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We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal
or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited at-
tractive interaction between particles with different spin, noncondensed Cooper pairs are formed.
The starting point in treating preformed pairs is the Nozières-Schmitt-Rink (NSR) theory, which
approximates the pairs as being noninteracting. Here, we consider the effects of the interactions
between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact
bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR for-
malism with the Wilsonian approach. We compare our findings with the recent experiments by
Harikoshi et al. [Science 327, 442 (2010)] and Nascimbène et al. [Nature 463, 1057 (2010)], and
find very good agreement. We make new predictrions for the mass-imbalanced case, that can be
tested in experiments.

PACS numbers: 03.75.-b, 67.40.-w, 39.25.+k

I. INTRODUCTION

Pair formation is a fundamental process in nature. In
particular, it is the underlying mechanism for supercon-
ductivity and superfluidity in interacting fermionic sys-
tems. The impressive amount of control currently achiev-
able in experiments with ultracold atomic quantum gases
makes these systems ideally suited for detailed studies of
strong correlations in many-body systems. Examples of
such control include the cooling of the gases down to the
nanoKelvin regime, the tuning of the interatomic interac-
tion strength by means of Feshbach resonances, the ma-
nipulation of the number of atoms in a particular quan-
tum state, and the shaping of the confining potential [1–
4]. Due to their unique properties, ultracold atomic gases
are sometimes referred to as ‘ideal quantum simulators’.

By varying the interaction strength between fermionic
atoms in a different internal state, it is possible to per-
form detailed experimental studies of the continuous
crossover between a Bardeen-Cooper-Schrieffer (BCS)
superfluid of loosely bound Cooper pairs and a Bose-
Einstein condensate (BEC) of tightly bound molecules
[5–10], which results in a unified view of these two appar-
ently different limits of superfluidity. In the intermediate
regime of the crossover, where the scattering length of
the interaction diverges, a novel superfluid was realized.
In this so-called unitarity limit, the size of the Cooper
pairs is comparable to the interparticle distance and the
superfluid has remarkable universal properties [11–15].

An early theoretical exploration of the BEC-BCS
crossover by Leggett was performed at zero temperature
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and made use of the mean-field BCS Ansatz [16]. The
BCS theory takes into account a condensate of pairs, but
ignores the noncondensed pairs. Therefore, it is not even
suitable on a qualitative level to describe the critical tem-
perature curve of the crossover, since at the BEC side
superfluidity is lost due to pairs being thermally excited
into nonzero momentum states.

The Nozières-Schmitt-Rink (NSR) theory for the nor-
mal state of a balanced Fermi gas [17], which takes into
account a noninteracting gas of noncondensed Cooper
pairs, improves the BCS theory significantly and pro-
vides a remarkably good description of the critical tem-
perature Tc for all interaction strengths [18]. The NSR
theory does not change the linearized gap equation for
the superfluid transition temperature, so that the rela-
tionship between the (average) fermionic chemical poten-
tial µ and Tc is unchanged with respect to BCS theory.
However, the NSR theory does change the equation of
state, which affects the total particle density n(µ, T ). As
a result, the ratio kBTc/εF is altered, with the Fermi en-
ergy given by εF = h̄2(3π2n)2/3/2m and m the mass of
the fermions. At unitarity, NSR theory predicts rather
large values for the ratios kBTc/µ and εF/µ compared to
Monte-Carlo (MC) results. Nevertheless, the NSR pre-
diction kBTc = 0.23εF is still quite close to the MC result
of kBTc = 0.15εF [19]. It was also shown that away from
the critical temperature the NSR theory gives excellent
agreement with accurate thermodynamic measurements
on the unitary balanced Fermi gas [14, 15, 20, 21].

In the beginning of 2006, two experimental groups
performed the first experiments on an ulracold atomic
Fermi gas with a population imbalance in its two acces-
sible spin states [22, 23]. The phase diagram was exper-
imentally shown to be dominated by a tricritical point
[24], that was predicted from mean-field theory, NSR
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theory and renormalization-group theory [25–27]. How-
ever, in Ref. [27] it was already noticed that the NSR
theory breaks down for small spin imbalances. Namely,
near the critical temperature, the NSR theory predicts
a negative polarization p = (n+ − n−)/(n+ − n−) for a
positive chemical potential difference (µ+ − µ−), which
corresponds to a compressibility matrix −∂2ω/∂µσ∂µσ′

that is not positive definite [27]. Here, n± are the atomic
densities for the two spin states σ = ±, µσ is the chemi-
cal potential for spin state σ and ω is the thermodynamic
potential density of the Fermi gas. It is a quite unsatisfac-
tory situation that the NSR theory, which gives the best
agreement with accurate thermodynamic experiments for
the strongly-interacting normal state of the Fermi gas
[14, 15, 21], already gives unphysical results for even the
smallest population imbalances.

