritten 
~I;.~_1 (1 + (x/i)) yielding 

in terms of the 

p(N) :fN(H) p(O). 

function fN(x) defined as 

Now the limiting value ofp(N), denoted by p(oo), can be expressed as 

p(oo ) = f ( H )  p(O), 

where f ( x )  is the limiting value offv(X ). Moreover we show that i fN(X) -  
f (x) l  = O(N R~x) for Re x < 0. To prove that p(N) converges we now compute 
an upper bound on the value of IP(N)-P(C~)t  by computing upper bounds 
for the elements of the matrices f ( H )  and fv(H). In particular we find that 

f(u) : T-' 

1 0 ... O )  

0 0 T 

0 .-. 0 
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and 
( I + c(N) e(N) ... e(N) ) 

fN(H) = T - '  ... e(N) T, 
e(N) 

where e(N) = O(N Rea2) and T and T- l are the matrices transforming H into 
Jordan form. We also prove that Hp(oo )=0 ,  implying that p ( ~ )  is a 
multiple of x I , CXl say, since Hx 1 = 3,1x 1 = 0 and 3, I = 0. Combining these 
three facts we have 

p(N) -- p( oo ) --=p(N) -- cx 1 

= (fN(H) -- f (H))  p(O) 

( e ( N ) . . . e ( N ) )  
= r - '  i Tp(O) 

e(U) 

\~(N)/  

where b(N)= O(NRe't2), since p(0) and T are constants. Thus {p(N)-  cxl I = 
O(N Rea2) as desired. 

For N E N let fN: C ~ C, where C is the complex plane, be given by the 
polynomialfv(X ) = ]-I~V: 1 (1 + (x/i)). L e t f ( x ) =  limu_~fu(x ). Then f ( 0 ) =  1, 
f (x )  = 0, for Re x < 0, and If(x) - fv(x){ -= O(N Rex) for Re x < 0, because 

fN(x) = 1 + -7- 
/ = 1  

~--- - - -7-- -  
i = l  

( x +  1)(x + 2) . . .  ( x + N )  
N! 

F ( N + x +  1) 
(cf. Abramowitz, 1972, Eq. 6.1.21) 

r(x + 1) r ( u  + 1) 

= O(NX). 

Furthermore, p(N) = (I + (H/(N + 1)))p(N -- 1) =fN(H)p(O), and 
p (m)  = limN~o~ p(N ) =f(H)p(O).  (cf. Gantmacher, 1959, Chap. 5). Let o) 

J = T H T -  I = J2 . 

Jk 
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be the Jordan matrix corresponding to H, where J~ .... ,Jk are the blocks of 
the Jordan matrix. We have J~ = [0], i.e., J~ is a one by one zero matrix. 
Also 

2 i 1 ) 

J i =  ' .  )l.i "' "" 1 with Re(2i) < 0, 

where 2 i is an eigenvalue of multiplicity r i. Sincefx(X ) is a polynomial in x 
then (:7 0) f ( H )  = f ( T -  ~Jr) = T - ' f ( J ) T  = T -~ " ' .  Y. 

f(Jk) 

Next we have to computef(J:).  We have (cf. Gantmacher ,  1959, Chap. 5, 
Example 2) 

( ~ f(;O F'-"(,~,) ) 
f(Jt) = f ')" 1! "'" (r:- 1)! , 

"" ........ " .... f(2,) 
where r: is the multiplicity of 2~, and f(k) is the kth derivative o f f  Hence 
f (JO = [11, the 1 × 1 unit matrix, since f ( 0 ) =  1, a n d f ( J , )  = [0], the r: × r: 
zero matrix, since f ( x )  = 0 for Re x < 0. 

Thus f ( H )  = T -  1Q T, where 

Q= 

and 

(i o...o o°) 
Hp(oo ) = Hf(H)p(O) = T-1THT-1QTp(O) = T-~JQTp(O) 

= T-~OTp(O)= 

since JQ = [0], the zero matrix. 

0 

This shows that p (oo)  is a multiple of x l ,  say p ( o o ) = e x z ,  because 
Hxl = 2axe, or Hx 1 = 0 for )t l = 0, and Hp(oo)= 0. Furthermore 

f , : ( H ) :  T -~ ". .  T :  T -~ "'...e,(N) ... e(N) 7", 

fN(Jk) ~(N) 
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where e(N)= O(NRe&). Thus 

with 6(N) = O(NRea2). p(N) -- p(ov) = (fN(H) - - f (H)  ) p(O ) = \ 6('.N) / 

This finishes the proof of the theorem. | 

It is important to note that: 

(i) Consider an m X m transition matrix H of a connected fringe 
analysis problem. Theorem 2.2.3 says that p(N), the m-component column 
vector solution of Eq. (2.2.2), converges to the solution of 

Hq = 0 as N ~  o0, (2.2.3) 

where q is also an m-component column vector which is independent of N, 
and 

p(N) -= aa x I -4- O(NRea~-), (2.2.4) 

where x~ is the right eigenvector of H corresponding to eigenvalue 2j = 0. 
Furthermore, the eigenvalues of H do not need to be pairwise distinct. 

(ii) Let Ai(N ) be the expected number of trees of type i in a random 
search tree with N keys. Let L i be the number of leaves of the type i tree. We 
observe that Eq. (2.2.1) can be written as 

Ai(N) Li 
P i ( U ) -  U + 1 (2.2.5) 

3. AN ANALYSIS OF 2--3 TREES 

3.1. Motivation 

In a 2-3 tree every internal node contains either 1 or 2 keys, and all 
external nodes appear at the same level. The class of 2-3 trees is a special 
class of B-trees, and they are more appropriate for primary store. 

The process of insertion of a new key consists of: 

(i) Follow the search path until it is verified that the key is not in the 
tree (i.e., find the place of insertion). 

(ii) Insert the new key into the node. To insert into a node that 
contains only one key, we insert it as the second key. If  the node already 
contains two keys, we split it into two one-key nodes, and insert the middle 
key into the parent node. This process may propagate up if the parent node 
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already contains two keys. When there is no node above we create a new 
root node to insert the middle key. 

Following the notation presented by Chvatal et al. (1972, Problem 37), 
where the dots indicate keys, the first three steps in the growth of a 2-3 tree 
are 

A 
and the fourth step is either 

(ii) 
(N + 1)th 

(iii) 
occur on 
keys. 

(iv) 

We now define certain complexity measures: 

(i) Let g(N) be the expected number of nodes in a 2-3 tree after the 
random insertion of N keys into an initially empty tree. 

Let Pr{j  splits} be the probability that j splits occur on the 
random insertion into a random 2-3 tree with N keys. 

Let Pr{j  or more splits} be the probability that j or more splits 
the ( N +  1)th random insertion into a random 2-3 tree with N 

Let ~¢(N) be the expected number of splits that occur in a 2-3 tree 
during the random insertion of N keys into an initially empty tree. 

(v) Let E[s(N)] be the expected number of splits that will occur on 
the (N + 1)th insertion into a random 2-3 tree with N keys. 

(vi) Let Pr(dsn a t j th  lowest level} be the probability that the deepest 
safe node on a random search is located at the j th  ( j  >~ I) lowest level of a 
random 2-3 tree with N keys. 

(vii) Let Pr{dsn above j th  lowest level} be the probability that the 
deepest safe node on a random search is located above the j th  lowest level of 
a random 2-3 tree with N keys. 

In Subsections 3.2, 3.3, and 3.4 we shall derive exact values for Pr{0 
splits}, Pr{1 split}, Pr{2 splits}, Pr{3 or more splitS}, and bounds on ~(N), 
E[s(N)], and improve Yao's previous results on g(N). In Subsection 3.5 we 
shall derive exact values for Pr{0splits}, Pr{1 split}, Pr(2 or more splits}, 
and bounds on rT(N), g(N), and E[s(N)] for an insertion algorithm that uses 
an overflow technique. In Subsection 3.6 we shall derive exact values for 
Pr{dsn at Ist lowest level}, Pr{dsn at 2nd lowest level}, Pr{dsn at 3rd lowest 
level}, and Pr{dsn above 3rd lowest level} for the normal insertion 
algorithm, and Prldsn at 1st lowest level},Pr{dsn at 2nd lowest level}, and 

64Vss/1-3 lo 
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TABLE 3.1.2 

Summary of the 2-3 Tree Results Using an Overflow Technique 

141 

Second Order Analysis (N~ oo) a 

g(N) [0.63N + 0.13, 0.71N - 0.29] 
Pr{0 splits} 0.61 
Pr{ 1 split} 0.23 

Pr{2 or more splits} 0.16 
K(N) [0.63 + 0.13/N- Ilog3(N + 1)}IN, 

0.71-0 .29 /N-  [logz(U + 1 )I/N] 
E[s(N)] [0.55, 0.23 + 0.16[log2(N + 1)1 } 

Pr{dsn at 1 st lowest level } 0.61 
Pr{dsn at 2rid lowest level} 0.23 

Pr {dsn above 2nd lowest level } 0.16 

a Results are approximated to O(N-6"8t). 

