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Abstract

A recent observation by Eguchi, Ooguri and Tachikawa (EOT) suggests a re-
lationship between the largest Mathieu group M24 and the elliptic genus of K3.
This correspondence would be naturally explained by the existence of a non-linear
σ-model on K3 with the Mathieu group as its group of symmetries. However, all
possible symmetry groups of K3 models have been recently classified and none of
them contains M24. We review the evidence in favour of the EOT conjecture and
discuss the open problems in its physical interpretation.

1 Introduction

Two dimensional conformal field theories with N = (4, 4) supersymmetry and central
charge c = 6 have received considerable attention in the physics literature, in particu-
lar because of their role as internal CFTs in type II superstring compactifications that
preserve 16 supersymmetries [1, 2, 3]. It is believed [3] that all such theories arise as
supersymmetric non-linear σ-models whose target space X is either a four dimensional
torus T 4 or a K3 manifold. For each of these two topologies, there is a whole moduli
space of models, depending on the choice of a Ricci flat metric and a closed B-field on the
target space. These two classes of models can be distinguished by a topological invariant,
the elliptic genus:

φX(τ, z) := TrRR

(

qL0−
c

24 q̄L̃0−
c̃

24 y2J
3
0 (−1)2J

3
0+2J̃3

0

)

, q := e2πiτ , y := e2πiz .

Here, L0, L̃0 are Virasoro generators and J3
0 and J̃3

0 are the zero modes of the Cartan
generators of a su(2)left1 × su(2)right1 current algebra contained in the N = (4, 4) super-
conformal algebra at c = 6.

The elliptic genus can be computed explicitly using the constraints coming from su-
persymmetry [1]. First of all, φX depends holomorphically both on τ and z, because the
only states giving a non-zero contribution saturate the (right-moving) unitarity bound,
i.e. they have L̃0-eigenvalue h̃ = c̃/24 = 1/4. Moreover, the spectrum of these models is
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invariant under the spectral flow isomorphism of the N = (4, 4) superconformal algebra.
This implies that the elliptic genus satisfies some quasi-periodicity conditions [1]

φX(τ, z + ℓτ + ℓ′) = e−2πi(ℓ2τ+2ℓz)φX(τ, z) ℓ, ℓ′ ∈ Z , (1)

as well as the modular properties

φX

(aτ + b

cτ + d
,

z

cτ + d

)

= e2πi
cz

2

cτ+d φX(τ, z)

(

a b
c d

)

∈ SL(2,Z) , (2)

that follow from standard CFT arguments (see section 2). Formally, these properties
imply that φX belongs to the one-dimensional space of Jacobi forms of weight zero and
index one [4]. The normalisation depends on the topology of the target space, but not on
the metric and B-field, so that it can be computed in some specific model

φK3(τ, z) = 8
4

∑

i=2

ϑi(τ, z)
2

ϑi(τ, 0)2
, φT 4(τ, z) = 0 ,

where ϑ1, . . . , ϑ4 are the classical Jacobi theta functions [4].

Although the explicit expression for the elliptic genus of K3 has been known for more
than 20 years, new surprising properties have been recently discovered, starting from
the seminal work by Eguchi, Ooguri and Tachikawa (EOT) [5]. The EOT observations
establish a connection between the elliptic genus of K3 and the Mathieu group M24, a
simple subgroup of the group of permutations of 24 objects. The first evidence for this
conjectural relationship emerges when one expands the elliptic genus into (left) N = 4
characters

φK3(τ, z) = 20 chshort
1

4
,0

(τ, z)− 2 chshort
1

4
, 1
2

(τ, z) +
∞
∑

n=1

An chlong
1

4
+n, 1

2

(τ, z) .

Here, chh,ℓ(τ, z) denotes the character of a unitary Ramond N = 4 representation whose
lowest weight state has L0-eigenvalue h and su(2) isospin ℓ [1]. Unitarity imposes a
lower bound h ≥ 1/4 on the conformal weight, which is saturated if and only if the
representation is short (BPS). The coefficients An are the multiplicities of the long N = 4
representations corresponding to h = 1/4 + n. It can be proved that all An are positive
even integers, and the first few values are

n 1 2 3 4 5 6 . . .
An/2 45 231 770 2277 5796 13915 . . .

