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In speaking, semantic encoding is the conversion of a non-verbal mental representation
(the reference) into a semantic structure suitable for expression (the sense). In this fMRI
study on sentence production we investigate how the speaking brain accomplishes this
transition from non-verbal to verbal representations. In an overt picture description task,
we manipulated repetition of sense (the semantic structure of the sentence) and refer-
ence (the described situation) separately. By investigating brain areas showing response
adaptation to repetition of each of these sentence properties, we disentangle the neu-
ronal infrastructure for these two components of semantic encoding. We also performed
a control experiment with the same stimuli and design but without any linguistic task to
identify areas involved in perception of the stimuli per se. The bilateral inferior parietal
lobes were selectively sensitive to repetition of reference, while left inferior frontal gyrus
showed selective suppression to repetition of sense. Strikingly, a widespread network of
areas associated with language processing (left middle frontal gyrus, bilateral superior pari-
etal lobes and bilateral posterior temporal gyri) all showed repetition suppression to both
sense and reference processing. These areas are probably involved in mapping reference
onto sense, the crucial step in semantic encoding. These results enable us to track the
transition from non-verbal to verbal representations in our brains.
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INTRODUCTION
Look at that guy hitting the other guy! After reading this sentence,
you presumably have a mental representation of two adult male
persons, of whom one is hitting the other. They are both male
and adult but they are still two different persons. A linguistic dis-
tinction within the domain of semantics, is the difference between
reference and sense of a linguistic expression (Frege, 1892). The
sense of an expression is its linguistic meaning, the reference is the
entity the expression refers to. In the representation of the sen-
tence Look at that guy hitting the other guy! there are two guys (for
instance a blond and a dark-haired guy, as indicated by “that” and
“the other”), but they are both referred to by the same sense, the
word guy (an adult male person). This sense thus has two possible
references. The reverse is also possible. If you knew more about
the two guys you might be shouting: Look at that man hitting his
son! in the same situation. His son and the other guy are then two
possible senses which can have the same referent.

In the view of Jackendoff (2002), which we adopt in the current
paper, referents are representations in our minds. For concrete
objects they are representations in our minds, of objects in the
real world, constructed by the perceptual system. These represen-
tations are considered concepts, which thus are non-linguistic in
nature. Sense, then, is that part of meaning that is encoded in
the form of the utterance. In other words, sense (linguistic mean-
ing) is the interface between the conceptual system and linguistic
form (spanning both phonology and syntax; Jackendoff, 2002).

Speaking is the conversion of an intention to communicate a mes-
sage into a linearized string of speech sounds. An essential step in
this process is semantic encoding – the retrieval of the relevant con-
cepts and the specification of semantic structure (Levelt, 1989). In
this step, the intended reference needs to be mapped onto a sense,
for it to be expressed. In this mapping process, certain semantic
choices have to be made, such as referring to the entities in the
referential domain by, for instance, “the guy” or “the man on the
chair.” From a processing point of view, then, reference forms the
input to semantic encoding, while sense is the output. Semantic
encoding itself is the computation necessary to map reference (the
input) onto the sense (the output) in order to generate the appro-
priate output. In this paper, we consider sense to be equivalent to
the preverbal message in sentence production (Levelt, 1989). The
preverbal message is the semantic structure that forms the output
of semantic encoding and the input to syntactic and phonological
encoding.

In speaking establishing reference is the first step of seman-
tic encoding, necessary to utter a sentence in the first place. As
few neuroimaging studies investigating semantic encoding in sen-
tence production have so far been conducted, in this fMRI study
we aim to fill that gap. Picture naming paradigms have previ-
ously been used in fMRI albeit in single word studies. Retrieving
a name for a picture has been shown to involve more activ-
ity in bilateral temporal areas, the left frontal lobe, bilateral
occipital areas, bilateral parietal areas, and the anterior cingulate
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(Kan and Thompson-Schill, 2004) than does making visual deci-
sions about abstract pictures. A similar set of areas has been shown
to increase activity in picture naming and reading aloud compared
to counting (Parker Jones et al., 2011). These data suggest that
a large network of areas may be involved in semantic encoding.
Also, while part of this network are well-established language areas,
some are not. Perhaps, then, these are areas encoding the reference
for these materials.