Pr{dsn above 2nd lowest level} for the insertion algorithm using an overflow 
technique. In Subsection 3.7 we discuss the possibilities of  higher order 
analyses. 

Table 3.1.1 shows the summary of the results related to 2-3 trees using 
the normal insertion algorithm. The lower order analyses are included to 
indicate the improvements achieved by the third order analysis. Table 3.1.2 
shows the summary of  the results related to 2-3 trees using the overflow 
technique. 

3.2. First Order Analysis 

The analysis of the lowest level of the 2-3 tree to estimate fi(N), Pr{0 
splits}, Pr{1 or more splits}, Y(N), and E[s(N)] can be carried out in the 
following way. The tree collection shown in Fig. 3.2.1 contains two members 
and its corresponding transition matrix is 

H =  [ - 3  4 
3 - 4  

From Eq. (2.2.3) we have Hp(N)=O, 

, 

and therefore p ~ ( o o ) =  4, and 
p2(oO) = 3. Since the eigenvalues of  H are 0 and - 7 ,  we observe that 

type 1 type 2 

FIG. 3.2.1. The tree collection of 2-3 trees of height 1. 
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p~(N) = ~ and P2(N) ~ ~ for N )  6. To simplify notation pi(N) is written as 
Pi throughout the remainder of this paper. 

LEMMA 3.2.1. Let nl indicate the number of nodes at level l of a 2-3 tree 
with N keys. Then the number of nodes above level l, nal, is bounded by 

nl--  1 
- -  ~ nal ~< nl - 1 .  

2 

Proof Consider the level I as being the N + 1 leaves of a 2-3 tree with N 
keys. (Each leaf represents a node.) The minimum and the maximum number 
of nodes above the level I is obtained when each node above level l contains 
2 keys and 1 key, respectively. (That is 2 n a l = n l - 1  and n a l = n l - 1  
respectively.) II 

Lemma 3.2.1 and Eq. (2.2.5) lead to 

THEOREM 3.2.2. The expected number of nodes in a random 2-3 tree 
with N keys is bounded by 

P2 "N 1 

[P~ P2 ] 
~< rT(N) ~< 2 [--L-~-1 +--~2 ] (N + 1)-- 1 

that is, 

for N >/1 

9N 1 6N 1 for N >1 6. 
1---4- + -if- <~ ~ ( N ) ~ 7 7 

The remaining results are contained in the lemmas that follow. 

LEMMA 3.2.3. The probability that no split occurs on the (N + 1)th 
random insertion into a 2-3 tree with N keys is 

Pr{0 splits} = ~ for N>~ 6. 

Proof. An insertion into a type I tree shown in Fig. 3.2,1 causes no split, 
and the probability that a random insertion into a random 2-3 tree falls into 
a type 1 tree i sp l .  II 

LEMMA 3.2.4. The probability that 1 or more splits 
(N + 1)th random insertion into a 2-3 tree with N keys is 

Pr{l or more splits} = ~ for N>~ 6. 

occur on the 
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Proof Similar to the proof of Lemma 3.2.3. II 

LEMMA 3.2.5. Let h(N) denote the expected height of a random 2-3 tree 
with N keys. Then the expected number of splits is 

#(N)-- N m 

Proof From the insertion algorithm presented in Section 4 we can see 
that each time a node split occurs one new node is created, except when the 
node is a root, in which case two nodes are created. | 

LEMMA 3.2.6, The height of a 2-3 tree with N keys is bounded by 

[log3(N + 1)] < h (m)<  [log2(X + 1)]. 

Proof. Two lower bound and the upper bound on the height are obtained 
when each node of the 2-3 tree contains 2 keys and 1 key, respectively. | 

Lemmas 3.2.5 and 3.2.6 lead to 

THEOREM 3.2.7. The expected number of splits in a random 2-3 tree 
with N keys is bounded by 

9 1 l logz(N+ i)] 6 1 [log3(W+ 1)] 
+ ~ Y(N) ~ for N ~> 6. 

14 7N N 7 7N N 

LEMMA 3.2.8. A lower bound on the expected number of splits that occur 
on the (N + 1)th insertion into a random 2-3 tree with N keys is 

E[s(N)] >/Pr{1 or more splits}. 

Proof Similar to the proof of Lemma 3.2.3. | 

COROLLARY. E[s(N)] >/~ for N>~ 6. 

LEMMA 3.2.9. An upper bound on the expected number of splits that 
occur on the (N + t) th insertion into a random 2-3 tree with N keys is 

E[s(N)] ~ Pr{1 or more splits}[log2(N+ l)j. 

Proof. The upper bound on E[s(N)] is equal to the number of splits- 
insertion in the fringe plus all splits that might occur in the nodes above the 
lowest level, which might be equal to the height of the tree with all nodes 
binary but the nodes on the path of splitting. | 
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Lemmas 3.2.8 and 3.2.9 lead to 

THEOREM 3.2.10. The expected number of splits that occur on the 
(N+ 1)th insertion into a random 2-3 tree with N keys is bounded by 

¢<~E[s(N)]<,3[log~(N+ 1)] for N>/6. 

One may be tempted to conjecture that the expected value for E[s(N)] 
converges to the value of f(N). However, we cannot prove this. For example, 
E[s(N)] could oscillate between a lower bound and an upper bound, where 
the lower bound is the number of splits per insertion in the fringe, and the 
upper bound is the number of splits per insertion in the fringe plus the 
number of splits per insertion outside the fringe. 

LEMMA 3.2.11. The expected number of keys in the fringe of a 2-3 tree 
with N keys that corresponds to the tree collection shown in Fig. 3.2.1 is 

f ( N ) =  (P-~-]--+ 2 P--~-z ) ( g +  1). 

Proof The above expression is obtained by observing Fig. 3.2.1 and by 
using Eq. (2.2.5). II 

COROLLARY, f (N)  = ~(N+ 1)for N>/6. 

THEOREM 3.2.12. The excepted height of a 2-3 tree with N keys is 
bounded above by 

h(N) ~ log2(N + 1) - 0.22239. 

Proof Let nkal indicate the number of keys above the level l of a 2-3 
tree. Considering the second lowest level (distance one from the leaves), and 
using Lemma 3.2.6 then the height h(n) of a 2-3 tree with N keys is bounded 
by 

[log3(nkal + 1)] + 1 ~< h(N) ~ [log2(nkal + 1)] + I. 

Considering the expected value of the right-hand side of the above inequality 
then 

h(N) ~< E[[logz(nkal + 1)J + 1] ~< E[logz(nkal + 1) + 1]. 

Using Jensen's inequality (Feller, 1966, p. 152) we obtain 

h(N) ~< log2 E[nkal + 1] + 1. (3.2.1) 
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type 1 type 2 type 3 type 4 
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type 5 type 6 type 7 

FIG. 3.3.1. The tree collection of 2-3 trees of height 2; stubs indicate leaves. 

But 

E[nkal]  = N - f ( N ) ,  

w h e r e f ( N ) = 4 ( N +  1) for N~> 6 (see Lemma 3.2.11). Then 

E[nkal] = 3(N+ 1 ) - 1 .  

Substituting this equation into Eq. (3.2.1) we obtain 

h ( N ) ~ l o g 2 ( N +  1 ) - 0 . 2 2 2 3 9 .  | 

3.3. Second Order Analysis 

The analysis for the two lowest levels of  2-3 trees leads to better bounds 
for fi(N), g(N), E[s(N)],  and exact results for Pr{1 split}, and Pr{2 or more 
splits}. Yap (1978) showed that there are 12 possible trees in the tree 
collection of  2-3  trees of  height 2, which are grouped into 7 types, as shown 
in Figure 3.3.1. The corresponding transition matrix is shown in Table 3.3. I. 

TABLE 3.3.1 

The Transition Matrix Corresponding to the Tree Collection of 2-3 Trees of Height 2 
of Fig. 3.3.1 

--5 8X3/7 4×6/8  4X6/9 
5 -6  5×6/8  5X6/9 

6×2/5  -7  6X6/9 
6 × 3/5 -7  

7 7 
s × 4/7 --9 

9 x 2/8 -~0 
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Again using Eq. (2.2.3) we obtain 

Pl = 1656/7991, P5 = 1575/7991, 

Pz --- 1980/7991, P6 = 800/7991, (3.3.1) 

P3 = 5472/55937, P7 = 180/7991. 

P4 = 7128/55937, 

Since the eigenvalues of H are 0, -6.55 ± 6.25i, -7 ,  -9.23 ~ 1.37i, and 
-13.44, using Eq. (2.2.3) the asymptotic values ofp(N) obtained from Eq. 
(2.2.4) are approximated to the O(N-6"ss). 

THEOREM 3.3.1. The expected number of nodes in a random 2-3 tree 
with N keys is bounded, to five decimal places, by 

0.70169N + 0.20169 + O(N -5'55) ~< if(N) ~< 
0.79273N- 0.20727 + O(N-5"ss). 

