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We discuss various formulations of null polygons in full, nonchiral N ¼ 4 superspace in terms of

spacetime, spinor, and twistor variables. We also note that null polygons are necessarily fat along

fermionic directions, a curious fact which is compensated by suitable equivalence relations in physical

theories on this superspace.
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I. INTRODUCTION

Recently, lightlike Wilson loops inN ¼ 4 super Yang-
Mills theory have become a focus of attention because of
their surprising duality to scattering amplitudes (see [1]
and the special issue [2] for reviews). This duality was
inspired by the strong coupling computation of Alday
and Maldacena [3] and later understood as a fermionic
T-duality (see [4] and also [5]). At weak coupling the
duality was confirmed in Ref. [6]. See also Ref. [7] for a
proof that the chiral supersymmetricWilson loop yields the
same integrand as the scattering amplitudes, as obtained in
Ref. [8].

In the beginning, the duality was between Wilson loops
and color-ordered maximal helicity violating (MHV) scat-
tering amplitudes divided by their tree-level value. But the
scattering ampli MHV they contain nilpotent invariants
when written in superspace. It was then natural to try to
build a modified lightlike Wilson loop which reproduces
these nilpotent invariants. Mason and Skinner constructed
such a super Wilson loop in twistor space and explicitly
worked out its spacetime form to the first two orders in � [9]
while Caron-Huot constructed a spacetime version in [10].

All of the above constructions for the superWilson loops
either in spacetime or twistor space have been chiral. In a
chiral formalism the parity symmetry is not manifest and,
for example, the Q and �Q supercharges act in a different
way. In Ref. [11] Caron-Huot has considered the implica-
tions of a nonchiral formulation. He found that it is pos-
sible to repair the non-invariance of the remainder function
under �Q by adding a dependence on an antichiral ��
Grassmann variable. The fact that such an expansion in ��
is possible had remarkable consequences; using it, Caron-
Huot was able to make a prediction for the two-loop
Grassmann weight-zero part of the super Wilson loop.

This hints that it should be possible to build a super
Wilson loop in full superspace. This belief is reinforced by

constructions of lightlike correlation functions [12] which
naturally live in full superspace. However, until now the
consequences of this extension to full superspace have not
be worked out in the correlation functions approach.
In this paper we set to construct a null polygonal Wilson

loop in full superspace. As we will show below, this is not
completely straightforward since there is no natural notion
of straight lightlike curves in superspace which are pre-
served by superconformal symmetry. This is in contrast to
the bosonic case where lightlike lines are preserved by
conformal transformations. Instead, we realize that we
should add eight fermionic directions to obtain ‘‘fat’’ null
lines with dimension 1j8. These fat lines are preserved by
superconformal transformations. Importantly, all curves on
them are physically equivalent: All superparticle trajecto-
ries are equivalent by means of �-symmetry and likewise
Wilson lines due to a flatness constraint of the superspace
connection. Fat lines intersect pairwise in points of full
superspace, which are the vertices of our null polygon.
This spacetime picture can be transformed to ambitwis-

tor space, which is a nonchiral version of twistor space.
Unfortunately, the ambitwistor theory is poorly understood
so this construction cannot yet be used to directly compute
expectation values. However, we hope that, by comparing
to spacetime computations we will be able to learn how to
do perturbation theory in ambitwistor space. In a compan-
ion paper [13] we perform a one-loop computation in
spacetime.
Most of the above mentioned facts are known from

various considerations ofN ¼ 4 super Yang-Mills theory.
Here we shall collect and review the geometrical facts
which are required towards the computation of Wilson
loop expectation values for null polygons in full N ¼ 4
superspace. We shall (re)derive them from a purely geo-
metrical perspective, and only later connect them to
physics.
This paper is organized as follows. We start in Sec. II by

introducing aspects of N ¼ 4 extended superspace. We
then discuss useful parametrizations of null polygons in
terms of its vertices, spinor variables, and twistor variables
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in Sec. III. A proper definition of the polygon’s edges in
terms of fat null lines is the subject of Sec. IV. In Sec. V we
review how to make physical sense of the segments’ fatness.
We conclude in Sec. VI where we also comment on the
duality between our Wilson loop and scattering amplitudes.

II. SUPERSPACE

We define full (nonchiral) D ¼ 4, N ¼ 4 superspace
and outline its conformal transformations.

A. Superspace

Superspace is formulated using spacetime spinors,
therefore let us specify convenient conventions to deal
with them in four dimensions. All objects will have definite
types and positions of spinor indices. For instance, space-
time coordinates x are represented by a 2� 2 Hermitian
matrix after multiplying with the four-dimensional Pauli
matrices �

x� _� ¼ �� _�
� x� ¼ tþ z x� iy

xþ iy t� z

 !
: (2.1)

Our notation has no implicit rules to move indices to
desired places. Indices can be swapped by transposition
( T ), or raised and lowered by the Lorentz-invariant anti-

symmetric matrices

"�� ¼ " _� _� ¼ "�� ¼ " _� _� ¼ 0 þ
� 0

 !
: (2.2)

E.g. "2 ¼ �1 will hold for all suitable types of ". It is also
used to construct the vector products, for example,

x"xT ¼ �x2"; xT"x ¼ �x2": (2.3)

Here x2 refers the vector norm which we define as x2 :¼
x � x ¼ �t2 þ x2 þ y2 þ z2, i.e. the signature of spacetime
is �þþþ .

Full nonchiralN ¼ 4 superspace in D ¼ 4Minkowski
space has a set of 4j16 real coordinates

X ¼ ðx� _�; ��a; ��b
_�Þ: (2.4)

We usually do not specify indices, and take x to be a
Hermitian 2� 2 matrix, while � and �� are Hermitian
conjugate 2� 4 and 4� 2 matrices, respectively,

xy ¼ x; �y ¼ ��; ��y ¼ �: (2.5)

We follow the convention that in (3, 1) Minkowski signa-
ture, a symbol with bar will denote the complex conjugate
of the same symbol without bar, up to some simple ma-
nipulations. All our considerations will be perfectly valid
in Minkowski signature, although reality conditions will
not play a significant role. For most purposes we may work
as well with the complexified superspace where x, �, �� are
assumed to be unrelated complexmatrices. Equivalently, in
(2, 2) split signature, x, �, �� are unrelated real matrices.

