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We define an infinite class of unitary transformations between configuration and momentum fractional spaces,
thus generalizing the Fourier transform to a special class of fractal geometries. Each transform diagonalizes
a unique Laplacian operator. We also introduce a new version of fractional spaces, where coordinates and
momenta span the whole real line. In one topological dimension, these results are extended to more general
measures.

I. INTRODUCTION

The spectral theory in fractal geometry has, by now,
achieved a certain degree of sophistication1–3. Given
a self-similar fractal set F , one can construct a natu-
ral Laplacian operator thereon and study its spectrum,
which depends both on the geometry (i.e., symmetries)
and on the topology of the set. An open question, how-
ever, is how to construct a “momentum space” Fk or,
in other words, whether there exists an invertible trans-
form F : F → Fk generalizing the Fourier transform in
RD. Results in this direction were found for fractafolds4

and post-critically finite fractals such as the Sierpiński
gasket5,6. The geometry of momentum space is, in gen-
eral, different from that of F : while F is characterized by
the Hausdorff dimension dH, some evidence is in favour
of identifying, for several fractals, the dimension of Fk

with the spectral dimension dS of the set7. Checking the
conjecture

dH(Fk)
?
= dS(F) (1)

is tightly related to the possibility of writing the trans-
form F explicitly.
One goal of this paper is to answer this question in the

context of fractional spaces8–11. Fractional spaces are
continua embedded in a D-dimensional manifold where
ordinary calculus is replaced by fractional calculus of
fixed order. Giving up ordinary differentiability in this
way guarantees that the geometric and harmonic prop-
erties of fractional spaces have genuine fractal features,
such as anomalous dimensionality (non-integer Hausdorff
and spectral dimension) and discrete symmetries (log-
arithmically oscillating measures). Allowing the frac-
tional order to change with the scale, one obtains multi-
fractional settings endowed with a multi-fractal geome-
try. Here we construct a class of unitary transforms be-
tween configuration and momentum fractional Euclidean
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space ED
α , showing that the measure is the same. If these

transforms are imposed to be automorphisms, then

dH(ED
α,k) = dH(ED

α ) . (2)

In Ref.9 we already used one of the fractional transforms
of this paper to show that

dS(ED
α ) = dH(ED

α ) (3)

in spaces with non-anomalous diffusion. Combining that
with (2), one verifies Eq. (1) for F = ED

α . If diffusion is
anomalous, however, or if momentum and configuration
spaces are taken with different measures, dS 6= dH and
the conjecture is violated.
In multi-fractals, spectral and Hausdorff dimensions

change with the probed scale. Multi-fractional spaces
realize this feature and were proposed as the fundamen-
tal building block of field theories with improved ultra-
violet (UV) properties12–14. A reduction of dimension-
ality with the physical scale has been recognized as an
agent favouring UV finiteness in the context of quantum
gravity12,15,16. Dimensional flow (especially towards a
two-dimensional effective spacetime in the UV) seems to
be a universal property of independent quantum grav-
ity models such as causal dynamical triangulations17,18,
asymptotically safe gravity19, spin foam dynamics20–22,
and Hořava–Lifshitz gravity23,24 (see also Ref.25). A non-
trivial fixed point with a reduced Hausdorff dimension,
associated with an anomalous scaling dimension of the
metric, was recognized as a requisite for a perturbatively
renormalizable quantum gravity theory26,27. The math-
ematical framework of loop quantum gravity had been
developed also with the hope of realizing a fractal dimen-
sional reduction, before UV finiteness was rather ascribed
to discreteness of the geometry.
In quantum mechanics and quantum field theory, a

well-defined momentum space constitutes a very power-
ful tool for the physical interpretation and for calcula-
tional purposes. The same holds also for fields living in
multi-fractional geometry8,10. Before initiating a system-
atic construction of a fractional field theory, it is therefore
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important to show the existence of a momentum trans-
form expanded in a basis of functions K which either
diagonalize the quadratic form DKDK, with D a dif-
ferential operator, or are eigenfunctions of the Laplacian
operator K. If D is self-adjoint, K = D2 and the two
conditions are equivalent.
Since momentum transforms are specified by integral

kernels K that are bounded functions, it is natural to
define the momentum transform F for absolutely inte-
grable functions, f ∈ L1(X, ̺), for some domain X ⊂ RD

equipped with a given measure ̺, just as for the usual
Fourier transform. In this case, F is a continuous linear
application from L1(X, ̺) to some subset of C0(R

D), the
set of continuous functions in RD. The more physically
interesting case of functions belonging to L2(X, ̺) cannot
be done straightforwardly, as there are many L2(X, ̺)
functions that do not belong to L1(X, ̺) and for which
the local definition of the integral transform does not
hold. It will be possible to extend the momentum trans-
form from L1(X, ̺) ∩ L2(X, ̺) onto L2(X, ̺) only as a
limiting procedure, just like for the Fourier transform.
In this case, the momentum transform F can be unam-
biguously defined with the following properties:

(i) F is a unitary integral transform of L2(X, ̺) onto
itself.

(ii) F can be expressed as an integral operator whose
kernel is specified by the eigenfunctions of a given
Laplace operator K.

With the above conditions, we shall find integral repre-
sentations of the Dirac distribution in terms of the eigen-
functions of K. Our findings will clarify the interrelation
between momentum transforms and Laplacians in frac-
tional spaces. For a given space, the momentum trans-
form is not unique and there exist inequivalent F ’s satis-
fying (i). If a particular Laplacian K is chosen, condition
(ii) can fix the momentum transform on the space, but
we will end up with an infinite class of transforms and
Laplacians. If we further require that

(iii) the Laplacian K can be written as the square of a
self-adjoint differential operator D, K = D2,

then both the momentum transform and K are uniquely
defined for a given fractional space.
Section II briefly introduces multi-fractional spaces,

both in their original formulation (“unilateral”) and in
a novel “bilateral” version. In the former (section IIA),
the measure has support over the first orthant of RD.
Both coordinates x and momenta k will be non-negative.
In the bilateral case (section II B), the measure weight is a
function of the absolute value of the coordinates, and the
support of the measure is the whole space: coordinates
and momenta can take both signs. For each version, we
define two inequivalent second-order Laplacians which,
respectively, have played and will play a major role in
the formulation of the theory.
An infinite class of momentum transforms in the uni-

lateral and bilateral versions is constructed in section III.

The class is parametrized by a parameter l which is con-
tinuous in the unilateral case but can take only discrete
values in the bilateral world. The requirement (iii) fixes
l once and for all to a special value. The multi-fractional
and complex fractional cases are also discussed. Section
IV is devoted to conclusions.