Proof. I_emma 3.2.1 and Eq. (2.2.5) lead to 

t ( ] ( ~ p / ] l  (4 1 ) ( i _ ~ 4 L ~ . ) I ( N + l ) 1 7  

7 

~<ff(N)<~ 14 li=~ L~') + 5  (i-~'~'~-4 L~')I (N+ 1)--1 

or, alternatively 

78501N 11282 
+ O(N -~'~5) 

111874 55937 

44343N 11594 
~< fi(N) ~< 55937 55937 f- O(N-S'55)" | 

LEMMA 3.3.2. The probability that 1 split occurs on the (N + 1)th 
random insertion into a 2-3 tree with N keys is 

13788 
Pr{1 split} = 55937 + O(N-6'5~)" 

Proof An insertion into the type 2 tree shown in Fig. 3.3.1 causes one 
split ~ of the time, and an insertion into the type 3 shown in Fig. 3.3. I 
always causes one split. Since the probability that a random insertion into a 
random 2-3 tree falls into a type 2 or type 3 tree are P2 and Ps, respectively, 
then Pr{1 split} = 3/5pz +P3. | 
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LEMMA 3.3.3. The probability that 2 or more splits occur on the 
(N + 1)tb random insertion into a 2-3 tree with N keys is 

Pr{2 or more splits} = j4557991 - J- O(N-6"55) • 

Proof. Similar to the proof of Lemma 3.3.2. | 

Lemma 3.2.5 leads to 

THEOREM 3.3.4. The expected number of splits in a random 2-3 tree 
with N keys is bounded by 

11282 ([log2(U + 1)j/N) + O(X -6"5~) ~ ~-(U) + 

4434355937 55937N''594 ([log3(N + 1)I/N) + 0(N-6.55), 

and to five decimal places we have 

0.70169 + - -  
0.20169 [log2(N + 1)] 

N N 
~- O(N -6"~5) ~ g(N) 

~< 0.79273 0.20727 [logs(N+ I)1 + O(N_6.55). 
N N 

LEMMA 3.3.5. A lower bound on the expected number of  splits that will 
occur on the (N + 1)th insertion into a random 2-3 tree with N keys is 

E[s(N)} >~ Pr{ 1 split} + 2 Pr{2 or more splits}. 

Proof. Similar to the proof of Lemma 3.2.3, | 

LEMMA 3.3.6. An upper bound on the expected number of  splits that will 
occur on the (N + 1)th insertion into a random 2-3 tree with N keys is 

E[s(N)} ~ Pr{l split} + Pr{2 or more splits}ilog2(N + 1)j. 

Proof. Similar to the proof of Lemma 3.2.8. I 

Lemmas 3.3.5 and 3.3.6 lead to 

THEOREM 3.3.7. The expected number of  splits that will occur on the 
(N + 1)th insertion into a random 2-3 tree with N keys is bounded by 

5593734's8 + ON-6.ss) <~ E[s(N)] ~ ~'3788 .J- ~4ss llog2(N + 1)~ + O(N -6"55) 
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and to five decimal places we have 

0.61065 + O(N -6"55) ~< E[s(N)] <~ 0.24649 + 0.18208 [log2(N + 1)] + 
O(N-6.55) .  

LEMMA 3.3.8. The expected number of keys in the fringe of a 2-3 tree 
with N keys that corresponds to the tree collection shown in Fig. 3.3.1 is 
f (N)  = ~6536 ( N +  1) + O(N-6"55). 

Proof. The equation 

( P l + o P 2  5 P 3 +  P4 6 P s + v P 6 + N P T ) ( N + l )  
f ( N ) =  3 L,  -L-T + ~ 5L-4-4 + L 5 L 6 

is obtained from Fig. 3.3.1 and Eq. (2.2.5). II 

THEOREM 3.3.9. The expected height of a 2-3 tree with N keys is 
bounded above by 

h(N) ~ log2(N + 1) - 0.45736. 

Proof. Similar to the proof of Theorem 3.2.12. II 

3.4. Third Order Analysis 

In this section we present the analysis of the three lowest levels of 2-3 
trees. Brown (1979) performed a three level analysis using a transition 
matrix of 978 × 978 elements, and obtained asymptotic values for the 
number of nodes with one key and the number of nodes with two keys at 
each of the three lowest levels. However, an equivalent three level analysis 
can be performed on a smaller matrix by grouping trees into types, in the 
same way the two level matrix in the previous section was reduced from 
12 × 12 to 7 × 7. If we consider combinations of the 7 types of the two level 
tree collection as subtrees of nodes with one and two keys then it is possible 
to obtain a three level tree collection with 224 types. This may be further 
reduced to 147 types as we shall see in the following. Obviously solving the 
recurrence for an H which is 147 × 147 is preferable to solving it for an H 
which is 978 × 978. 

The idea behind our approach is to group all trees with the same number 
of leaves into types. Thus the tree collection shown in Fig. 3.3.1 is reduced 
from 7 types to 6 types by grouping the types 3 and 4 into one unique type, 
as shown in Fig. 3.4.1. In this new tree collection the types are numbered 
sequentially from 4 to 9, where the type 4 tree has 4 leaves, the type 5 tree 
has 5 leaves ..... and the type 9 tree has 9 leaves. Of course the probability 
related to the type 6 shown in Fig. 3.4. l is the sum of the probabilities 
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t ype  4 t ype  5 t ype  6 

t ype  7 t ype  8 t y p e 9  

FiG. 3.4. l. A tree collection of 2-3 trees of height 2 obtained by grouping types 3 and 4 
trees of Fig. 3.3.1 into type 6. 

related to the types 3 and 4 shown in Fig. 3.3.1, and the probabilities of the 

other types remain as before. (Types 4, 5, 7, 8, and 9 shown in Fig. 3.4.1 
have the same probabilities as types 1, 2, 5, 6, and 7 shown in Fig. 3.3.1, 

respectively.) 

LEMMA 3.4.1. The two level tree collection of  Fig. 3.4.1 can be used to 
obtain a three level tree collection which is closed. 

Proof. Simply consider the trees obtained by hanging the two-level trees 
of Fig. 3.4.1 from a binary or ternary node. The resulting collection is 

clearly closed. I 

LEMMa 3.4.2. The two level tree collection of  Fig. 3.4.1 can be used to 
form a closed three level 2-3 tree collection with 147 types. 

Proof Following the notation presented in Fig. 3.4.2, the 147 types of 

L y ,  , J . . . .  ~,- I t 

t ype  44  t y p e  45  t ype  99 

t ype  444  t ype  999  

FIG. 3.4.2. A tree collection of 2-3 trees of height 3 (type 44 is formed by two subtrees 
with 4 leaves each, type 45 is formed by two subtrees with 4 and 5 leaves each, etc.) (a) 
Types formed by two height 2 subtrees under binary roots; there are 21 types in this case. (b) 
Types formed by three height 2 subtrees under ternary roots; there are 126 types in this case. 
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3/7 

a 'l II, . . . .  I 618 

3/7 
b 2 L , ,  ' , | 6J~ 

FIG. 3.4.3. Diagrams for transitions. (a) Transitions related to the tree collection shown 
in Fig. 3.3.1. (b) Transitions related to the tree collection shown in Fig. 3.4.1. 

the three level tree collection are represented either as type / j  (4 ~ i ~<9 and 
i ~ j < ~  9) for the tree types with binary roots, or as type /jk (4 ~<i~< 9, 
4 <~j <~ 9, and i ~< k ~< 9) for the tree types with ternary roots. The number of 
tree types with binary roots is 21, and the number of tree types with ternary 
roots is 126, which gives a total of 147 types. I 

Notice that the trees with ternary roots must have 4 ~<j~< 9 (and not 
i ~<j ~< 9 and j ~  k ~ 9). Consider, for example, types 459 and 495. These 
must be treated as different types because an insertion into the leftmost leaf 
of the middle subtree of type 495 gives types 44 and 56, and an insertion 
into the leftmost leaf of the right subtree of type 459 gives types 45 and 46. 

LEMMA 3.4.3. The transitions related to the 6 types of  the tree collection 
shown in Fig. 3.4.1 are equivalent to the transitions related to the 7 types of  
the tree collection shown in Fig. 3.3.1 when both are used as subtrees o f  
nodes with one or two keys in order to obtain a three level tree collection. 