The displayed reality conditions, however, will always
refer to (3, 1) Minkowski signature.
For future use, it makes sense to define the chiral coor-

dinates x�

x� :¼ x� i� ��: (2.6)

The two pairs of (complex conjugate) coordinates ðxþ; �Þ
and ðx�; ��Þ define chiral and antichiral superspace. They
obey the useful identities

xþ þ x� ¼ 2x; xþ � x� ¼ 2i� ��: (2.7)

B. Conformal transformations

Our construction of null lines involves superconformal
transformations. We begin by specifying the translation
generators P, Q, �Q corresponding to the three coordinates
x, �, �� of superspace

P _�� ¼ @

@x� _�
;

Qa� ¼ @

@��a
� i ��a

_� @

@x� _�
;

�Q _�
b ¼ � @

@ ��b
_�
þ i��a

@

@x� _� :

(2.8)

For our purposes it will be more convenient to use the
language of variations. Define the variation generator � :¼
TrðcQÞ þ Trð �Q �c Þ with variation parameters c , �c . The
corresponding bosonic shift follows by anticommuting two
fermionic shifts, and we can safely disregard it. The var-
iations of the various superspace coordinates read

�x ¼ �ic ��þ i� �c ; �� ¼ c ; � �� ¼ �c ;

�xþ ¼ 2i� �c ; �x� ¼ �2ic ��: (2.9)

The representation of superconformal boosts is neither
obvious nor simple. We use a conformal inversion instead,
and derive the boosts from it. The conformal inversion is
most conveniently specified in terms for the chiral and
antichiral coordinates

x� � "ðx�TÞ�1";

� � �"ðx�TÞ�1 ��TM;

�� � M�1�TðxþTÞ�1":

(2.10)

HereM is some 4� 4 symmetric unitary matrix (MT ¼ M,
My ¼ M�1) to specify the action on the fermionic coor-
dinates. This matrix is necessary for correct transforma-
tions under R-symmetry. It is noncanonical since the
inversion can be redefined to consist of the initial inversion
operation followed by an R-symmetry transformation. The
constraint MT ¼ M is necessary for the inversion trans-
formation to square to the identity. The inversion of x
follows consistently
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x � "ðx�TÞ�1xTðxþTÞ�1": (2.11)

The representation of boost generators K, S, �S equals
translations conjugated by inversions. The calculation is
somewhat lengthy, we merely specify the final result in the
language of variations

�x ¼ �i� �	"xþ � ix�"	 ��;

�� ¼ xþ"	� 2i� �	"�;

� �� ¼ � �	"x� � 2i ��"	 ��;

�xþ ¼ �2i� �	"xþ;

�x� ¼ �2ix�"	 ��:

(2.12)

Here, the variation parameters 	, �	 correspond to �S, S,
respectively.

C. Null intervals

We will be interested in polygons with lightlike seg-
ments, so let us discuss intervals Xj;k ¼ ðxj;k; �j;k; ��j;kÞ
between two points Xj ¼ ðxj; �j; ��jÞ and Xk ¼ ðxk; �k; ��kÞ
in superspace, their transformations and the null condition.
In flat bosonic Minkowski space, intervals would simply be
differences of Cartesian coordinates. However, due to
superspace torsion, the definition of intervals in superspace
includes quadratic terms in the fermionic coordinates
in xj;k

xj;k :¼xk�xj� i�k ��jþ i�j ��k;

�j;k :¼�k��j; ��j;k :¼ ��k� ��j: (2.13)

The quadratic terms are required to restore exact invariance
under superspace translations (2.9). Under superspace
boosts (2.12) the interval transforms as follows:

�xj;k ¼ �ixj;k"	ð ��j þ ��kÞ � ið�j þ �kÞ �	"xj;k þ �j;kð �	"�j;k � ��j;k"	Þ ��j;k;
��j;k ¼ þxj;k"	þ i�j;kð ��j þ ��kÞ"	� i�j;k �	"ð�j þ �kÞ � ið�j þ �kÞ �	"�j;k;
� ��j;k ¼ � �	"xj;k þ i �	"ð�j þ �kÞ ��j;k � i ��j;k"	ð ��j þ ��kÞ � ið ��j þ ��kÞ"	 ��j;k:

(2.14)

A suitable definition for null intervals in superspace
consists of the following three conditions:

x2j;k ¼ 0; xTj;k"�j;k ¼ 0; ��j;k"x
T
j;k ¼ 0: (2.15)

All three of them are required if one insists that the null
conditions remain stable under superconformal transfor-
mations: Translation-invariance (2.9) holds by construction
of the superspace interval. Invariance under superconfor-
mal boosts (2.12) holds as well, but the confirmation in
terms of (2.14) requires some patience.

The above null conditions imply a host of further rela-
tions or formulations. For instance, (2.15) states that the
spinor indices of �j;k and ��j;k are collinear with the respec-

tive spinor index of xj;k. This implies the further orthogo-

nality relations among the fermionic intervals

�Tj;k"�j;k ¼ 0; ��j;k" ��Tj;k ¼ 0: (2.16)

However, note that the difference of bosonic coordinates
xk � xj is not exactly null, but rather ðxk � xjÞ2 ¼
�Trð�j;k ��j" ��Tj;k�

T
j "Þ.

Also for the chiral coordinates (2.6) there exist useful
definitions of intervals, namely ðxþj;k; �j;kÞ, ðx�j;k; ��j;kÞ and
the mixed chiral interval xþ�

j;k ¼ �x�þ
k;j with

xþj;k :¼ xþk � xþj ;

x�j;k :¼ x�k � x�j ;

xþ�
j;k

:¼ x�k � xþj þ 2i�j ��k ¼ xj;k � i�j;k ��j;k;

x�þ
j;k

:¼ xþk � x�j � 2i�k ��j ¼ xj;k þ i�j;k ��j;k:

(2.17)

The null condition can be formulated in terms of chiral
and antichiral intervals

ðxþj;kÞ2¼0; xþ;T
j;k "�j;k¼0; �Tj;k"�j;k¼0;

ðx�j;kÞ2¼0; ��j;k"x
�;T
j;k ¼0; ��j;k" ��Tj;k¼0;

ðxþ�
j;k Þ2¼0:

(2.18)

III. NULL POLYGONS IN SUPERSPACE

The definition of null polygons in bosonic Minkowski
space is straightforward. The lift to extended superspace is
however not so obvious due to torsion. Here we construct
null polygons in superspace and present three useful
parametrizations.

A. Vertices

A polygon in superspace is specified through a sequence
of vertices Xk ¼ ðxk; �k; ��kÞ, k ¼ 1; . . . ; n; see Fig. 1. For a
null polygon we demand that the segment between two
adjacent vertices is null, cf. Sec. II C,

x2k;kþ1¼0; xTk;kþ1"�k;kþ1¼0; ��k;kþ1"x
T
k;kþ1¼0:

(3.1)

The polygon is closed, hence we identify vertex nþ 1with
vertex 1, and more generally vertex numbers will be con-
sidered modulo n.
Let us count the degrees of freedom of the polygon.

Each vertex contributes 4j16 degrees of freedom. The null
condition for each segment amounts to 1j8 constraints. In
total, the polygon thus has 3nj8n degrees of freedom.