II. MULTI-FRACTIONAL EUCLIDEAN

SPACES

A. Unilateral world

Let RD
+ be the first orthant of Euclidean space in D

(integer) topological dimensions. Define the fractional
measure

d̺α(x) = dDx vα(x) , (4a)

where the “isotropic” measure weight is

vα(x) =

D
∏

µ=1

vα(x
µ) :=

D
∏

µ=1

(xµ)α−1

Γ(α)
, (4b)

xµ ≥ 0 are D coordinates, Γ is the gamma function, and
1/2 ≤ α ≤ 1 is a real parameter. The measure is isotropic
in the fractional charge α, but anisotropic measures with
different αµ are also possible. We do not consider the
anisotropic case for simplicity and also because isotropic
fractional spaces are sufficient to realize the physics out-
lined in Refs.8,10.
The volume of a D-ball of radius R scales as

V(D) =

ˆ

D−ball

d̺α(x) ∝ RdH , dH = Dα , (5)

where dH is the Hausdorff dimension of the space ED
α

endowed with the measure (4). Summing or integrating
over all possible values of α, weighted by a factor gα, one
obtains the multi-fractional measure

d̺(x) =
∑

α

gαd̺α(x) , (6)

representing a space ED
∗ whose dimension changes with

the scale. In fact, the sum or integral in α = α(ℓ) can be
regarded as over a scale ℓ increasing with α.10

Given a Lagrangian density L, which may or may not
depend on α, the fractional action reads

S =
∑

α

gαSα , Sα =

ˆ +∞

0

d̺α(x)L . (7)

For a real scalar field, L = φKφ/2 − V (φ), where K
is a kinetic operator, V is a potential and φ has scal-
ing dimension [φ] = (dH − [K])/2. This vanishes at
the critical point α∗ = [K]/D, signalling power-counting
renormalizability10,12,13. If we identify α∗ with the low-
est value α = 1/2 in a theory with Lorentzian signature,
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at the lowest scale in the dimensional flow spacetime has
dimension dH∗ = [K] = D/2, and if D = 4 then dH∗ = 2.
In general, the Hausdorff and spectral dimension in the

UV depend on the choice of Laplacian. This choice deter-
mines uniquely the invertible unitary transform (possibly
parametrized as a class of transforms) linking fractional
configuration and momentum spaces. A two-dimensional
UV limit for effective spacetimes is typical in quantum
gravity models, so we are mainly interested in second-
order differential operators K. In Refs.9,10, the following
Laplacian was used:

K1 :=
1

vα
δµν∂µ(vα∂ν · ) = δµν

(

∂µ∂ν − 1− α

xµ
∂ν

)

, (8)

where Einstein’s summation convention is assumed and
δµν is the Kronecker delta. In spaces with Lorentzian
signature, this is replaced by the Minkowski metric ηµν .
The analogy between the measure weight vα and the de-
terminant of the metric

√
g in a Riemannian space makes

Eq. (8) resemble the covariant Laplacian. Another pos-
sibility, which we introduce here, is to consider the oper-
ator

K2 :=
1√
vα

δµν∂µ∂ν(
√
vα · ) (9a)

= δµν
[

∂µ∂ν − 1− α

xµ
∂ν +

(1− α)(3 − α)

4

1

xµxν

]

.

(9b)

Notice the extra centrifugal potential term. In the limit
α → 1, K1 = K2 = ∂2.

B. Bilateral world

The action (7) is defined with a measure whose support
is the positive orthant of RD.8–11 The choice xµ ≥ 0 is
made so that this measure is real-valued and does not
pick complex phases arising when one changes orthant
for some xµ → −xµ. Consider the integral

ˆ +∞

0

dDx vα(x) f(x) ,

where f is any function such that the integral is well-
defined. Splitting the integral artificially in two and
changing variable x → −x in the second piece, one finds
that
ˆ +∞

0

dDx vα(x) f(x) =

ˆ +∞

−∞

dDx vα(|x|)
f(|x|)

2
, (10)

where

vα(|x|) =
D
∏

µ=1

vα(|xµ|) :=
D
∏

µ=1

|xµ|α−1

Γ(α)
. (11)

Equation (10) states that unilateral fractional integrals
defined on a functional space of arbitrary (but “good”)

functions are equivalent to bilateral fractional integrals
defined on a functional space of even functions. Con-
versely, a bilateral world defined on a functional space
with indefinite parity is equivalent to an unilateral one
with a functional space of even functions.
At first sight, there seems to be little point in an ex-

ercise stating a simple mathematical equivalence. Using
one or the other formulation should be just a matter of
convention. Unilateral fractional measures might seem
preferable over those with the absolute value, considered
in Refs.28 and9 (section 2.5), since the latter have the
small disadvantage that they hide the integrable singu-
larity at xµ = 0. However, a careful inspection of the
physics one can do in fractional spaces shows that uni-
lateral worlds (including the α = 1 case) may be problem-
atic for a sensible formulation of quantum mechanics29.
Therefore, the bilateral version of fractional spaces,

ˆ +∞

0

dDx vα(x) →
ˆ +∞

−∞

dDx vα(|x|) , (12)

Eq. (11) with integration supportRD, must be considered
as a quite distinct implementation of fractional geometry.
For simplicity, we shall use the same symbol vα(x) for the
measure weight (11), as the difference is explicit in the
integration range. In fact, xµ ≥ 0 in the unilateral world
and one could have taken directly Eq. (11), the absolute
value being pleonastic in this case. Then, the definitions
(8) and (9) are unaltered.

III. FRACTIONAL MOMENTUM

TRANSFORMS

In this section, we show that:

1. In the unilateral case, there exists an infi-
nite number of invertible unitary transforms F l

α

parametrized by a parameter l such that Re(l) >
−1. Each transform is realized by an integral kernel
formed by the eigenfunctions clα of a second-order
Laplacian operator Kα,l.

2. Only the transform with l = 1/2 is such that the
associated Laplacian can be written as K = D2,
where D is a first-order self-adjoint differential op-
erator.

3. In the bilateral case, there exists an infinite number
of invertible unitary transforms such that l = n −
1/2 is half-integer.

A. General setting

Without loss of generality, in this subsection we shall
consider the D = 1 dimensional case; the extension to
D dimensions will be straightforward. Let F be a proto-
type of momentum (linear) transformation specified by
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a bounded kernel K. Acting on a function f(x), the F
transform is

f̃(k) =

ˆ

d̺(x)K(k, x)f(x) =: F [f(x)] . (13)

If K is bounded, it does not present singularities along
the integration path and asymptotically tends to some
constant.1 Then, Eq. (13) is well defined for any function
f(x) ∈ L1(R, ̺). The image of the transform (13) is
a not-so-easily characterizable subset of C0(R), the set
of the continuous functions on R. Thus, F is a linear
operator from L1(R, ̺) into C0(R).
In the context of quantum mechanics, Eq. (13) meets

with two problems: (a) it should be defined in L2(R, ̺),
rather than in L1(R, ̺); (b) its image should be L2(R, ̺),
and not a subset of C0(R). To proceed, one should first
notice that, for any fκ(x) continuous and defined on a
compact support κ, F [fκ(x)] ∈ L2(R, ̺). Since L2(R, ̺)
is closed, the idea is to define the F transform for a
generic function in L2(R, ̺) as the limit, in the L2(R, ̺)
topology, of a sequence of functions defined on a compact
support. For instance, to any continuous f(x) ∈ L2(R, ̺)
we could associate the following sequence fn → f :

fn(x) =

{

f(x) if |x| ≤ n

0 if |x| > n
, (14)

and define the F transform of f as the limit of the F -
transformed sequence

f̃(k) := lim
n→∞

f̃n(k) = lim
n→∞

ˆ +n

−n

d̺(x)K(k, x)f(x) .