Proof. Figures 3.4.3a and b show the transitions related to the tree 
collections shown in Figs. 3.3.1 and 3.4.1, respectively. It is irrelevant 
whether we use the 6 types of the tree collection shown in Fig. 3.4.1 or the 7 
types of the tree collection shown in Fig. 3.3.1 as subtrees of nodes with one 
or two keys. In the case we choose the former types we have to remember 
that (i) the type 6 shown in Fig. 3.4.3b is composed by types 3 and 4 shown 
in Fig. 3.4.3a, and (ii) from Eq. (3.3.1) that types 3 and 4 shown in Fig. 
3.4.3a occur with probabilities 472/55937 and 7128/55937, respectively. I 

Using Eq. (2.2.3) for the 147 X 147 transition matrix T we obtain a linear 
system of 147 unknowns, which was solved using an algebraic manipulation 
language called MAPLE, developed by Geddes and Gonnet (1981). An 
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advantage of using such a system is that we obtain rationals instead of real 
numbers, avoiding computational errors. The 147 pi's obtained contain 
integer numbers in the numerator and in the denominator, with approx- 
imately 90 digits each. Since the eigenvalues of H are 0, -4 .37  :k 8.23i .... 
-31.49 ~ 2.92i, and -33.27,  the asymptotic values for p(N) obtained from 
Eq. (2.2.4) are approximated to the 0(N-4"37). 

We shall see that the analysis for the three lowest levels of 2-3 trees leads 
to better results for rT(N), f(N), E[s(N)], and exact results for Pr{2 splits}, 
and Pr{3 or more splits}. 

LEMMA 3,4.4. Let nn(i) indicate the number of nodes of the type i tree in 
the tree collection shown in Fig. 3.4.1. Then 

nn(i) = 3 

nn(6)3 × ~702~ + 4 × (~6~0, 

Proof. 

for 4 ~ i ~ <  5, 

nn(i) = 4 for 7 ~ i ~ < 9 .  

For i = 4 , 5 , 7 , 8 , 9 ,  from Fig. 3.4.1 the values for nn(i) are 
immediate. For i = 6, consider the two trees of type 6 shown in Fig. 3.4.1. 
We know from Eq. (3.3.1) that the tree with 3 nodes occur with probability 
5472/55937, and the tree with 4 nodes occur with probability 7128/55937. 
Normalising the probabilities we obtain 

n n ( 6 ) = 3  × ~ + 4  × ~  | 

Let L;j indicate the number of leaves of the type ijk tree (4 ~< i ~< 9, 
i ~<j ~< 9) shown in Fig. 3.4.2. Let Lij k indicate the number of leaves of the 
type /jk tree (4 ~< i ~< 9, 4 ~< j ~ 9, i ~< k ~< 9) shown in Fig. 3.4.2. The proof 
of Theorem 3.4.5 is similar to the proof of Theorems 3.2.2 and 3.3.1. Note 
that the double summation contains the number of nodes of type i 
(4 ~< i ~< 9), plus the number of nodes of type j (i ~ j  ~< 9), plus the binary 
root node (see Figs. 3.4.1 and 3.4.2), plus ½ for the lower bound (1 for the 
upper bound) due to the number of nodes outside the fringe (cf. Theorem 
3.2.1). The triple summation is similar. 

THEOREM 3.4.5. The expected number of nodes in a random 2-3 tree 
with N keys is' bounded by 1 

0.72683N+ 0.22683 + O(N -a'37) 

~< if(N) ~< 0.76556N -- 0.23444 + O(N -337) 

i All the results of this section are presented as real numbers because the exact rationals 
are too long to be printed. As a curiosity, the exact lower bound on rT(N) is 

7798599314290913080528407272219562346225636732529793818193768842065373374529713557457734066 

~7296~4856~839~776~98869~252~4~32~68~89~85375~54384827~477~534~2636~4~93873897782~2~229 

= 0.72683 00574 80536 .... 
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Proof The above remarks lead to 

[/=~4 ~" . ( nn ( i )+nn( j )+  1 + ~)(pij/Lij) 
J = l  

9 9 9 

+ ~ ~, ~ (nn(i) + nn(j) + nn(k) + 1 + ½)(Puk/Lijk)] (N + I) -- { 
i=4 j=4 k = i  

i=4 j = i  

9 9 9 at 

+ i=4 ~'  j=4 ~ k=i ~ (nn(i) + nn(j) + nn(k) +2)(pijk/Lij~)] (N + 1) -- 1. 1 

Experimental results show that if(N) is approximately 0.75N. The 
maximum and the maximum number of internal nodes possible in any 2-3 
tree with N keys are 0.5N and N, respectively. 

LEMMA 3.4.6. The probability that 2 splits occur on the (N + 1)th 
random insertion into a 2-3 tree with N keys is 

Pr{2 splits} = 0.1046 + 0(N-4"37). 

Proof Similar to the proof of Lemma 3.3.2. | 

LEMMA 3.4.7. The probability that 3 or more splits occur on the 
(N + 1)th random insertion into a 2-3 tree with N keys is 

Pr{3 or more splits} = 0.07745 + O(N-4"37). 

Proof Similar to the proof of Lemma 3.3.2. | 

Lemma 3.2.5 leads to 

THEOREM 3.4.8. The expected number of  splits in a random 2-3 tree 
with N keys is bounded by 

0 . 2 2 6 8 3  [ l o g 2 ( N  + 1)j ~- O(N_4 .37  ) 
0.72683 + ~ N 

0.23444 [log3(N+ 1)] ~- r~/ar-4.37~. 
~< Y(N) ~ 0.76556 

N N 

LEMMA 3.4,9. A lower bound on the expected number of  splits that will 
occur on the (N + 1)th insertion into a random 2-3 tree with N keys is 

E[s(N)] >/Pr{1 split} + 2 Pr{2 splits} + 3 Pr{3 or more splits}. 
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Proof Similar to the proof of Lemma 3.2.3. | 

LEMMA 3.4.10. An upper bound on the expected number of splits that 
will occur on the (N + 1)th insertion into a random 2-3 tree with N keys is 

E[s(N)] <. Pr{1 split} + 2 Pr{2 splits} + Pr/3 or more splits}[log2(N + 1)]. 

Proof Similar to the proof of Lemma 3.2.8. | 

Lemmas 3.4.9. and 3.4.10 lead to 

THEOREM 3.4.11. The expected number of splits that will occur on the 
(N + 1)th insertion into a random 2-3 tree with N keys is bounded by 

0.68810 + O(N -4'37) 

~E[s(N)] ~ 0.45575 + 0.077451log2(N + 1)j + O(N-4"37). 

LEMMA 3.4.12. The expected number of keys in the fringe of a 2-3 tree 
with N keys that corresponds to the tree collection shown in Fig. 3.4.2 is 

f (N)  = 0.92255(N + 1) + O(N4"37). 

Proof 

f ( N ) =  ~ ( i + j - 1 )  Pu 
J ~ l  

+ Z Z Z ( i + j + k - 1 )  L u k / /  
i=4 j=4  k = i  

is obtained from Fig. 3.4.2 and Eq. (2.2.5). II 

THEOREM 3.4.13. The expected height of a 2-3 tree with N keys is 
bounded above by 

h(N) ~< logz(N + 1) - 0.69054. 

Proof Similar to the proof of Theorem 3.2.12. | 

It is important to note that the values for if(N), g(N), E[s(N)], Pr{j splits}, 
and Pr{j  or more splits} for one and two level analysis can be obtained 
using the 147 probabilities we obtained from the three level analysis. Among 
other verifications, this is what we did in order to check the results of this 
section. 
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type 1 type 2 type 3 type 4 

type 5 type 6 type 7 

FIG. 3.5.1. Tree collection of 2-3 trees of height 2 using overflow technique. 

3.5. 2-3 Trees with an Overflow Technique 
The overflow technique was first presented by Bayer and McCreight 

(1972, p. 183). The idea, when applied to 2-3 trees, is the following: Assume 
that a key must be inserted in a node already full because it contains 2 keys; 
instead of splitting it, we look first at its brother node on the right. If this 
node has only one key, a simple rearrangement of keys makes splitting 
unnecessary. If the right brother node is also full (or does not exist), we can 
look at its left brother in essentially the same way. 

The object of this section is to present a second order analysis of the 2-3 
tree insertion algorithm using an overflow technique that is simpler than the 
one proposed by Bayer and McCreight. In order to make the analysis 
possible we restrict the overflow technique to the lowest level, and moreover, 
we only split a node when an insertion is performed in a full node and its 
closest brother is also full. If this node is the middle node of a ternary 
subtree then the closest non-full brother may be located either to the right or 
to the left of it. Otherwise a rearrangement of keys is performed and the 
closest non-full brother node will accommodate one more key. Figure 3.5.1 
shows the two level tree collection, and Table 3.5.1 shows its corresponding 
transition matrix. 

TABLE 3.5.1 

Transition Matrix Corresponding to the Tree Collection of 2-3 Trees of Height 2 Shown in 

- 6  
6 - 7  

7 

--5 
5 

Fig. 3.5.1 

4 X 3/8 4 X 6/9 
5 x 3/8 10 X 3/9 

6 × 6/9 
- 8  

8 X 5/7 --9 
8 × 2/7 --9 

9 × 5/8 9 --10 
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Using Eq. (2.2.3) we obtain 

Pl = 1584/15949, P5 = 2000/15949, 

P2 = 2970/15949, P6 = 800/15949, 

P3 = 3600/15949, p7 = 45/389, 

P4 = 3150/15949, 

Since the eigenvaiues of H are 0, -6.81 ± 5.96i, -8.51 i 2.97i, -9.0,  and 
-14.37, the asymptotic values.ofp(N) obtained from Eq. (2.2.4) are approx- 
imated to the O(N-6'81). 