(3)

By comparing these coefficients with the dimensions of the irreducible representations of
M24

{1, 23, 45, 231, 252, 253, 483, 770, 990, 1035, 1265,

1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395} ,
(4)

one can notice several numerical coincidences [5]. In fact, An/2, for n = 1, . . . , 5, cor-
respond exactly to the dimensions of some irreducible representations of M24, while A6
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can be decomposed into a simple sum of such dimensions as 13915 = 10395 + 3520. This
suggests that the space of states contributing to the elliptic genus (at least, the ones
belonging to long N = 4 representations) can be decomposed as

∞
⊕

n=1

RN=4
1

4
+n, 1

2

⊗Hn , (5)

where RN=4
h,ℓ is an irreducible N = 4 representation and Hn a (real) representation of M24

with dimHn = An. In particular, from table (3) one can argue that

H1 = 45⊕ 45 H2 = 231⊕ 231

H3 = 770⊕ 770 H4 = 2277⊕ 2277

H5 = 2 · 5796 H6 = 2 · 10395⊕ 2 · 3520 .

For larger values of n, the number of possible decompositions ofAn into sums of dimensions
(4) grows very quickly, and it is difficult to make a guess for the representation Hn based
only on its dimension. In subsequent works [7, 8, 9, 10], it has been shown that there is a
unique meaningful decomposition of An into M24-representations, and highly non-trivial
evidence in favour of the EOT conjecture has been given (see section 2).

This relationship between the elliptic genus of K3 and the Mathieu group M24 is very
reminiscent of a famous series of conjectures known as Monster Moonshine (see [6] for a
review). Although there is little doubt now that some sort of ‘Mathieu Moonshine’ exists,
its interpretation is still an open problem. By analogy with the Monster Moonshine
case, one would expect that there exists a non-linear σ-model on K3 whose group of
symmetries contains M24. However, this possibility has been ruled out in [11], where all
possible groups of symmetries of such models have been classified.

The paper is organised as follows. In section 2, following [7, 8, 9, 10], we review
the evidence in favour of EOT conjecture. In section 3, we describe the classification of
symmetries of K3 models given in [11], and in section 4 we discuss the consequences for
the Mathieu Moonshine.

2 Twining genera

In this section, we provide stronger consistency checks for the EOT conjecture. The first
step is to notice that, if the conjecture holds, the elliptic genus can be expanded as

φK3(τ, z) = dimH00 ch
short
1

4
,0

(τ, z)− dimH0 ch
long
1

4
, 1
2

(τ, z) +
∞
∑

n=1

dimHn chlong
1

4
+n, 1

2

(τ, z) ,

where H00 and H0 are, respectively, the 23⊕ 1 and 1⊕ 1 representations of M24, Hn are
the M24-representations in Eq.(5) and

chlong
1

4
, 1
2

(τ, z) := lim
hց 1

4

chlong

h, 1
2

(τ, z) = 2chshort
1

4
,0

(τ, z) + chshort
1

4
, 1
2

(τ, z) .
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Then, for each g ∈ M24, we can define the twining genus [7, 8]

φg(τ, z) := TrH00
(g) chshort

1

4
,0

(τ, z)− TrH0
(g) chlong

1

4
, 1
2

(τ, z) +

∞
∑

n=1

TrHn
(g) chlong

1

4
+n, 1

2

(τ, z) . (6)

Note that φg only depends on the conjugacy class of g and, under the assumption that
all M24-representations Hn are real, the twining genera for charge conjugated elements
g, g−1 will be equal. This leaves 21 independent twining genera φg, including the elliptic
genus, which corresponds to g being identity.