GEOMETRY OF NULL POLYGONS IN FULL N ¼ 4 . . . PHYSICAL REVIEW D 86, 026006 (2012)

026006-3



B. Spinor variables

For the segment between vertices k and kþ 1 of the
polygon, we solve the null condition in terms of spinor
helicity variables �k :¼ ð
k; �
k; �k; ��kÞ; see Fig. 1 for the
labelling of vertices and edges. The 
’s are 2-component
bosonic vectors, the �’s are 4-component fermionic vec-
tors. The general solution reads

xk;kþ1¼
k
�
k; �k;kþ1¼
k�k; ��k;kþ1¼ ��k

�
k: (3.2)

Compatibility with the reality condition (2.5) implies the
following complex conjugation properties:


y
k ¼ � �
k; �y

k ¼ � ��k; (3.3)

with a common sign for both relations. The above parame-
trization is invariant under the rescaling (reality conditions
imply that z is a pure complex phase)


k� zk
k; �
k� z�1
k

�
k; �k� z�1
k �k; ��k� zk ��k:

(3.4)

Thus, we have 3j8 degrees of freedom for each segment,
but 4j16 constraints for the closure of the polygon. In total
there are ð3n� 4Þjð8n� 16Þ degrees of freedom for the
spinor variables. As the spinor variables are invariant under
translations, a reference vertex provides the remaining 4j16
degrees of freedom for the polygon.
Let us next derive the superconformal transformations of

the spinor variables. As the intervals are translation-
invariant, so are the spinor variables. For the superconfor-
mal boosts, we substitute the definition (3.2) into the boost
transformation of the interval (2.14)

�ð
k
�
kÞ ¼ 
kð�ið1� i�k ��kÞð �
k"	 ��kÞ �
k � 2i �
k"	 ��kÞ þ ð�ið1þ i�k ��kÞð�k �	"
kÞ
k � 2i�k �	"
kÞ �
k;

�ð
k�kÞ ¼ 
kðð1þ i�k ��kÞ �
k þ 2i�k
��kÞ"	� 2i
k�k �	"�k � 2i
k�k �	"
k�k � 2i�k �	"
k�k;

�ð ��k
�
kÞ ¼ �2i ��k

�
k"	 ��k � 2i ��k"	 ��k
�
k � 2i ��k

�
k"	 ��k
�
k þ �	"ð�ð1� i�k ��kÞ
k þ 2i�k ��kÞ �
k:

(3.5)

These transformations can be split up into boost transformations for the spinor variables essentially because the null
condition is superconformally invariant

�
k ¼ þiTrð	 ��k � �k �	Þ
k � ið1þ i�k ��kÞð�k �	"
kÞ
k � 2i�k �	"
k;

� �
k ¼ �iTrð	 ��k � �k �	Þ �
k � ið1� i�k ��kÞð �
k"	 ��kÞ �
k � 2i �
k"	 ��k;

��k ¼ �iTrð	 ��k � �k �	Þ�k þ ð1þ i�k ��kÞ �
k"	þ 2i�k
��k"	

� ið1� i�k ��kÞð�k �	"
kÞ�k � 2i�k �	"�k;

� ��k ¼ þiTrð	 ��k � �k �	Þ ��k � ið1þ i�k ��kÞð �
k"	 ��kÞ ��k � 2i ��k"	 ��k

� ð1� i�k ��kÞ �	"
k þ 2i �	"�k ��k:

(3.6)

Here the �’s parametrize the transformation of the unphysical degree of freedom in (3.4).

C. Twistor variables

The above boost transformations of the spinor variables (3.6) are somewhat intransparent. It is convenient to
introduce so-called momentum twistor variables [14] (cf. reviews in [15,16]) to parametrize our null polygon. They
will turn out to transform nicely. A momentum twistor Wk and its conjugate �Wk are complex projective 4j4 vectors
defined by

Wk :¼
�
� i

2

T
k ";�k; �k

�
; �k :¼ 
T

k "x
þ
k ; �k :¼ 
T

k "�k;

�Wk :¼
�
��k;� i

2
" �
T

k ; ��k

�
; ��k :¼ �x�k " �
T

k ; ��k :¼ � ��k" �
T
k :

(3.7)

FIG. 1. Null polygon as a sequence of points in superspace
connected by null line segments. Indicated are the vertices Xk

and spinor variables �j corresponding to the edges Xj ! Xjþ1.
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Reality conditions for the twistors follow from (2.5) and (3.3). They impose the Hermitian signature (2, 2j4) on ðWk; �WkÞ by
means of a conjugation matrix C written in 2, 2, 4 block form1

Wy
k ¼ �C �Wk; C ¼

0 1 0

1 0 0

0 0 1

0
BB@

1
CCA: (3.8)

As before, the superconformal transformations follow by substituting the definitions. For translations we obtain from
(2.9) simply

�
T
k ¼ 0; � �
T

k ¼ 0;

��k ¼ 
T
k "c ; � ��k ¼ � �c " �
T

k ;

��k ¼ 2i�k
�c ; � ��k ¼ �2ic ��k: (3.9)

Boosts follow from (2.12) and (3.6)

�
T
k ¼ �k


T
k þ 2i�k �	; � �
T

k ¼ ��k
�
T
k � 2i	 ��k;

��k ¼ �k�k þ�k"	; � ��k ¼ ��k ��k � �	" ��k;

��k ¼ �k�k; � ��k ¼ ��k ��k: (3.10)

The�’s correspond to rescalings of the twistorsWk and �Wk. Due to the projective nature of twistors, the�’s are inessential,
we can nevertheless state their expression in terms of spinor variables

�k :¼ þiTrð	 ��k � �k �	� 2"�k �	Þ � ið1þ i�k ��kÞð�k �	"
kÞ;
��k :¼ �iTrð	 ��k � �k �	þ 2	 ��k"Þ � ið1� i�k ��kÞð �
k"	 ��kÞ:

(3.11)

In summary, the twistors Wk and �Wk transform as projec-
tive fundamental and antifundamental representations of
the superconformal algebra psuð2; 2j4Þ.

It is now straightforward to construct the projective
invariants

Wj
�Wk ¼ � i

2

T
j " ��k � i

2
�j" �
T

k þ �j ��k

¼ i

2

T
j "ðx�k � xþj þ 2i�j ��kÞ" �
T

k ¼ i

2

T
j "x

þ�
j;k " �
T

k :

(3.12)

They transform as �ðWj
�WkÞ ¼ ð�j þ ��kÞWj

�Wk. Proper

invariants can be obtained as functions of these with van-
ishing weights in each of the twistors variables Wk and,
separately, their conjugates �Wk.