Moving on to sentence production, in a previous fMRI adap-
tation study on sentence-level processing, we compared the neu-
ronal structure underlying computation of semantic structure of
an utterance in comprehension and production (Menenti et al.,
2011). More specifically, we investigated the construction of the-
matic role structure, the relation between the different concepts
and events, or “who does what to whom.” This aspect of semantic
structure forms a crucial interface between conceptual structure
(the domain of reference) and syntactic structure (the grammati-
cal roles). Schematically a thematic role structure can be stated as
a predicate with arguments: ROB(THIEF, LADY(OLD)). There is
a “ROB” event, performed by a THIEF (the agent of the action)
to the expenses of a LADY (the patient of the action), who has
the property of being OLD. In our study, photographs depicting
transitive events (events requiring an agent and a patient, such as
ROB, KISS, HIT) provided the context for the sentences, which
were either produced or heard by the participants. We found bilat-
eral posterior middle temporal gyri involved in this component of
sentence processing.

While this study provided valuable insights on the neuronal
infrastructure underlying different steps in sentence production
and comprehension, the semantic encoding manipulation dis-
regarded the distinction between reference and sense. The next
question, and the one underlying the present study, then, is how
the different areas involved in semantic encoding play a role in pro-
cessing the input (reference), the output (sense), and the process
of mapping the one onto the other. In this sentence production
fMRI adaptation study we again focused on thematic role structure
as an essential part of semantic structure. In a picture descrip-
tion paradigm, we manipulated repetition of semantic structure
across subsequent sentences, crossing repetition of reference and
sense.

Our paradigm involved pictures of transitive events being
enacted by two actors. We operationalized sense as the literal
sentence used to describe the picture. Reference we considered
the sum of the action involved, the roles of actors as agents and
patients, and the exact spatial configuration of agents and patients.

In our task, the actors in the picture were colored and these
colors varied for the same depicted situation. Participants could
therefore subsequently describe the same situation as “The yellow
man hits the blue woman.”and then as“The red man hits the green
woman.” Although the picture therefore looked slightly different
in the two trials, the colors were an arbitrarily varying property
of the individuals in the picture and the participants were made
aware of this (see Materials and Methods). We do not consider
such arbitrary variations to be part of reference. One might con-
sider this parallel to the fact that we change clothes every day:
they make us look different but do not thereby cause us to become

different individuals. The reference of the expression was therefore
kept constant but the sense changed. In a complementary fash-
ion, the sentence “The red man hits the green woman.” could
be used in subsequent trials to describe a different hitting event
involving different participants. Sense was kept constant, but the
reference changed. This allowed us to distinguish the situation the
participants spoke about from the utterance they used to speak
about it.

As can be seen in Figure 1, this means that our relevant “novel
reference” condition still has considerable overlap with the prime.
We chose this approach to eliminate any potential confounds. For
instance, repeating the actors between prime and “repeated refer-
ence” target but not between prime and “novel reference” target
would leave effects open to, for instance, the alternative interpre-
tation that we are looking at face repetition effects. By choosing
the most narrow comparison possible, we can be more sure of the
interpretation of the results, while admittedly running the risk of
missing some other potentially relevant effects.

To further investigate the distinction between non-verbal and
verbal processing of meaning, we performed a control experiment.
In this experiment we showed participants the exact same stimu-
lus sequences, but this time paired with a non-linguistic task. Any
brain areas involved in processing only the non-linguistic, concep-
tual representations involved in interpreting the pictures (i.e., the
reference), should also show an adaptation effect without a lin-
guistic task. On the other hand, brain areas involved in converting
meaning into language (the sense), should not show adaptation
effects in such a setting.

Our hypothesis was that areas involved in processing the con-
ceptual input to semantic encoding should show adaptation effects
for repetition of reference in both the speaking and control exper-
iments, while not showing sensitivity to repetition of sense. Areas
involved in semantic encoding itself, that is, in mapping reference
onto sense, should show adaptation to repetition of both refer-
ence and sense. Finally, areas involved in processing the output of
semantic encoding, the sense, should show adaptation to repeti-
tion of sense in the speaking experiment, and should not show
sensitivity to repetition of reference.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-four right-handed subjects took part in each experiment
(speaking: 12 female; mean age 25.2 years, SD 7.5; control: 13
female; mean age 22.8 years, SD 3.17). All subjects were healthy
native Dutch speakers with normal or corrected-to-normal vision
and had attended or were attending university education in the
Netherlands. All subjects gave written informed consent prior
to the experiment and received a fee or course credit for their
participation. No participants took part in both experiments.

