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Villanueva de la Cañada, 28692 Madrid, Spain

(Received 22 July 2011; published 15 December 2011)

LISA Pathfinder (LPF) is a mission aiming to test the critical technology for the forthcoming space-

based gravitational-wave detectors. The main scientific objective of the LPF mission is to demonstrate test

masses free falling with residual accelerations below 3� 10�14 m s�2=
ffiffiffiffiffiffi
Hz

p
at 1 mHz. Reaching such an

ambitious target will require a significant amount of system optimization and characterization, which will

in turn require accurate and quantitative noise analysis procedures. In this paper, we discuss two main

problems associated with the analysis of the data from LPF: i) excess noise detection and ii) noise

parameter identification. The mission is focused on the low-frequency region ([0.1, 10] mHz) of the

available signal spectrum. In such a region, the signal is dominated by the force noise acting on test

masses. At the same time, the mission duration is limited to 90 days and typical data segments will be

24 hours in length. Considering those constraints, noise analysis is expected to deal with a limited amount

of non-Gaussian data, since the spectrum statistics will be far from Gaussian and the lowest available

frequency is limited by the data length. In this paper, we analyze the details of the expected statistics for

spectral data and develop two suitable excess noise estimators. One is based on the statistical properties of

the integrated spectrum, the other is based on the Kolmogorov-Smirnov test. The sensitivity of the

estimators is discussed theoretically for independent data, then the algorithms are tested on LPF synthetic

data. The test on realistic LPF data allows the effect of spectral data correlations on the efficiency of the

different noise excess estimators to be highlighted. It also reveals the versatility of the Kolmogorov-

Smirnov approach, which can be adapted to provide reasonable results on correlated data from a modi-

fied version of the standard equations for the inversion of the test statistic. Closely related to excess noise

detection, the problem of noise parameter identification in non-Gaussian data is approached in two ways.

One procedure is based on the maximum-likelihood estimator and another is based on the Kolmogorov-

Smirnov goodness-of-fit estimator. Both approaches provide unbiased and accurate results for noise

parameter estimation and demonstrate superior performance with respect to standard weighted least

squares and Huber’s norm. We also discuss the advantages of the Kolmogorov-Smirnov formalism for the

estimation of confidence intervals of parameter values in correlated data.
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I. INTRODUCTION

LISA Pathfinder (LPF), a European Space Agency mis-
sion, will be used to characterize and analyze all possible
sources of disturbance which perturb free-falling test
masses from their geodesic motion. The system is com-

posed of a single spacecraft (SC) enclosing a scientific
payload, the LISA Technology Package (LTP), which is
composed of two test masses (TMs) whose position is
sensed by an interferometer. The spacecraft cannot simul-
taneously follow both masses, therefore the trajectory of
only one test mass is used as a drag-free reference along the
measurement axis. In order to prevent the trajectories of the
test masses from diverging, the second test mass is capaci-
tively actuated to follow the first (free-falling) TM. In the
main science operating mode, the first interferometer chan-
nel measures the displacement of the SC relative to the
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free-falling TM. The second interferometer channel (the
differential channel) measures the relative displacement
between the two TMs.

LPF is a controlled system which can only be fully
assessed during flight operation, therefore a consider-
able number of experiments will be devoted to the identi-
fication of the details of the dynamics of the system. A
dynamical model of LPF is built in advance on the basis
of physical considerations and from the results of test
campaigns. The dynamical model is parametric so that it
can be updated on the basis of the experiments that will be
conducted during mission operations. The overall aim of
the process is to reach the best free-fall quality (below

3� 10�14 m s�2=
ffiffiffiffiffiffi
Hz

p
at frequencies around 1 mHz) in a

step-by-step procedure in which the result of the previous
experiment is used to adjust the detailed configuration of
the following experiments [1–4].

Such a demanding program requires daily analysis of the
instrument signals constrained by two major factors: i) the
amount of available data is tightly constrained by LTP
mission duration (90 days), the telemetry bandwidth, and
the length of each data segment (typically 24 h); ii) the
scientific interest is mainly focused on the analysis of noise
sources which act directly on the TMs since that should
provide a baseline reference for the forthcoming space-
based gravitational-waves observatories [5–8]. The direct
forces on the TMs are expected to dominate the instrument
output in the frequency range [0.1, 10] mHz. Sample power
spectra are typically calculated with Welch’s averaging
periodogram method [9]. In order to keep enough fre-
quency resolution at low frequencies, the sample power
spectra cannot be averaged more than a few times (we
average 4 times in the present paper); this results in highly
non-Gaussian data for which we are developing dedicated
techniques. In particular, this paper aims to propose a
solution for two major data analysis challenges encoun-
tered in LPF: i) Different measurements of the same physi-
cal quantity can exhibit different noise content if they are
performed under slightly different environmental condi-
tions. The objective of LISA Pathfinder data analysis
during operations will be to discover such differences,
understand their origin, and adjust spacecraft physical
parameters accordingly. Such a problem requires reliable
excess noise detection procedures which have to be based
on solid statistical considerations. ii) Along with the dem-
onstration of unprecedented test-mass free fall, LPF will
provide a model for the expected test-mass force noise for
future space-based gravitational-wave detectors. In order
to do this, we need to be able to match an analytical model
to a noisy power spectral density measurement. The quality
of the match must be statistically quantified. Both data
analysis problems deal with sample spectra and the corre-
sponding statistical properties. Section II reports on the
properties of different experimental procedures for the
detection of noise excess. In particular, we considered

two cases where the noise excess is evaluated with respect
to reference data or a reference model. The accuracy of the
methods is theoretically analyzed for the case of broadband
and band-limited excess noise. In Sec. III, the problem of
noise parameter estimation for non-Gaussian data is ex-
plored and an algorithm based on maximum likelihood is
derived. In parallel, the application of the Kolmogorov-
Smirnov formalism to the construction of a goodness-of-fit
estimator is discussed. Section IV reports briefly on the
extension of the analysis procedures to the case of nonsta-
tionary noise and time-frequency investigations. In Sec. V,
we provide an application of the developed algorithms to
synthetic data with LPF-like qualities. This allows us to
shed light on the effects of data correlations on the accu-
racy of the developed excess noise estimators. The analysis
procedures are available as MATLAB tools in the frame-
work of the LTPDA Toolbox [10–12], an object-oriented
MATLAB Toolbox for advanced data analysis.

II. QUANTITATIVE DETECTION
OF NOISE POWER VARIATIONS

The problem of the detection of noise power variation in
consecutive measurements can be formulated in two differ-
ent ways: i) two different measurements of the power are
compared; ii) the different measurements of the power are
compared with a reference model. The problem in the first
case is of general character and can be applied to a wide
range of experiments; the second case, on the other hand,
assumes that a reference model for the noise power is known
and data must be compared against the given model in order
to understand if the system is performing under known
conditions. The latter case is likely to be the scenario for
LPF operations. The quantity typically used for the detec-
tion of noise power variations is the total energy content of
the data series. It is defined as E ¼ T

P
ijxij2. Unfortunately,

E provides a poor estimator for two reasons: i) as soon as the
data series x0; . . . ; xN�1 departs from zero-mean Gaussian
white noise, the statistic of E becomes ill defined and the
definition of a confidence interval becomes cumbersome;
ii) E provides global information as it is not sensitive to
noise changes in a given frequency band. While the first
problem could be overcome (without little difficulty) by a
numerical identification of the expected statistic, the second
problem suggests that a spectral-based estimator would
provide supplementary information which could be funda-
mental in discriminating different noise sources.

