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A recent observation by Eguchi, Ooguri and Tachikawa (EOT) suggests a relationship between the largest
Mathieu group M24 and the elliptic genus of K3. This correspondence would be naturally explained by
the existence of a non-linear σ-model on K3 with the Mathieu group as its group of symmetries. However,
all possible symmetry groups of K3 models have been recently classified and none of them contains M24.
We review the evidence in favour of the EOT conjecture and discuss the open problems in its physical
interpretation.
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1 Introduction

Two dimensional conformal field theories with N = (4, 4) supersymmetry and central charge c = 6
have received considerable attention in the physics literature, in particular because of their role as internal
CFTs in type II superstring compactifications that preserve 16 supersymmetries [1–3]. It is believed [3]
that all such theories arise as supersymmetric non-linear σ-models whose target space X is either a four
dimensional torus T 4 or a K3 manifold. For each of these two topologies, there is a whole moduli space of
models, depending on the choice of a Ricci flat metric and a closed B-field on the target space. These two
classes of models can be distinguished by a topological invariant, the elliptic genus:

φX(τ, z) := TrRR

(
qL0− c

24 q̄L̃0− c̃
24 y2J3

0 (−1)2J3
0+2J̃3

0

)
, q := e2πiτ , y := e2πiz . (1)

Here, L0, L̃0 are Virasoro generators and J3
0 and J̃3

0 are the zero modes of the Cartan generators of a
su(2)left1 × su(2)right

1 current algebra contained in the N = (4, 4) superconformal algebra at c = 6.

The elliptic genus can be computed explicitly using the constraints coming from supersymmetry [1].
First of all, φX depends holomorphically both on τ and z, because the only states giving a non-zero
contribution saturate the (right-moving) unitarity bound, i.e. they have L̃0-eigenvalue h̃ = c̃/24 = 1/4.
Moreover, the spectrum of these models is invariant under the spectral flow isomorphism of the N = (4, 4)
superconformal algebra. This implies that the elliptic genus satisfies some quasi-periodicity conditions [1]

φX(τ, z + �τ + �′) = e−2πi(�2τ+2�z)φX(τ, z) �, �′ ∈ Z , (2)

as well as the modular properties

φX

( aτ + b

cτ + d
,

z

cτ + d

)
= e2πi cz2

cτ+d φX(τ, z)

(
a b

c d

)
∈ SL(2, Z) , (3)
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that follow from standard CFT arguments (see Sect. 2). Formally, these properties imply that φX belongs
to the one-dimensional space of Jacobi forms of weight zero and index one [4]. The normalisation depends
on the topology of the target space, but not on the metric and B-field, so that it can be computed in some
specific model

φK3(τ, z) = 8
4∑

i=2

ϑi(τ, z)2

ϑi(τ, 0)2
, φT 4 (τ, z) = 0 , (4)

where ϑ1, . . . , ϑ4 are the classical Jacobi theta functions [4].

Although the explicit expression for the elliptic genus of K3 has been known for more than 20 years, new
surprising properties have been recently discovered, starting from the seminal work by Eguchi, Ooguri and
Tachikawa (EOT) [5]. The EOT observations establish a connection between the elliptic genus of K3 and
the Mathieu group M24, a simple subgroup of the group of permutations of 24 objects. The first evidence
for this conjectural relationship emerges when one expands the elliptic genus into (left) N = 4 characters

φK3(τ, z) = 20 chshort
1
4 ,0 (τ, z) − 2 chshort

1
4 , 1

2
(τ, z) +

∞∑
n=1

An chlong
1
4 +n, 1

2
(τ, z) . (5)

Here, chh,�(τ, z) denotes the character of a unitary Ramond N = 4 representation whose lowest weight
state has L0-eigenvalue h and su(2) isospin � [1]. Unitarity imposes a lower bound h ≥ 1/4 on the
conformal weight, which is saturated if and only if the representation is short (BPS). The coefficients An

are the multiplicities of the long N = 4 representations corresponding to h = 1/4 + n. It can be proved
that all An are positive even integers, and the first few values are

n 1 2 3 4 5 6 . . .