THEOREM 3.5.1. The expected number of  nodes in a random 2-3 tree 
with N keys is bounded by 

0.63248N+O.13248+O(N -5"81) <~ tT(N) ~< 0.71384N--0.28616 + O(N-5"8'). 

Proof. Lemma 3.2.1 and expression Eq. (2.2.5) lead to 

1 (~ .  Pi Pi ( N +  1) 1 
3+-~-  - i=1~ /  + 4 +  ~ .  2 

1 (t'~l L/)  (~4 ~t • ) 
~<rT(N)~< 4 Pi + 5  Pi (N+  1)--1 

which in turn gives 

20175N 31989 -]- 1-2519~-9 ~- O(N-5"81) ~ rl(N) ~ 11385N15949 

This estimate should be compared to 

0.72683N + 0.22683 + O(N 3.37) 

4564 0(N-5.8~). | 15949 

~< if(N) ~< 0.76556N-- 0.23444 + O(N 3.37), 

which is the third order approximation of if(N) for the non-overflow 
algorithm. 

LEMMA 3.5.2. The probabilities that no split, 1 split, and 2 or more splits 
occur on the (N + 1)th insertion into a 2-3 tree with N keys using an 
overflow technique are, respectively, 

(a) Pr{0 splits} = ~ + O(N6"81), 

(b) Pr{1 split} = - ~ +  O(N-6"81), 

(c) Pr{2 or more splits} = ~ 9  + O(N-6"81) • 

643/55/1 3 11 
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Proof The proofs of (a)-(c) are similar to those of Lemmas 3.2.3, 3.3.2, 
and 3.3.3, respectively. II 

Lemma 3.2.5 leads to 

THEOREM 3.5.3. The expected number of splits in a random 2-3 tree 
with N keys using an overflow technique is bounded by 

20175 2113 31898 "JI- 15949N ([log2(N -~ 1)J/N) ~- O(N -6'81) < s(N) 

< 11385 4564 15949 159,9N ([log3(N+ 1)I/N) + O(N-681) .  

To five place decimals we have 

0.63248 -~ 
0.13248 [log2(N + 1)] 

N N 
+ O(N -681) < g(N) 

0.28616 [log3(N + 1)] + ~'t~" J/"l/~ff-6"81] 
40.71384 

N N 

which should be compared to the bounds 

0.72683 + ~0"22683 [log2 (N + ~ l ) J  ~_O(N_4.37)<,y(N ) 

40.76556 - 0.2344__4 [log3(N+ 1)] ¢- O(N_4.37) ,  
N N 

which are the third order approximation of g(N) for the non-overflow 
algorithm. 

LEMMA 3.5.4. A lower bound on the expected number of splits that will 
occur on the (N + 1)th insertion into a random 2-3 tree with N keys using 
an overflow technique is 

E[s(N)] ~ Pr{ 1 split} + 2 Pr{2 or more splits}. 

Proof Similar to the proof of Lemma 3.2.3. II 

LEMMA 3.5.5. An upper bound on the expected number of splits that will 
occur on the (N + 1)th insertion into a random 2-3 tree with N keys using 
an overflow technique is 

E [s(N)] < Pr { 1 split } + Pr { 2 or more splits } [logz(N + 1 )J. 

Proof Similar to the proof of Lemma 3.2.8. | 
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Lemmas 3.5.4 and 3.5.5 lead to 

THEOREM 3.5.6. The expected number of splits that will occur on the 
( N +  1)th insertion into a random 2-3 tree with N keys using an overflow 
technique is bounded by 

8790 ,5949 + O(N-6'81) K E[s(S)l ~ ~ + ~ [log2(N + 1)j + O(N-6'81). 

To five place decimals we have 

0.55113 + O(N -6'81) 

E[s(N)] ~ 0.22572 + 0.16270[log2(N + 1)j + O(N-6'81). 

3.6. Concurrency of Operations on 2-3 Trees 

A 2-3 tree node is insertion-safe if it contains only one key. When 
considering concurrency of operations on 2-3 trees, one possible technique 
to permit simultaneous access to the tree by more than one process is to lock 
the deepest safe node on the insertion path. (A safe node is the deepest one in 
a particular insertion path if there are no safe nodes below it.) The object of 
this section is to give a probability distribution of the depth of the deepest 
safe node. 

3.6.1. Deepest Safe Node in 2-3 Trees with Normal Insertion Algorithm. In 
the following lemma we use the p's obtained in Subsections 3.2, 3.3, and 3.4. 

LEMMA 3.6.1.1. The probabilities that the deepest safe node is located at 
the 1st, the 2nd, and the 3rd lowest level, and above the 3rd lowest level of a 
2-3 tree with N keys are; respectively, 

(a) Pr{dsn at 1st lowest level} 4 = ' ~  

(b) Pr{dsn at 2nd lowest level} = 3T93~13788 ~- O(N-6 .55) ,  

(c) Pr{dsn at 3rd lowest level} =0.10462 + O(N-4"37), 

(d) Pr{dsn above 3rd lowest level} = 0.07745 + O(N 4.37). 

Proof. It is not difficult to see that the probability that the deepest safe 
node is located at j th  ( j  >/1) lowest level is equal to the probability that 
exactly j -  1 splits occur on the (N + 1)th random insertion (see Lemmas 
3.2.3, 3.3.2, 3.4.6, and 3.4.7 for the proof of items (a)-(d), respectively). II 

From Lemma 3.6.1.1(d), we can see that in only 8% of the time the 
deepest safe node is above the 3rd lowest level of a random 2-3 tree. In 
other words by locking the deepest safe node on the insertion path we lock at 
most height 3 fringe subtrees 92% of the time. 
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3.6.2. Deepest Safe Node in 2-3 Trees with Overflow Technique. In the 
following lemma we use the p's obtained in Subsection 3.5. 

LEMMA 3.6.2.1. The probabilities that the deepest safe node is located at 
the I st and the 2nd lowest level, and above the 2nd lowest level of a 2-3 tree 
with N keys using an overflow technique are, respectively, 

(a) Pr{dsn at 1st lowest level} = ~ + O(N-6 '81) ,  

(b) Pr{dsn at 2nd lowest level} = ~ + O(N-6'81), 

(c) Pr{dsn above 2nd lowest level} = ~ + O(N-6"81). 

Proof. Similar to the proof of Lemma 3.6.1.1 (see Lemma 3.5.2 in 
Subsection 3.5 for the proof of items (a)-(c)). II 

3.7. Higher Order Analysis 

• Yao (1978, p. 165) predicted that an analysis for the k lowest levels would 
be difficult to carry out for k = 3 and virtually impossible to carry out for 
k >/4. However, if we apply the same technique used to obtain the three level 
tree collection with 147 types then it is possible to consider a fourth order 
analysis, 

In order to obtain a four level tree collection we define a 20 type three 
level tree collection containing trees with 8, 9, 10 ..... 27 leaves, in a way 
similar to the way we obtained the 6 types two level tree collection shown in 
Fig. 3.4.1. This three level tree collection can be used to obtain a four level 
tree collection with 4410 types, by considering combinations of the 20 types 
as subtrees of nodes with one and two keys. Thus the fourth order analysis 
will require the solution of a 4410 × 4 4 1 0  linear system. 

Again if we apply the same technique it is possible to obtain a five level 
tree collection with 148137 types, which is practically impossible to handle. 
Table 3.7.1 compares the sizes of the tree collections used by Yao, Brown, 
and ourselves, for various levels of analysis. 

TABLE 3.7.1 

Sizes of the Tree Collections Used by Brown (1979, p. 57), Yao (1978, p. 165), and in this 
Paper 

Analysis Brown Yao Ours 

First order 2 
Second order 9 

Third order 978 
Fourth order 3.3 × 109 

Fifth order 

2 2 
7 6 

224 147 
5.67 X 10 6 4410 

~9.11 X 1019 1,i8137 
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Finally, we want to say something more about the expected height of 2-3 
trees. 

LEMMA 3.7.1. Let lj indicate the number of nodes at the j th  (j~> 1) 
lowest level of a random 2-3 tree with N keys. Then 

(i) l, = N +  1, 

(ii) l / =  ~(X+ l ) f o r  X )  6, 
(iii) 13 = 799,'455 ~(~r, .m 1) + O(N 6.55), 
(iv) l 4 = 0 . 0 7 7 4 5 ( N +  1 )+  O(N-4'37). 

Proof. Case (i) is obvious: the number of external nodes is equal to the 
number of keys in the tree plus one. In cases (ii)-(iv) we just count the 
number of trees in the fringe that correspond to the three collection of Figs. 
3.2.1, 3.3.1, and 3.4.2, respectively. These yield 

,2---: --~l (Pi  + PZ ) (N+ } 1 3 = (  ~Pi) (N+ I,' 

14= + v (N + 1). ! 