(15)
Since the space of the continuous functions on R is dense
in L2(R, ̺), the limit procedure defined in Eq. (15) pro-
vides a map from L2(R, ̺) to L2(R, ̺). The limit is un-
derstood in the L2 topology. Consequently, if f(x) ∈
L1(R, ̺) ∩ L2(R, ̺), f̃(k) defined as in (13) could be dif-
ferent from that obtained through (15). However, they
belong to the same equivalence class (i.e., they are equal
almost everywhere). From now on, we shall interpret all
the equalities in the L2 sense, understanding the above
limiting procedure, if needed. Also, for any f and g in
L2(R, ̺) we define the inner product

(f, g) :=

ˆ

d̺(x) f∗(x) g(x) , f, g ∈ L2
α , (16)

where ∗ denotes complex conjugation. The norm of a
functions is then ‖f‖2 := (f, f).
If the map is invertible, there should exist one

K−1(k, x) such that

f(x) =

ˆ

dτ(k)K−1(k, x)f̃(k) =: F−1[f̃(k)] , (17)

1 The case of power-like bounded kernels can be treated along the
same lines, either modifying the function space or modifying the
measure ̺(x).

where the integration measure τ(k) in momentum
space is allowed to be different from ̺(x). Imposing

F [F−1[f̃(k)]] = f̃(k), one obtains the resolution of the
identity in terms of K:

ˆ

d̺(x)K(k, x)K−1(k′, x) = δτ (k, k
′) , (18)

where the distribution δτ is the delta distribution when
the momentum measure is τ , i.e.,

ˆ

dτ(k′) f(k′)δτ (k, k
′) = f(k) . (19)

Since it must also be F−1[F [f(x)]] = f(x), one obtains,
in configuration space, a different representation of the
delta distribution,

ˆ

dτ(k)K(k, x)K−1(k, x′) = δ̺(x, x
′) , (20)

such that
ˆ

d̺(x′) f(x′)δ̺(x, x
′) = f(x) . (21)

At this point, if we require that the momentum transform
be an automorphism, then the partition of the unity is
unique (the two representations of the delta are equal),
yielding τ = ̺. The general case will be commented on in
the conclusions. Then, both the kernelsK andK−1 must
depend on the product kx; in particular, they are invari-
ant under the exchange (k, x) ↔ (x, k) and the identities
(18) and (20) are equivalent with k and x switched.
In ordinary quantum mechanics, coordinate and mo-

mentum representations are equivalent pictures for de-
scribing a physical system: the Fourier transform not
only maps any L2 element into another L2 element, but
it is also a surjective map, that is, any L2 element can be
seen as a Fourier transform of another L2 element. This
is guaranteed by the fact that the inverse Fourier trans-
form is itself a Fourier transform. Precisely the same will
happen in our case and the momentum transforms F we
shall define are “onto” L2(R, ̺). Consequently, unitar-
ity of the F transform solely depends on the Parseval
identity. If the latter holds,

‖f̃(k)‖ = ‖f(x)‖ , (22)

then the transformation is unitary. In fact,

(f, f) = (f̃ , f̃) = (Ff, Ff) = (F †Ff, f)

implies

F † = F−1 or K∗(kx) = K−1(kx) , (23)

and the momentum transform is unitary. The converse is
also true: by reading the above passages in the opposite
direction, if F is unitary then Eq. (22) is satisfied. Thus,
unitarity in the transformations we are going to present
can be always verified by checking the validity of the
Parseval identity.
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B. Fourier transform

Consider Euclidean space RD, where D is the topolog-
ical (integer) dimension. The direct and inverse Fourier
transforms of a function f(x) ∈ L2(R) are

f̃(k) :=
1

(2π)
D
2

ˆ +∞

−∞

dDx f(x) e−ik·x =: F1[f(x)] ,

(24a)

f(x) =
1

(2π)
D
2

ˆ +∞

−∞

dDk f̃(k) eik·x =: F−1
1 [f̃(k)] ,

(24b)

where k · x = kµx
µ = k1x1 + · · · + kDxD. F is in-

vertible and unitary, and the Dirac distribution admits
an integral representation in terms of the Fourier kernel
K(kx) = eik·x:

1

(2π)D

ˆ +∞

−∞

dDk e±ik·(x−x′) = δ(x− x′) . (25)

Notice that the D-dimensional kernel K is just the
product of D factorized kernels K(µ) = eikµxµ (µ not
summed), one for each dimension µ = 1, . . . , D. It is
thanks to Eq. (25) that Parseval relation (22) holds,
and the Fourier transform is unitary. From Eq. (24),

F−1
1 [f̃(k)] = F1[f̃(−k)]. Consequently, any f(x) ∈ L2(R)

is the Fourier transform of g(x) = F1[f(−k)] ∈ L2(R).
The Fourier transform in RD

+ is expanded in cosines or
sines rather than phases. From Eqs. (24) and (25),

1 =

ˆ +∞

−∞

dDx δ(x) e−ik·x

= (2π)
D
2

ˆ +∞

0

dDx δ(x) c(k, x) , (26)

where

c(k, x) :=

(

2

π

)
D
2 ∏

µ

cos(kµxµ)

=

(

2

π

)
D
2

cos(k1x1) . . . cos(kDxD) . (27)

Similarly,

δ(x − x′) =
1

(2π)
D
2

ˆ +∞

0

dDk c(k, x− x′) . (28)

Also the inverse transform runs over positive values of
the integration variable. Equations (26)–(28) completely
define the transformation properties of the delta distri-
bution in unilateral representation. Then, for a function
f ,

f̃(k) =

ˆ +∞

0

dDx f(x) c(k, x) =: Fc[f(x)] , (29a)

f(x) =

ˆ +∞

0

dDk f̃(k) c(k, x) = F−1
c [f̃(k)] . (29b)

Plugging the first equation into the second, one notices
that (for each direction) 2 cos(kx) cos(kx′) = cos[k(x′ −
x)] + cos[k(x′ + x)], and performs the integration via
Eq. (28). In D dimensions, this gives

f(x) =

ˆ +∞

0

dDx′ [δ(x′ − x) + δ(x′ + x)]f(x′) .

The support of the second delta is outside the integra-
tion range for any x′ > 0, and that contribution vanishes.
Therefore, we have the following resolutions of the iden-
tity:

δ(x− x′) =

ˆ +∞

0

dDk c(k, x) c(k, x′) , (30a)

δ(k − k′) =

ˆ +∞

0

dDx c(k, x) c(k′, x) , (30b)

where the second equation comes from the first under
the exchange k ↔ x. Equations (30) guarantee the va-
lidity of the Parseval identity and then unitarity of the
cosine Fourier transform follows. Notice that the inverse
of the cosine Fourier transform is itself, F−1

c = Fc and
surjectivity follows.
The sine transform

f̃(k) =

ˆ +∞

0

dDx f(x) s(k, x) =: Fs[f(x)] , (31a)

f(x) =

ˆ +∞

0

dDk f̃(k) s(k, x) , (31b)

where

s(k, x) :=

(

2

π

)
D
2 ∏

µ

sin(kµxµ)