For this reason, we improve the theory of Cooper-
pairs by taking also into account the effect of the in-
teractions between the noncondensed pairs. If the mi-
croscopic fermionic action is exactly transformed into a
Cooper-pair action by means of the so-called Hubbard-
Stratonovich transformation [28, 29], then the result-
ing action not only contains a noninteracting part, but
also two-pair interactions, three-pair interactions, and
all higher-order interactions. In the BEC limit of the
crossover, the tightly bound pairs interact repulsively
with a scattering length given by 0.6a with a the scatter-
ing length of the interaction between the fermions [30].
A Popov theory for the composite bosonic pairs that
includes the pair interaction effects was formulated by
Pieri and Strinati, leading in the BEC regime to Popov’s
results for point-like bosons [31, 32]. Below the criti-
cal temperature, also the Bogoliubov theory for inter-
acting Cooper pairs was studied [20, 33, 34]. Other
strong-coupling approaches that go beyond the NSR the-
ory include so-called self-consistent ladder approxima-
tions [35, 36] and Monte-Carlo calculations [19, 37–40].
It is somewhat surprising that these calculations do not
seem to improve the agreement with most recent exper-
iments on the equation of state for a unitary Fermi gas
compared to NSR theory [15, 21].

Viewing the normal state of a strongly interacting
Fermi mixture as a gas of interacting Cooper pairs
is complementary to a Fermi-liquid picture [41]. The
Fermi-liquid picture focusses on the single-particle corre-
lation function, or fermionic Green’s function, while the
Cooper-liquid picture focusses on the two-particle corre-
lation function, or the pair Green’s function. Possible
differences between the two pictures arise only from dif-
ferent approximation schemes. The additional advantage
of the Cooper-liquid picture is that it gives a clear con-
dition for the transition to the superfluid phase, namely
when the (effective or renormalized) chemical potential
of the Cooper-pairs goes to zero.

To study interaction effects in an interacting Bose gas
in a nonperturbative manner, the renormalization group
(RG) approach is an established approach [42]. RG stud-
ies for interacting bosons on the verge of becoming su-

perfluid have increased our understanding of the result-
ing phase transition [43–47]. In this article, we perform a
renormalization-group study of interacting Cooper pairs
in the unitarity limit. To this end, we generalize the
Wilsonian RG theory for point-like bosons to the more
complicated case of Cooper pairs. The article is orga-
nized as follows. First, we briefly discuss the exact ac-
tion for the Cooper pairs that can be derived from the
microscopic fermionic action. Then, we set up the Wilso-
nian renormalization scheme for Cooper pairs in order
to calculate the effects of the Cooper-pair interactions.
In particular, we calculate the self-energy of the Cooper
pairs. We also compare our results with the recent ex-
periments by Harikoshi et al. [14] and Nascimbène et
al. [15]. The agreement with these detailed experiments
on the equation of state of the unitary Fermi gas turns
out to be very good. We also make predictions for the
equation of state of the imbalanced gas, which might be
experimentally tested in the near future.

II. EXACT ACTION FOR COOPER PAIRS

We start from the microscopic action for an ultracold
two-component Fermi gas with a local interaction

S[φ∗, φ] = −
∑
σ=±

∫
dξdξ′ φ∗σ(ξ)h̄G0−1

σ (ξ, ξ′)φσ(ξ′)

+V0

∫
dξ φ∗+(ξ)φ∗−(ξ)φ−(ξ)φ+(ξ), (1)

where φσ(ξ) is the fermionic field associated with the an-
nihilation of a particle with spin σ at ξ = (τ,x). Here,
x denotes the position and τ the imaginary time. More-
over, V0 is the strength of the local interaction, while the
Fourier transform of the inverse noninteracting Green’s
function G0−1

σ is given by h̄G0−1
σ,n,k = ih̄ωn − εk + µσ,

with µσ the fermionic chemical potential for spin state
σ, εk = h̄2k2/2m the kinetic energy, and ωn the odd
fermionic Matsubara frequencies. Note that in Eq. (1)
the integration over τ is from 0 to h̄/kBT with T the
temperature. For atomic gases the spin label σ refers to
two hyperfine states that are used in the experiment to
realize the two-component gas. The action of Eq. (1) was
previously used as the starting point for a RG study of
the population-imbalanced Fermi gas in its normal phase
[25].

For an attractive interaction, the purely fermionic mi-
croscopic action can be exactly transformed into a Bose-
Fermi action that contains the pairing field ∆(x, τ) by
means of the Hubbard-Stratonovich transformation. For
the precise procedure, see e.g. Ref. [2]. The result is

S[φ∗, φ, ∆∗,∆] = (2)

−
∑
σ=±

∫
dξdξ′ φ∗σ(ξ)h̄G0−1

σ (ξ, ξ′)φσ(ξ′)

+
∫

dξ

{
−|∆(ξ)|2

V0
+ ∆∗(ξ)φ+(ξ)φ−(ξ) + c.c.

}
,
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where the last two terms of the second line indeed show
that two fermions of opposite spin can form a pair, or that
a pair can decay into two fermions. The action of Eq. (2)
can be interpreted as an interacting Bose-Fermi mixture
[48], and has been the starting point of the functional
renormalization group studies in Refs. [49, 50].