A. Detection of noise variations with a model

In the case that a reference model is available, the
detection of excess noise in the spectral domain can be
effectively implemented with a test on the normalized
Welch’s overlapped segment averaging (WOSA) spectrum
RWOSAðfkÞ defined in Eq. (A9). In particular, the test can
pursue two different philosophies of which one aims to test
a global scalar indicator of the properties of the data and
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another aims to test the details of the statistical distribution
of the data.

A sensible estimator for the first approach is provided by
the integral of the normalized spectrum (IR) which, in the
discrete case, can be written

IR ¼ XNf

k¼1

RWOSAðfkÞ: (1)

In the simplifying assumption of independent spectral
data, the statistic of each element of RWOSAðfkÞ is de-
scribed by a gamma distribution as defined by Eq. (A8)
with � ¼ 1=Ns and h ¼ Ns. The sum over the different
values at the frequencies fk is still a gamma distribution
with � ¼ 1=Ns and h ¼ NsNf. The expectation value for

IR is easily obtained as E½IR� ¼ �h ¼ Nf.

The natural estimator for the second approach is pro-
vided by the empirical cumulative distribution function
(ECDF). The ECDF for a data series can be defined as
FNðxÞ ¼ z=N, where z is the number of observations re-
porting a value less than or equal to x. x denotes the values
taken by the data, in our case RWOSAðfkÞ with k ¼
1; . . . ; Nf. The ECDF can be tested against the theoretical

expectation provided by Eq. (A8). If the model well rep-
resents the given sample spectrum, then RWOSAðfkÞ is
distributed according to the expected gamma distribution.
Alternatively, if the sample spectrum contains excess noise
with respect to the reference model, then the distribution of
the normalized WOSA spectrum will be different from the
one reported in Eq. (A8). The hypothesis that the two
distributions are equal can be tested if a ‘‘distance’’ be-
tween the ECDF and the theoretical reference, F�, is
defined as

dKðxÞ ¼ jFNðxÞ � F�ðxÞj; (2)

with dKðxÞ assuming values on the interval [0, 1] and
K ¼ Nf. Kolmogorov found that the statistical proper-

ties of

dK ¼ max½dKðxÞ� (3)

are independent from the specific distributions under test
[13,14]. This property qualifies dK as an excellent candi-
date for the construction of a general test for cumulative
distribution functions; the limiting statistic for dK was
identified by Kolmogorov himself and then inverted by
Smirnov [15,16], who provided an analytical expression
for the calculation of dK as a function of the significance
level. General details about the Kolmogorov-Smirnov test
(KS test) are reported in Appendix B.

It is interesting to calculate the expected sensitivity for
the two estimators. IR is expected to be distributed as a
gamma distribution (at least when the model and the data
are in agreement); the corresponding cumulative distribu-
tion function (CDF) is provided by the incomplete gamma
function P ðh; x=�Þ [17]. The CDF assumes values in the
interval [0, 1] as it defines the probability associated with

the observation x. The inverse of the CDF provides the
critical values, x�, associated with a given probability,

� 2 ½0; 1�. The confidence range for a probability, �, for
a gamma-distributed variable can then be defined by the
boundaries xlw¼P�1ð�=2Þ and xup¼P�1ð1��=2Þ, with
� ¼ 1� �. We assert that the measured sample spectrum
is compatible with the reference model if xlw � IR � xup
for the given probability, �, or significance level, �.
If the noise excess is provided by a scale factor, �, which

affects the noise on the complete band of frequencies, the
expected value for IR changes to EðIRÞ ¼ �Nf. Therefore,

the detection threshold for � is fixed by the interval
xlw=Nf � � � xup=Nf. In other words, the IR can detect

a noise difference with respect to the reference model only
if � < xlw=Nf or if � > xup=Nf. If � is nonzero only in a

restricted band of frequencies ½fa; fb�, then the expectation
value for IR changes to EðIRÞ ¼ Nf � Nab þ Nab�. In this

case, IR can detect the noise difference only if � < ðxlw �
Nf þ NabÞ=Nab or � > ðxup � Nf þ NabÞ=Nab. Nab is the

number of frequency points in the interval ½fa; fb�.
In the case of the Kolmogorov-Smirnov (KS) estimator,

the ECDF of the WOSA normalized spectrum is compared
with the theoretical expectation P ðNs; xNsÞ. In the case
that the noise excess is simply a constant scale factor, �,
over the whole frequency band, the expected CDF for the
normalized WOSA spectrum is P ðNs; xNs=�Þ. The ex-
pected value for the KS-test variable is then written as

dKð�Þ ¼ max

��������P
�
Ns;

xNs

�

�
� P ðNs; xNsÞ

��������: (4)

Once a significancevalue� is provided, the corresponding
critical value, dKð�Þ, can be calculated from the equations
for the inversion of the limiting CDF for dK [15,16]. The two
distributions in Eq. (4) are incompatible at the given signifi-
cance level if dKð�Þ> dKð�Þ. This defines the detection
threshold for �. If � is nonzero only in a restricted band of
frequencies ½fa; fb�, then the expected distribution for the
normalizedWOSA estimator is difficult to calculate. Never-
theless, the detection threshold for the KS estimator can be
calculated numerically from synthetic data.
In Fig. 1, the ranges of nondetectability of the KS and IR

estimators are reported as a function of Nf for three differ-

ent values of the WOSA averages Ns. Data refer to the case
that the scale factor, �, extends over the complete fre-
quency band. As can be clearly seen, the IR estimator
always has a better sensitivity than the KS estimator. The
sensitivity for the case of a band-limited excess noise is
reported in Fig. 2 as a function of the ratio Nab=Nf. As in

the previous case, the IR estimator provides a better sensi-
tivity with respect to the KS estimator. The difference is
particularly relevant for Nab=Nf < 0:07; below such val-

ues, the sensitivity of the KS estimator becomes poor. Both
in Fig. 1 and in Fig. 2, the confidence level for � detection
is fixed at 95%.
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It is worth noting that the KS algorithm can be used on
time series to quantitatively assess departures from a given
distribution (e.g., Gaussian). Once the ECDF for the data is
calculated, it can be compared with the expected distribu-
tion by calculating dKðxÞ from Eq. (2). Since the distribu-
tion of dKðxÞ coefficients is known, it is straightforward to
set a confidence threshold. The procedure can be applied
even in presence of correlations thanks to the generaliza-
tions discussed in Sec. VB and in Appendix B.