=

(

2

π

)
D
2

sin(k1x1) . . . sin(kDxD) , (32)

can be developed along the same lines. Upon re-
peating the above inversion argument with the co-
sine functions replaced by the sines, one ends up with
2 sin(kx) sin(kx′) = cos[k(x′ − x)] − cos[k(x′ + x)] that,
using again Eq. (28), leads to the resolutions of the iden-
tities

δ(x− x′) =

ˆ +∞

0

dDk s(k, x) s(k, x′) , (33a)

δ(k − k′) =

ˆ +∞

0

dDx s(k, x) s(k′, x) , (33b)

and unitarity immediately follows.
The choice between cosine and sine transform typi-

cally depends on the behaviour of the functions f(x) at
the origin. If f(0) = 0, the sine expansion is chosen for
the sole purpose of taking Eq. (31b) at face value, i.e.,
as a pointwise equality (then, expanding around x ∼ 0
one does not meet with contradictions). However, this is
not strictly necessary, as the equalities in (29) and (31)
are intended globally, in the L2(RD

+ ) norm and, as such,
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they correspond to pointwise equalities only almost ev-
erywhere.2

C. Unilateral world

1. Fractional Bessel transforms

To obtain a partition of the identity in the fractional
case, we must be able to express the (fractional analog
of the) Dirac distribution as an integral representation
in terms of the kernel of the transform. The fact that
fractional coordinates are non-negative suggests the fol-
lowing strategy, which is not the most natural but it will
define the correct eigenfunctions of the operator (8). In
n-dimensional Euclidean space, the radial delta distribu-
tion δ(r) carries a scaling dimension [δ(r)] = −1, where

r :=
√

x2
1 + · · ·+ x2

n .

For radial functions f(r), the n-dimensional Fourier
transform in hyperspherical coordinates reduces to a one-
dimensional, n-dependent invertible transform in r. An-
alytic continuation of this transform to non-integer val-
ues n → α leads to the transform in a fractional space
with dH = α, where we find a distribution δα such that
[δα] = −α. Repeating the argument for all the D direc-
tions yields the final result.
Taking the Fourier transform (24) in D → n dimen-

sions, we move to hyperspherical coordinates,

(x1, · · · , xn) → (r, ϕ, θ1, · · · θn−2) ,

so that the coordinate transformation is

x1 = r sinϕ
n−2
∏

j=1

sin θi , x2 = r cosϕ
n−2
∏

j=1

sin θj ,

xj+2 = r cos θj

n−2
∏

l=j+1

sin θl , xn = r cos θn−2 ,

and the measure reads

dnx = dr rn−1 dϕ

n−2
∏

j=1

dθj (sin θj)
i .

Choose the orientation of the x frame such that the
(fixed) vector k has components (0, · · · , 0, kn), so that

2 Sometimes, the cosine and sine transforms are presented as the
“natural” transform for, respectively, even and odd functions.
We have just seen that they work perfectly well for general func-
tions, not only those with definite parity. More precisely, in
an unilateral world there is no notion of parity, and the correct
statement is that cosine/sine transforms are well defined also for
functions with definite parity when analytically continued to the
negative semi-axis.

k · x = kxn = kr cos θn−2, where k := |k|. Suppose f is

a function only of r. Then the Fourier transform f̃ is a
function only of k and

f̃(k) =
1

(2π)
n
2

ˆ +∞

0

dr rn−1

ˆ 2π

0

dϕ
n−3
∏

j=1

ˆ π

0

dθj (sin θj)
j

×
ˆ π

0

dθn−2 (sin θn−2)
n−2f(r) e−ikr cos θn−2 . (34)

From formulæ 3.621.1, 8.335.1 and 8.384.1 of Ref.30,

n−3
∏

j=1

ˆ π

0

dθj (sin θj)
j =

n−3
∏

j=1

√
π Γ

(

j+1
2

)

Γ
(

j+2
2

) =
π

n−3
2

Γ
(

n−1
2

) ,

while30 (formula 8.411.7)
ˆ π

0

dθn−2 (sin θn−2)
n−2 e−ikr cos θn−2

=
√
π 2

n
2 −1Γ

(

n−1
2

)

Γ(n)
cn(kr) ,

where

cn(kr) := Γ(n)(kr)1−
n
2 Jn

2 −1(kr) . (35)

Here, Jν is the Bessel function of the first kind:

Jν(z) = zνJν(z) := zν
+∞
∑

m=0

(−1)m

22m+νm!Γ(m+ ν + 1)
z2m ,

(36)
from which it follows that cn is even. Then, Eq. (34) and
its inverse become

f̃(k) = k1−
n
2

ˆ +∞

0

dr r
n
2 f(r)Jn

2 −1(kr) , (37a)

f(r) = r1−
n
2

ˆ +∞

0

dk k
n
2 f̃(k)Jn

2 −1(kr) , (37b)

which can be rewritten as

f̃(k) =

ˆ +∞

0

dr
rn−1

Γ(n)
f(r) cn(kr) , (38a)

f(r) =

ˆ +∞

0

dk
kn−1

Γ(n)
f̃(k) cn(kr) . (38b)

A self-consistency check is to show that f(r) is the inverse

of f̃(k). Plugging Eq. (37a) into (37b),

r
n
2 f(r) = r

ˆ +∞

0

dk k
n
2 Jn

2 −1(kr) f̃ (k)

= r

ˆ +∞

0

dk k Jn
2 −1(kr)

×
ˆ +∞

0

dr′ r′
n
2 f(r′)Jn

2
−1(kr

′)

=

ˆ +∞

0

dr′ δ(r − r′) r′
n
2 f(r′) , (39)
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where in the last line we used the integral representation
of the Dirac distribution in terms of Bessel functions31

(Eq. 1.17.13),

δ(r−r′) = r

ˆ +∞

0

dk k Jn
2 −1(kr)Jn

2 −1(kr
′) , ∀ n > 0 .

(40)
The generalization of the pair (38) to a one-

dimensional fractional space is straightforward upon the
substitutions r → x and n → α. The resulting measure
in configuration space is correct and, because Eq. (40)
is valid for any complex number l = n/2 − 1 such that
Re(l) > −1, f(x) is indeed the inverse transform. For
this very reason, in D topological dimensions there ex-
ists a whole class of fractional Bessel transforms F l

α of a
function f(x) = f(x1, . . . , xD):

f̃(k) :=

ˆ +∞

0

d̺α(x) f(x) c
l
α(k, x) =: F l

α[f(x)],(41a)

f(x) =

ˆ +∞

0

d̺α(k) f̃(k) c
l
α(k, x) , (41b)

where the basis functions are

clα(k, x) :=
∏

µ

clα,µ(kx)

:=
∏

µ

√

kµxµ

vα(kµ)vα(xµ)
Jl(k

µxµ) . (42)

Equation (41b) proves that momentum space has the
same geometry as configuration space. In particular,
Eq. (2) holds. The transform (41) is a generalization of
the Bessel (also called Hankel) transform (e.g., Ref.32).
From Eq. (40), the integral representation of the “frac-

tional” Dirac distribution is

δα(x, x
′) :=

δ(x− x′)
√

vα(x)vα(x′)
(43a)

=

ˆ +∞

0

d̺α(k) c
l
α(k, x)c

l
α(k, x

′) , (43b)

which has the expected scaling dimension and is not
translation invariant. That δα plays the role of the Dirac
distribution in fractional geometry is clear from a check
identical to Eq. (39), leading to

f(x) =

ˆ +∞

0

d̺α(x
′) δα(x, x

′)f(x′) . (44)

Equation (43) permits to prove the Parseval relation as-
sociated with the integral transform (41), and therefore
the unitarity of the whole family of transforms F l

α. Note
that the inverse transform is equal to the direct trans-
form, and F l

α is surjective for any l.
The definition δα(x, x

′) := v−1
α (x)δ(x−x′) was already

guessed in13 for a space with general Lebesgue–Stieltjes
measure, but the integral representation found here is its
rigorous expression in fractional spaces.