Table 3.7.2 shows the ratio of the expected numbers of nodes at two 
consecutive levels for the four lowest levels of a random 2-3 tree with N 
keys. Assuming that this ratio is approximately the same for the other levels 
of the tree, we derive 

Conjecture 3.7.2. The expected height of a random 2-3 tree with N keys 
is 

h(N) ~ logv/3(N + 1). 

TABLE 3.7.2 

Ratio of the Expected Numbers  of Nodes at Two Consecutive Levels 

Lowest Level l i (1~i~<4)  lj (2<~j~<4) 

4th 0.07745(N + 1) 0.42538 
3rd 1455 7~gi-(N + 1) 0.42485 
2nd 3 ( N +  1) 0.42857 

1st N +  1 - -  
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4. A N  ANALYSIS OF B-T R EES  

4.1. Motivation 

According to Bayer and McCreight (1972) a B-tree of order m is a 
balanced multiway tree with the following properties: (a) The leaves are null 
nodes which all appear at the same depth. (b) Every node has at most 
2m + 1 sons (c) Every node except the root and the leaves has at least m + 1 
sons; the root is either a leaf or has at least two sons. 2 Consequently, a 2-3 
tree is a B-tree of order m = 1. 

The process of insertion of a new key starts with the search for the place 
of insertion, followed by the insertion of the key into a node. To insert a new 
key into a node that contains less than 2m keys we just insert it into the 
other keys. If  the node already contains 2m keys, we split it into two m-keys 
nodes, and insert the middle key into the parent node, repeating the process 
again with the parent node. When there is no node above we create a new 
root node to insert the middle key. 

The complexity measures used in this section are exactly the same 
complexity measures defined for 2-3 trees in Subsection 3.1. They are 
written in this section with a subscript m. The only new complexity measure 
is: 

Let ~m(N)/[N/(2m)] be the storage used by a B-tree T of order m, where 
N/(2m) represents the number of nodes when all the nodes of T contain 2m 
keys. 

In Subsection 4.2 we shall derive exact values for Pr{0 splits}m, Pr{1 or 
more splits}m, and bounds on fire(N) by considering the lowest level of a 
random N key B-tree of order m obtained using the insertion algorithm 
described above. It is convenient throughout Section 4 to refer to nm(N)/N 
rather than ~m(N) alone. In Subsection 4.3 we shall derive exact values for 
Pr{0 splits}m, Pr{1 split}m, Pr{1 or more splits}m, Pr{2 or more splits}m, 
and bounds on rTm(N ) for an insertion algorithm for B-trees that uses an 
overflow technique, by considering the lowest two levels of a random N key 
B-tree of order m. In Subsection 4.4 we shall derive exact values for Pr{dsn 
at 1st lowest level}m and Pr{dsn above 1st lowest level}m for the normal 
insertion algorithm, and Pr{dsn at 1st lowest level}m, Pr{dsn at 2nd lowest 
level}m, and Pr{dsn above 2nd lowest level}m for the insertion algorithm 
using an overflow technique. 

Knuth  (1973, p. 473) presented a slightly different definition of B-trees. In Knuth ' s  
definition every node in a B-tree of order m has at most  m -- 1 and at least I m / 2  - 1] keys. 
Knuth 's  definition considers B-trees of  order 2i, i/> 2 (B-trees containing at least i keys and at 
most 2 i -  1 keys), while the above definition does not consider such trees. However, these 
trees present a disadvantage: the split operation divides the node into two nodes with a 
different number of  keys in each one, which implies that a decision about which node will 
contain more keys has to be taken. 
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TABLE 4.1.1 
Summary of the B-Tree Results 

161 

First Order Analysis (N--+ oo) 

tim(N) 
N 

Pr{0 splits }m 1 

Pr{1 or more splits},. 

Storage used 

Pr{dsn at I st 1. level},~ 1 

Pr{dsn above I s 1. level },, 

[ , (1 1) 
( 2 l n 2 ) ~  + 81n2 4 (ln2) m 2 +O(m-3)'  

1 1 ] 
(2 In 2)m t 8(In 2 ) 2 ~ m  2 + O(m-3) 

1 ( 1  1) , 
(21n2)m 81n2 2 (ln2) m 2 +O(m-3) 

( 1  , 
1 8 In 2 (in 2) m z + O(m 3) (2 in 2)m + " - -  

1 
- - + O ( m  ') 
in 2 

, ( 1 1) 
(21n2)m 81n2 2 (ln2) m 2 4 - 0 ( m - 3 )  

(21n2)~ + 81n2 - (ln2) m ~ +O(m 3) 

Table 4.1.1 shows the summary of the results related to B-trees using the 
normal insertion algorithm, and Table 4.1.2 shows the summary of the 
results related to B-trees using an overflow technique. 

4.2. First Order Analysis 

The tree col lect ion of  B-trees of  order  m and  height 1 con ta ins  m + 1 
types. F igure  4.2.1 shows the one level tree col lect ion of  B-trees of  order  

m = 3 .  

The t r ans i t ion  mat r ix  H cor respond ing  to the one level tree col lect ion of  
B-trees of order  m is 

H =  

- - (m + 2) 

m + 2  

type 4 

FIG. 4.2.1. 

- - (m + 3) 2(m + 1) ] 

m + 3  - ( m + 4 )  . ~ • 
• . , " . . , . . 

• , , . , 

' " .  2 m + 1 " - ( 2 m + 2 ) _ ]  

type 5 type 7 

Tree collection of B tree of order m 3 and height 1. 
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TABLE 4.1.2 
Summary of the B-Tree Results Using an Overflow Technique 

Second Order Analysis ( N -  c~) 

[2~- 3 1 ~T2 +O(m ~), 
+ (81n2  4) 

rim(N) 1 ( 3 1) 1 -3)] 
N 2m F 81n2 4 m T+O(m 

Pr{0 splits}m 1 -- ~m-m -- 81n2 4 

Pr{lsplit} m 1 ( 1 ~)  1 + 
2m ~- 8ln2 " ~5- O(m-3) 

( ,  1) 1+ 
Pr{lormoresplits},~ 2ml F 81~2 4 ~5- O(m 3) 

Pr{2 or more splits}m l 
(4 In 2)m 2 ~- O(m-3) 

( 3 1 ) l + o ( m _ Z )  Storage used I+  41n2 2 m 

1 ( 1 1 )~T+O(m_3)  Pr{dsn at 1 st l°west level}m 1 - ~m-m - 81n2 4 

Pr{dsnat2ndlowestlevel}m 1 ( 1 ~) 1 
2m + 81n2 - ~7- +O(m-3) 

1 Pr{dsn above 2nd lowest levei}m (4 In 2) m 2 + O(m-3) 

Let H ,  denote the harmonic numbers, H n = ~7=1 l/i,  for n >~ 1. F rom Eq. 
(2.2.3) we have H p ( N )  = 0, and therefore 

1 

Pm+l = (m + 2 ) ( H 2 m + 2 - H m + l )  

1 
(4.2.1) 

P m + 2 -  (m + 3)(H2m+2--Hm+,)  

1 

P2m+l -- (2m + 2)(n2m+2 -- Hm+,)" 

LEMMA 4.2.1. The probability that 1 or more splits oeeur on the 
(N + 1)th random insertion into a B-tree o f  order m with N keys is 

1 
Pr{ 1 or mor e splits }, = (2m + 2)(H2m +2 -- Hm +1)" 
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Proof In the lowest level of  a B-tree of  order m a split occurs when an 
insertion happens in a node with 2m keys, and such nodes correspond to the 
type 2m + 1 of  the tree collection of  B-trees of  order m and height 1. Thus, 
Pr{1 or more splits}m ~PZm+l" m 

LEMMA 4.2.2. The probability that no split occurs on the (N + 1)th 
random insertion into a B-tree of  order m with N keys is 

Pr{0 splits}m = 1 - 
(2m + 2)(H2m+2 --Hm+l)" 

Proof. Pr{0 splits}m = 1 - -Pr{1 or more splits}re. | 

It is well known that H m = l n m + y + ( 1 / 2 m ) - ( 1 / 1 2 m  2 ) + O ( m - 4 ) ,  
where y = 0.57721... is Euler's constant (Knuth, 1968, Sect. 1.2.7). Then 

COROLLARY. 

Pr{ 1 or more splitS}m -- 
1 ( 1 1) 1 3). 