B. Detection of noise variations without a model

In the case that an excess of noise has to be detected by
comparing different measurements, the Parseval’s theorem

[9] [E ¼ PN=2
k¼0 PðfkÞ] suggests that the sum of the elements

of a sample spectrum in a given frequency band Eab ¼P
b
k¼a PðfkÞ could provide a sensitive estimator for noise

power variations. Such an estimator would be loosely
equivalent to the IR discussed above, except that its statis-
tic is hard to determine in a typical experimental situation.
The statistic of PðfkÞ at each frequency, fk, is defined
by Eq. (A4). Therefore, in the case of non-white-noise,
its parameters depend on SðfkÞ and the statistic is different
at different frequencies. Thus, the statistic of Eab is not
easily known.
An interesting alternative to Eab is provided by the KS

estimator. The hypothesis that two data series fxn1g and

fxn2g (of length N1 and N2, respectively) have the same

limiting cumulative distribution function FðxÞ can be
tested if a distance in the ECDFs space is defined as

dKðxÞ ¼ jFn1ðxÞ � Fn2ðxÞj; (5)

with dKðxÞ defined on the interval [0, 1] and K ¼ ðN1N2Þ=
ðN1 þ N2Þ [14]. Also in this case, the statistical properties
of

dK ¼ max½dKðxÞ� (6)

are independent from the distributions of xn1 and xn2 . The

same equations used in the case of the comparison with a
given model can now be used for the inversion of the
cumulative statistic of dK [18]. Considering the simplify-
ing assumption of independent spectral data, the sensitivity
of the KS estimator at a given significance level can be
calculated in analogy to what was discussed in the previous
paragraph.
In Fig. 3, the calculated interval for nondetection is

reported for the case that the excess, �, is extending over
the whole frequency band and for the case that � � 0 in
½fa; fb�.
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FIG. 2. Nondetection ranges for IR and KS estimators in the
case that noise excess coefficient � is different from zero in a
restricted band ½fa; fb�. Data are presented as a function of the
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III. NOISE MODEL IDENTIFICATION

Closely related to the problem of excess noise detection,
the problem of noise model identification is one of the
principal scientific objectives of the LPF mission. Of
particular interest is the identification of a model for the
force noise acting on the TMs, which can be used as a
baseline for the forthcoming space-based gravitational-
wave observatories.

The main constraints on the identification of force noise
on the TMs in LPF are fixed by i) the limited data series
length, typically 24 h; ii) TMs force noise is dominating the
output signal below 10 mHz; iii) force noise data that are
not directly accessible since the system measures and
reports TM displacement, requiring that force noise on
TMs be reconstructed by a numerical procedure [19,20].

The result of the combination of the first two constraints
is that the number of segment averages in the WOSA
procedure for sample spectrum estimation should be taken
as low as possible so as to have a reasonable number of
frequency points in the range f 2 ½0:1; 10� mHz. As a
consequence, the distribution of the WOSA spectrum
strongly departs from a Gaussian distribution [21], mean-
ing that the classical least-squares minimization procedure
for parameter estimation is not well conditioned and a full
maximum-likelihood procedure is required.

A. Maximum-likelihood parameter estimation

If we replace SðfkÞ in Eq. (A9) with a parametric model
for the spectrum, Sðfk;�1; . . . ; �HÞ, the normalized WOSA
spectrum becomes parametric, RWOSAðfk; �1; . . . ; �HÞ, and
can be used for the estimation of noise model parameters
f�1; . . . ; �Hg. In this section, we develop the likelihood
formalism for the simple case that the noise model is a
function of a single parameter, Sðfk; �Þ ¼ �S0ðfkÞ. This
allows us not only to find a sensible goodness-of-fit esti-
mator for RWOSAðfk;�Þ that can be used also in the case of
multiple parameters, but also to place the excess noise
estimator, IR, in a more solid theoretical framework.

Indicating with �TRUE the ‘‘true’’ value for the � pa-
rameter, RWOSAðfk;�Þ can be rewritten as

RWOSAðfk;�Þ ¼ �
PWOSAðfkÞ
�TRUES0ðfkÞ ¼ �Rtrue

WOSAðfkÞ: (7)

Here,� ¼ �true=�. Assuming that �TRUES0ðfkÞ correctly
reproduces the expected value for the spectrum, the distri-
bution of Rtrue

WOSAðfkÞ is reported in Eq. (A8) with � ¼ 1=Ns

and h ¼ Ns. The distribution of the samples RWOSAðfk;�Þ
is then

fðy; h; �;�Þ ¼ e�ððyÞ=ð��ÞÞyh�1

ð��Þh�ðhÞ : (8)

Under the simplifying assumption that the values
of RWOSAðfk;�Þ are independent for different fk, the
likelihood function can be written as

L ðh; �;�Þ ¼ Y
k

fðyk; h; �;�Þ�y: (9)

Here, �y is a constant term required to have a finite
probability from the probability distribution function
fðyk; h; �;�Þ. yk are observed samples corresponding to
RWOSAðfk;�Þ. It is typically more convenient to work
with the natural logarithm of the likelihood function
lðh; �;�Þ ¼ lnLðh; �;�Þ.

lðh; �;�Þ � ðh� 1ÞX
k

lnyk � 1

��

X
k

yk � Nfh ln�: (10)

Nf is the total number of frequency samples. Taking the

first derivative with respect to � and equating to 0 we find
the maximum-likelihood estimator for the parameter �:

� ¼ 1

�

X
k

RWOSAðfk;�Þ � Nf: (11)

The value of � at which � ¼ 0 corresponds to
the maximum-likelihood estimation for the parameter.
The � estimator is unbiased, since, remembering that
� ¼ �true=�, it can be verified that lim�!�trueE½�� ¼ 0.

For the practical purpose, we can find the zero crossing
of the reduced estimator

~� ¼ X
k

RWOSAðfk; �Þ � Nf; (12)

which is crossing zero at the same � value of �, since

� ! 1 when � ! �true. It is worth noting that ~� is practi-
cally the IR excess noise estimator with the expectation

value Nf subtracted. It is then worth noting that ~� can be

used not only in the simple case of one parameter but
it can also be applied in the general case of a model

Sðfk;�1; . . . ; �HÞ since the condition ~� ! 0 when
f�1; . . . ; �Hg ! f�1true; . . . ; �Htrueg is always satisfied.

B. Kolmogorov-Smirnov parameter estimation

As discussed in Sec. II A, the KS estimator can be used
as an alternative to a maximum-likelihood procedure for
parameter estimation.
Thanks to the statistical properties of RWOSAðfk;�Þ,

the closer � is to �true, the better the distribution of
RWOSAðfk;�Þ is described by Eq. (A8) with � ¼ 1=Ns

and h ¼ Ns. Therefore, the Kolmogorov-Smirnov distance
parameter provides an effective goodness-of-fit estimator:

dKð�Þ ¼ maxjFRðx; �Þ � P ðNs; xNsÞj: (13)

FRð�Þ is the ECDF for the current RWOSAðfk;�Þ estimate;
P ðNs; xNsÞ is the limiting distribution for � ! �true.
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KS estimation for � is obtained by the minimization of
dKð�Þ with respect to �. A confidence range for the pa-
rameter estimation can be readily defined from the non-
rejection region of the KS test at a given significance level.
In practice, having defined a significance level, the corre-
sponding critical values of the KS statistic, dKð�Þ, can be
calculated with standard equations [16] or Monte Carlo
simulations in the case of correlated data. The values of ��
for which dKð ��Þ ¼ dKð�Þ provide the boundary for the
confidence range at the given significance. The KS statistic
can also be successfully applied to multiparameter identi-
fication, since the convergence of FRð�Þ to P ðNs; xNsÞ is
always verified when f�1; . . . ; �Hg ! f�1true; . . . ; �Htrueg.

IV. ANALYSIS OF NONSTATIONARY NOISE

The implementation of noise analysis procedures was so
far discussed in the context of stationary or pseudosta-
tionary noise [22]. In the case of truly nonstationary noise,
the spectral content of a time series is investigated by
time-frequency analysis techniques which include the
spectrogram and the wavelet transform. The spectrogram
is estimated by the square modulus of the short-time
Fourier transform of the data [23]. It provides a direct
extension of the sample spectrum formalism to nonsta-
tionary time series. Given a data series of N samples, a
fraction of length Q<N is windowed and the Fourier
transform is applied. Then, the data window is time shifted
and the process is repeated. The calculation of the spectro-
gram is based on data windowing and the application of the
Fourier transform, therefore the considerations noted in the
previous sections for stationary noise can be applied di-
rectly to the spectrogram analysis of nonstationary noise.