2. Laplacians and quadratic form

The momentum transform previously discussed is not
unique and we found an infinite class F l

α. A specific
choice of Laplacian operator selects a finite number of
transforms. In our case, the family of kinetic operators

Kα,l :=
∑

µ

x
l− 1

2
µ

√

vα(xµ)
∂µ

{

x1−2l
µ ∂µ

[

x
l− 1

2
µ

√

vα(xµ) ·
]}

(45a)

=
∑

µ

x
l−α

2
µ ∂µ

[

x1−2l
µ ∂µ

(

x
l−1+α

2
µ ·

)]

(45b)

=
∑

µ

[

∂2
µ − 1− α

xµ
∂µ +

(2− α)2 − 4l2

4x2
µ

]

, (45c)

is engineered so that the kernel of the transform F l
α yields

the two solutions of the eigenvalue equation
(

Kα,l + k2
)

c±l
α (k, x) = 0 , (46a)

k2 := kµk
µ = (k1)

2 + · · ·+ (kD)2 . (46b)

In particular, the operators (8) and (9) are

K1 = Kα,1−α
2
, l = 1− α

2
, (47)

K2 = Kα, 12
, l =

1

2
. (48)

The transform F−l
α with l = 1 − α/2 was employed in a

companion paper9 to calculate the heat kernel and the
spectral dimension of ED

α . Since the order of Kα,l is the
same for any l, all the results of Refs.8–10 concerning the
spectral dimension are unaffected by the present discus-
sion.
Here, however, we are interested in a more natural

choice of the parameter l which will allow us to write the
Laplacian operator as the square of a self-adjoint deriva-
tive operator. With the same value of l it is also possible
to extend the transform to bilateral fractional spaces.
This transform is associated with the kinetic operator

(9). Notice that, when α = 1 = 2l, c
−1/2
1 (k, x) = c(k, x)

and c
1/2
1 (k, x) = s(k, x) (see Ref.31 (Eq. 10.16.1) and

Eq. (27)) and Eqs. (41) reduce to the ordinary cosine
and sine Fourier transforms (29) and (31). For general
α, the eigenfunctions of K2 are

c
− 1

2
α (k, x) =

(

2

π

)
D
2 ∏

µ

cos(kµxµ)
√

vα(kµ)vα(xµ)
=: cα(k, x) ,

(49a)

c
1
2
α(k, x) =

(

2

π

)
D
2 ∏

µ

sin(kµxµ)
√

vα(kµ)vα(xµ)
=: sα(k, x) .

(49b)
These functions are shown in figure 1. They vanish in
x = 0 and their amplitude increases as a mild power law.
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FIG. 1. The functions cα (thick curve, top panel) and sα
(thick curve, bottom panel) for α = 1/2. The dashed curves
are c1 = c and s1 = s, respectively.

The l = 1/2 case is special because it is the only one
where Kα,l is a quadratic form. Consider the integral

−
ˆ +∞

0

d̺α(x) δ
µνDα,l

µ f(x)Dα,l
ν f(x) , (50)

where (no sum over µ)

Dα,l
µ :=

x
1
2−l
µ

√

vα(xµ)
∂µ

[

x
l− 1

2
µ

√

vα(xµ) ·
]

(51a)

=
1

x
l−1+α

2
µ

∂µ

(

x
l−1+α

2
µ ·

)

. (51b)

We can take the case D = 1 for simplicity. Integrating
by parts, one obtains

−
ˆ +∞

0

d̺α(x)Dα,lf(x)Dα,lf(x)

=

ˆ +∞

0

d̺α(x) f(x)Kα,lf(x) , (52)

provided the following boundary term vanishes:

lim
ǫ→0+

x
α
2 −lf(x)∂

[

xl−1+α
2 f(x)

]

∣

∣

∣

+∞

ǫ
= 0 . (53)

At x = +∞, this expression vanishes because f is as-
sumed to be L2(R+, ̺α), whereas at the origin it vanishes
provided f(x) vanishes at the origin with a power bigger
than 1− α/2.

In the unique case l = 1/2, the Laplacian K2 becomes
the square of a differential operator:

Kα,l = (Dα,l)2 ⇔ l =
1

2
. (54)

In other words, the functions (49) diagonalize the

quadratic form Dµ := Dα,1/2
µ defined in (50) and (51).

In D embedding dimensions,

Dµ =
1

√

vα(x)
∂µ

[

√

vα(x) ·
]

, K2 = DµDµ ,

(55)

Dµcα(k, x) = −kµ sα(k, x) , (56a)

Dµsα(k, x) = kµ cα(k, x) . (56b)

Among the derivatives introduced, l = 1/2 is the only
case corresponding to a self-adjoint operator (with a suit-
able domain).

3. Multi-fractional transforms?

To complete the discussion, we would like to generalize
to the multi-fractal space ED

∗ . Before attempting that,
we make a remark about the generality of the results of
sections III C 1 and III C 2. In one dimension, they are
actually valid for any Lebesgue–Stieltjes measure weight
vα(x) → v(x) such that

|v(x)| = v(x) , D = 1 , (57)

as a direct inspection of the invertibility of Eq. (41), via
(42), shows. The requirement of positive definiteness is
rather general and can include very irregular measures
and measure weights of the form

v(x) =
∑

α

gαvα(x) , gα, vα ≥ 0 . (58)

However, in many dimensions we also require a much
more restrictive property, namely, that the measure fac-
torizes in the coordinates:

v(x) =
∏

µ

v(µ)(x
µ) , (59)

where the weights v(µ) may differ from one another. This
condition is fulfilled by real-order fractional measures,
which are simple power laws, but it is not by weights of
the type (58). Therefore, in D 6= 1 we do not expect to
find an invertible transform on ED

∗ unless in very special
cases, if any.
We can see this also in the alternative case where the

sum over α is performed in front of the transform integral
rather than in the measure and in the kernel functions clα
separately. In fact, since the multi-fractional measure (6)
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is linear in ̺α we can assume the multi-fractional Bessel
transform to take the form

f̃(k) :=
∑

α

gα

ˆ +∞

0

d̺α(x) f(x) c
l
α(k, x) =: F l

∗[f(x)] ,

(60)
with inverse

f(x) =
∑

α

g̃α

ˆ +∞

0

d̺α(k) f̃(k) c
l
α(k, x) , (61)

where [g̃α] = −[gα] = −Dα. As before, one plugs
Eq. (60) into (61):

f(x) =
∑

α,α′

gαg̃α′

ˆ +∞

0

d̺α(k) c
l
α(k, x)

×
ˆ +∞

0

d̺α′(x′) f(x′) cl
′

α′(k, x′)

=
∑

α,α′

gαg̃α′

ˆ +∞

0

d̺α′(x′) Iα,α′(x, x′) f(x′),(62)

where the multiple integral

Iα,α′(x, x′) :=

ˆ +∞

0

d̺α(k) c
l
α(k, x) c

l′

α′ (k, x′) (63)

entails integrals of the form

x

ˆ +∞

0

dk k
α−α′

2 +1Jl(kx)Jl′ (kx
′) .