Note that these momentum twistor variables are con-
strained. By virtue of (2.7) one finds

Wk
�Wk ¼ � i

2

T
k "ðxþk � x�k � 2i�k ��kÞ" �
T

k ¼ 0: (3.13)

This means that the pair Wk, �Wk actually defines a (real)
ambitwistor. Likewise one finds that contractions of adja-
cent twistors vanish

Wk
�Wkþ1 ¼ þ i

2

T
k "
kð1� i�k ��kÞ �
k" �
T

kþ1 ¼ 0;

Wkþ1
�Wk ¼ � i

2

T
kþ1"
kð1þ i�k ��kÞ �
k" �
T

k ¼ 0:
(3.14)

We shall refer to a sequence Wk, �Wk, k ¼ 1; . . . ; n, subject
to the constraints

Wj
�Wk ¼ 0 for jj� kj � 1 (3.15)

as momentum ambitwistors [14].
We can now count the real degrees of freedom of the

twistor variables. Both Wk and �Wk contribute 4j4 degrees
of freedom. Independent rescalings of Wk and �Wk elimi-
nate two degrees of freedom, and the ambitwistor condi-
tion a third one. Each ambitwistor thus has 5j8 degrees of
freedom. There are two additional constraints for each pair
of adjacent vertices, leaving 3nj8n degrees of freedom.
This matches precisely the previous counting for the null
polygon. It shows that a null polygon in superspace is
described by a sequence a momentum ambitwistors.

D. Comparison

We have discussed three different formulations for null
polygons in superspace:
(i) The first one specifies the vertices Xk ¼ ðxk; �k; ��kÞ.

Two adjacent vertices are constrained to be null-
separated.

1The sign in the reality condition specifies an orientation of the
corresponding polygon segment. The conjugation property can
be fixed to Wy

k ¼ C �Wk by rescaling the definition of �W by �1.
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(ii) The second formulation specifies the segments in
terms of spinor variables�k ¼ ð
k; �
k; �k; ��kÞ. The
null conditions are automatically satisfied, but
constraints are needed to guarantee closure of the
polygon. This formulation is invariant under trans-
lations, a reference vertex is needed to locate the
polygon in superspace.

(iii) A final description uses momentum ambitwistors
ðWk; �WKÞ to describe the segments and vertices.
Three constraints per segment are needed to guar-
antee that the segments intersect properly.

In all cases, the polygon is described by 3nj8n degrees of
freedom, and we displayed their relations explicitly.

Let us compare this to the case of null polygons in chiral
superspace which has 4j8 coordinates only (the antichiral
case is equivalent). The above discussion fully applies
through projection of the full superspace ðx; �; ��Þ onto
the chiral subspace ðxþ; �Þ; in effect, one disregards all
��’s, ��’s and �W’s. The chiral null polygon is then described
by 3nj4n degrees of freedom. There is, however, one note-
worthy difference:When discarding the �W’s, all constraints
on chiral momentum twistors drop out. Unconstrained
chiral momentum twistors provide all the necessary
3nj4n degrees of freedom of the polygon! This crucial
benefit comes along with the minor shortcoming that chiral
superspace requires either (2, 2) split signature or complex
Minkowski space. If reality conditions for (3, 1) signature
are imposed on chiral momentum twistors, one indeed
recovers the conjugate twistors along with the constraints.

Finally, we compare these two cases to the purely bo-
sonic case by disregarding all fermionic components. The
bosonic null polygon is described by 3n degrees of free-
dom. The formulation in terms of momentum twistors is
equivalent to the formulation in terms of momentum am-
bitwistors. The two are related by the identification �Wk;A ¼
"ABCDW

B
k�1W

C
k W

D
kþ1 up to an inessential factor. It auto-

matically implies the momentum ambitwistor constraints
(3.15). Unfortunately, in the supersymmetric case, the
tensor "ABCD is not invariant, and a supersymmetrization
does not exist. Hence, we are forced to use the ambitwistor
formulation for the full superspace.

IV. FAT NULL POLYGONS

Next we wish to define the null polygon curve. Here we
encounter an interesting surprise.

A. Thin segments

So far we have merely defined the vertices. Two adjacent
vertices k and kþ 1 are null-separated, and we shall con-
nect them by a null curve. The obvious choice is

xð
Þ ¼ xk þ ð
k
�
k þ i
k�k

��k � i�k ��k
�
kÞ
;

�ð
Þ ¼ �k þ 
k�k
;

��ð
Þ ¼ ��k þ ��k
�
k
:

(4.1)

Unfortunately, it turns out that this kind of curve is not
stable under a superconformal boost transformation: In the
above curve all coordinates are linear in 
. After the trans-
formation, the coordinates are not linear. In the bosonic
case, a compensating reparametrization 
 ! 
0 is required
to recover linearity. In the extended supersymmetric case,
such a reparametrization does not exist in general. To see
this, let us consider �ð
Þ. The second derivative €� origi-
nally vanishes. For the boost (2.12) of the curve we find

d2��

d
2
¼ 2ið�k ��kÞ
k

�
k"	� 4ið�k �	"
kÞ
k�k ¼? d2�


d
2
_�:

(4.2)

The identity on the right-hand side is the condition for
linearity up to reparametrization of 
. The second term in
the middle is indeed of the desired form with d2�
=d
2 ¼
�4ið�k �	"
kÞ because _� ¼ 
k�k. The first term in the
middle, however, is not. It would require 	 to be collinear
to �k which generically does not hold, certainly not for all
polygon segments. In conclusion, boost transformations
map polygons constructed from naive straight null seg-
ments (4.1) to some other shape, cf. Fig. 2. Furthermore,
we did not find a suitable alternative definition for straight
null curves which has this stability property. This may
seem unfortunate because Wilson loops on such null poly-
gons would appear not to transform nicely, and we could
not make use of superconformal symmetry. As we shall see
shortly, this in fact does not pose a problem.

B. Fat null lines

There is an alternative characterization of straight null
lines in bosonic spacetime which we can use for super-
space as well: Consider two fixed points x0 and x1 which
are null-separated. A straight null line passing through x0
and x1 is the set of all points x which are null-separated
from both x0 and x1. This defines a straight line because
any three null vectors x� x0, x1 � x and x0 � x1 in
Minkowski space which add up to zero are necessarily
collinear. This definition is manifestly conformal because
the null condition is. Moreover it carries over to superspace
straightforwardly.
Consider therefore two null-separated points X0 and X1

in superspace. According to (3.2) we can write the super-
space interval (2.13) as x0;1 ¼ 
 �
, �0;1 ¼ 
�, ��0;1 ¼ �� �
 .