Since the short-time Fourier transform has the same
resolution across the time-frequency plane, it is often
preferable to resort to the wavelet transform. Wavelet
transform is a decomposition of the time series over
time-frequency elements that are obtained by scaling and
translating a mother function c 2 L2ðRÞ:

c u;s ¼ 1ffiffiffi
s

p c

�
t� u

s

�
: (14)

The function c ðtÞ has zero average and the wavelet
elements c u;s are normalized to 1. The wavelet transform

of a function fðtÞ is then defined as

Wfðu; sÞ ¼
Z 1

�1
fðtÞ 1ffiffiffi

s
p c �

�
t� u

s

�
dt: (15)

In the discrete case, the result of the wavelet transform
on a time series is an array of coefficients wu;s where u is

the time index and s is the scale index which is associated
to a given frequency band [24]. In the case of uncorrelated
Gaussian noise, the distribution of the coefficients wu;s is

still Gaussian with a certain amount of correlation intro-
duced by the convolutionlike transform operation [24]. In
such a favorable situation, the extension of the method

described in the stationary case appears straightforward.
In particular, Kolmogorov-Smirnov procedures are excel-
lent candidates since their robustness to correlation and the
possibility of extending KS distance definition to a two-
dimensional space [25,26].

V. APPLICATION TO LPF SYNTHETIC DATA

In this section, the different procedures for excess noise
detection and parameter estimation are applied to synthetic
LPF data. This provides not only an interesting framework
for testing their accuracy and precision, but it also helps to
clarify the role of correlations among spectral data.

A. Synthetic data and noise projection

LPF provides two output channels along the principal
measurement axis which are sensing the displacement of
the SC relative to the free-falling TM and the relative
displacement between the TMs.
From the knowledge of the displacement signals and a

linear model for the system dynamics, an effective force
per unit mass, aeff , acting on the TMs can be extracted. aeff
is the combination of the true force per unit mass acting on
TMs and a projected interferometer readout noise. Details
of the calculation are reported in Appendix D.
Following the same scheme, a given prediction for the

different input noise sources can be projected to a predic-
tion for the power spectrum of aeff , as reported in Fig. 4.
Here, the model for the spectrum of force noise acting on
TMs and the model for the spectrum of readout noise are
projected into a model for the power spectrum of aeff
(TMsþ Readout in the figure notation), which represents
this paper’s baseline for the spectrum of aeff .
In Fig. 4, we also report the project specifications for

LPF and the expected noise spectrum for aeff in a worst-
case scenario. In our baseline, we assumed a reduced force
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FIG. 4. Projection of the spectrum of aeff . ‘‘Readout’’ is the
projection of the readout noise to aeff . ‘‘TMs’’ is the projection
of the force noise on the test masses to aeff . ‘‘TMsþ Readout’’ is
the complete noise projection for aeff ; it represents the baseline
noise level assumed in the present paper. ‘‘LPF worst case’’
refers to a worst-case scenario for aeff and ‘‘LPF Spec.’’ corre-
sponds to the mission specifications.
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noise on the TMs compared to the worst case but choose to
keep the worst case for the readout noise. This was done in
order to represent one of the possible scenarios (not the
best one) that can be experienced during the mission.

The model assumed for the force noise on the TMs is
characterized by a low-frequency 1=f2 behavior and a flat
part for f > 1 mHz. The model can be written as STMðfÞ ¼
�S0TMðfÞ. � is an adjustable parameter which assumes
values � ¼ 1 for the worst-case scenario and � ¼ 0:1 for
our baseline model. It is worth noting that STMðfÞ is
projected (together with the readout noise model) through
LPF dynamics in order to obtain the expected noise spec-
trum for aeff which we indicate with SaðfÞ. SaðfÞ with � ¼
0:1 corresponds to ‘‘TMsþ Readout’’ in Fig. 4; SaðfÞ with
� ¼ 1 corresponds, instead, to the ‘‘LPF worst case.’’

B. Excess noise detection

A change of the noise level on STMðfÞ (� � 0:1) pro-
duces a variation of the energy content of aeff . Such
variation, which may be ‘‘improperly’’ identified as excess
noise, can be detected with the procedures defined in
Sec. II. In particular, we tested the detection of excess
noise between two data series and between a data series
and a reference model. Synthetic data were produced
according to the following procedure:

(1) Different models for SaðfÞ are produced changing �
around the reference value � ¼ 0:1. Readout noise
level is kept fixed.

(2) Corresponding noise time series for aeff are gener-
ated using the procedure reported in [27]. The time
series are 24 h long and have a sampling frequency
of 1 Hz.

(3) Sample spectra are calculated for each series with
the WOSA algorithm. We chose a Blackman-Harris
data window, 50% segment overlap, and number of
segments averages Ns ¼ 4.

(4) The analysis is restricted to the frequency interval
[0.1, 10] mHz since, as can be seen from Fig. 4, it
represents the region in which the force noise on the
TMs dominates SaðfÞ.

Spectral data are tested for excess noise. We used the KS
algorithm [Eq. (6)] in the case of the test of two data series.
The data series for � � 0:1 are compared against the
reference series with � ¼ 0:1. In the case of the test of a
data series against a model, both the KS algorithm [Eq. (3)]
and the IR algorithm [Eq. (1)] are used. The reference
model is the projected SaðfÞ for � ¼ 0:1. The results of
the tests are summarized in Table I. KS critical values
dKð�Þ and IR confidence intervals are calculated for a
significance level � ¼ 0:05 which corresponds to a 95%
confidence.
Each value of � corresponds to a value of the in-band

energy content Eð�Þ of SaðfÞ in the analyzed frequency
band. We report in Table I the relative change in energy
�E=E corresponding to a relative change in �. The
quantity �E=E plays the same role of the parameter � in
Figs. 1 and 3, even though the two quantities are not
completely comparable since � in Fig. 1 assumes indepen-
dence of the data. Spectral data are correlated among
different frequency values because of two effects [9,28]:
i) data windowing which corresponds to a convolution in
the frequency domain of the window function with the
sample spectrum; ii) WOSA overlapped segment averag-
ing. The first effect is unavoidable; the second effect,

TABLE I. Detection of noise differences in the frequency band [0.1, 10] mHz. The symbol ✓ indicates compatibility between tested
objects. The symbol � is instead used for indicating test rejection. � is an adjustable parameter which assumes value � ¼ 0:1 for our
baseline model. Different values of � correspond to different values of the in-band energy content Eð�Þ of SaðfÞ. We reported here
relative values with respect to reference. Details on deffK ð�Þ, dMC

K ð�Þ, and MC confidence interval for IR estimator can be found in

Appendices B and C, respectively.