Here, we follow a different route. We start by inte-
grating out the fermions exactly, resulting in the exact
action for the Cooper pairs. The resulting action has a
very rich structure in momentum and frequency space,
i.e., a highly nonlocal character, which in particular is
true for the Cooper-pair propagator. In this study, we
take the complicated structure of the propagator exactly
into account when performing the RG calculations. This
is an advantage over other RG approaches, that usually
need to expand the pair Green’s function in powers of
frequency and momenta, after which only a few terms
are taken into account. The full structure of the bosonic
propagator, however, is too complicated in the unitarity
limit to be accurately approximated by such a series ex-
pansion. After the exact integration over the fermionic
fields, Eq. (2) results in (see again e.g. Ref. [2])

S[∆∗,∆] = −
∫

dξ
|∆(ξ)|2

V0
− h̄Tr log(−G−1), (3)

where the Nambu space inverse Green’s function G−1

is given by G−1
11 = G0−1

+ (ξ, ξ′), G−1
22 = −G0−1

− (ξ′, ξ),
h̄G−1

12 = −∆(ξ)δ(ξ − ξ′) and G−1
21 = G−1 ∗

12 . By expand-
ing the logarithm in Eq. (3) in powers of ∆, we obtain an
infinite series that prohibits an exact solution to the prob-
lem, so that approximations have to be made in order to
proceed. By performing the mean-field, or saddle-point,
approximation, the full path integral over the bosonic
field ∆(ξ) is simply approximated by the value of the in-
tegrand associated with the global minimum S[∆∗

0, ∆0].
This approximation results in the well-known BCS ther-
modynamic potential.

Going beyond mean-field theory, the next step is to
perform a Gaussian, or random-phase approximation. In
the normal phase, this means that Eq. (2) is expanded
up to second order in the pairing field, and that the re-
sulting Gaussian functional integral is performed exactly.
By neglecting the higher-order contributions, the Cooper
pairs are thus physically approximated as forming a non-
interacting gas. The resulting theory is also called the
Nozières-Schmitt-Rink approximation [17], and it has
been applied with success to the study of thermody-
namic properties above and below the critical temper-
ature [20, 33, 34]. It is namely possible to generalize this
theory also to the superfluid state by making in Eq. (2)
the substitution ∆(ξ) = ∆0 + ∆′(ξ), expanding Eq. (3)
up to second order in the fluctuations ∆′, and performing
the resulting Gaussian functional integral.

In this article, we only study the normal phase. The
inverse propagator for the noncondensed Cooper pairs
GB −1

∆ that follows from the quadratic part in the pairing

a) b)

(ω  , k  )1 1 (ω  , k  )4 4

(ω  , k  )3 3
(ω  , k  )2 2

(ω,k) (ω,k)

FIG. 1: Diagrammatic representation of a) the bare Cooper-
pair propagator and b) the bare Cooper-pair interaction. The
Cooper pairs are represented by thick lines, while the thin
lines correspond to fermionic propagators.

field of Eq. (3), is given by (see e.g. Ref. [2])

h̄GB −1
∆ (iωn, k) = (4)

m

4πh̄2a
+

1
V

∑

k′

{
1− f+(εk′)− f−(εk−k′)
−ih̄ωn + εk′ + εk−k′ − 2µ

− 1
2εk′

}
,

with V the volume, a the scattering length, µ =
(µ+ + µ−)/2 the avarage chemical potential, fσ(ε) =
1/{eβ(ε−µσ) + 1} the Fermi distribution function, β =
1/kBT , and ωn an even bosonic Matsubara frequency.
The Feynman diagram that corresponds to the Cooper-
pair propagator is shown in Fig. 1a. We call GB −1

∆ the
bare propagator, indicating that no Cooper-pair inter-
action effects have been taken into account yet. Note
that the bare propagator is exact, in the sense that it
follows from an exact transformation of the fermionic ac-
tion. With our RG approach we can consequently sys-
tematically include Cooper-pair interaction effects that
lead to self-energy corrections to the bare propagator.

The Cooper-pair interaction V B
∆ follows from the quar-

tic part in the pairing field of Eq. (3) and is diagrammat-
ically represented in Fig. 1b [31, 32]. Here, we do not
take the full frequency and momentum dependence of
the Cooper-pair interaction vertex into account, but we
consider only two external frequencies and momenta to
be nonzero, namely either ω1 = −ω2 and k1 = −k2, or
ω3 = −ω4 and k3 = −k4, where the labeling is given
in Fig. 1b. This specific choice corresponds physically
to considering only zero center-of-mass frequencies and
momenta, which is motivated in the next section. The
resulting expression is given by

V B
∆ (iωn, k) ≡ V B

∆ GV (iωn, k) =
1

h̄3βV
× (5)

∑

n′,k′
G0
−,n′,k′G

0
+,−n′,−k′G

0
−,n′+n,k′+kG0

+,−n′−n,−k′−k,

where we have defined V B
∆ ≡ V B

∆ (0, 0), so that GV en-
capsulates the considered (relative) momentum and fre-
quency dependence of the Cooper-pair interaction. The
Matsubara sum over odd fermionic frequencies n′ in
Eq. (5) is readily performed analytically, but results in a
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somewhat cumbersome expression. We call V B
∆ (iωn, k)

the bare interaction, in order to make the distinction
with the effective or renormalized Cooper-pair interac-
tion, which includes the effect of Cooper-pair fluctuations
and that is calculated in the next section during the RG
flow.