FIG. 2. Conformal transformations in superspace map straight
null line segments to curved ones.
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This provides us with a parametrization of X1 in terms of
X0 and the spinors 
, �
, �, ��

x1¼x0þ
 �
þ i
� ��0� i�0 �� �
; �1¼�0þ
�;

��1¼ ��0þ �� �
:
(4.3)

All points X at null-separation to X0 must therefore be
of the same form but with different 
0, �
0, �0, ��0. Null-
separation from X1 then merely forces 
0 � 
 and �
0 � �
.
Hence we can write the most general solution as

x¼x0þ

 �
þ i
� ��0� i�0 �� �
; �¼�0þ
�;

��¼ ��0þ �� �
:
(4.4)

The solution Xð
; �; ��Þ is parametrized explicitly through
one bosonic coordinate 
 and a pair of complex conjugate
4-component fermionic coordinates ð�; ��Þ. Curiously, the
null line in superspace is ‘‘fattened’’ by 8 fermionic coor-
dinates; see Fig. 3, cf. [17,18].2

The fatness of the null line explains our difficulty in
finding a proper straight line between two null-separated
vertices. With regard to superconformal transformations, a
fat null line is a very natural object, its shape manifestly
remains stable. Conversely, there appears to be no distin-
guished submanifold of dimension 1j0. Our attempt (4.1)
to set � ¼ �
 and �� ¼ ��
 is one possibility, but there is
nothing that prevents conformal transformations from dis-
torting our choice. In Sec. V curves we shall explain that all
curves on a fat null line are physically equivalent. In other
words, a fat null line actually defines a physically unique
curve.

C. Ambitwistors

Before we continue with the physical implication of fat
lines, let us return to the insight that null polygons are
specified by a sequence of ambitwistors, and let us take it
seriously (see [15,16] for reviews of twistors and Ref. [19]
for an in-depth discussion of the relevant twistor space
geometry).

A twistorW ¼ ð� i
2


T";�; �Þ describes a null subspace
of superspace through the equations for the chiral coordi-
nates ðxþ; �Þ


T"xþ ¼ �; 
T"� ¼ �: (4.5)

These 2j4 equations constrain as many coordinates of
(complexified) superspace. Embedding the twistor into
chiral superspace, the dimension is 2j4. We can parame-
trize the solution explicitly through a 2-component bosonic
vector �� and a 4-component fermionic vector �

xþð ��; �Þ ¼ xþ0 þ 
 ��; �ð ��;�Þ ¼ �0 þ 
�: (4.6)

Here xþ0 , �0 are particular solutions of the inhomogeneous

equations. In full superspace, the antichiral coordinates ��
are unconstrained, and hence the dimension of the twistor
in full superspace is 2j12.
A conjugate twistor �W describes an analogous subspace

� x�" �
T ¼ ��; � ��" �
T ¼ ��: (4.7)

Superficially, the intersection of the subspaces given by W
and �W is a space of codimension 4j8, i.e. of dimension 0j8.
This simple consideration misses the fact that the two
twistor equations are generally incompatible because of
the relation (2.7) between xþ and x�. Compatibility re-
quires the ambitwistor condition W �W ¼ 0:

0 ¼ 
T"ðxþ � x� � 2i� ��Þ" �
T

¼ �" �
T þ 
T" ��þ 2i� �� ¼ 2iW �W: (4.8)

The resulting intersection is thus bigger by one bosonic
dimension, namely it has dimension 1j8; see Fig. 4 for an
illustration of the twistors and their intersection. Note that
the intersection is contained in real superspace. It is given
precisely by the above explicit parametrization of the fat

FIG. 3. A fat null line parametrized through one bosonic
coordinate 
 and 8 fermionic coordinates �, ��.

FIG. 4. A fat null line as the intersection of two complex
conjugate twistors W, �W. The twistor subspaces reside in com-
plexified superspace CM whereas their intersection is contained
in real superspace RM.

2The fattening (by 4 fermionic coordinates) also applies to null
polygons in chiral superspace.
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null line in (4.4). Note that the chiral coordinates x� both
take the predicted form (4.6) for chiral twistors for a
suitable choice of ��, �

xþ ¼ xþ0 þ 
ð
 �
þ i� �� �
þ2i� ��0Þ;
x� ¼ x�0 þ ð

� i� ��
� 2i�0 ��Þ �
:

(4.9)

Bosonically, an ambitwistor describes a null line. In
superspace, however, the null line is fattened by 8 real
fermionic coordinates; see Fig. 3. Under superconformal
transformations the ambitwistor ðW; �WÞ transforms as a
complex conjugate pair of projective fundamental repre-
sentations. The corresponding fat null line transforms
accordingly.

We have seen above that a null polygon in superspace
can be given in terms of a sequence of ambitwistors
ðWk; �WkÞ. Taken at face value, our polygon can be viewed
as a sequence of fat null lines. The additional conditions

Wk�1
�Wk ¼ Wk

�Wk�1 ¼ 0 (4.10)

ensure that two consecutive fat segments intersect.
Although they are fat, they generically intersect in a
(thin) point of dimension 0j0, namely the vertex Xk ¼
ðxk; �k; ��kÞ; see Fig. 5. This is how the vertices are specified
by a sequence of ambitwistors. Let us also remark that
there is a unique ambitwistor which connects two null-
separated points; see Fig. 6. This is how the ambitwistors
are specified by a sequence of vertices.

D. Dual polygon in ambitwistor space

A null polygon consists of a sequence of vertices and
edges. The vertices are points Xk ¼ ðxk; �k; ��kÞ in N ¼ 4

Minkowski superspace M ¼ R3;1 � C0j8 ¼ R3;1j16. As de-
scribed above, the edges are fat null lines in M.
Alternatively, the edges can be specified through a se-
quence of ambitwistors ðWk; �WkÞ. Now we can also view
an ambitwistor as a point in ambitwistor space Q. When
the latter points are connected by edges, we obtain a dual
polygon in ambitwistor space [15]. Let us briefly discuss
the nature of this dual polygon.

We specify an ambitwistor ðW; �WÞ through a twistor

W 2 C2;2j4nf0g and its complex conjugate �W, which is
hence not an independent quantity.3 Ambitwistors are
projectively identified, i.e. ðW; �WÞ ’ ðzW; �z �WÞ for any
z 2 C�. Moreover, they satisfy the condition W �W ¼ 0.
Altogether this defines a 5j8-dimensional real subspace

Q of the complex projective identification of C2;2j4nf0g;
see Fig. 7. The space Q will be called (real) ambitwistor
space (in the twistor space literature it is usually called the
space of projective null twistors PN).
Consider now the situation at a vertex of the polygon

in M. It is described by two fat null lines which meet
in a point. They correspond to two ambitwistors ðW; �WÞ
and ðW 0; �W 0Þ which obey the additional condition
W �W 0 ¼ W 0 �W ¼ 0 that makes the associated lines inter-
sect. The latter condition implies that all the points on
the CP1 joining ðW; �WÞ and ðW 0; �W 0Þ

ðzW þ z0W 0; �z �Wþ�z0 �W0Þ for all z; z0 2 C (4.11)

are also ambitwistors because they satisfy

ðzW þ z0W 0Þð�z �Wþ�z0 �W 0Þ ¼ z�zW �W þ z�z0W �W 0 þ z0 �zW 0 �W

þ z0 �z0W 0 �W 0 ¼ 0: (4.12)

In other words, the points W and W 0 are connected by a
CP1 which resides entirely within ambitwistor space Q.4

FIG. 5. Two fat null lines intersect in a (thin) point of dimen-
sion 0j0.