An/2 45 231 770 2277 5796 13915 . . .
(6)

By comparing these coefficients with the dimensions of the irreducible representations of M24

{1, 23, 45, 231, 252, 253, 483, 770, 990, 1035, 1265,

1771, 2024, 2277, 3312, 3520, 5313, 5544, 5796, 10395} , (7)

one can notice several numerical coincidences [5]. In fact, An/2, for n = 1, . . . , 5, correspond exactly to
the dimensions of some irreducible representations of M24, while A6 can be decomposed into a simple
sum of such dimensions as 13915 = 10395 + 3520. This suggests that the space of states contributing to
the elliptic genus (at least, the ones belonging to long N = 4 representations) can be decomposed as

∞⊕
n=1

RN=4
1
4 +n, 1

2
⊗ Hn , (8)

where RN=4
h,� is an irreducibleN = 4 representation and Hn a (real) representation of M24 with dimHn =

An. In particular, from table (6) one can argue that

H1 = 45⊕ 45 H2 = 231⊕ 231

H3 = 770⊕ 770 H4 = 2277⊕ 2277

H5 = 2 · 5796 H6 = 2 · 10395⊕ 2 · 3520 .

For larger values of n, the number of possible decompositions of An into sums of dimensions (7) grows
very quickly, and it is difficult to make a guess for the representation Hn based only on its dimension. In

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. (2012) 3

subsequent works [7–10], it has been shown that there is a unique meaningful decomposition of An into
M24-representations, and highly non-trivial evidence in favour of the EOT conjecture has been given (see
Sect. 2).

This relationship between the elliptic genus of K3 and the Mathieu group M24 is very reminiscent of a
famous series of conjectures known as Monster Moonshine (see [6] for a review). Although there is little
doubt now that some sort of ‘Mathieu Moonshine’ exists, its interpretation is still an open problem. By
analogy with the Monster Moonshine case, one would expect that there exists a non-linear σ-model on K3
whose group of symmetries contains M24. However, this possibility has been ruled out in [11], where all
possible groups of symmetries of such models have been classified.

The paper is organised as follows. In Sect. 2, following [7–10], we review the evidence in favour of
EOT conjecture. In Sect. 3, we describe the classification of symmetries of K3 models given in [11], and
in Sect. 4 we discuss the consequences for the Mathieu Moonshine.

2 Twining genera

In this section, we provide stronger consistency checks for the EOT conjecture. The first step is to notice
that, if the conjecture holds, the elliptic genus can be expanded as

φK3(τ, z) = dimH00 chshort
1
4 ,0 (τ, z) − dimH0 chlong

1
4 , 1

2
(τ, z) +

∞∑
n=1

dimHn chlong
1
4 +n, 1

2
(τ, z) , (9)

where H00 and H0 are, respectively, the 23 ⊕ 1 and 1 ⊕ 1 representations of M24, Hn are the M24-
representations in Eq. (8) and

chlong
1
4 , 1

2
(τ, z) := lim

h↘ 1
4

chlong

h, 1
2

(τ, z) = 2chshort
1
4 ,0 (τ, z) + chshort

1
4 , 1

2
(τ, z) . (10)

Then, for each g ∈ M24, we can define the twining genus [7, 8]

φg(τ, z) := TrH00(g) chshort
1
4 ,0 (τ, z)−TrH0(g) chlong

1
4 , 1

2
(τ, z) +

∞∑
n=1

TrHn(g) chlong
1
4 +n, 1

2
(τ, z) . (11)

Note that φg only depends on the conjugacy class of g and, under the assumption that all M24-representa-
tions Hn are real, the twining genera for charge conjugated elements g, g−1 will be equal. This leaves 21
independent twining genera φg , including the elliptic genus, which corresponds to g being identity.