Due to the repulsive interaction between the Cooper
pairs, they acquire a self-energy Σ∆, of which the
momentum- and frequency-independent part is most rel-
evant for the RG flow. So the full propagator becomes
G−1

∆ (iωn, k) = GB −1
∆ (iωn, k) − Σ∆. We define the bare

Cooper-pair chemical potential as µB
∆ ≡ h̄GB −1

∆ (0, 0),
while the renormalized chemical potential is given by
µ∆ = µB

∆ − h̄Σ∆. The renormalized chemical potential
thus includes the self-energy effects. As a result, the
full Cooper-pair propagator G∆ depends on the renor-
malized chemical potential µ∆. In this study, we do not
take the frequency and momentum dependence of the
Cooper-pair self-energy into account. Doing this would
result also in a renormalization of the effective mass of
the Cooper pairs, an interesting topic for further study.
Note that the Cooper-pairing fields do not have the same
units as the fields for point-like bosons, resulting also in
different unit for the propagator. Therefore, the present
definitions of the Cooper-pair chemical potential and the
self-energy do not have the unit of energy. However, we
still think our nomenclature is appropriate, due to the
physical and mathematical analogy with the correspond-
ing concepts for point-like bosons.

A complementary physical meaning for the chemical
potential of the Cooper pairs is obtained by realizing
that the noncondensed Cooper pairs mediate an inter-
action between the fermions as follows from the action in
Eq. (2). The bare Cooper pair propagator of Eq. (4)
is indeed equivalent to the many-body transition ma-
trix for the fermions in the ladder-diagram approxima-
tion, which we call the bare many-body transition ma-
trix. At zero energy and momentum, we have for the
bare many-body scattering length aB

MB that h̄GB
∆(0, 0) =

1/µB
∆ = TB

MB(0, 0) = 4πh̄2aB
MB/m. The renormalized

chemical potential for the Cooper pairs then corresponds
to a renormalized transition matrix for the fermions that
includes more Feynman diagrams than the bare one,
for which the renormalized many-body scattering length
aMB is given by µ∆ = m/4πh̄2aMB.

III. RENORMALIZATION FORMALISM

To treat the interaction effects of the Cooper pairs in
a nonperturbative manner we use the Wilsonian renor-
malization group approach [42]. The procedure goes as
follows. First an integration is performed over degrees of
freedom in a high momentum shell of infinitesimal width.
The result of this integration is consequently absorbed
into various coupling constants of the theory, which are
said to flow if degrees of freedom in subsequent momen-
tum shells are integrated out. We could also perform an-

other step, namely a rescaling of the momenta, frequen-
cies, and fields. This is convenient, if we would wish to
treat universal properties of critical phenomena such as
critical exponents by looking at so-called RG fixed points
[42]. In this article, however, we do not wish to calcu-
late universal critical exponents, but rather quantities
like the self-energy of the Cooper pairs, for which rescal-
ing is not particularly useful. The renormalization group
then serves as a nonperturbative method to iteratively
solve a many-body problem, rather than as a mapping
between actions with the same high-momentum cutoff
from which critical scaling relations can be derived.

Thus, the first step of the method is to evaluate the
Feynman diagrams that renormalize the coupling con-
stants of interest, while keeping the integration over
the internal momenta restricted to the considered high-
momentum shell. Only one-loop diagrams contribute to
the flow, because the width of the momentum shell is in-
finitesimally small and each loop introduces an additional
factor proportional to the infinitesimal width. Although
the one-loop structure of the infinitesimal Wilsonian RG
is exact, it does not mean that it is easy to also obtain ex-
act results, since this would require the consideration of
an infinite number of coupling constants. Although the
latter is usually not possible in practice, the RG distin-
guishes between the relevance of the coupling constants,
so that a small set of them may already lead to accurate
results.

The simplest RG calculation that gives nontrivial re-
sults treats the renormalization of the chemical potential
µ∆ and the interaction strength V∆. It ignores the three-
pair interactions and higher. The flow equations for these
two coupling constants can be derived along exacly the
same lines as for point-like bosons, for which detailed ac-
counts can be found in Refs. [2, 44]. The corresponding
one-loop Feynman diagrams are diagrammatically repre-
sented in Fig. 2. The main difference with point parti-
cles is that the frequency dependence of the Cooper-pair
propagator is more complicated. As a result, the Mat-
subara sums of the one-loop Feynman diagrams cannot
be performed analytically anymore, but have to be eval-
uated numerically within each momentum shell.