KS vs data KS vs model IR

dKð�Þ dMC
K ð�Þ dKð�Þ deffK ð�Þ dMC

K ð�Þ Confidence Int. MC Confidence Int.
�E
E

��
� dK 0.1030 0.1006 dK 0.0730 0.0982 0.0969

P
kRWOSAðfkÞ [323.14, 359.33] [311.33, 372.55]

�0:14 �0:7 0.2352 � � 0.2547 � � � 250.74 � �
�0:08 �0:4 0.1424 � � 0.1103 � � � 303.72 � �
�0:06 �0:3 0.1806 � � 0.1747 � � � 274.54 � �
�0:05 �0:25 0.1740 � � 0.1685 � � � 294.42 � �
�0:04 �0:2 0.0887 ✓ ✓ 0.0696 ✓ ✓ ✓ 317.10 � ✓

�0:03 �0:15 0.0906 ✓ ✓ 0.0433 ✓ ✓ ✓ 324.87 ✓ ✓

�0:01 �0:05 0.0771 ✓ ✓ 0.0302 ✓ ✓ ✓ 339.47 ✓ ✓

0.01 0.05 0.0551 ✓ ✓ 0.0539 ✓ ✓ ✓ 352.26 ✓ ✓

0.03 0.15 0.0629 ✓ ✓ 0.0370 ✓ ✓ ✓ 345.38 ✓ ✓

0.04 0.2 0.0603 ✓ ✓ 0.0635 ✓ ✓ ✓ 357.14 ✓ ✓

0.05 0.25 0.0519 ✓ ✓ 0.0818 � ✓ ✓ 369.05 � ✓

0.06 0.3 0.0857 ✓ ✓ 0.1253 � � � 388.01 � �
0.08 0.4 0.1103 � � 0.1137 � � � 402.14 � �
0.14 0.7 0.1520 � � 0.2423 � � � 459.64 � �
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instead, can be attenuated by a proper choice of the seg-
ment overlap. It can be demonstrated [29] that for a
Blackmann-Harris window the effect is negligible with
50% overlap.

Since the standard statistics for the estimators [dKð�Þ for
KS and confidence interval for IR] are calculated in Sec. II
with the assumption of data independence, the standard
critical values, dKð�Þ, for the KS estimators and the con-
fidence intervals for the IR estimator can be applied only if
the correlations among data are negligible. If this is not the
case, the effective statistic of the estimators can be numeri-
cally calculated with Monte Carlo simulations. The corre-
sponding results of a Monte Carlo (MC) simulation with
NMC ¼ 5000 realizations of the reference data series are
indicated in Table I with the suffix MC. The symbol ✓ is
used to indicate that the spectral data for the corresponding
�E=E is compatible with the reference. On the contrary,
the symbol � indicates a rejection.

Observing the test results reported in columns 7 and 9
and in columns 11 and 12, it is readily seen that correla-
tions among data play a role. In the case of the KS test, the
comparison of the data with dKð�Þ determines a rejection
for �E=E ¼ 0:05. On the other hand, the same value is
accepted when Monte Carlo result dMC

K ð�Þ is used. In the

case of the IR estimator, the comparison with the standard
confidence interval leads to the rejection in correspondence
with �E=E ¼ 0:05 and �E=E ¼ �0:04. Such values are
instead considered compatible by the Monte Carlo confi-
dence interval. These results provide us with clear infor-
mation that the presence of correlations among data has
affected the tests statistics and therefore the standard equa-
tions, assuming independence among data, are not usable
in this situation.

Looking at the results for the KS test between two data
series, we discover that dKð�Þ and dMC

K ð�Þ are practically
equal. In fact, the results for the two corresponding col-
umns of Table I (columns 4 and 5) are in perfect agreement.
This is the practical result of one of the most interesting
properties of the KS test. The test is based on Eq. (6). It
states that the two empirical cumulative distributions under
test have the same limiting CDF. Since the sample spectra
in our test are calculated following the same WOSA pro-
cedure, the degree of correlation among different fre-
quency points is the same, therefore the test statistic is
not spoiled.

Comparing dKð�Þ and dMC
K ð�Þ of columns 7 and 9,

we see that the effect of correlation is to increase the
maximum expected spread between ECDF and limiting
CDF. Therefore, the effect of data correlation is to distort
the expected statistic for dK. The ‘‘distortion’’ of dK sta-
tistic can be taken into account if an effective value for the
parameterK is introduced. In the case of the comparison of
the ECDF for correlated data against a theoretical
CDF, the application of the standard values for dK, where
K ¼ Nf, Nf being the number of data elements, leads to

a statistically unfair test. We then discovered that test
fairness can be recovered if an effective value for K is
used rather than the standard K ¼ Nf. In particular,

for spectral data produced with the WOSA method,
Blackmann-Harris window,Ns ¼ 4 averages on 50% over-
lapped segments, we obtained Keff ¼ �Nf with � ¼ 0:55

for a significance level � ¼ 0:05. It is worth noting that the
value of � is independent from the number of data points
considered, and from the spectral shape, provided that the
different shapes have reasonably comparable smoothness
on a frequency interval comparable with the width of the
first lobe of the data window. As an example, the value of
� ¼ 0:55 is valid for LPF-like data and for white-noise
equivalently. The requirement on the smoothness of the
spectrum is connected to the expression of the correlations
introduced by data windowing. It can be demonstrated that
if the spectrum can be assumed constant in a frequency
range of the order of the width of the first lobe of data
window [9], then the correlations are independent from the
particular shape of the spectrum and are determined only
by the window function. For such class of spectra, we
expect the same value for � once the required significance
level is fixed.

C. Noise model identification

The problem of noise parameter identification is strictly
connected to the problem of excess noise detection by a
comparison of a data series with a reference model. While
in excess noise detection different data series are compared
with a given reference, in parameter estimation different
realizations of a parametric model are compared with a
data set in order to find the best fit. Because of this, the
same algorithms (i.e. KS and IR) can be applied to the
solution of the two problems. Precision and accuracy in
the estimation of the parameter, �, controlling the excess
force noise on the TMs are tested with a Monte Carlo
simulation over NMC ¼ 5� 103 realizations of the same
process. The data series reproduce aeff corresponding to
the reference value � ¼ 0:1. Sample spectra are calculated
with the procedure described above and the analysis is
restricted to the frequency range [0.1, 10] mHz. For each
realization, data are compared with a bank of models
obtained by the projection of TMs force noise STMðf; �Þ ¼
�S0TMðfÞ and readout noise into Saðf; �Þ for different val-
ues of � around the reference value. The KS and IR
estimators are calculated for each element of the model
bank, in particular, it is simpler to analyze the results in

terms of ~IR ¼ jIR� Nfj. Both KS and ~IR are expected to

have a minimum corresponding to the best estimate for the
parameter �. The two methods proposed here are compared
with the performance of a classical weighted least-squares
method, which works by minimizing the mean squared
errorMSE¼P

fk
ððPWOSAðfkÞ�Saðfk;�ÞÞ=Saðfk;�ÞÞ2, and

a Huber’s norm estimator (details are reported in
Appendix E). The results of the analysis are reported in
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Fig. 5, where the histograms of the best-fit values overNMC

realizations are reported for the four procedures. In the
same figure, we also show the evolution along the model
grid of the four estimators for a particular set of data from
the available NMC.