If g ∈ M24 is a symmetry in any CFT with elliptic genus φK3, then φg corresponds to
the following trace

φg(τ, z) = TrRR

(

g qL0−
c

24 q̄L̃0−
c̃

24 y2J
3
0 (−1)2J

3
0
+2J̃3

0

)

. (7)

By a standard argument in CFT, a trace of the form (7) can be computed by a path-
integral on a torus describing a closed string loop. More precisely, the twining genus φg is
obtained by requiring the fields in the path-integral to satisfy g-twisted periodicity condi-
tions along a certain non-trivial cycle of the torus. The group of modular transformations
of the torus that preserve such g-twisted periodicity conditions is

Γ0(N) :=
{

(

a b
c d

)

∈ SL(2,Z) | c ≡ 0 mod N
}

⊆ SL(2,Z) ,

where N is the order of g. Thus, the twining genus φg, for g of order N , is expected to
have simple automorphic properties under Γ0(N) [9]

φg

(aτ + b

cτ + d
,

z

cτ + d

)

= e2πi
cd

Nh e2πi
cz

2

cτ+dφg(τ, z) ,

(

a b
c d

)

∈ Γ0(N) ⊆ SL(2,Z) . (8)

Here, the factor e2πi
cz

2

cτ+d is a consequence of the non-trivial modular transformation of the
operator y2J

3
0 in (7), while the phase e2πi

cd

Nh , where h is an integer that divides gcd(N, 24),
represents a (possibly trivial) multiplier system for Γ0(N). A non-trivial multiplier (h > 1)
can arise when g acts asymmetrically on the left- and right-moving sectors of the theory
and it represents a failure of the level matching condition in the g-twisted sector. If
we assume that g preserves the spectral flow automorphism, then also the periodicity
conditions (1) are satisfied and φg is a Jacobi form of weight 0 and index 1 under Γ0(N).
Note that, for N = 1, Eq.(8) reduces to (2).

The existence of 21 twining genera φg, satisfying the modular properties (8) and
admitting an expansion (6) in terms of M24-representations Hn, represents a highly non-
trivial test of the EOT conjecture. In [7, 8], some partial lists of twining genera with
the correct modular properties have been provided and the M24-representations Hn, up
to n = 7, have been found by trial and error. The complete list of twining genera has
been first derived in [9] (and independently in [10]). Using the orthonormality properties
of finite group characters, this result provides a systematic way to check, for each n, if
a representation Hn matching (6) exists and, in this case, to determine it uniquely. At
the moment, Hn has been identified up to n ∼ 1000. Since the spaces of Jacobi forms
satisfying (8) are in general rather small (most of them have dimension less than 10), the
existence of 1000 representations Hn matching (6) represents very convincing evidence for
the conjecture.
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3 Symmetries of K3 σ-models

The physical interpretation of the EOT observation is not yet clear. The most obvious
explanation would be that M24 is the group of symmetries of some non-linear σ-model on
K3. A slightly weaker condition would be that, for each g ∈ M24, there is a certain K3
model that has a symmetry with the same order as g and reproducing the twining genus
φg. Both these possibilities have been ruled out by the following theorem proved in [11]:

Theorem: Let G be the group of symmetries of a non-linear σ-model on K3 preserving
the N = (4, 4) superconformal algebra as well as the spectral flow operators. One of the
following possibilities holds:

(i) G = G′.G′′, where G′ is a subgroup of Z11
2 , and G′′ is a subgroup of M24 with at least

four orbits when acting as a permutation on {1, . . . , 24}

(ii) G = 51+2.Z4

(iii) G = Z
4
3.A6

(iv) G = 31+4.Z2.G
′′, where G′′ is either trivial, Z2, Z

2
2 or Z4.

(Here p1+2n denotes an extra special group of order p1+2n, and N.Q denotes a group G
for which N is a normal subgroup such that G/N ∼= Q, see [13]).

The proof is based on general properties of non-linear σ-models of K3 (see [2, 3] for
a review). Any such model contains 24 R-R ground states. Four of them are contained
in a N = (4, 4)-supermultiplet with h = h̃ = 1/4 and ℓ = ℓ̃ = 1/2, while the remaining
20 belong to distinct short supermultiplets with h = h̃ = 1/4 and ℓ = ℓ̃ = 0. The
electric-magnetic charges for these fields, carried by D-branes, form a 24-dimensional
even self-dual lattice Γ4,20 with signature (4, 20).