The RG flow of the Cooper-pair interaction strength
and chemical potential are determined by the following
set of coupled differential equations

dµ∆

dl
= βµ(l, µ∆, V∆),

dV∆

dl
= βV (l, µ∆, V∆) , (6)

where the ‘β-functions’ are given by

βµ = −k′l
k2

l V∆

π2β

∑
n

h̄G∆(iωn, kl, µ∆), (7)

βV = k′l
k2

l V 2
∆

2π2
{Ξ(kl, µ∆) + 4Π(kl, µ∆)} , (8)

where Π and Ξ are the so-called ‘bubble’ and ‘ladder’ con-
tributions to the effective Cooper-pair interaction, which
are explained in the next paragraph. Moreover, kl de-
notes the wavevector of the Cooper pairs in the shell of
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FIG. 2: Diagrammatic representation of the ‘β functions’. a)
Feynman diagram determing the self-energy of the Cooper
pairs. b) Feynman diagrams renormalizing the Cooper-pair
interaction. The middle diagram is also called the ladder
diagram, the right diagram is called the bubble diagram. Note
that the lines are thick and correspond to the Cooper-pair
propagator.

infinitesimal width. This wavevector is parametrized by
the flow parameter l, and we start the RG flow at the
high-momentum cutoff h̄Λ and decrease as kl = Λe−l. In
addition, k′l is the derivative of k with respect to l. Solv-
ing Eq. (6) for increasing l means that we are includ-
ing the effect of pair fluctuations with lower and lower
momenta, while due to the coupling of the differential
equations we automatically generate an infinite number
of Feynman diagrams, showing the nonperturbative na-
ture of the RG. The initial conditions for Eq. (6) are
µ∆(l = 0) = µB

∆ = h̄GB −1
∆ (0, 0) and V∆(l = 0) = V B

∆ ,
which are calculated from Eqs. (4) and (5).

The one-loop expression for the renormalization of the
chemical potential in Eq. (7) that determines the self-
energy of the Cooper pairs, has a clear physical meaning,
since it is seen to be proportional to the renormalized in-
teraction strength and to the density of Cooper pairs.
The ‘bubble’ diagram Π(k, µ∆) describes the effect of
particle-hole fluctuations on the effective Cooper-pair in-
teraction, where these particles are now Cooper pairs. It
is given by

Π(k, µ∆) =
h̄2

β

∑
n

G∆(iωn, k, µ∆)2. (9)

The ‘ladder diagram’ describes the Bose-enhanced scat-
tering of the bosonic Cooper pairs, given by

Ξ(k, µ∆) =
h̄2

β

∑
n

GV (iωn, k)2|G∆(iωn, k, µ∆)|2, (10)

where the momentum and frequency dependence of the
interaction in Eq. (5), i.e. GV , is seen to enter. This fre-
quency and momentum dependence is important, since
otherwise Eq. (10) ultimately would lead to an ultravi-
olet divergence. This divergence physically arises from
approximating the pair interaction as a point interaction,
which is insufficient. We also note that the self-energy di-
agram of Fig. 2a and Eq. (7), and the bubble diagram of
Fig. 2b and Eq. (9) do not lead to divergencies. As a re-
sult, our present scheme for including the Cooper-pair in-

teractions is the minimal choice for obtaining divergence-
free, or equivalently, cutoff independent results.

The structure of Eqs. (6) to (8) is analogous to that
for the RG equations in the normal state of Ref. [44],
where point-like bosons are treated, but there are also a
few differences. In that reference, a trivial scaling was
performed on the chemical potential and the interac-
tion strength, which amounts only to a direct rewrit-
ing of the differential equations. Second: there, also
three-body interaction effects were considered, which are
ignored here. Third: the present Cooper-pair propa-
gator is more complicated than the atom propagator,
so that the Matsubara sums in Eq. (7) and (8) cannot
be done analytically. This difference can be avoided
by appoximating the inverse Cooper-pair propagator
as G−1

∆ (iωn, k, µ∆) = (ih̄ωn − h̄2k2/2m∆ + µ′∆)/h̄Z∆,
meaning that we would perform a low-energy and long-
wavelength expansion with m∆ the effective mass of the
Cooper pairs and µ′∆ = h̄Z∆µ∆ having the unit of energy.
In this article, however, we take the full frequency and
momentum dependence of the propagator into account,
since this gives the most accurate results.

The last difference with Ref. [44] involves the ladder
diagram of Eq. (10). Such ladder diagrams are known to
lead to an ultraviolet divergence, if the interaction is ap-
proximated as a point interaction, i.e., when GV = 1. For
interacting bosonic or fermionic atoms, the point inter-
action approximation is often used. The problem is then
most easily solved by chosing a value for the microscopic
interaction that cancels the divergence and that leads in
the two-body limit of the theory to the scattering length
that is obtained from experiments. For our present RG
flow of the interacting Cooper pairs, this procedure is not
possible, since the bare Cooper-pair interaction strength
is calculated exactly from the transformed microscopic
action, and is not a free parameter that we can try to
match to some experimentally known quantity. As a re-
sult, we really need to go beyond the point interaction
approximation and take into account the momentum and
frequency dependence of the pair interaction in order to
obtain physical results [31].