(2 In 2)m {- 8 In 2 2 (ln 2) m 2 + O(m 

LEMMA 4.2.3. Let nl m be the number of  nodes at level 1 of  an order m B- 
tree. Then the number of  nodes above the level l, nal m, is bounded by 

nl m - 1 nl m - 1 
2 ~  ~ nalm ~< 

Proof  Consider the level l as being the N + 1 leaves of  a B.tree with N 
keys. (Each leaf represents a node.) The minimum and the maximum number 
of nodes above the level l is obtained when each node above the level l 
contains 2m and m keys, respectively. (That is, 2m × hal m = nl m -  1 and 
m X hal m = nl m - 1, respectively.) II 

THEOREM 4.2.4. The expected number of  nodes in a random B-tree oa r 
order m with N keys is bounded by 

1 ( 1 1) 1 -3) r/. (N) 
(2 ln2 )m t- 8 I n2  4 (In 2) m 2 ~-O(m ~ 

1 1 
(21n2)m + 8( ln2)  2m 2 + O ( m  3) 

and the storage used is (1/ln 2) + O(m-1) .  
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Proof. 

and 

Lemma 4.2.3 and Eq. (2.2.5) leads to 

( 2m+~ 1 
(1 + -~-m ) ,i=m~+ 1 L~-" ) (N + 1) 2 

2 m + l  

~m(X)~ (1-~1) \i=~m+l ~i) (m-~-1)-- 

(4m2+4m)(H2m+2_Hm+a) 1-- ---~-~- + O(Nae&) ~< ~ 

1 1 
~ ( -2m(H2m+2__Hm+l) ) (1 - -~ ) -~+O(  Nae~t~)' 

where Re 22 < 0. II 

The values obtained for the storage used (cf. definition of storage used in 
Subsection 4.1) are between 1 and 2. The value 1 corresponds to the B-tree 
with all nodes having 2m keys, and the value 2 corresponds to the B-tree 
with all nodes having m keys. Yao (1978) used a different measure. He 
defined storage utilization as [N/(2m)]/fim(N), where N/(2m) represents the 
number of nodes when all the nodes contain 2m keys. However, it is know 
that, in general, 

E 4: E(X~ 

for a random variable X. Furthermore, by using the Kantorovich inequality 
(see Clausing, 1982, pp. 314-330) we have 

which yields: 

9 
I <~E(X)×E ~ T  (4.2.2) 

COnOLLAnY. "The storage utilization for a random B-tree of order m with 
N keys is bounded by 

In 2 + O(m -1) <<, storage utilization <~ 9 In 2 + O(m-~). 

4.3. B-Trees with an Overflow Technique 
In this subsection we present a second order analysis of the B-tree 

insertion algorithm using the following overflow technique. We restrict the 
overflow technique to the lowest level, and moreover, we only split a node 
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FIG. 4.3.1. Transition diagram representing the two level tree collection for B-trees of 
order m = 2 using overflow technique (e.g., type 335 corresponds to the height 2 type tree 
containing a root node with 3 descendants, the first one with 3 leaves, the second one also 
with 3 leaves, and the third one with 5 leaves). 

when an insertion is performed in a full node and all its brothers are also 
full; otherwise a rearrangement of keys is performed and the closest non-full 
brother node will accommodate one more key. 

Any tree collection of B-trees of order m using the overflow technique 
described above contains (m + 1)(2m + 1) types. Figure 4.3.1 shows the 
transition diagram corresponding to the two level tree collection of B-trees of 
order m = 2. The transition matrix H corresponding to the two level tree 
collection of B-trees of order m using the overflow technique described above 
is shown in Table 4.3.1. 

In order to obtain the vector p(N) from Eq. (2.2.3), we make 3 
P ( 2 m + l ) ( 2 m + l )  = 1 and solve for all the other p's. After this we normalise the 
p's by dividing each one by their sum. Then 

P ( 2 m + l ) ( 2 m + l )  z 1~ 

(2m + 1)(2m + 1) + 1 
P{2m)+2m{2m+l)= (2m + 1)(2m + 1) 

4m2 + 4m + 2 
P(2m-1)+2m(2m+l) = (2m) + 2m(2m + 1)' 

4m2 + 4m + 2 
P2m(zm+l) = 2m(2m + 1) + 1 ' 

4mZ + 4m + 2 
P(2m)+(Zm--1)(2m+l) = 2m(2m + 1) ' 

4m 2 + 4m + 2 

(2m + 1)(2m + 1) '  

(4.3.1) 

3 P(2m+l)(2m+l) m e a n s  P(2m+l)+(2m+l)+...+(2m+l), where ( 2 m +  1) appear 2 m +  1 times. 
Applying this notation to the B-tree of order m = 2 shown in Fig. 4.3.1, Ps5555 is equivalent to 
P(2m+ l)(2m+ I), P335 is equivalent to  P(m+ l )+(m+ l ) + ( m -  1)(2m+ I), e tc .  
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4m 2 4- 4m + 2 
P(m+l)(2m+l) = (m + 1)(2m + 1) + 1' 

1 
P(2m)+m(2m+l) = (m 4- 1)(2m + 1) 

[ × 4m 2 + 4 m + 2  2 m +  1 

2m2 + 2m + 2 

(m + 1)(2m + 1) 

2mZ + 2m + 2 
P(m+l)+m(2m+l) = (m 4- 2) 4- m(2m + 1) '  

P(m+l)+(2rn)+(m-1)(2m+l) = (m 4- 1 )  4- m(2m + 1) × 2m2 + 2m + 2 

2 
(m + 1 + m(2m + 1))] 

2m4-1 

(4m 3 + 2m 2 4- 2m)/(2m + 1) 
z 

(m + 1) 4- m(Zm + 1) ' 

(4m 3 + 2m 2 + 2m)/(2m + 1) 
P(m+~)+(m+2)+(m-1)(2m+l) = (m + 1) + (m + 3) + (m-- 1)(2m + 1)' 

(4m 3 + 2m: 4- 2m)/(2m + 1) 
P(m+l)+(m+I)+(m i)(2m+1)= (m4- 1) + (m + 2) 4- (m --1)(2m 4- 1)" 

- -  (m + 1)(2m + 1)] 

Let S be the sum of all p's above. Then 

S=f4m3+2m2+2m)[H2m2+2m+l- 2 m +  1 - -  H2m2+m+'] 

+ (2m 2 + 2m + 2)[H2m2+3m+ 1 --H2m2+2m+ 1] (4.3.2) 

+ ((2m + 1)(2m + 1 )+  l)[H4m2+4m+2-H2m2+3m~l]. 

To obtain the final probabilities all the above p's have to be divided by S. 

LEMMA 4.3.1. The probability that 1 or more splits occur on the 
(N + 1)th random insertion into an N-key random B-tree of order m using an 
overflow technique is 

111 Pr{1 ormoresp l i t s }m=~m+ 81n2 4 ~ -+O(m-3 ) "  
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Proof 

Pr{ 1 o r  m o r e  splits}m =P{m+ l ) (2m+ 1) 4-P(m+ 2)(2m+ 1) "~ " ' "  q - P ( 2 m +  1)(2m+ 1) 

1 [ (2m+ 1 ) ( 2 m + l ) +  1 
= S -  [ 2m+ 1 

m + l  1 
x Z  ] 

(m + i) + (1/(2m + 1))/, i = 1  
J 

where Zm~l ' 1/[(m + i) + (1/(2m + 1))] = ~(2m + 2 + (1/(2m + 1 ) ) ) -  
~t(m + 1 + (1/(2m + 1))), where S is as defined in Eq. (4.3.2) and ~,(Z) is 
the Psi function F' (Z) / I ' (Z )  (Abramowitz and Stegun, 1972, Sect. 6.3.1). 

It is well known (Abramowitz and Stegun, 1972, Sect. 6.3.18) that 

1 1 
q/(m) = Inm + O(m--4). 

2m 12m 2 

Which yields the result. II 

LEMMA 4.3.2. The probability that 1 split occzers on the (N + 1)th 
random insertion into an N-key random B-tree of  order m using an overflow 
technique is 

1 [.(2m+ 1)(2m+ 1)+ 1] 
Pr{ 1 split}m = ~-  2m + 1 

+ 1 

where S is as defined in Eq. (4.3.2). 

Proof. The only difference from the proof of Lemma 4.3.1 is that 

Pr{1 split}m =P~m+l)(2m+l) +P~m+2)(Zm+l~ + "'" +P~2m~+(2m)(2m+l)' II 

1 ( 1  1) 1 
COROLLARY. Pr{1 split}m-- 2m t- 81n2 4 - ~  +O(m-3)"  

LEMMA 4.3.3. The probability that 2 or more splits occur on the 
(N + 1)th random insertion into an N-key random B-tree of  order m using an 
overflow technique is 

Pr { 2 or more splits }m -- 
1 

(4 In 2) m 2 + O(m 3)., 
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Proof. 