The distributions for the best-fit parameter are reason-
ably symmetric for all the estimators; mean values and
sample standard deviations are respectively �KS ¼ 0:100,
�KS ¼ 0:012, �IR ¼ 0:100, �IR ¼ 0:012, �MSE ¼ 0:148,
�MSE ¼ 0:016, �Huber ¼ 0:130, and �Huber ¼ 0:014.
From the analysis of the Monte Carlo results, it is readily

seen that both the KS and the ~IR estimators provide equiv-
alently precise and accurate results. On the other hand, the
MSE algorithm provides a poor estimation, both from
the accuracy and from the precision point of view. The
best estimation for the parameter is �MSE ¼ 0:148, which
is strongly biased with respect to the reference value
of � ¼ 0:1. Also, the distribution of the parameter values

is wider than those obtained from the KS and ~IR estima-
tors. Huber’s norm estimator, with the chosen parameter
c ¼ 0:05 E, performs better than MSE but the result
�Huber ¼ 0:130 is still far from the true value.

It is worth discussing the effect of correlations among
spectral data on the estimation of the parameter �. As can
be observed from the results of the MC simulation, the
accuracy of the estimators is not affected by correlations;

the results for KS and ~IR estimators are practically indis-

tinguishable. Some problems with ~IR can arise from data
correlations when the confidence interval for a single
estimation is required. As discussed in the previous para-
graph, correlations modify the statistic of the IR estimator

making it impossible to easily calculate confidence
intervals from the standard equations. The statistic of the
KS estimator is affected by correlations too, but we have
demonstrated that accurate critical values dKð�Þ can be
recovered if an effective value for K is used, Keff ¼ �Nf.

� is a shape parameter depending only on the correlations
in the spectral data and on the required significance level.
It can be calculated for a specific spectrum (e.g., white
noise) and effectively extended to a wide family of spectral
shapes. Using the value � ¼ 0:65 reported in Appendix B,
we obtain deffK ð�Þ � 0:064 for � ¼ 1� 0:68%. The inter-
section of such a value with the curve of dK as a function of
� reported as black dots in Fig. 5(a) provides a 68%
confidence interval for the single estimation. In this spe-
cific case, such an interval is � 2 ½0:086; 0:114�.

VI. CONCLUSIONS

The problem of excess noise detection and noise pa-
rameter estimation for non-Gaussian data is analyzed in
the framework of the LISA Pathfinder mission. Excess
noise detection can be approached in two ways. In one
way, the noise content of a data series is compared with a
reference data series; in the other way, the noise content of
the data is compared with a reference model. In the first
case, simple estimators like the total energy content in a
data series are not suitable for formulating quantitative
statements on a solid statistical basis. As an alternative, a
KS estimator is proposed and successfully applied to LPF
synthetic data. The KS estimator has the advantage of
being independent of the statistical properties of the data
under test. It is demonstrated in the paper that such a
convenient property makes the estimator robust to corre-
lations among spectral data. Two different estimators are
investigated for the problem of comparing a data series to a
model for excess noise detection. One estimator (IR) is
based on the integral of the normalized WOSA spectrum;
the other is a KS estimator for the comparison of an
empirical cumulative distribution function with a limiting
theoretical function. Despite the fact that the IR estimator
proves to have better sensitivity on independent data, the
versatility of the KS estimator is highly advantageous on
correlated data. Since the statistics of the estimators are
distorted by the presence of correlations among test data,
the standard and simple procedures for the determination
of the confidence intervals, based on the inversion of the
limiting distribution function, provide inaccurate results.
While, in the case of the IR estimator, the problem can be
overcome only with dedicated Monte Carlo simulations,
we demonstrated that the introduction of a shape parameter
allows us to use standard equations to calculate proper
boundaries for KS confidence intervals. The shape parame-
ter depends on the required significance level and on the
data correlations. It does not depend on the number of data
considered for the test. Since correlations among spectral
data are mainly introduced by the windowing process,

FIG. 5. KS, IR, MSE, and Huber’s norm accuracy and preci-
sion in the estimation of the force-per-unit-of-mass noise pa-
rameter �. Corresponding histograms report the result of
NMC ¼ 5000 MC realizations of the parameter search on a
grid of template models. We also show (black dots) the evolution
along the model grid of the four estimators for a particular set of
data taken from the NMC available.
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the shape parameter is fixed for a wide family of spectral
shapes. For example, synthetic LPF data share the same
shape parameter with white noise.

Closely related to noise excess detection, the problem of
noise parameter identification is analyzed with a
maximum-likelihood approach which, in the particular
case of linear dependence on a single parameter, provides
an algorithm analogous to the IR estimator used for excess
noise detection. A KS algorithm was proposed as an alter-
native to the IR algorithm and the accuracy and precision
of both were tested with a Monte Carlo simulation on LPF
synthetic data. Both the IR and KS estimators were dem-
onstrated to give equivalently good results, even though the
capability of the KS to handle data correlation is a clear
advantage for the definition of a confidence interval for the
estimated noise parameter.

Data analysis procedures introduced in this paper are
easily extended to the vast context of time-frequency
analysis of nonstationary noise. The KS algorithm can be
applied effectively both to spectrogram and wavelets co-
efficients provided that correlations among data are taken
into account. The KS algorithm has the advantage that can
be generalized to two dimensions thus allowing to extend
the analysis to the time-frequency plane.

APPENDIX A: STATISTIC OF
THE SAMPLE SPECTRUM

In the case of a discrete, real-valued stationary process
fxhg, the continuous spectral density function is defined as

SðfÞ ¼ T
X1

h¼�1
she

�{2	fhT: (A1)

Here, sh is the autocovariance sequence of the process fxhg,
T is the sampling period and f is the frequency expressed
in Hz. f is defined in the range jfj � fNq � 1=2T and fNq

is known as the Nyquist frequency. In the case of a finite
representation x0; . . . ; xN�1 of the discrete process fxhg, the
approximation to the spectral density function is provided
by the sample spectrum

~PðfÞ ¼ T

N

��������XN�1

h¼0

xhe
�{2	fhT

��������2

: (A2)

f in this case is also defined on the interval ½�fNq; fNq�. If
the sample spectrum is calculated on the grid of Fourier
frequencies (fk ¼ k=ðNTÞ, jkj � N=2) then it corresponds
to the squared modulus of the discrete Fourier transform of
the data sequence x0; . . . ; xN�1. In practical applications,
only the positive frequency part of the spectrum is consid-
ered, and the one-sided sample spectrum is defined as
PðfkÞ ¼ 2 ~PðfkÞ with k ¼ 0; 1; . . . ; N=2. In the rest of the
paper, the one-sided sample spectrum will be simply
named the sample spectrum.

If the data series x0; . . . ; xN�1 is Gaussian distributed
and the elements xj are independent, then the Fourier

transform produces a complex series XðfkÞ whose ele-
ments are approximately independent and whose real
and imaginary parts are Gaussian distributed. The term
jXðfkÞj2 ¼ jRe½XðfkÞ�j2 þ jIm½XðfkÞ�j2 is then the sum
of two independent variables distributed as a 
2

� where �
is the number of degrees of freedom of the distribution
(� ¼ 1 in this case). If the correlations among the elements
of the data series x0; . . . ; xN�1 are nonvanishing, the statis-
tical properties of the sample spectrum, in the simplifying
assumption of independent PðfkÞ elements, can be calcu-
lated from the case of a 
2

� distributed variable ymultiplied
by a constant z ¼ �y. The characteristic function for z is

�zðtÞ ¼ E½e{t�y� ¼ ð1� 2{t�Þ�ð�=2Þ: (A3)

Here, E½ � indicates the expected value. The inverse Fourier
transform of �zðtÞ provides the probability density func-
tion for z:

F �1½�zðtÞ� ¼ e�ððzÞ=ð2�ÞÞzðð�Þ=ð2Þ�1Þ

ð2�Þð�=2Þ�ð�2Þ
: (A4)

This is a gamma distribution, fðz; k; �Þ, with k ¼ �=2
and � ¼ 2�. �ðkÞ is the gamma function. In the case of the
sample spectrum at a given frequency, z ¼ PðfkÞ and � ¼
E½PðfkÞ�=� � SðfÞ=� [30]. It is useful, for the statistical
analysis of the spectrum, to introduce the normalized
sample spectrum

RðfkÞ ¼ �
PðfkÞ
SðfÞ ; (A5)

which, at each frequency fk, is distributed as 
2
�.