STIMULI
Our target stimulus set contained 1152 photographs that depicted
36 transitive events such as kiss, help, strangle with the agent
and patient of this action. Four couples performed each action
(2 × men/women; 2 × boy/girl), in two configurations (one with
the man/boy as the agent and one with the woman/girl). These
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FIGURE 1 | Design and stimuli. Subjects described scenes with short
sentences containing action, agent, and patient and their respective
colors. There are four factors (words, sense, actors, reference), with two
levels (repeated/novel) each. Separate repetition of sense and individual
words allows distinguishing areas that are sensitive to the overall
meaning of a sentence from those that are sensitive to repetition of
words but not to repetition of sentence meaning. Separate repetition of
actors and reference allows distinguishing areas that are sensitive to the
overall situation from those that are sensitive to the people involved
irrespective of the specific situation. The four factors cannot be fully

crossed, since it is not possible to repeat sense without, at least partly,
repeating words, as it is not possible to repeat a situation while changing
the people involved. Therefore, each of the factors varies only at one level
of the factor it could potentially be confounded with. The contrasts of
interest are between the middle and right column for sense (hence
keeping repetition of words controlled) and between the middle and
bottom row for reference (hence keeping repetition of actors controlled).
Likewise, the effect of word repetition was computed by comparing the
leftmost and middle column, and the effect of actor repetition by
comparing the top and middle row.

36 × 4 × 2 pictures were further edited so that the agent and
patient each had a different color (red–green, green–red, blue–
yellow, yellow–blue), and these 36 × 4 × 2 × 4 pictures were also
flipped so that the position of the agent could be either left or
right on the picture. The filler stimuli contained pictures depict-
ing 868 intransitive (e.g., The boy runs.) and 160 locative (e.g.,
The balls lie on the table.) events. The actors and objects in these
pictures were also colored in red, green, yellow or blue. The
control experiment further included catch stimuli, which consti-
tuted 10% of the trials. These were pictures similar to the target
pictures, but containing a range of visual defects that the sub-
jects had to detect. The stimuli are available for use from the
authors.

DESIGN
The design is illustrated in Figure 1, and was identical for both
experiments. There were four factors (words, sense, actors, refer-
ence), with two levels (repeated/novel) each. Contrasting repeti-
tion of sense and individual words allowed us to distinguish areas
that are sensitive to the overall meaning of a sentence, and those
that are sensitive to repetition of words but not to repetition of
sentence meaning. The verb and nouns were always repeated for
target trials, and only the adjectives could vary. This was necessary
due to the constraints on repetition of elements in the pictures for
the different conditions. For instance, since “repeated reference”
entailed repeating both the action and the people involved, this
meant also repeating the words used to refer to these elements.
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Contrasting repetition of actors and reference allowed us to
distinguish areas that are sensitive to the overall situation from
those that are sensitive to the people involved irrespective of the
specific situation. The four factors could not be fully crossed, since
it is not possible to repeat sense without, at least partly, repeat-
ing words, like it is not possible to repeat an event (the reference)
while changing the people involved. Therefore, we performed the
relevant comparison for each factor at only one level of the factor
it could potentially be confounded with (see Figure 1).

The target items were presented in 78 mini-blocks with an aver-
age length of 5.4 items (range 3–7 items). The target blocks were
alternated with filler blocks, with an average length of 3.5 items.
Filler blocks served the purpose of increasing variability in syn-
tactic structures, words, and visual properties of the sentences and
pictures. Subjects were unaware of the division in blocks, as the
items were presented at a constant rate. We used a running prim-
ing paradigm where each target item also served as prime for the
subsequent target item. No condition was repeated twice in a row.
Since there were 78 target blocks, 78 transitive items (the first of
each mini-block) served as primes only. The remaining 315 transi-
tive items (2–6 per block depending on block length) constituted
the target trials so that there were 35 items per condition. Each
subject saw a different randomized list, which consisted of 393
transitive (78 prime-only and 315 target items) stimuli and 262
filler stimuli. For the speaking experiment, these were randomly
sampled from the 868 intransitive and 160 locative pictures in the
filler stimulus set. In the control experiment, the 262 pictures were
always 65 catch (10% of total number of trials), 67 locative and
130 intransitive pictures.

TASK AND PROCEDURE
Speaking experiment: participants first read the instructions and
were given the opportunity to ask questions. The instructions not
only explained the task, but also introduced all the different fre-
quently occurring actors as separate individuals, along with the
same photo of them in every color. This way, we made sure that
the participants were aware that the colors were arbitrarily varying
properties of the different actors.