Pr{2 or more splits}m = Pr{1 or more splits}m - Pr{1 splits}m 

_--Is [(2m+l)(2m+l)+l .]2m+ 1 

X ~, 2 m + 2 + 2 m + l  

--~, 2 r e + l +  - - S '  

where S is as defined in Eq. (4.3.2). | 

LEMMA 4.3.4. The probability that no split occurs on the (N + 1)th 
random insertion into an N-key random B-tree of order m using an overflow 
technique is 

1 3, 
2m 8 In 2 4 7 + O(m Pr{0 splits}m = 1 

Proof 

Pr{0 splits}m = 1 -- Pr{ 1 or more splits}m 

1 [(2m+ ,)(2m + 1)+ 1] 
= 1 - ~ -  2 m + l  

× [ ~ ( 2 m + 2 + 2 @ + ~ ) - ~ ( m + * + ~ - - ~ + l )  ], 

where S is as defined in Eq. (4.3.2). | 

THEOREM 4.3.5. The expected number of nodes in a random B-tree oj 
order m with N keys using an overflow technique is bounded by 

2 ~  + 81n2 4 ~ 5 - +  3 2 1 n ~ +  ~5_+O(m 4 ) < < ~ _ _  

I 1 I 111 1 3 1 1 5 ÷ 8  m 5 - ÷ 0 ( m - 4 )  
~2m-m + 8 1 n 2  4 --~5-+ 321n2 

and the storage used = 1 + ((3/4 In 2) -- ½)(l/m) + O(m-2). 

Proof. Lemma 4.2.3 and Eq. (2.2.5) lead to 

A (2m)(N + 1) -- 1 ~< tim(N) ~ A (m)(N + 1) -- 1, 
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where 

1 P(m+ 1)+ (m+ 1) + ( m -  1)(2m+ 1) 
~ ~ - -  ~ l( m+~+ 1 )  [~m + ~ ~ ~ -  l~m + 1~ 

P(m+l)+(m+2)+(m-1)(2m+l) P(m+l)(2m+l) ] 
+ (m + 1) + (m + 2) + (m - 1)(2m + 1) + " "  + (m-~ 1)(-~m + 1)-] 

( ~__)[ P(m+l,+(m+l,+m(2m+,) 
+ m + 3 +  (m+l )+(m+l )+m(2m+l)  

P(m+l)+(m+2)+m(2m+l) P(m+2)(2m+l) ] 
+ ( m + l ) + ( m + 2 ) + m ( 2 m + l )  + ' ' "  + (m+2) (2m+l )  

( ~ _ ) [  P(m+l,+¢m+l,+(2m-l),2m+l) 
+ -.. + 2m + 2 + (m + i ) T ~  1)~ (-2-mm--- 1--~m + 1) 

+ P(m + 1) + (m + 2) + (Era -- 1)(2m + 1) 
(m+ 1 ) + ( m + 2 ) + ( Z m - - 1 ) ( Z m + l )  

P(Zm+ l)(2m+ l) ] ( 
+ " "  + (2m + 1)(2m + 1) 

and S is as defined in Eq. (4.3.2). 
Substituting Eq. (4.3.1) in the above expression gives 

B(2m) 1 - - - - ~  + O(N aea2) ~ 

1 
Re 22 < 0, 

where 

1 l (  1 )  I(4m3+2m2+2m ) 
B(X) = ~- m + 2 + 2m + 1 

X (m+ 1 )+(m+ 1) + (m --1)(2m + l) 
1 ) 

(m+ 1 ) + m ( 2 m + l )  

( 1 1 ) 
+(2m 2 + 2 m + 2 )  (m+ 1 )+m(2m+l )  ( m + l ) ( 2 m + l )  

( 1 1 ) ]  
+(4m 2 + 4 m + 2 )  ( m + l ) ( 2 m + l )  × ( m + l ) ( 2 m + l ) + l )  
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m + 3 + O / x )  
+(4m 2 + 4 m + 2 )  ( m + l ) + ( m + l ) + m ( 2 m + l )  

2m + 2 + (l/X) 

(2m + 1)(2m + 1) + 1 

q J ( 2 m + l + ( 1 / ( 2 m + l ) ) ) - ~ ( m + 2 + ( 1 / ( 2 m +  1)))] ,  

q 2 m + l  It 
o r  

S I  1 8m2+ 1 0 m + 6  4 m 2 + 4 m + 2  
B(X)=  + 2 m 2 + 3 m + 2  + 2 m + l  

( 1) ( 1)) I ×q/ 2 m + l + 2 m + ~  --~' m + 2 + 2 t - ~ 7  ~- • | 

COROLLARY. The storage utilization for a random B-tree of  order m with 
N keys using an overflow technique is bounded by 

3 1 ) 1 470( m z) 
1 --  4 In 2 2 m 

<~ storage utilization .< 9 _ ( 3 1 9 
"~ 8 41n2  2 8-mm + O ( m  z). 

Proof The above bounds are obtained by using Eq. (4.2.2) and the 
result of the previous corollary. | 

Notice that the expected storage utilization is essentially one for large m, 
when the overflow technique is used. 

4.4. Concurrency of  Operations on B-trees 

A node of a B-tree of order m is insertion safe if it contains fewer than 2m 
keys. A safe node is the deepest one in a particular insertion path if there are 
no safe nodes below it. The object of this section is to derive probabilities 
related to the depth of the deepest safe node. 

4.4.1. The Deepest Safe Node in B-Trees with the Normal Insertion 
Algorithm. 

LEMMA 4.4.1.1. The probabilities that the deepest safe node is located at 
the 1 st lowest level and above the 1 st lowest level of  an N-key random B-tree 
of order m are, respectively, 

643/55/1 3 12 
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(a) Pr{dsn at 1st lowest level}m = 1 - (1/(2 In 2 ) m ) -  ((1/8 In 2 ) -  
~)(1/(ln 2) m 2) + O(m-3), 

(b) Pr{dsn above 1st lowest level}m = (1/(2 In 2)m) + ((1/8 In 2 ) -  
½)(1/(ln 2) m 2) + O(m -3). 

Proof Similar to the proof of Lemma 3.6.1.1. we obtain 

(a) Pr{dsn at 1st lowest level}m = 1 - (i /(2m + 2)(H2m+z-Hm+ 1)), 

(b) Pr{dsn above 1st lowest level}m = (1/(2m + 2) 
(H2m+2--Hm+,)). II 

This analysis shows that complicated solutions for the use of concurrency 
of operations on B-trees are rarely of benefit, since the solution analysed in 
this paper will lock height 1 fringe subtrees most of the time. 

4.4.2. The Deepest Safe Node in B-Trees with an Overflow Technique. 

LEMMA 4.4.2.1. The probabilities that the deepest safe node is located at 
the 1st and the 2nd lowest level, and above the 2nd lowest level of an N-key 
random B-tree of order m using an overflow technique are, respectively, 

(a) Pr{dsn at 1st lowest level}m = 1 - ( 1 / 2 m ) -  ((1/8 In 2 ) -  
¼)(1/m 2) + O(m-3), 

(b) Pr{dsn at 2nd lowest level}m = (1/2m) + (-(1/8 In 2) - 

¼)(1/m 2) + O(m- 3), 
(c) Pr{dsn above 2nd lowest level}m = (1/(4 In 2) m 2) + O(m- 3). 

Proof Similar to the proof of Lemma 3.6.1.1. we obtain 

(a) Pr{dsn at 1st lowest level}m= 1 - (1 /S ) [ ( (2m + 1)(2m + 1)+  
1)/(2m + 1)][q/(Zm + 2 + (1/(2m + 1))) - ~(m + 1 + (1/(2m + 1)))], 

(b) Pr{dsn at 2nd lowest level}m= (1/S)[((2m + 1)(2m + 1) 
11)/(2m + 1)][qz(2m + 1 + (1/(2m + 1 ) ) ) -  ~r(m + l + (1/(2m + 1)))], 

(c) Pr{dsn above 2nd lowest level}m-- 1/S, where S is as defined in 
Eq. (4.3.2). II 

5. CONCLUSIONS AND OPEN PROBLEMS 

In Section 2 we have shown that the matrix recurrence relation related to 
fringe analysis problems converges to the solution of a linear system 
involving the transition matrix, even when the transition matrix has eigen- 
values with multiplicity greater than one (i.e., the eigenvalues of the tran- 
sition matrix do not need to be pairwise distinct). This makes our fringe 
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analysis theory flexible and general enough to permit its application in the 
analysis of  many different classes of  search trees. 

In Section 3 an analysis for the three lowest levels of  2-3  is accomplished. 
We have discussed, in Section 3, how the same techniques might be extended 
to enable an analysis for the four lowest levels to be carried out. This will 
require the solution of  a 4410 × 4410 linear system. 

In Section 4 an analysis of  B-trees is performed. Information about the 
operation of  splitting an overfull node and the concurrency of  operations are 
some of  the results presented there. In particular for large order B-trees it is 
shown that the storage utilization is, essentially, I, when using the described 
overflow technique. 

Clearly a central open problem is to analyze the behaviour of balanced 
trees under both random insertions and deletions. Whether or not fringe 
analysis techniques can be extended to accomplish this remains to be seen. 
The basic obstacle is that deletions do not preserve randomness, although a 
first step has been made by Melhorn (1982). 

Finally, the original problem, namely, carry out a true analysis of  2-3 
trees under random insertions, is still open. Our analysis is merely an 
approximation to the true analysis which can be viewed as an infinite order 
fringe analysis. Whether or not fringe analysis theory can be extended to this 
limiting case is also open. 
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