FIG. 6. Two null-separated points specify a unique twistor.

FIG. 7. The projective identification of points in C2;2j4nf0g
splits into three components CP1;2j4 (W �W>0), CP2;1j4
(W �W<0) and ambitwistor space Q (W �W ¼ 0). The latter
(conical surface) has real dimension 5j8.

3Very often in discussions of twistor space, the corresponding
Minkowski space is assumed to have complex or (2,2) split
signature. For our purposes there is no need to deviate from
real (3,1) signature in what follows. To translate the discussion to
complex signature one would complicate real spaces and double
complex spaces, e.g. R3;1 � C4 and CP1;2 � CP3 � CP3. To
translate to split signature instead, one chooses a different real
form for the complex spaces, e.g. R3;1 � R2;2 and CP1;2 �
RP3 � RP3.

4We thank David Skinner for pointing out this interpretation.
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Hence, the dual of two intersecting lines in M are two
points in Q joined by a CP1 inside Q.

We conclude that the dual of a null polygon in M is a
polygon in Q whose edges are CP1’s; see Fig. 8.
Incidentally the edges of the dual polygon are
2j0-dimensional, i.e. they are also fat, moreover along
bosonic directions. In fact, this duality is one-to-one be-
cause a CP1 inQ also describes precisely a single point in

M: A CP1 can be specified by two points W, W 0 2
C2;2j4nf0gwhich amounts to 16j16 real degrees of freedom.
They must satisfy the 4 real constraints W �W ¼ W �W 0 ¼
W 0 �W ¼ W 0 �W 0 ¼ 0. Furthermore, any pair of complex lin-
ear combinations of W and W 0 describes the same CP1

which removes another 8 real degrees of freedom. Hence,
the embedding of a CP1 into Q has 4j16 moduli which
represents a point in M. Geometrically, the CP1 is the
sphere which describes the set of all null directions around
a point.

Finally, let us daydream about a combination MQ of
Minkowski space M and ambitwistor space Q which may
have some use. The points of this space describe points in
M along with a null line that passes through the point.
Alternatively, it is a point inQ along with a CP1 inQ that
passes through the point. Both of these interpretations lead

to a dimension of 6j16 ¼ ð4j16Þ þ ð2j0Þ ¼ ð5j8Þ þ ð1j8Þ.
The space MQ can be called the space of null rays in M,
i.e. points together with a null direction. Technically, a
point in MQ is given by a point X ¼ ðx; �; ��Þ 2 M and
an ambitwistor ðW; �WÞ 2 Q subject to the conditions
specified in (4.5) and (4.7).
A null polygon can be mapped to this space as a polygon

with twice as many vertices and edges. The vertices inMQ
correspond to the rays at the beginning and end of each of
the edges. The edges connect the points along fibres of M
andQ in an alternating fashion; see Fig. 9. The nice feature
of this representation is that it includes both the spacetime
polygon and the twistor polygon as projections onto the
spaces M and Q, respectively.
Finally, we can note that the complications of the above

spaces have representations as various flag manifolds of

C4j4; see e.g. [19,20].5 Chiral twistor space CP3j4 equals
the flag manifold F1j0 while antichiral twistor space equals
the dual flag manifold F3j4. Chiral superspace corresponds
to F2j0 while antichiral superspace is the dual F2j4.
Combinations of these flags yield the above spaces in an
obvious fashion: Ambitwistor space is a combination of the
two chiral twistor spaces Q ¼ F1j0;3j4. Full superspace is a
combination of the two chiral superspaces M ¼ F2j0;2j4.
The space of null rays is MQ ¼ F1j0;2j0;2j4;3j4. The latter

three spaces are self-dual and they have real slices corre-
sponding to Minkowski signature.

V. CUVES ON FAT NULL LINES

In this section wewill review the physical equivalence of
all curves on a fat null line for the cases of the trajectory of
the N ¼ 4 supersymmetric particle and for Wilson lines
in N ¼ 4 supersymmetric Yang-Mills theory.

A. The superparticle and �-symmetry

Physically, we can think of a Wilson loop as the phase
picked up by a nondynamical charged particle moving in
its own gauge field. In the case of super-Wilson loops, the

FIG. 8. A fat null polygon in M composed from R1j8’s and the dual fat polygon in Q composed from CP1’s.

FIG. 9. A null polygon in the combined spaceMQ. Horizontal
segments are fat null lines in M and points in Q. Conversely,
vertical segments are points in M and CP1’s in Q.

5We thank David Mesterhazy and David Skinner for
discussions.
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same holds but this time we have to consider the motion
of a superparticle in superspace. The superparticle in
full superspace has a fermionic gauge symmetry called
�-symmetry [21].

As noticed in Ref. [22], forN ¼ 1 super-Yang-Mills in
ten dimensions, the translations in the fermionic directions
of the fat lines are �-symmetry transformations. Here we
redo a similar analysis for N ¼ 4 super-Yang-Mills in
four dimensions. This could be done by dimensionally
reducing the D ¼ 10, N ¼ 1 analysis, but we will redo
it from scratch instead.

Let us nowwrite down theworldline superparticle action
with N ¼ 4 supersymmetry. According to (2.13) the
supercovariant momentum reads

� ¼ _xþ i� _��� i _� �� : (5.1)

Then, the worldline superparticle action is (g is the world-
line einbein)

S ¼ 1

2

Z
d
g�2: (5.2)

This action is manifestly superconformal invariant since
the momentum squared transforms homogeneously under
inversions, by a factor which can be absorbed by the
einbein g.

It is easy to show that the constraints in Eq. (2.15) follow
from the equations of motion of the action (5.2) and that the
solution in (4.4) is the general solution of these equations
of motion.

The worldline reparametrizations are gauge symmetries
which can be fixed by setting g to be constant (but this
gauge condition is not preserved by superconformal
transformations).