If g ∈ M24 is a symmetry in any CFT with elliptic genus φK3, then φg corresponds to the following
trace

φg(τ, z) = TrRR

(
g qL0− c

24 q̄L̃0− c̃
24 y2J3

0 (−1)2J3
0+2J̃3

0

)
. (12)

By a standard argument in CFT, a trace of the form (12) can be computed by a path-integral on a torus
describing a closed string loop. More precisely, the twining genus φg is obtained by requiring the fields in
the path-integral to satisfy g-twisted periodicity conditions along a certain non-trivial cycle of the torus.
The group of modular transformations of the torus that preserve such g-twisted periodicity conditions is

Γ0(N) :=
{(

a b

c d

)
∈ SL(2, Z) | c ≡ 0 mod N

}
⊆ SL(2, Z) , (13)

where N is the order of g. Thus, the twining genus φg , for g of order N , is expected to have simple
automorphic properties under Γ0(N) [9]

φg

( aτ + b

cτ + d
,

z

cτ + d

)
= e2πi cd

Nh e2πi cz2
cτ+d φg(τ, z) ,

(
a b

c d

)
∈ Γ0(N) ⊆ SL(2, Z) . (14)
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Here, the factor e2πi cz2
cτ+d is a consequence of the non-trivial modular transformation of the operator y2J3

0 in
(12), while the phase e2πi cd

Nh , where h is an integer that divides gcd(N, 24), represents a (possibly trivial)
multiplier system for Γ0(N). A non-trivial multiplier (h > 1) can arise when g acts asymmetrically on the
left- and right-moving sectors of the theory and it represents a failure of the level matching condition in the
g-twisted sector. If we assume that g preserves the spectral flow automorphism, then also the periodicity
conditions (2) are satisfied and φg is a Jacobi form of weight 0 and index 1 under Γ0(N). Note that, for
N = 1, Eq. (14) reduces to (3).

The existence of 21 twining genera φg , satisfying the modular properties (14) and admitting an expan-
sion (11) in terms of M24-representations Hn, represents a highly non-trivial test of the EOT conjecture.
In [7, 8], some partial lists of twining genera with the correct modular properties have been provided and
the M24-representations Hn, up to n = 7, have been found by trial and error. The complete list of twining
genera has been first derived in [9] (and independently in [10]). Using the orthonormality properties of
finite group characters, this result provides a systematic way to check, for each n, if a representation Hn

matching (11) exists and, in this case, to determine it uniquely. At the moment, Hn has been identified up
to n ∼ 1000. Since the spaces of Jacobi forms satisfying (14) are in general rather small (most of them
have dimension less than 10), the existence of 1000 representations Hn matching (11) represents very
convincing evidence for the conjecture.

3 Symmetries of K3 σ-models

The physical interpretation of the EOT observation is not yet clear. The most obvious explanation would
be that M24 is the group of symmetries of some non-linear σ-model on K3. A slightly weaker condition
would be that, for each g ∈ M24, there is a certain K3 model that has a symmetry with the same order
as g and reproducing the twining genus φg . Both these possibilities have been ruled out by the following
theorem proved in [11]:

Theorem: Let G be the group of symmetries of a non-linear σ-model on K3 preserving the N = (4, 4)
superconformal algebra as well as the spectral flow operators. One of the following possibilities holds:

(i) G = G′.G′′, where G′ is a subgroup of Z
11
2 , and G′′ is a subgroup of M24 with at least four orbits

when acting as a permutation on {1, . . . , 24}
(ii) G = 51+2.Z4

(iii) G = Z
4
3.A6

(iv) G = 31+4.Z2.G
′′, where G′′ is either trivial, Z2, Z

2
2 or Z4.

(Here p1+2n denotes an extra special group of order p1+2n, and N.Q denotes a group G for which N is a
normal subgroup such that G/N ∼= Q, see [13]).

The proof is based on general properties of non-linear σ-models of K3 (see [2, 3] for a review). Any
such model contains 24 R-R ground states. Four of them are contained in a N = (4, 4)-supermultiplet
with h = h̃ = 1/4 and � = �̃ = 1/2, while the remaining 20 belong to distinct short supermultiplets with
h = h̃ = 1/4 and � = �̃ = 0. The electric-magnetic charges for these fields, carried by D-branes, form a
24-dimensional even self-dual lattice Γ4,20 with signature (4, 20).