Notice that l′ may differ from l since the order of the
Bessel function can depend on α. To get agreement
with the left-hand side of Eq. (62), Iα,α′(x, x′) should
be proportional to δα(x, x

′). For α = α′ (l = l′), indeed
Iα,α(x, x′) = δα(x, x

′). However, for α 6= α′ this integral
exists (if Re[l+ l′+(α−α′)/2+1] > 0, which we assume)
and is not equal to a fractional delta. This result would
be in conflict with Eq. (62), unless Iα,α′(x, x′) identically
vanishes for α 6= α′. This can happen only for the specific
choice of the parameters30 (formulæ 6.574.1–3)

l − l′ − α− α′

2
= −2n or l′ − l − α− α′

2
= −2n ,

(64)
where n is a non-negative integer. If this is the case, we
finally obtain

Iα,α′(x, x′) = δα,α′ δα(x, x
′) , (65)

where the first is a Kronecker delta and (62) is an identity
provided the following condition holds:

∑

α

gαg̃α = 1 . (66)

Given some energy cut-off E, the natural interpretation
of the dimensionless coupling constants

γα = gαE
−Dα , γ̃α = g̃αE

Dα , (67)

is that of probability weights, such that

∑

α

γα = 1 ,
∑

α

γ̃α = 1 . (68)

If, moreover, γα = γ̃α, Eqs. (66) and (68) become

∑

α

γ2
α = 1 ,

∑

α

γα = 1 . (69)

If α takes continuum values, these expressions hold only
if γα = 1. If α takes discrete values, Eq. (69) becomes
the set of Kasner conditions, which implies (taking the
square of the second and using the first)

∑

α<α′

γαγα′ = 0 . (70)

Therefore, at least one γα must have opposite sign with
respect to the others.
Checking the condition (64), one sees that it is true

only if n = 0 and l = ±α/2 + q, where q ∈ C. In par-
ticular, the case corresponding to the Laplacian (47) ad-
mits a multi-fractional transform, while the special case
l = ±1/2 (and any other where l does not depend on α)
does not. As a consequence, there does not exist a multi-
fractional Bessel transform in spaces equipped with the
Laplacian K2, which is the only one of the family (45)
that can be written as the square of a first-order differ-
ential operator.
Realistic physical fractional theories eventually have a

multi-fractal structure, but these results do not necessar-
ily entail a problem. In fact, one could even argue that
one should not have a unitary multi-fractional transform.
The coordinates x = x(ℓ) can be interpreted as implic-
itly depending on the probed scale ℓ, which should be
the same for its conjugate momentum k = k(ℓ). The
multi-fractal flow of the fractional charge α = α(ℓ) is
realized thanks to this scale dependence, hence it is nat-
ural to define the momentum transform “pointwise” (α
fixed) along the multi-scale flow. We can reach the same
conclusion by noticing that, in fractal spacetimes, a loss
of unitarity is expected due to the non-trivial embedding
of the fractal into a smooth space with larger volume13.
This loss of unitarity, corresponding to non-conservation
of Noether charges, is parametrized by α in fractional
models. Varying the scale is equivalent to vary α, so
any relative change of probability between two scales ℓ
and ℓ′ will be reflected in the unitarity property of the
fractional transform. Thus, it is expected that a multi-
fractional transform be non-unitary. We will strengthen
this conclusion in the bilateral case, where there will not
exist any unitary multi-fractional transform for the al-
lowed values of the parameter l.
Before moving on, we stress that the naive Ansatz

v(x) =
∏

µ

[

∑

α

g(µ)α vα(x
µ)

]

(71)
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would lead to an invertible transform but it is not
clear whether this corresponds to a natural multi-fractal
model. Apart from the arguments outlined in the pre-
vious paragraph, the reason is that, in this case, the
dimensionality along each direction flows independently
from the others, while we would expect that a given D-
dimensional configuration be evolved as a whole through-
out the probed scales. In other words, a multi-fractal in
a given D-dimensional embedding should be realized by
taking “snapshots” of the whole object at different scales
rather than taking the product ofD multi-fractals in one-
dimensional embeddings. In one-dimensional systems the
two procedures collapse one into the other, and there ex-
ist invertible momentum transforms for any weight vα
and a suitable function space.

4. Complex fractional transforms?

Another important extension is to complex fractional
models. Fractional calculus can be extended to complex
orders, by replacing the real-valued order α in integro-
differential operators with a complex power33–38. In our
case, the only change is the replacement of the measure
weight (4b) (or (11), with x replaced by its absolute value
|x|) by8,10

ṽα(x) =
+∞
∑

ω=−∞

Cωvα+iω(x) :=
+∞
∑

ω=−∞

Cω
xα+iω−1

Γ(α+ iω)
,

(72)
where α, ω ∈ R and Cω are complex coefficients. There
are two major reasons why to be interested in such a
generalization. The first is mathematical: genuine frac-
tals have complex geometry and harmonic structures,
reflected in the oscillatory behaviour of their spectral
function39–45. These structures are reproduced or ap-
proximated by complex fractional measures35,37. The
second reason is physical. Consider a model with just
one pair of conjugate frequencies ±ω∗ and C0 = 1:

ṽα(x) = vα,ω∗
(x) :=

xα−1

Γ(α)
+C

xα+iω∗−1

Γ(α+ iω∗)
+C

xα−iω∗−1

Γ(α− iω∗)
,

where C is real. This measure is real, since it can be
recast as10

ṽα,ω∗
(x) = xα−1

[

1

Γ(α)
+ aα,ω∗

cos (ω∗ lnx)

+ bα,ω∗
sin (ω∗ lnx)

]

, (73)

where aα,ω∗
= 2CRe [1/Γ(α+ iω∗)] and bα,ω∗

=
2CIm [1/Γ(α+ iω∗)] are real coefficients. In order to
make the arguments of the logarithms dimensionless, one
should introduce a length scale x → x/ℓ∞,8,10 which we
do not need to consider here. Fractional spacetimes with
measure (73) display the phenomenon of logarithmic os-
cillations, appearing in many chaotic systems46. The

log-period, in turn, is tightly associated with a discrete
scale invariance (DSI) of the measure under the coordi-
nate rescaling

x → λn
ω∗
x , λω∗

:= exp

(

2π

ω∗

)

, n ∈ Z . (74)

As a matter of fact, any fractional complex measure (72)
where the frequencies are multiples of a given one,

ω = mω∗ , m ∈ Z , (75)

possess a DSI up to a global rescaling. These types of
fractional measures have a rich hierarchy of scales8,10.
Near the fundamental scale ℓ∞, which can be identified
with the Planck length11, the texture of spacetime is dis-
crete, while at scales larger than the log-period one can
take the average of the measure and the system acquires
a set of continuous effective symmetries. This may open
up the possibility to construct models of quantum gravity
with a natural discrete-to-continuum transition.
After this brief introduction, we want to see if spaces

endowed with the measure (72) admit a unitary momen-
tum transform. The considerations of the previous sec-
tion show that, in all special cases where |ṽα| = ṽα,
a transform exists. For instance, taking m = 0,±1,
C0 = Γ(α)/2 and C±ω∗