Now we can explain in a different way why a straight
lightlike line in full superspace is not preserved by super-
conformal transformations. In the language of Eq. (4.4), if
we take � and �� to be linear in 
, after a superconformal
transformation we need need to perform a compensating
worldline reparametrization 
 ! 
0ð
Þ to preserve the
gauge g ¼ const. Since this reparametrization is not linear
in 
, the odd coordinates � and �� will not be linear in the
new worldline coordinate 
0.

The action in Eq. (5.2) is also invariant under a local
�-symmetry which acts as

��¼� ��; � ��¼ ��; �x¼�i���þ i�� ��;

�g¼�2igTrð �� _��� _��Þ: (5.3)

Now, we act with �-symmetry on a superparticle at the
point ðx; �; ��Þ whose supermomentum � is lightlike, i.e.
� ¼ 
 �
. We obtain

�x¼ i
� ��� i� �� �
; ��¼
�; � ��¼ �� �
; (5.4)

where we introduced the abbreviations � ¼ �
 �� , �� ¼ �
.
Comparison to (4.4) shows that �-symmetry can shift the

point along any of the fermionic directions of a fat null
line. This implies that all paths along this fat null line
should be considered physically equivalent because
�-symmetry is a gauge symmetry, cf. Fig. 10.
So we see that the �-symmetry transformations generate

a (0j8)-dimensional space (the quantities � and �� are
complex conjugate fermionic coordinates with four com-
plex dimensions, or eight real dimensions). Here we notice
a reduction by half of the number of transformation pa-
rameters; we started with 16 real degrees of freedom in �
and ��, but the latter only appear in the combinations �
and ��, in which half of the degrees of freedom were
projected out.
Using the �-symmetry transformations in Eq. (5.4), we

can compute its action on the twistor variables defined in
Eqs. (4.5) and (4.7). It is very easy to see that the twistor
variables are invariant under � symmetry transformations.
This was first noticed in Ref. [23].

B. Yang-Mills connection

Next we will discuss the implications of the fatness of
null lines for Wilson lines in N ¼ 4 SYM [24]. As a first
step we will review the N ¼ 4 superspace formulation
[25]; in the next section we will apply it to Wilson lines.
To define Yang-Mills theory, we introduce a gauge

connection one-form A on superspace. A generic gauge
connection would have way too many degrees of freedom
as compared to the fields ofN ¼ 4 supersymmetric Yang-
Mills theory. Therefore one must impose constraints on A
which is achieved by forcing some components of the
associated field strength F ¼ dAþ A2 to zero. This in
turn not only reduces to the desired field content, but also
enforces the equations of motion.
Before we continue, let us briefly discuss differential

forms on superspace. It is convenient to express the com-
ponents of differential forms in terms of the superspace
vielbein ðd��a; d ��b

_�; e� _�Þ where, according to (2.13),6

e ¼ dx� id� ��� i�d ��: (5.5)

In particular, the exterior derivative d can be expanded in
this basis

d :¼ d��a
@

@��a
þ d ��b

_� @

@ ��b
_�
þ dx� _� @

@x� _�

¼ d��aDa� � d ��b
_� �D _�

b þ e� _�@ _��:
(5.6)

FIG. 10. All curves on a fat null line are physically equivalent;
they define the equivalent superparticle trajectories and equiva-
lent Wilson lines.

6The differential operator d obeys the same statistics as
fermions. Consequently, d� is bosonic.
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Comparison of the definition of d gives rise to supersym-
metry covariant derivatives

Da� ¼ @

@��a
þ i ��a

_� @

@x� _�
;

�D _�
b ¼ � @

@ ��b
_�
� i�a�

@

@x� _� ; @ _�� ¼ @

@x� _�
;

(5.7)

which satisfy the N ¼ 4 super-Poincaré algebra with a
flipped sign

fDa�;Dc�g ¼ f �D _�
b; �D _�

dg ¼ 0;

fDa�; �D _�
dg ¼ �2i�d

a@ _��:
(5.8)

The expansions of a generic gauge connection A and its
associated field strength F ¼ dAþ A2 read

A ¼ d��aAa� � d ��b
_� �A _�

b þ e� _�A _��;

F ¼ 1

2
d��ad��cFa�c� þ 1

2
d ��b

_�d ��d
_� �F __��

bd

� d��ad ��d
_�Fa� _�

d � d��ae� _�Fa� _��

� e� _�d ��d
_� �F _�� _�

d þ 1

2
e� _�e� _�F _�� _��: (5.9)

We use the connection to define a gauge covariant deriva-
tive D ¼ dþ A, or in components

Da� ¼ Da� þ Aa�;
�D _�

b ¼ �D _�
b þ �A _�

b;

D _�� ¼ @ _�� þ A _��:
(5.10)

The components of the gauge-covariant field strength read

Fa�c� ¼ fDa�;Dc�g; �F __��
bd ¼ f �D _�

b; �D _�
dg; Fa� _�

d ¼ fDa�;
�D _�

dg þ 2i�d
aD� _�;

Fa� _�� ¼ ½Da�;D _��	; �F _�� _�
d ¼ ½D _��;

�D _�
d	; F _�� _�� ¼ ½D _��;D _��	:

(5.11)

The constraint to reduce the connection A to the field
content of N ¼ 4 SYM is imposed via the lowest com-
ponents of the field strength F

Fa�c� ¼ "�� ��ac; �F __��
bd ¼ " _� _��

bd;

Fa� _�
d ¼ 0; �ab ¼ 1

2
ei�"abcd ��cd:

(5.12)

Here the expansion of superfields � and �� in terms of
fermionic coordinates contains the scalars ofN ¼ 4 SYM
as lowest components. The phase � in the relation between
� and �� has no physical significance and we can safely set
it to zero. The Bianchi identities dFþ FAþ AF ¼ 0 then
fix all the remaining higher components of F, in particular,

Fa� _�� ¼ "�� ��a _�; �F _�� _�
d ¼ " _� _���

d;

F _�� _�� ¼ "�� �� _� _� þ " _� _����;
(5.13)

where the new superfields are given as derivatives of
� and ��

��a _�¼� i

6
½ �D _�

e; ��ae	; ��
d¼� i

6
½De�;�

de	;

�� _� _�¼ 1

48
f �D _�

e;½ �D _�
f; ��ef	g;

���¼ 1

48
fDe�;½Df�;�

ef	g:

(5.14)

Furthermore, they imply a set of differential constraints on
the fields � and ��

0 ¼ 3½ �D _�
d; ��ab	 þ �d

a½ �D _�
e; ��be	 � �d

b½ �D _�
e; ��ae	;

0 ¼ ½D�c; ��ab	 þ ½D�b; ��ac	;
0 ¼ fD�d; ½ �D _�

d; ��ab	g � f �D _�
d; ½D�d; ��ab	g:

(5.15)

These equations are equivalent to the equations of motion
of N ¼ 4 SYM.