Each target picture was preceded by its corresponding verb.
Participants described the picture with a short sentence, using
the presented verb. In this sentence they had to mention both
persons and their colors. The experiment consisted of two runs
of 39 min. This served the purpose of not keeping partici-
pants in the MRI-scanner for too long; the runs were other-
wise completely equivalent. The participants underwent a 5-
min anatomical scan after the first run, and were then taken
out of the MR-scanner for a break before they underwent the
second run. The responses were recorded in order to extract
reaction times (RTs). The experimenter coded the participant’s
responses online for correctness and prevoicing. Prevoicing was
coded to ensure correct measurement of RTs, which were extracted
through thresholding of the speech recording (see below for
details). Each trial lasted 7000 ms and consisted of the follow-
ing events: the verb was presented with a jittered start time
of 0–1000 ms after the start of the trial, and a duration of
500 ms. After an ISI of 500–2500 ms the picture was presented
for 2000 ms.

Control experiment: participants first read the instructions and
were given the opportunity to ask questions. The participant’s task
was to act as a “proof viewer” scanning a set of pictures for mis-
prints. They were given examples of both correct pictures and
possible misprints. They were instructed to press a button when-
ever they detected a misprint, and to do nothing if the pictures
were ok. The experiment consisted of two runs of 22 min. The
participants underwent a 5-min anatomical scan between runs.
Each trial lasted 4000 ms, in which the picture was displayed with
a jittered start time of 0–1500 ms from trial onset, and stayed on
screen for 1000 ms. We chose different timing parameters for this
experiment, to avoid it becoming incredibly boring.

DATA ACQUISITION AND ANALYSIS
Data acquisition took place in a 3-T Siemens Magnetom Tim-Trio
MRI-scanner. Participants were scanned using a 12-channel sur-
face coil. To acquire our functional data we used parallel-acquired
inhomogeneity-desensitized fMRI (Poser et al., 2006). This is a
multi-echo EPI: images are acquired at multiple TE’s following
a single excitation. The TR was 2398 ms and each volume con-
sisted of 31 slices of 3 mm thickness with a slice-gap of 17%. The
voxel size was 3.5 mm × 3.5 mm × 3 mm and the field of view was
224 mm. Functional scans were acquired at multiple TEs following
a single excitation (TE1 at 9.4 ms, TE2 at 21.2 ms, TE3 at 33 ms,
TE4 at 45 ms, and TE5 at 56 ms with echo spacing of 0.5 ms) so
that there was a broadened T∗

2 coverage. Because T∗
2 mixes into

the five echoes in a different way, the estimate of T∗
2 is improved.

Accelerated parallel imaging reduces image artifacts and thus is
a good method to acquire data when participants are producing
sentences in the scanner (causing motion and susceptibility arti-
facts). The number of slices did not allow acquisition of a full brain
volume in most participants. We always made sure that the entire
temporal and frontal lobes were scanned because these were the
areas where the fMRI adaptation effects of interest were expected.
This meant however that data from the superior posterior frontal
lobe and the anterior superior parietal lobe (thus data from the
top of the head) were not acquired in several participants. The
functional scans of the first and second runs were aligned using
AutoAlign. A whole-brain high resolution structural T1-weighted
MPRAGE sequence was performed to characterize participants’
anatomy (TR = 2300 ms, TE = 3.03 ms, 192 slices with voxel size
of 1 mm3, FOV = 256), accelerated with GRAPPA parallel imaging
(Griswold et al., 2002).

For the behavioral data of the speaking experiment, to separate
participants’ speech from the scanner sound and extract RTs, the
speech recordings were bandpass filtered with a frequency band of
250–4000 Hz and smoothed with a width half the sampling rate.
Response onsets and durations were determined through thresh-
olding of these filtered recordings (basically, a post hoc voicekey)
and linked to the stimulus presentation times to extract the RTs
and total speaking times. Trials with errors or prevoicing were dis-
carded from the analysis. The planning times, speaking times and
total response times for correct responses to the target items were
analyzed in a repeated measures ANOVA using SPSS.