IV. RESULTS

We compare our RG equations with recent detailed
thermodynamic experiments that have measured the
equation of state for a homogeneous unitary Fermi gas
[14, 15]. A relevant question is how our theory changes
the results that follow from the NSR theory. As also
found in previous studies, the results from the NSR ap-
proximation are in excellent agreement with experiments
on the thermodynamics of the balanced Fermi gas at
unitarity [21]. However, a fundamental problem with
the NSR theory is that already for small population
imbalances it gives rise to unphysical compressibilities
−∂2ω/∂µσ∂µσ′ [27]. Moreover, the ratio of the critical
temperature and the chemical potential is not so accu-
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FIG. 3: Bare many-body scattering length aB
MB (dashed line)

and fully renormalized many-body scattering length a∞MB (full
line) as a function of temperature T in the unitarity limit for
the balanced Fermi gas. The Fermi wavevector kF and Fermi
temperature TF are directly related to the total particle den-
sity through the Fermi energy εF = kBTF = h̄2k2

F/2m =

h̄2(3π2n)2/3/2m, which is calculated with the RG approach.
The many-body scattering length is inversely proportional to
the Cooper-pair chemical potential, and the difference be-
tween the bare and the renormalized value is due to the re-
pulsive Cooper-pair interaction effects.

rate for the NSR approximation, since it is the same as
for mean-field theory, giving rise to kBT c

MF = 0.66µ for
the balanced Fermi gas. This follows from the observa-
tion that when GB −1

∆ (0, 0) = µB
∆ = m/4πh̄2aB

MB = 0,
then both mean-field theory and NSR theory predict a
transition to the superfluid state, i.e., the condensation
of Cooper pairs. The result deviates more than a fac-
tor of two from the Monte-Carlo result kBT c

MC = 0.31µ
[19]. So a theory that goes beyond NSR ideally should
not have large effect on the equation of state for the bal-
anced case, significantly lower the critical temperature,
and give rise to physical results in the imbalanced case.

Studying the thermodynamics of the unitary Fermi gas
in the grand-canonical ensemble requires the knowledge
of the thermodynamic potential. The NSR theory of the
strongly interacting normal state gives rise to two contri-
butions to the thermodynamic potential, namely a con-
tribution describing an ideal gas of fermions and a contri-
bution describing an ideal gas of noncondensed Cooper
pairs [17]. The ideal Fermi gas contribution follows di-
rectly from Eq. (3) as the part that is independent of the
Cooper-pair field ∆, and is therefore also not renormal-
ized. It is given by

ωig[T, µσ] = − 1
βV

∑

k,σ

log[1 + e−β(εk−µσ)]. (11)

The contribution to the thermodynamic potential den-
sity due to the Cooper pairs is given by the one-loop

expression

dω∆

dl
= −k′l

k2
l

2π2β

∑
n

log[−G−1
∆ (iωn, kl, µ∆)], (12)

where the first minus sign on the right-hand side is only
present when kl is a decreasing function. Note that
this last expression gives precisely the differential form
of the NSR contribution to the thermodynamic poten-
tial density when the Cooper-pair chemical potential is
not renormalized (µ∆ ≡ µB

∆), i.e., when we consider the
Cooper pairs to be noninteracting. To evaluate Eqs. (6)
and (12) numerically, it is convenient to perform contour
integration, leading to the results in Eqs. (A2), (A3) and
(A4) of the appendix [17]. If the exact Cooper-pair prop-
agator is inserted in Eq. (12), then the exact thermody-
namic potential density is obtained. However, this would
require the treatment of all n-body interactions, which is
presently out of reach.

In this article, we have studied the effect of the two-
pair interactions on the thermodynamic potential for var-
ious temperatures. This was done by simultaneously
solving Eqs. (6) and (12) numerically. We obtain the
renormalized Cooper-pair chemical potential at the end
of the flow, µ∆,∞ = µ∆(l → ∞), which incorporates
the pair self-energy effects. The results are shown in
Fig. 3 for the balanced case (µσ = µ), where the (renor-
malized) many-body scattering length is plotted, which
was introduced in Section II. This scattering length is
inversely proportional to the (renormalized) pair chem-
ical potential, namely 1/kFaMB = 4πh̄2µ∆/mkF with
kF = (2mεF)1/2/h̄ the Fermi wavevector. In Fig. 3,
the initial or bare many-body scattering length aB

MB
and the final or fully renormalized many-body scatter-
ing length a∞MB are plotted as a function of tempera-
ture. We see that a∞ −1

MB is more negative than aB −1
MB ,

which means that the Cooper-pair self-energy, given by
h̄Σ∆,∞ = µB

∆−µ∆,∞, is positive, caused by the repulsive
pair interaction. Alternatively, interpreting the Cooper-
pair chemical potential as being proportional to the in-
verse many-body transition matrix, we have for the con-
sidered temperature range that |a∞MB| < |aB

MB|, which
means that the fluctuation and interaction effects make
the gas less strongly interacting.