= −Γ(α± iω∗)/4, one gets

ṽα(x) =
1

4
xα−1(2−xiω∗−x−iω∗) = xα−1 sin2

(

ω∗ ln
√
x
)

,

(76)
which is positive definite and has log-period π/ω∗. How-
ever, the same arguments suggest that the general answer
is No, at least in the continuum, since Eq. (72) is not even
real-valued. More specifically, as in the multi-fractional
case integral cross terms do not give a delta distribution
and prevent a continuous transform to be unitary. This
does not mean that there exists no momentum transform
in complex spaces; rather, if it exists it is not a naive gen-
eralization of the fractional Bessel transform. We can see
this in a calculation in the continuum, which also hints
at the intriguing possibility that both configuration and
momentum spaces are, in fact, lattices.
Define

f̃(k) :=
∑

ω

Cω

ˆ +∞

0

d̺α+iω(x) f(x) c
l
α+iω(k, x) , (77)

which is the naive extension of the unilateral fractional
Bessel transform. As candidate inverse, we choose not
to take the complex conjugate of this expression (ob-
tained by replacing ω → −ω), since the sum over ω
is bilateral and the final conditions on the parameters
will be unaffected. Also, one soon realizes that the real
part of the complex exponent must be the same as in
the configuration-space measure, otherwise one meets
with the same obstructions as for the multi-fractional
case (even diagonal integration terms would not give the
delta):

f(x) =
∑

ω

C̃ω

ˆ +∞

0

d̺α+iω(k) f̃(k) c
l
α+iω(k, x) , (78)
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where the coefficients C̃ω may differ from the Cω. As
kernel functions, we use (consider D = 1)

clα+iω(k, x) := Γ(α+ iω)(kx)1−
α+iω

2 Jl(kx) . (79)

As before, we plug (77) into Eq. (78):

f(x) =
∑

ω,ω′

C̃ωCω′

ˆ +∞

0

d̺α+iω′(x′) f(x′)

×Iω,ω′(x, x′) , (80)

Iω,ω′(x, x′) = Γ(α+ iω′)x− iω
2 x′−

iω′

2 (xx′)
1−α

2

×
(

x′

x

)
1
2

Iω,ω′(x, x′) , (81)

Iω,ω′(x, x′) =

ˆ +∞

0

dk k
i(ω−ω′)

2 (kx)Jl(kx)Jl′ (kx
′) ,

(82)

where we allowed l′ to be different from l in case l depends
on ω. To get a decomposition of the unit (i.e., to get
an invertible unitary transform) we can use the integral
representation of the Dirac distribution in terms of Bessel
functions when ω = ω′ (l = l′), but we should be able to
make all non-diagonal terms vanish. This operation can
be done provided the complex power of k in Eq. (82),

k
i(ω−ω′)

2 = e
i(ω−ω′)

2 Logk , (83)

is reduced to a trivial phase. However, this is not possible
and the anti-transform (78) is not the inverse of (77).
Incidentally, notice that if k were discrete the phase

(83) could be rendered trivial. Suppose the frequencies
are of the form ω = mω∗; the simplest non-trivial exam-
ple is m = 0,±1, such as in the measure (73). Then, if k
were discrete the term (83) would be identically equal to
1 if

k = exp

(

4πn

ω∗

)

, n ∈ Z . (84)

Setting l = l′ would remove any cross term, so one could
conclude that Iω,ω′(x, x′) = δ(x−x′) for any pair of ω, ω′.
Proceeding further, one would find exactly the same lat-
tice condition for x and an algebraic condition on the
coefficients Cω and C̃ω . For non-real or non-positive-
definite measures with ω = mω∗, the sites of the lat-
tices would always lie on the crests or nodes of the log-
arithmic oscillations, so that the actual measure would
be ṽα ∝ xα−1, up to some constant. This would not
trivialize the theory to the real case because the newly
found measure has discrete support. These results are
only heuristic since they are based on the integral rep-
resentation of the Dirac distribution, while the discrete
nature of configuration and momentum space indicate
that a sum representation is needed for self-consistency.
We do not pursue this subject further here.

D. Bilateral world

Upon the replacement (12), the notion of parity be-
comes meaningful. The basis functions (42) do not
have, in general, definite parity, but the power of |kx|
in Eq. (42) compensates the measure weight |x|α−1 and
cross terms of the form clα(k, x)c

−l
α (k, x′) cancel out for

suitable values of l, as it happens in the ordinary Fourier
transform where integrals of cos(kx) sin(kx′) vanish by
parity. Explicitly, the kernel functions are

clα(k, x) :=
∏

µ

clα,µ(kx)

:=
∏

µ

Γ(α)|kµxµ| 1−α
2 (kµxµ)

1
2 Jl(k

µxµ) . (85)

Selecting the allowed values of l will yield the desired
representation of the Dirac distribution. Define

e

l
α(k, x) :=

1

2D
[

c−l
α (k, x) +Aclα(k, x)

]

, A ∈ C ,

(86)
and the bilateral fractional transform as

f̃(k) :=

ˆ +∞

−∞

d̺α(x) f(x) e
l
α

∗
(k, x) =: F l

α[f(x)] ,

(87a)

f(x) =

ˆ +∞

−∞

d̺α(k) f̃(k) e
l
α(k, x) . (87b)

The goal is to find some A and l such that Eq. (87b) is
indeed the inverse of Eq. (87a). Plugging the former into
the latter,

f(x) =

ˆ +∞

−∞

d̺α(k) f̃(k) e
l
α(k, x)

=

ˆ +∞

−∞

d̺α(x
′) f(x′)

×
ˆ +∞

−∞

d̺α(k) e
l
α

∗
(k, x′) elα(k, x)

=

ˆ +∞

−∞

d̺α(x
′) f(x′)I(x, x′) .

To get an identity, the integral in k must yield a bilateral
fractional delta. Using Eq. (86),

I(x, x′) =

ˆ +∞

−∞

d̺α(k) e
l
α

∗
(k, x′) elα(k, x)

=
1

4D

ˆ +∞

−∞

d̺α(k) [c
−l
α (k, x)c−l

α (k, x′)

+|A|2clα(k, x)clα(k, x′)]

+
1

4D

ˆ +∞

−∞

d̺α(k) [A
∗c−l

α (k, x)clα(k, x
′)

+Aclα(k, x)c
−l
α (k, x′)] . (88)

11



Writing Jl(z) = zlJl(z) as in Eq. (36), the function Jl

is even under a reflection z → −z. The last line features
integrals of the form

ˆ +∞

−∞

dk kJl(kx)J−l(kx
′) = 0 ,

where we omitted a factor dependent on x and x′; all
these contributions vanish because the integrands are
odd. The remainder of Eq. (88) is split into four terms.
In D = 1,

I(x, x′) =
1

4

ˆ +∞

−∞

d̺α(k) [c
−l
α (k, x)c−l

α (k, x′) + |A|2clα(k, x)clα(k, x′)]