For any given non-linear σ-model on K3, we are interested in describing its group
G of symmetries that commute with the N = (4, 4) algebra and with the spectral flow
isomorphism. In fact, if a symmetry g of order N satisfies these conditions, then the
twining genus φg is a Jacobi form for Γ0(N) and admits a decomposition as in (6) in
terms of representations of G.

The symmetries in G must act by automorphisms on the lattice Γ4,20 of D-brane
charges. The conditions that g ∈ G preserves the N = (4, 4) algebra and the spectral flow
amount to requiring g to fix the four R-R ground states in the ℓ = ℓ̃ = 1/2 supermultiplet.
These four R-R states can be identified with a four-dimensional positive definite subspace
Π in Γ4,20⊗R. Therefore, the action of G on the D-brane lattice Γ4,20 leaves the subspace
Π ⊂ Γ4,20⊗R point-wise fixed. A non-linear σ-model on K3 is uniquely determined by the
choice of the subspace Π ⊂ Γ4,20 ⊗ R [2, 3]; based on this property, it can be shown that
the group of symmetries G is isomorphic to the group of automorphisms of Γ4,20 fixing
Π point-wise [11]. The rest of the proof consists in a classification of all such groups, a
problem that has been solved using techniques from lattice and group theory.

Beside the classification theorem above, this proof establishes a direct connection
between the structure of the lattice of D-brane charges in a given K3 model and its
group of symmetries G. This provides a useful tool for the analysis of symmetries of
K3 models. There are several examples of non-linear σ-model that can be explicitly
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described in terms of a rational CFT (torus orbifolds, Gepner models, Landau-Ginzburg
models, etc.) and, in general, this description is sufficient to reconstruct the lattice of
D-brane charges in full detail in terms of boundary states. On the other hand, a complete
analysis of the group of symmetries is a much more complicated task: methods based on
physical or geometrical intuition entail a concrete risk of overlooking symmetries that are
not ‘natural’ in the chosen description of the model. The construction in [11] provides a
systematic way to describe the full group G of symmetries by studying the automorphisms
of the D-brane lattice. As an application, this method has led to the discovery of a rather
‘exotic’ symmetry that mixes the twisted and the untwisted sector in a certain T 4/Z2

torus orbifold [12]. The precise way this symmetry acts on the fields of the theory is
currently under investigation.

4 Discussion

The theorem in section 3 implies that not all g ∈ M24 are realised as symmetries in some
non-linear σ-model on K3. More precisely, an element of a given M24-conjugacy class is
a symmetry for some model if and only if it has at least four orbits in the 24-dimensional
permutation representation of M24. This condition excludes the five conjugacy classes
12B, 21A, 21B, 23A, 23B, corresponding to three distinct twining genera (21B and 23B
are charge conjugated of 21A and 23A, respectively, so they give rise to the same genus).
At the moment, there is no good argument explaining why these three twining genera
have good modular properties.

Moreover, there are several K3 models whose group of symmetry G is not a subgroup
M24. In these cases, each of the G-conjugacy classes corresponds to a twining genus which
is a well-behaved Jacobi form and satisfy a decomposition analogous to (6) in terms of
representations of G. This suggests that the ‘moonshine’ might be extended to a group
larger than M24. The obvious candidate is the Conway group Co1 [13], since it contains
all possible groups G of symmetries as subgroups [11] (and it is conjectured to be the
smallest group with this property). However, any attempt to find a decomposition of the
elliptic genus into representations of Co1 (or any other group larger than M24) has been
unsuccessful so far.

If the ‘moonshine’ only works for the group M24, it is natural ask whether the symme-
tries corresponding to M24 elements have any special properties that characterise them
among the generic symmetries of K3 models. There are some hints that this is the case.
For example, in [14] it is shown that only the twining genera from M24 elements satisfy a
certain genus 0 property, analogous to the McKay-Thompson series in the Monster Moon-
shine. The precise way these properties are related to the Mathieu Moonshine, however,
is still far from being understood.
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