To see whether the selfenergy of the Cooper pairs, or
the reduced many-body scattering length, has observable
experimental consequences, we calculate the equation of
state, which has been accurately measured by Harikoshi
et al. [14] and Nascimbène et al. [15] for the balanced
case. We have that the total thermodynamic potential
density is given by

ω[T, µσ] =
Ω[T, µσ]

V
= ωig[T, µσ] + ω∆,∞[T, µσ], (13)

with Ω the thermodynamic potential and ω∆,∞[T, µσ] =
ω∆(l → ∞). From ω, all other thermodynamic quanti-
ties of interest can be obtained by the standard thermo-
dynamic relations. Of particular interest are the particle
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FIG. 4: (color online) Equation of state for the normal phase
of a strongly interacting balanced Fermi gas at unitarity in the
canonical ensemble. The energy E of the gas is calculated as
a function of temperature T with the renormalization group
approach (full line) and the Nozières-Schmitt-Rink approach
(dashed line). The squares are the experimental results of
Harikoshi et al. [14], the triangles of Nascimbène et al. [15],
and the dots are the Monte-Carlo results of Burovski et al.
[19].

densities nσ = −∂ω/∂µσ and the energy

E = Ω + µ+n+V + µ−n−V + TS, (14)

where S is the entropy, given by S = −∂Ω/∂T . The
results of our calculations for the balanced case are
shown in Fig. 4, where also the experimental results of
Refs. [14, 15] are given, as well as the Monte-Carlo results
of Ref. [19], and the results from NSR theory [17, 20]. It
is seen that the inclusion of the Cooper-pair self-energy
with the RG theory results in a deviation from the NSR
theory that is comparable with the size of the error bar
in the experiments and Monte-Carlo calculations. Fig. 4
plots the thermodynamic quantities for the canonical en-
semble, while Fig. 5 shows the comparison with the data
from Nascimbène et al. in the grand-canonical ensemble,
which gives the most direct comparison with their mea-
surements [15]. Fig. 5 shows that in the normal state, the
agreement with the NSR theory is perfect over a very
large temperature range. This is remarkable, since the
NSR theory is not exact, and in the strongly-interacting
regime deviations might have been expected. With our
RG theory we calculate the leading self-energy effects be-
yond the NSR calculation, and find that the effect on the
equation of state is quite small, as seen in Fig 5. How-
ever, the effect is still observable and the agreement with
experiments becomes worse. A theoretical explanation
for this effect could be that, although we go far beyond
the NSR approximation, there are more effects that play
a small quantitative role in the comparison with experi-
ments, like for example the renormalization of the effec-
tive Cooper-pair mass and three-pair interaction effects.

0 2 4
1

1.5

2

ã-ΒΜ

P
�P

ig

FIG. 5: (color online) Equation of state for the normal phase
of a strongly interacting balanced Fermi gas at unitarity in
the grand-canonical ensemble. The pressure P = −Ω/V of
the gas is calculated as a function of the inverse fugacity e−βµ

with the renormalization group approach (full line) and the
Nozières-Schmitt-Rink approach (dashed line). The pressure
of the ideal two-component Fermi gas is given by Pig. The
triangles are the experimental results of Nascimbène et al.
[15].

These are interesting topics for further study.
We have also calculated the equation of state for the

imbalanced Fermi gas. In Fig. 6, we show the pressure P
as a function of h/µ for the temperature T/µ = 0.75. At
this temperature, the NSR approximation predicts a neg-
ative polarization for positive h, which is an unphysical
result. Our RG theory that treats the interaction effects
beyond NSR theory does not have this problem. We see
that, as a result, our RG theory, the NSR theory and the
mean-field theory give very different results for the pres-
sure of the imbalanced Fermi gas in Fig. 6. This pressure
has recently been measured at zero temperature, where
good agreement with Monte-Carlo calculations was ob-
tained [41]. The pressure could also be measured above
the critical temperature, giving rise to a sensitive test for
theories of the imbalanced Fermi gas at nonzero temper-
atures.

Finally, we briefly discuss the effect of the Cooper-pair
interactions on the critical temperature for the balanced
Fermi gas. In the unitarity regime, the effective two-
pair interaction is repulsive in the normal state. Taking
into account the repulsive two-pair interaction will lower
the ratios kBTc/µ and εF/µ, because physically the re-
pulsive interactions lower the effective chemical poten-
tial of the noncondensed Cooper pairs. As a result, the
density of noncondensed Cooper pairs is lowered, which
decreases the total density and the critical temperature
for condensation. Namely, when GB −1

∆ (0, 0) = µB
∆ =

m/4πh̄2aB
MB = 0, then both mean-field theory and NSR

theory predict a transition to the superfluid state, i.e.,
the condensation of Cooper pairs. This gives rise to
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FIG. 6: (color online) Equation of state for the normal phase
of a strongly interacting imbalanced Fermi gas at unitarity in
the grand-canonical ensemble. The pressure P = −ω(T, µ, h)
of the gas is calculated as a function of the normalized chem-
ical potential difference h/µ = (µ+ − µ−)/(µ+ + µ−) with
the renormalization group approach (full line), the Nozières-
Schmitt-Rink approach (dashed line), and for the ideal Fermi
gas (dashed-dotted line). The pressure of the imbalanced
gas is normalized by the pressure for the balanced gas P0 =
−ω(T, µ, 0)

kBT c
MF = 0.66µ, which deviates more than a factor of

two from the Monte-Carlo result kBT c
MC = 0.31µ [19].