C. Wilson loop on a fat null polygon

Now consider a fat null polygon of dimension 1j8. To
define a Wilson loop we need to embed a curve of dimen-
sion 1j0 into the fat polygon. It must pass through the
vertices, but precisely which path should it take on the
fat null lines? As for the trajectory of the superparticle and
�-symmetry, the choice of curve within a null line does not
matter [17,22,26]. The crucial insight is that the Yang-
Mills superspace connection A is flat on fat null lines.
This in turn implies the gauge field constraints and there-
fore the equations of motion.
On-shell the field strength F reads (5.9), (5.12), and

(5.13)

F ¼ � 1

2
Trðd�T"d� ��Þ þ TrðeT"d� ��Þ þ 1

2
TrðeT"e ��Þ

� 1

2
Trðd ��"d ��T�Þ þ Trðd ��"eT�Þ þ 1

2
Trðe"eT�Þ:

(5.16)

On the fat null line (4.4) the vielbein (5.5) reads

e ¼ ðd
� id� ��� i�d ��Þ
 �
; d� ¼ 
d�;

d �� ¼ d �� �
 :
(5.17)

As they are all collinear to 
 and/or �
, all the combinations
in (5.16) vanish irrespectively of all the constituent fields,
and F ¼ 0 on fat null lines. Conversely, the requirement
F ¼ 0 on all fat null lines essentially forces F to be of the
form (5.16), and thus the connection has to obey the con-
straints of N ¼ 4 SYM along with the implied equations
of motion.
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There is no need to specify further the fermionic coor-
dinates of the Wilson line, as long as they reside fully
within the fat null line. Any section �ð
Þ, ��ð
Þ of the
fat null line yields the an equivalent Wilson line,
cf. Fig. 10. The latter depends only on the starting and
end point, which are two consecutive vertices by definition.
Altogether the fat polygon defines a family of equivalent
contours for a Wilson loop, cf. Fig. 11.

Of course, in the quantum theory the Wilson loop needs
to be regularized for a proper definition. For bosonic
Wilson loops dimensional reduction is sufficient to regu-
larize the UV divergences. Conversely, for Wilson loops in
superspace, the integrability condition on fat null lines is
crucial, but it depends on the equations of motions which
are susceptible to UV quantum effects [26,27]. Hence the
Wilson loop expectation values have to be regularized and
quantized carefully. At least for the leading perturbative
correction at one loop it is possible to extract the result with
only few complications as will be shown in the companion
paper [13].

Suppose we consider Wilson loops without cusps, or we
try to smooth out the cusps to regularize the answer. Then
we can use kappa symmetry to locally gauge away the
dependence on the odd variables of the fat lines. In con-
trast, if the Wilson loops have cusps, the odd variables
cannot be gauged away at the vertices because there the
odd directions of the fat lines intersect transversely. It
follows that the dependence on the odd variables is of a
very different nature in the case with cusps and without
cusps.

VI. CONCLUSIONS

In this paper we have detailed the definition of null
polygons in full superspace.

We have presented three descriptions, in terms of the
vertices, in terms of spinor helicity variables, and in terms
of ambitwistor variables (Sec. III). These generalise the
analogous parametrizations which were previously pro-
posed for null polygons in bosonic spacetime and chiral
superspace. Importantly, they transform nicely under the
full superconformal group, and all of them are perfectly
well-defined in real spacetime with proper Minkowski
signature.

A curiosity of the polygon’s edges is that they are neces-
sarily fat; in addition to one bosonic coordinate, they have 8
fermionic coordinates (Sec. IV). Reassuringly, the fatness
does not matter much because all curves are physically
equivalent in N ¼ 4 SYM theory (Sec. V). We have also
commented on the geometrical picture of the null polygon
in (real) ambitwistor space where it forms a dual polygon.
Returning to the duality between planar scattering am-

plitudes and null polygonal Wilson loops, one may wonder
how far it applies to our Wilson loop. The picture we have
obtained, however, gives hints that the duality does not
extend to full superspace.
Firstly, the segments are now parametrized by

ð
; �
;�; ��Þ rather than ð
; �
;�Þ. The additional four ��’s
suggests that a dual particle would have 16 times as many
on-shell degrees of freedom. From a physical point of view
this does not make sense.
The identification with the momenta of particles bears

another problem: On the one hand, we might identify the
bosonic momentum pk with the superspace interval xk;kþ1.

This is a null vector as it should for an on-shell particle.
Unfortunately, the intervals xk;kþ1 in (2.13) do not sum up

to zero due to the fermionic contributions. Therefore the
corresponding amplitude would violate momentum con-
servation. On the other hand, we might identify pk with
xkþ1 � xk. Then the sum of momenta vanishes nicely.
Instead, pk does not square to zero anymore due to the
fermionic contributions. Hence, the corresponding parti-
cles cannot be massless.7

Even if these conflicts prevent a direct duality, it does
not mean that the Wilson loop in full superspace is useless
for the duality. For instance, it is the only kind of Wilson
loop to which the full set of superconformal transforma-
tions apply (up to anomalies at loop level). The extended
set of symmetries may make it easier to construct, in
particular in view of integrability in the form of Yangian
symmetry [28]. Once constructed, we can set �� ¼ 0, and
recover theWilson loop in chiral superspace which appears
in the duality to the complete scattering amplitude [9,10].8

Moreover, the supersymmetric anomaly of the chiral Wilson
loop is also encoded into the full Wilson loop [11,30].
We would like to point out that the full superspace

approach can indeed be useful for the complete duality
between null polygonal Wilson loops and null correlation
functions of local operators [12] because both sets of
observables are naturally defined on this superspace.

FIG. 11. A fat polygon with an embedded Wilson loop.

7This matches nicely with the minimal length 256 for a
massive supermultiplet.

8Note that scattering amplitudes are not intrinsically chiral as
their Wilson loop counterparts. In contradistinction to chiral
Wilson loops, the full set of superconformal transformations
applies to the S-matrix. This apparent discrepancy does not spoil
the duality because the MHV-tree factor of the duality can
compensate the mismatch. The latter is also the reason for the
absence of collinear anomalies in Wilson loops which had to be
cured by a deformed superconformal representation in [29].
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For superconformal theories in odd dimensions (like the
Aharony, Bergman, Jafferis and Maldacena theory [31]) it
is not possible to construct a chiral version of the super-
symmetric Wilson loop. However, most of the discussion
we presented still applies. It is not completely clear what
version of superspace would be the best suited in this case;
so far most of the descriptions have been done in N ¼ 2
superspace [32], but an N ¼ 2 supermultiplet does not
contain all the fields in the theory. It would be natural to use
a gauge connection which contains all the physical fields of
the theory, like for N ¼ 4 super Yang-Mills.
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