The sample spectrum in Eq. (A2) can also be seen as a
special case of the power spectral density, SðfÞ, when the
infinite data series fxhg is chopped by a square data window
of length N. This operation introduces a considerable
amount of spectral leakage because of the convolution
with the frequency response of the square data window
[9,31]. Therefore, it is common practice to multiply the
time series x0; . . . ; xN�1 with a more performant data win-
dow, which increases the accuracy of the sample spectrum
in the case of processes with a high dynamic range. The
application of a data window introduces correlations
among different elements of the sample spectrum. Such
correlations affect the statistics of the spectrum, resulting
in a change in the probability distribution of the sample
spectrum. An analytical treatment of the spectrum statistics
under such conditions is cumbersome, and it is easier to
numerically evaluate (with a Monte Carlo simulation) the
statistics of the sample spectrum for the case of interest.
In order to improve the variance properties of the sam-

ple spectrum, the WOSA method is applied [9]. The data
series x0; . . . ; xN�1 is divided in overlapping windowed
segments. The estimates of the sample spectrum of each
segment are then averaged. The practice of averaging
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overlapping segments can modify the expected statistics of
the spectrum since the data in different segments can be
correlated. Then, even in the simplifying assumption
of vanishing spectral correlations from windowing and
overlapping, the averaging process changes the statistics
of the estimated sample spectrum. In the assumption of
vanishing window and overlap correlations, the statistic of
the WOSA spectrum corresponds to the average of Ns

gamma-distributed variables

PWOSAðfkÞ ¼ 1

Ns

XNs

j¼1

PjðfkÞ: (A6)

The critical function for the sum is �PWOSA
ðtÞ ¼Q

j�jðtÞ, where �jðtÞ is the critical function for Pj=Ns.

Thanks to Eq. (A3),

�PWOSA
ðtÞ ¼

�
1� {t�

Ns

��kNs

; (A7)

where � ¼ 2SðfkÞ=� and k ¼ �=2. The inverse Fourier
transform of �PWOSA

ðtÞ provides the probability density

function for the WOSA spectrum

fWOSAðz;h; �Þ ¼ zðh�1Þe�ðzÞ=ð�Þ

�h�ðhÞ ; (A8)

with � ¼ SðfkÞ=Ns and h ¼ Ns. Again, it is useful to
define a normalized WOSA spectrum as

RWOSAðfkÞ ¼ PWOSAðfkÞ
SðfkÞ ; (A9)

which is gamma distributed [Eq. (A8)] with � ¼ 1=Ns and
h ¼ Ns.

APPENDIX B: KOLMOGOROV—SMIRNOV TEST

Kolmogorov—Smirnov is a well-known test for distri-
butions [13–16,32,33]. An ECDF is tested against a con-
tinuous theoretical model or, alternatively, two ECDFs are
tested with the hypothesis that they share the same limiting
cumulative distribution function. Indicating with fðxÞ the
probability density function associated with a given ran-
dom process X, the corresponding CDF is defined as

FðxÞ ¼ Prob½X � x� ¼
Z x

�1
fðuÞdu: (B1)

Given a particular realization of the random process X,

XN ¼ fx1; . . . ; xNg; (B2)

ECDF is written as FNðxÞ ¼ k=N where k is the number of
observations which is smaller or equal to x.

Given two data series XN and YM, with N and M not
necessarily equal, we can test if the two series are two
particular realizations of the same random variable by
analysis of their ECDFs. Under the hypothesis that the
two data series come from the same distribution function,

Kolmogorov has demonstrated that the maximum distance
between the two ECDFs has a limiting distribution which
is independent from the statistical properties of the corre-
sponding random variable. If the test is performed against
a theoretical distribution, the distance is defined as

dK ¼ maxjFNðxÞ � FðxÞj: (B3)

In such a case, K ¼ N. Alternatively, if the test is
performed between two ECDFs, K ¼ ðNMÞ=ðN þMÞ and

dK ¼ maxjFNðxÞ � FMðxÞj: (B4)

The test is defined as follows:
(1) In the case of the test on a single data series, the null

hypothesis is that the data are realizations of a ran-
dom variable which is distributed according to the
given probability distribution. In the case of two
data series, the null hypothesis is that the two data
series are realizations of the same random variable,
which means their ECDFs should tend to the same
CDF. The test rejects or accepts the null hypothesis
on the basis of the analysis of dnm.

(2) A significance level � is defined as the probability
that the test rejects the null hypothesis when it is
indeed true.

(3) The test can be formulated in terms of critical
values. The critical value for the test is the value
of dKð�Þ corresponding to the significance level.
Then, if dK > dKð�Þ, the null hypothesis is rejected.

KS theory was formulated for independent data sets
and the available equations for critical values are valid
only if this condition is satisfied [16]. The test can be
formulated also in the presence of data correlation but
the distortion to dK statistic introduced should be taken
into account. This is possible if an effective value for K is
introduced as Keff ¼ �K, with � a shape parameter de-
pending only on the data correlations and the required
significance level. Alternatively, realistic critical values
can be calculated with dedicated MC simulations [34].
The advantage of the shape parameter � is that it depends
only on correlations and the required significance level.
Therefore, it can be determined for a specific spectrum
(e.g., white noise) and shared among a wide family of
spectral shapes. Once � is known, it can be used to
calculate critical values for correlated data using standard
equations reported in the literature [16].
Focusing on the particular problem, we performed a

Monte Carlo estimation of dKð�Þ for WOSA spectra rep-
resentative of LPF. The number of frequency data consid-
ered is Nf ¼ 341, corresponding K values are K ¼ Nf in

the case of the test against a theoretical distribution and
K ¼ Nf=2 in the case of the test between two ECDFs. The

results are summarized in Table II. In the same table, we
report the values of � that are required to obtain proper
critical values from the standard equations in the case of
the test against a theoretical distribution.
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APPENDIX C: IR TEST

The statistics of the IR excess noise estimator are nu-
merically estimated with a Monte Carlo simulation on the
spectral data used for the present paper. Data series are 24-
hour-long synthetic reconstructions of the force per unit
mass expected on the TMs. WOSA spectra are calculated
with Ns ¼ 4 averages on 50% overlapped segments which
were windowed with the Blackman-Harris window.
Results are reported in Table III.

APPENDIX D: CONVERSION
OF DISPLACEMENT NOISE

LPF can be considered as a three-body controlled system
composed of the two TMs and the SC. Its equations of
motion along the measurement axis can be written as

m1 €x1 þm1 €xsc þm1!
2
1x1 ¼ f1;

m2 €x2 þm2 €xsc þm2!
2
2x2 ¼ f2 þ fc2;

msc €xsc �m1!
2
1x1 �m2!