For any given non-linear σ-model on K3, we are interested in describing its group G of symmetries that
commute with the N = (4, 4) algebra and with the spectral flow isomorphism. In fact, if a symmetry g
of order N satisfies these conditions, then the twining genus φg is a Jacobi form for Γ0(N) and admits a
decomposition as in (11) in terms of representations of G.

The symmetries in G must act by automorphisms on the lattice Γ4,20 of D-brane charges. The conditions
that g ∈ G preserves the N = (4, 4) algebra and the spectral flow amount to requiring g to fix the four
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R-R ground states in the � = �̃ = 1/2 supermultiplet. These four R-R states can be identified with a
four-dimensional positive definite subspace Π in Γ4,20 ⊗ R. Therefore, the action of G on the D-brane
lattice Γ4,20 leaves the subspace Π ⊂ Γ4,20 ⊗R point-wise fixed. A non-linear σ-model on K3 is uniquely
determined by the choice of the subspace Π ⊂ Γ4,20⊗R [2,3]; based on this property, it can be shown that
the group of symmetries G is isomorphic to the group of automorphisms of Γ4,20 fixing Π point-wise [11].
The rest of the proof consists in a classification of all such groups, a problem that has been solved using
techniques from lattice and group theory.

Beside the classification theorem above, this proof establishes a direct connection between the structure
of the lattice of D-brane charges in a given K3 model and its group of symmetries G. This provides a
useful tool for the analysis of symmetries of K3 models. There are several examples of non-linear σ-
model that can be explicitly described in terms of a rational CFT (torus orbifolds, Gepner models, Landau-
Ginzburg models, etc.) and, in general, this description is sufficient to reconstruct the lattice of D-brane
charges in full detail in terms of boundary states. On the other hand, a complete analysis of the group of
symmetries is a much more complicated task: methods based on physical or geometrical intuition entail a
concrete risk of overlooking symmetries that are not ‘natural’ in the chosen description of the model. The
construction in [11] provides a systematic way to describe the full group G of symmetries by studying the
automorphisms of the D-brane lattice. As an application, this method has led to the discovery of a rather
‘exotic’ symmetry that mixes the twisted and the untwisted sector in a certain T 4/Z2 torus orbifold [12].
The precise way this symmetry acts on the fields of the theory is currently under investigation.

4 Discussion

The theorem in Sect. 3 implies that not all g ∈ M24 are realised as symmetries in some non-linear σ-model
on K3. More precisely, an element of a given M24-conjugacy class is a symmetry for some model if and
only if it has at least four orbits in the 24-dimensional permutation representation of M24. This condition
excludes the five conjugacy classes 12B, 21A, 21B, 23A, 23B, corresponding to three distinct twining
genera (21B and 23B are charge conjugated of 21A and 23A, respectively, so they give rise to the same
genus). At the moment, there is no good argument explaining why these three twining genera have good
modular properties.

Moreover, there are several K3 models whose group of symmetry G is not a subgroup M24. In these
cases, each of the G-conjugacy classes corresponds to a twining genus which is a well-behaved Jacobi
form and satisfy a decomposition analogous to (11) in terms of representations of G. This suggests that the
‘moonshine’ might be extended to a group larger than M24. The obvious candidate is the Conway group
Co1 [13], since it contains all possible groups G of symmetries as subgroups [11] (and it is conjectured
to be the smallest group with this property). However, any attempt to find a decomposition of the elliptic
genus into representations of Co1 (or any other group larger than M24) has been unsuccessful so far.

If the ‘moonshine’ only works for the group M24, it is natural ask whether the symmetries corresponding
to M24 elements have any special properties that characterise them among the generic symmetries of K3
models. There are some hints that this is the case. For example, in [14] it is shown that only the twining
genera from M24 elements satisfy a certain genus 0 property, analogous to the McKay-Thompson series in
the Monster Moonshine. The precise way these properties are related to the Mathieu Moonshine, however,
is still far from being understood.
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