The fMRI data were preprocessed and analyzed with SPM5
(Friston et al., 1995). The first 5 images were discarded to allow
for T1 equilibration. Then the five echoes of the remaining images
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were realigned to correct for motion artifacts (estimation of the
realignment parameters was done for one echo and then copied
to the other echoes). Subsequently the five echoes were combined
into one image with a method designed to filter task-correlated
motion out of the signal (Buur et al., 2009). First, echo two to five
(i.e., TE2, TE3, TE4, and TE5) were combined using a weighting
vector dependent on the measured differential contrast to noise
ratio per voxel. The time course of an image acquired at a very
short echo time (i.e., TE1) was used as a voxelwise regressor in a lin-
ear regression for the combined image of TE2, TE3, TE4, and TE5.
Weighting of echoes was calculated based on 25 volumes acquired
before the actual experiment started. The resulting images were
coregistered to the participants’ anatomical scan, normalized to
MNI space and spatially smoothed using a 3D isotropic Gaussian
smoothing kernel (FWHM = 8 mm).

We then performed first- and second-level statistics. For the first
level general linear model (GLM), we modeled the individual start
time of the picture. The events of our model were convolved with
the canonical hemodynamic response function included in SPM5.
In the speaking experiment, the first level model included verbs,
filler pictures, prime pictures, the nine conditions and errors. Erro-
neous responses were therefore put in a separate regressor, leaving
only correct responses in the actual analyses. For the control exper-
iment, the first level model included filler pictures, prime pictures,
the nine conditions, and catch trials. Both models included the six
motion parameters as event-related regressors of no interest. The
second-level model consisted of a 9 (condition) × 2 (experiment)
factorial design. All effects were then tested by computing the
appropriate contrasts for the model. We performed two types of
analyses to test our hypotheses: to find intersections between dif-
ferent effects, we conducted conjunction analyses. In these analyses
multiple different contrasts are tested, and only areas showing an
effect in all tested contrasts under a conjunction null hypothesis
result in a significant conjunction (Friston et al., 2005). To look for
areas sensitive to one factor but not the other, we applied exclu-
sive masking. In such an analysis, the significant clusters for one
factor are overlaid with a low-threshold mask for the other factor
(p < 0.20 uncorrected voxelwise), and only clusters that survive
the masking procedure are reported. Note that due to the very
nature of the type of statistical framework we employ, we cannot
prove that an effect does not exist. However, if an effect does not
survive thresholding at p < 0.20 uncorrected voxelwise, it may be
said to be very weak at the very least. For all tests, the cluster size
at voxelwise threshold p < 0.001 uncorrected was used as the test
statistic and only clusters significant at p < 0.05 corrected for mul-
tiple non-independent comparisons are reported. Local maxima
are also reported for all clusters with their respective voxelwise
family wise error (FWE) corrected p-values. The effects for repe-
tition of words and actors are reported in the tables, but since the
aim of the study is to distinguish reference and sense we focus on
those two factors in discussing the results.

RESULTS
BEHAVIORAL DATA
For the speaking experiment, we performed repeated measures
GLMs on the planning times (RTs), speaking times (the dura-
tion of the response), and the total planning + speaking times.

The model included one factor (condition) with 9 levels, and the
three dependent variables. The effects reported were computed
through custom hypothesis tests within this model, using con-
trasts much like for the fMRI analyses. The data are reported in
Figure 2. For planning times, repetition of sense, actors and refer-
ence produced significant priming effects [words: F < 1; sense:
F(1,23) = 109.53, p < 0.001; actors: F(1,23) = 22.95, p < 0.001;
reference: F(1,23) = 94.60, p < 0.001]. For speaking times, rep-
etition of reference and sense significantly affected the dura-
tion of the response [words: F(1,23) = 1.52, p < 0.232; sense:
F(1,23) = 12.31 p < 0.002; actors: F(1,23) = 3.71, p < 0.066; ref-
erence: F(1,23) = 9.50, p < 0.005]. However, the direction of these
effects was reversed. Priming led to shorter planning times but
longer speaking times. Analyses on the total time the partici-
pants took to complete the response (so planning plus speaking
time) again revealed significant effects for reference and sense
[words: F(1,23) < 1; sense: F(1,23) = 13.41, p < 0.001; actors:
F(1,23) = 2.78, p < 0.11; reference: F(1,23) = 33.307, p < 0.001].
The total response time mirrored the planning time pattern: when
primed, subjects were faster to complete the response. There were
no significant interactions in any of the analyses, in so far as these
could be computed given the design. In the control experiment,
the average d-prime was 0.7, indicating that participants did pay
attention.

fMRI RESULTS
All results are reported in Tables 1 and 2, and depicted in Figure 3.
Table 2 lists the main effects for all factors in the design; we limit
the discussion to the more specific results for reference and sense
as listed in Table 1.