2
2x2 ¼ fsc � fc2 þ fcsc:

(D1)

Here,

(i) x1 and x2 are TMs coordinates along the sensitive
axis. They are relative coordinates in the SC refer-
ence frame.

(ii) xsc is the absolute SC coordinate along the sensitive
axis.

(iii) m1, m2, andmsc are the masses of the two TMs and
of the SC.

(iv) !2
1 and !

2
2 are the parasitic stiffnesses coupling the

TMs and the SC. The TMs are coupled to the
spacecraft through the parasitic stiffness thus pro-
ducing an oscillator-like equation of motion. The
spacecraft at the same time experiences reaction
forces given by �m1!

2
1x1 and �m2!

2
2x2.

(v) f1, f2, and fsc are the forces acting on TMs and SC,
respectively.

(vi) fc2 and fcsc are control forces on the second TM
and the SC, respectively. Since fc2 is an internal
force to the system, the SC experiences a reaction
force �fc2.

(vii) Dots over symbols represent time derivatives.
In the main LPF science operation mode, one TM (in-

dicated here as TM1) is in free fall and provides the
reference for the other TM (TM2) and the SC. In order to
avoid unwanted drifting, both TM2 and the SC are con-
trolled to follow TM1. It is worth noting that the system is,
by construction, symmetric and the role of the two TMs
can be inverted. In order to avoid confusion, we indicate
with TM1 the free-fall reference and with TM2 the actuated
TM.
Moving to the Laplace domain, substituting for the SC

dynamics and substituting for the differential coordinate
x� of TM2 with respect to TM1, the Eq. (D1) can be
rewritten as

s2x1!
2
1

�
1þ m1

msc

�
x1 þ!2

2

m2

msc

x1 þ!2
2

m2

msc

x�

¼ f1
m1

� fsc
msc

þ 1

msc

H2o� � 1

msc

Hsco1;

s2x� þ ð!2
2 �!2

1Þx1 þ!2
2x� ¼ f2

m2

� f1
m1

þ 1

m2

H2o�:

(D2)

Here,
(i) o1 and o� are output displacement signals as pro-

vided by the interferometer readout system. o1 is
the displacement between the SC and the TM1. o�
is the displacement of TM2 relative to TM1.

(ii) H2 and Hsc are transfer functions of the control
systems on TM2 and SC. The force applied by
the controllers is calculated on the basis of the
output displacement, therefore fc2 ¼ H2o� and
fcsc ¼ Hsco1.

Calculations can be more easily performed if we intro-
duce a matrix notation:

TABLE II. Table of KS critical values for correlated spectral
data. Critical values are calculated with a Monte Carlo simula-
tion for different values of the significance level �. Data sets
used are representative of the data analyzed in the current paper.
We reported the values for testing an ECDF against a theoretical
CDF (K ¼ Nf) and the values for testing two ECDFs for the

same limiting CDF (K ¼ Nf=2). We also reported the values of

the shape parameter beta that can be used to calculate proper
critical values from standard equations in the case of correlated
data. � refers to the significance level whereas 1� � is the
corresponding confidence level for the test. Nf ¼ 341.

� 1� � K ¼ Nf � K ¼ Nf=2

0.32 0.68 0.0643 0.65 0.0723

0.10 0.90 0.0863 0.58 0.0910

0.05 0.95 0.0969 0.55 0.1006

0.01 0.99 0.1214 0.52 0.1191

TABLE III. Table of confidence bounds for the IR estimator on
correlated spectral data. The values are calculated with a
Monte Carlo simulation for different values of the significance
level �. Data sets used are representative of the data analyzed in
the current paper. The number of frequency points is Nf ¼ 341,

corresponding to the number of available spectral data in the
range [0.1, 10] mHz, for a time series 24 h long and number of
averages for the WOSA estimator Ns ¼ 4.

� 1� � xlw xup

0.32 0.68 325.88 357.41

0.10 0.90 316.33 367.28

0.05 0.95 311.33 372.55

0.01 0.99 300.48 380.69
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x ¼ x1
x�

� �
; (D3)

o ¼ o1
o�

� �
; (D4)

f ¼
f1
f2
fsc

0
@

1
A; (D5)

D ¼ s2 þ!2
1 þ m1

msc
!2

1 þ m2

msc
!2

2
m2

msc
!2

2

!2
2 �!2

1 s2 þ!2
2

 !
; (D6)

G ¼
1
m1

0 � 1
msc

� 1
m1

1
m2

0

 !
; (D7)

C ¼ � 1
msc

1
msc

0 1
m2

 !
; (D8)

H ¼ Hsc 0
0 H2

� �
: (D9)

With the notation introduced, the equation of motion can
be rewritten:

D 	 x ¼ G 	 fþC 	H 	 o: (D10)

Then, we should consider that the output displacement o
corresponds to the measurement of x provided by the
sensing system:

o ¼ S 	 xþ orn: (D11)

Here, S is a 2� 2 sensing matrix and orn is the readout
noise.

Substituting Eq. (D11) into Eq. (D10), the dynamics can
be rewritten in terms of the known output o:

D 	 S�1 	 o�C 	H 	 o ¼ G 	 fþD 	 S�1 	 orn: (D12)

The quantity G 	 f represents the force per unit mass
acting on the test masses. Such a quantity is not directly
known from the system output since the available signal
is o. From Eq. (D12), it is readily seen that an effective
force per unit mass acting on the TMs can be reconstructed

from the knowledge of o if the force applied by the control
system (C 	H 	 o) is calculated and subtracted from the
reconstructed dynamics D 	 S�1 	 o. Therefore, the avail-
able quantity is g ¼ G 	 fþD 	 S�1 	 orn which contains
the force per unit mass acting on the TMs corrupted by the
readout noise of the system.
The expected values for g can be obtained thanks to the

dynamics reported in Eq. (D12) once the expected values
for f and orn are known. The same applies to the projection
of the noise spectra for f and orn to g.

APPENDIX E: HUBER’S NORM

Huber’s norm [35] is a way to construct a goodness-of-fit
estimator which is more robust to outliers and non-
Gausianity than the standard MSE. The norm is con-
structed as

P
i�ðriÞ, where ri are the residuals between a

data series and a parametric model. The function �ðriÞ is
defined as

�ðriÞ ¼
8<
:

1
2 r

2
i for jrij< c

cjrij � 1
2 c

2 for jrij 
 c:
(E1)

The value of the threshold constant cmay depend on the
given data set, therefore some efforts must be spent to
select the value of c providing the most accurate results.
Normalized residuals are defined as ri ¼ ðPWOSAðfiÞ �
Saðfi; �ÞÞ=Saðfi; �Þ in accordance to the MSE definition
in Sec. VC. With such a definition, residuals are expected
to be zero mean and unitary variance in correspondence of
the true model Saðfi; �Þ. Different values of c were tested
with a Monte Carlo estimation on the first 1000 data of the
analysis reported in Sec. VC. Huber’s norm is minimized
for each MC iteration and the corresponding values of the
parameter � are stored. The histogram of � shows a mean
steadily fixed on 0.13 for values of c ranging from 0.001 to
0.1. Increasing the value of c, the distribution starts to shift
toward the distribution obtained with MSE minimization.
MSE and Huber distributions are practically undistinguish-
able for values c > 2. Since the true value for the parameter
� is set to 0.1, Huber’s norm is performing better for values
c < 0:1. It was then decided to use the value c ¼ 0:05 for
the final analysis reported in Fig. 5.
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