Upon lowering the temperature from T c
MF, µB

∆ becomes
positive, but due to the repulsive interactions the renor-
malized chemical potential is lowered, and at the end of
the flow µ∆,∞ might still be negative. Therefore, the
critical condition in the presence of Cooper-pair inter-
actions becomes µ∆,∞ = 0. With our present theory,
this results in kBT c

RG = 0.43µ, significantly closer to the
Monte-Carlo results than the mean-field and the NSR
result. Note that this result can be further improved
by performing a RG calculation for the superfluid state.
Namely, close to T c we then initially have µ∆(l) > 0,
and the RG flow starts out in a superfluid state. Due
to the repulsive interactions, the effective chemical po-
tential is then again lowered, and the system can flow
into the normal state [44]. This calculation thus requires
a superfluid RG, and although progress has been made
in this direction using various approximations (such as
a low-energy expansion of the Cooper-pair propagator),
the full calculation is much more tedious than for the
normal phase and is prospect for future research. At this
point, we can also explain the range of the temperature
axis in Fig. 4, since for lower temperatures it would be
better to perform the partly superfluid RG.

V. DISCUSSION AND OUTLOOK

To summarize our results, we have calculated the
thermodynamic properties of strongly-interacting Fermi

gases. This was done by combining two well-established
strong-coupling methods, namely the Nozières-Schmitt-
Rink theory for the treatment of noncondensed Cooper-
pairs together with the Wilsonian renormalization group
scheme for treating the pair interaction effects. Our re-
sulting theory incorporates fluctuation effects far beyond
the NSR theory, and the obtained equation of state has
been compared with the experiments of Refs. [14, 15].
The difference between the equation of state from our
RG theory and NSR theory has about the same size as
the error bars in the experiment of Ref. [14]. As a re-
sult, taking the theoretical step from the noninteracting
NSR theory to the incorporation of pair interaction ef-
fects maintains the good agreement with accurate ther-
modynamic experiments. A detailed comparison between
theory and the experiment of Ref. [15] shows that the
results from the NSR theory are in perfect agreement
over a large temperature range, and the inclusion of self-
energy effects makes this agreement somewhat worse. In
order to try to understand this result from the theoreti-
cal side, the accuracy of the calculation could be further
enhanced, namely by calculation of next-to-leading order
effects, such as the renormalization of the Cooper-pair
mass and the three-pair interaction, which might also
have quantitative effects. These are projects for the fu-
ture.

The NSR approximation fails in describing the imbal-
anced Fermi gas, where it leads to unphysical results for
small chemical potential differences. In particularly, it
predicts a negative polarization p = (n+−n−)/(n+−n−)
for a positive chemical potential difference (µ+ − µ−).
However, by including Cooper-pair interaction effects
with our RG, this problem is resolved. As a result, we
also obtain very different results for the equation of state
of an imbalanced Femri gas compared to NSR theory
and mean-field theory. The obtained pressure at nonzero
temperatures can be measured in upcoming experiments.
Moreover, the NSR theory is not accurate for determin-
ing the ratio between the critical temperature and the
chemical potential, for which it gives the same result as
mean-field theory. Calculating self-energy effects with
our RG theory results in a critical temperature reduc-
tion of more than a factor of 1.5, bringer it closer to
Monte-Carlo results. Our method is complementary to a
Fermi-liquid theory of the normal state, which is based
on single-particle correlations. The Cooper-liquid theory
calculates pair-correlation effects, and our method has
the advantage that it can in principle be directly gen-
eralized to the superfluid state by performing a RG for
the pair condensed phase [44]. Moreover, it can also be
extended to the mass-imbalanced case, which has a very
rich phase diagram in the unitarity limit [51]. These are
also projects for the future.
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Appendix A: Useful relations

Using contour integration, the Green’s function of the
Cooper pairs from Eq. (4) can be written in the spectral
form

G∆(iωn, k, µ∆) =
1
π

∫
dω

Im[G∆(ω+, k, µ∆)]
ω − iωn

, (A1)

where ω+ = ω+ iη with η ↓ 0. The imaginary part of the
Green’s function can be obtained analytically [52]. With
the spectral representation, we can rewrite Matsubara
sums over the pair Green’s function as frequency inte-
grals that are convenient for numerical evaluation. For
example, we have

1
h̄β

∑
n

G∆(iωn, k, µ∆) =

1
π

∫
dωNB(ω)Im[G∆(ω+, k, µ∆)], (A2)

where n is even and NB(ω) = 1/(eβω − 1) is the bosonic
distribution function. Moreover, the pair bubble diagram
from Eq. (9) becomes

Π(k, µ∆) =
1

h̄β

∑
n

G∆(iωn, k, µ∆)2 = (A3)

2
π

∫
dωNB(ω)Im[G∆(ω+, k, µ∆)]Re[G∆(ω+, k, µ∆)],

where we used Eq. (A1) and the Kramers-Kronig relation
to relate the real and imaginary part of the Cooper-pair
Green’s function. For the thermodynamic potential den-
sity from Eq. (12), we use that [17]

1
h̄β

∑
n

log[−G−1
∆ (iωn, k, µ∆)] =

1
π

∫
dωNB(ω)Im(log[−G−1

∆ (ω+, k, µ∆)]). (A4)
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