Speaking experiment
The first step in semantic encoding, the input, is to compute a
non-linguistic representation underlying the sentence to be pro-
duced. We therefore looked for areas exhibiting fMRI adaptation
to reference, while not showing an effect of sense repetition. The
BOLD-response of the bilateral temporo-parietal junctions (BA
39/37/19) and the precuneus decreased after repetition of refer-
ence. In the right middle frontal and inferior gyrus (BA 45/46) the
BOLD-response increased after repetition of reference.

The next step in semantic encoding, is to map the reference
onto a linguistic semantic structure that can be expressed, the
sense. This is the actual process of semantic encoding. We there-
fore tested for areas sensitive to repetition of both reference and
sense. The bilateral superior parietal lobes (BA 7), fusiform gyrus
(BA 37) and posterior middle temporal areas showed suppres-
sion in the conjunction analysis. The left calcarine sulcus (BA
17) exhibited suppression as well. Finally, three frontal clusters in
the left middle frontal gyrus, left SMA and left precentral gyrus
(all BA 6) also showed repetition suppression. We also tested for
increased responses upon repetition (enhancement), but found no
areas exhibiting this pattern.

Finally, the mapping process produces an output, the sense. This
should be reflected in regions showing fMRI adaptation to sense,
without showing an effect for reference. The BOLD-response of
the pars triangularis in the left inferior frontal gyrus (BA 45) was
reduced after repetition of sense. The response in the left angular
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FIGURE 2 | Behavioral data in the speaking experiment: reaction times (light shades), durations (dark shades), and total speaking times (total bar

length) for all conditions. Error bars represent SE of the mean of the total speaking times.

gyrus (BA 39/19) and in the left middle frontal gyrus (BA 44/9),
on the other hand, increased after repetition of sense.

Control experiment
In the process of semantic encoding, the input is the concep-
tual representation that has to be transformed into a preverbal
message. To some extent at least, such a representation should
also be constructed when we are not speaking. The only signif-
icant effect in the control experiment was indeed a main effect
of repetition of reference in bilateral posterior middle temporal
gyri/inferior parietal lobe (BA 37/39). This effect survived mask-
ing with sense in the control experiment, and was also the same
as the main effect of reference in the speaking experiment, as
demonstrated by a conjunction analysis (Table 3). The right mid-
dle temporal gyrus (BA 21) showed enhancement upon repetition
of reference.

DISCUSSION
In this sentence production study, we aimed to distinguish brain
areas sensitive to reference (the mental representation an utter-
ance refers to) and the sense (the linguistic structure that interfaces
meaning with linguistic form). The behavioral data in the speaking
experiment showed that both reference and sense priming affect
the responses, and that these two effects do not interact. This
shows that both processes are psychologically real and distinct,
and that priming them affects the speed with which a sentence can
be produced.

In speaking, constructing an utterance is an incremental
process, involving several steps (Levelt, 1989). The first is to

construct a preverbal message. In the present experiment, this
requires encoding the situation we want to talk about (MANa

hitting WOMANb) into a thematic role structure which can be
described as HIT(MAN(YELLOW), WOMAN(BLUE)): there is a
HIT event, performed by a MAN, who has the property of being
YELLOW, at the expenses of a WOMAN who has the property of
being BLUE (perhaps reasonable given that she is being HIT). As
outlined in the introduction, the input is the reference, the out-
put the sense. We wanted to find out which areas in the brain are
involved in this mapping process. In the following, we will trace
step by step how, based on our results, we think the brain comes
to encode an utterance.

The first step is to build a representation of a situation we are
going to talk about – the reference. This representation forms the
input to semantic encoding, and is non-linguistic (conceptual) in
nature. As outlined in the introduction, in the case of a concrete
referent this representation is the result of perceptual processes
within the perceptual system – in the present case, the visual sys-
tem. Presumably, such a representation is, at least to some extent,
built for what we perceive independently of whether we are going
to talk about it or not. In the present paradigm, this step should be
independent of the sense of the final utterance. Areas showing sup-
pression to repetition of reference but not sense were the bilateral
occipito-temporo-parietal junctions (BA 37/39/19) and the pre-
cuneus. Data from the control experiment corroborate the idea
that the role of these areas in reference in the present experiment
is primarily to build a perceptual representation: the same bilat-
eral areas at the junction of the occipital, temporal and parietal
lobes show suppression to repetition of reference in the absence
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Table 1 | Overlap and segregation of reference and sense.