=
1

4

Γ(α)

|xx′|α−1
2

ˆ +∞

−∞

dk
[

(xx′)
1
2−lk1−2lJ−l(kx)J−l(kx

′) + |A|2(xx′)
1
2+lk1+2lJl(kx)Jl(kx

′)
]

=
1

4

Γ(α)

|xx′|α−1
2

ˆ +∞

0

dk
{

(xx′)
1
2−l[1 + eiπ(1−2l)]k1−2lJ−l(kx)J−l(kx

′)

+|A|2(xx′)
1
2+l[1 + eiπ(1+2l)]k1+2lJl(kx)Jl(kx

′)
}

=
1

4

Γ(α)

|xx′|α−1
2

(

x′

x

)
1
2
ˆ +∞

0

dk (kx)
{

[1 + eiπ(1−2l)]J−l(kx)J−l(kx
′) + |A|2[1 + eiπ(1+2l)]Jl(kx)Jl(kx

′)
}

= A
(

x′

x

)
1
2 Γ(α)

|xx′|α−1
2

δ(x− x′)

= A 1

vα(x)
δ(x − x′) ,

where

A :=
1 + eiπ(1+2l) + |A|2[1 + eiπ(1−2l)]

4
. (89)

Setting |A| = 1, one has A = [sin(πl)]2, which is equal to
1 if, and only if, l = n−1/2, where n is a natural number
(remember that l > −1). If A = ±1, for these values of
l Eq. (86) would be real-valued and one would recover
the unilateral case. We set instead A = i. Therefore,
the fractional bilateral transform (87a) is invertible with
inverse (87b) if

e

l
α(k, x) :=

1

2D
[

c−l
α (k, x) + i clα(k, x)

]

, (90a)

l = n− 1

2
, n ∈ N . (90b)

These functions are orthonormal with respect to the frac-
tional measure (11) and yield the bilateral representation
of the fractional delta distribution:

ˆ +∞

−∞

d̺α(k) e
l
α(k, x) e

l
α

∗
(k, x′) = δα(x, x

′) . (91)

In turn, Eq. (91) implies the validity of the Parseval iden-
tity:

‖f̃‖2 =
ˆ

d̺α(k)f̃
∗(k)f̃(k)

=

ˆ

d̺α(x)

ˆ

d̺α(x
′)f∗(x)f(x′)

×
ˆ

d̺α(k) e
l
α(k, x) e

l
α

∗
(k, x′)

=

ˆ

d̺α(x)f
∗(x)f(x)

= ‖f‖2 , (92)

and the transformations are unitary.
When n = 1, we are in the special case l = 1/2, which

we write without index l:

f̃(k) :=

ˆ +∞

−∞

d̺α(x) f(x) e
∗
α(k, x) =: Fα[f(x)] ,

(93a)

f(x) =

ˆ +∞

−∞

d̺α(k) f̃(k) eα(k, x) , (93b)

eα(k, x) :=
1

2
[cα(k, x) + isα(k, x)]

=
1

√

vα(k)vα(x)

eik·x

(2π)
D
2

. (93c)
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When α = 1, the fractional transform reduces to the
Fourier transform (24), e1(k, x) = eik·x/

√
2π. The dis-

cussion on the family of Laplacian operators remains un-
altered provided one adopts the definitions (45a) and
(51a), where vα is given by Eq. (11). In this way, factors
with absolute value cancel appropriately.
All the results of Refs.8–11 can be extended straight-

forwardly to a bilateral world; in particular, the spectral
dimension is the same, as already stressed on the grounds
that dS is determined by the order of the Laplacian, not
by the type of momentum transform employed.
Finally, the generalization to a multi-fractional mea-

sure follows exactly the same steps of the unilateral case,
and fails for the same reason: integrals of the form

ˆ +∞

−∞

dk |k|α−α′

2 +1Jl(kx)Jl(kx
′)

do not yield a delta for α 6= α′. Notice that l is α-
independent, so there are no exceptions to this conclu-
sion. The same obstruction occurs with complex mea-
sures.

IV. CONCLUSIONS

In this paper, we have defined the momentum space
dual to fractional spaces (a realization of fractal geometry
being developed for applications to quantum gravity8,12)
via an infinite family of unitary bijections generalizing
the Fourier transform. The kernel functions of these
transforms are eigenfunctions of a family of Laplacian op-
erators, only one of which is the square of a self-adjoint
operator. This opens up the possibility to apply the tools
of spectral analysis both to quantum mechanics and to
quantum field theories living on fractional spacetimes10.
As a first direct application, in a companion paper we
show the existence of well-defined quantum mechanics on
such spaces, proving Heisenberg’s principle and consid-
ering the standard example of the harmonic oscillator29.
The case of complex fractional measures, which typically
display a discrete scale invariance, with require further
study.
We now return to an assumption made in section IIIA,

namely, the uniquess of the resolution of the identity. In
other words, we required that the fractional Dirac dis-
tribution be the same in configuration and momentum
space. In turn, this is tantamount to allowing the mo-
mentum transform to be an automorphism. If, however,
the momentum measure τ(k) 6= ̺(k), the momentum
transform maps different spaces one onto the other. The
resulting fractional transform is still unitary and invert-
ible, and all the above formulæ hold upon replacing ev-
erywhere

vα(k) → vᾱ(k) , (94)

where ᾱ can differ from α. Then, the kernel functions
are no longer symmetric in x and k. Even more gener-

ally, the key condition to hold is Eq. (1) both in con-
figuration and momentum space, so that one can work
with arbitrary Lebesgue–Stieltjes measure weights v(x)
and w(k) such that they are positive definite and the co-
ordinate/momentum dependence factorizes along the D
directions. For instance, the transform (93a)–(93b) and
the weighted plane waves (93c) of the bilateral world be-
come

f̃(k) :=

ˆ +∞

−∞

dDx v(x) f(x)K∗(k, x) , (95a)

f(x) =

ˆ +∞

−∞

dDk w(k) f̃(k)K(k, x) , (95b)

K(k, x) =
1

√

w(k)v(k)

eik·x

(2π)
D
2

, (95c)

while the fractal Dirac distributions in configuration and
momentum space are

δv(x, x
′) =

δ(x− x′)
√

v(x)v(x′)
, δw(k, k

′) =
δ(k − k′)

√

w(k)w(k′)
.

(96)
The Parseval relation follows through.
In the fractional case, the Hausdorff dimension of a

momentum space with weight vᾱ(k) is dH(ED
k ) = Dᾱ =

(ᾱ/α)dH(ED). Also, from Ref.9 it is clear that the spec-
tral dimension depends only on the Hausdorff dimension
of fractional space and on the details of the diffusion
equation,

dS(ED) = dS[dH(ED),K, ∂β
σ ] , (97)

where ∂β
σ is the differential operator (of possibly frac-

tional order β) in diffusion time σ. However, dS does not
depend on dH(ED

k ). Therefore, the relation (1) is acciden-
tal to the case where τ = ̺ but otherwise it is ill posed,
at least in the fractional context. Nevertheless, the con-
struction of a family of momentum spaces and transforms
is an important tool to solve the diffusion equation and,
hence, to verify Eq. (97) via an explicit construction.
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