Effect Cluster BA Anatomical label Global and local maxima Cluster-level Voxel-level

x y z K p T p (FWE)

Sense and reference 1 37 Fusiform_L −42 −60 −12 4162 0.000 5.95 0.000

7 Parietal_Sup_L −24 −62 54 5.57 0.001

7 Parietal_Sup_L −22 −72 44 5.33 0.004

2 6 Frontal_Mid_L −26 −8 50 728 0.000 5.73 0.001

6 Precentral_L −40 0 50 4.99 0.018

3 19 Occipital_Inf_R 44 −76 −2 1323 0.000 4.90 0.026

19 Occipital_Inf_R 38 −72 −8 4.86 0.030

37 Temporal_Mid_R 46 −66 10 4.41 0.161

4 6 Supp_Motor_Area_L −4 10 56 191 0.035 4.76 0.045

5 7 Parietal_Sup_R 26 −58 54 461 0.000 4.74 0.048

7 Parietal_Sup_R 24 −72 50 4.27 0.247

7 n/a 24 −48 48 3.94 0.583

6 6/44 Precentral_L −44 6 20 299 0.005 4.42 0.153

6 Precentral_L −42 −4 32 4.27 0.253

7 17 Calcarine_L −8 −92 6 329 0.003 4.08 0.423

17 Calcarine_L −10 −82 8 3.77 0.772

17 Calcarine_L −14 −68 8 3.74 0.807

Sense-suppression

(masked for reference)

1 n/a Frontal_Inf_Tri_L −34 18 24 186 0.039 4.71 0.054
45 Frontal_Inf_Tri_L −50 28 26 4.46 0.136

45 Frontal_Inf_Tri_L −38 26 26 4.10 0.409

Sense-enhancement

(masked for reference)

1 39 Angular_L −54 −58 36 497 0.000 5.85 0.000
19 Occipital_Mid_L −42 −74 38 4.23 0.283

2 9 Frontal_Mid_L −26 24 44 251 0.012 4.03 0.476

44 Frontal_Mid_L −42 18 40 4.01 0.501

Reference-suppression

(masked for sense)

1 39 Temporal_Mid_R 50 −66 20 805 0.000 9.44 0.000
39 Occipital_Mid_R 42 −74 26 8.09 0.000

37 Temporal_Mid_R 60 −60 12 7.81 0.000

2 39 Temporal_Mid_L −42 −68 20 617 0.000 8.99 0.000

39 Temporal_Mid_L −54 −66 18 7.37 0.000

19 Occipital_Mid_L −30 −78 32 5.35 0.002

3 23 Precuneus_R 4 −58 24 1389 0.000 5.56 0.001

n/a Precuneus_R 2 −54 40 5.24 0.006

n/a Precuneus_L −10 −50 52 5.16 0.009

Reference-enhancement

(masked for sense)

1 45 Frontal_Mid_R 38 46 10 416 0.001 4.79 0.040
46 Frontal_Inf_Orb_R 44 48 −4 4.31 0.218

Listed are the MNI-coordinates for the first three local maxima for each significant cluster in the relevant comparisons (p < 0.05 corrected cluster-level, threshold

p < 0.001 uncorrected voxelwise, exclusive masks p < 0.20 uncorrected voxel-wise). Anatomical labels are derived from the Automatic Anatomical Labeling atlas

(Tzourio-Mazoyer et al., 2002) and from Brodmann’s atlas. Cluster-level statistics are listed for each cluster, voxel-level statistics also for local maxima.

of a linguistic task. The finding that these areas are involved in
generating the non-linguistic representation to refer to now also
allows us to further specify a previous finding on semantic encod-
ing in sentence production: in a previous study, we found that part
of the superior right MTG is sensitive to sentence- but not word-
level meaning (Menenti et al., submitted). This effect overlaps with
the area sensitive to repeated reference but not sense, and there-
fore was presumably due to the encoding of the referent as well.
These same regions have also been found sensitive to subsequent
memory for short stories (Hasson et al., 2007), a further indication
that they are involved in constructing a representation of what lin-
guistic material refers to. Repetition of reference did not just elicit

suppression: in right inferior frontal gyrus the response increased
upon repeated presentation. The repetition enhancement effect
for reference in right inferior frontal cortex was particularly strik-
ing since large parts of contralateral left inferior frontal cortex
showed repetition suppression for reference. Repetition enhance-
ment has been postulated to be caused, among other things, by
novel network formation due to the construction of new repre-
sentations (Henson et al., 2000; Conrad et al., 2007; Gagnepain
et al., 2008; Segaert et al., submitted). In speech comprehen-
sion, right inferior frontal cortex has previously been implicated
in the construction of a situation model (Menenti et al., 2009;
Tesink et al., 2009), a mental representation of text containing
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Table 2 | Main effects for all factors in the design.

Effect Cluster BA Anatomical label Global and local maxima Cluster-level Voxel-level

x y z K p T p (FWE)

Main effect words No significant clusters

Main effect sense 1 6 Supp_Motor_Area_L −4 8 54 1389 0.000 7.71 0.000

n/a n/a −10 20 22 4.44 0.146

n/a Cingulum_Mid_L −10 16 32 4.12 0.387

2 7 Occipital_Mid_L −26 −60 42 5208 0.000 6.63 0.000

2 Parietal_Inf_L −46 −38 50 6.07 0.000

37 Fusiform_L −42 −60 −12 5.95 0.000

3 6 Precentral_L −46 −2 34 3488 0.000 6.53 0.000

6 Precentral_L −46 0 42 6.23 0.000

44 Frontal_Inf_Oper_L −46 8 22 6.18 0.000

4 n/a Thalamus_L −10 −14 10 983 0.000 5.33 0.004

n/a Thalamus_L −4 −20 12 4.99 0.018

n/a Thalamus_R 4 −18 6 4.61 0.079

5 19 Occipital_Inf_R 44 −76 −2 2342 0.000 4.90 0.026

18 Vermis_6 3 −72 −8 4.86 0.030

7 Parietal_Sup_R 26 −58 54 4.74 0.048

6 17 Calcarine_L −8 −92 6 378 0.000 4.08 0.423

19 Calcarine_L −20 −66 6 3.97 0.556

17 Calcarine_L −12 −82 6 3.91 0.617

Main effect actors 1 7 Parietal_Sup_L −28 −60 46 374 0.002 4.96 0.020

2 44 Frontal_Inf_Oper_R 42 10 28 471 0.000 4.89 0.027

45 Frontal_Inf_Tri_R 42 24 22 4.01 0.500

45 Frontal_Inf_Tri_R 46 34 16 3.97 0.548

3 37 Fusiform_R 40 −44 −18 396 0.001 4.88 0.028

37 Temporal_Inf_R 42 −58 −10 4.76 0.045

4 44 Frontal_Inf_Oper_L −36 8 28 252 0.012 4.33 0.209

n/a Frontal_Inf_Tri_L −38 20 24 3.66 0.875

45 Frontal_Inf_Tri_L −42 28 18 3.44 0.979

5 37 Ternporal_Mid_R 36 −58 14 332 0.003 4.11 0.395

40 n/a 30 −56 34 4.04 0.469

19 n/a 32 −64 28 3.94 0.587

Main effect reference 1 37 Ternporal_Mid_R 54 −58 6 21483 0.000 12.62 0.000

37 Ternporal_Mid_R 48 −64 12 11.49 0.000

19 Occipital_Mid_L −48 −74 4 11.27 0.000

2 6 Frontal_Sup_L −26 −6 55 851 0.000 5.97 0.000

3 20 Ternporal_Mid_R 50 −10 −18 307 0.005 5.08 0.012

20 Fusiform_R 42 −16 −20 3.62 0.903

4 6 Frontal_Sup_R 30 −6 60 598 0.000 5.00 0.017

n/a Frontal_Mid_R 24 12 42 4.56 0.093

6 Precentral_R 40 0 46 4.01 0.504

5 6 Supp_Motor_Area_L −4 10 56 236 0.016 4.76 0.045

6 Frontal_Sup_L −14 10 50 3.83 0.716

6 27 Lingual_R 6 −34 −4 479 0.000 4.64 0.072

27 n/a −8 −28 −4 4.31 0.222

27 Thalamus_L −16 −30 6 3.84 0.702

7 44 Precentral_L −44 6 20 299 0.005 4.42 0.153

6 Precentral_L −42 −4 32 4.27 0.253

Listed are the MNI-coordinates for the first three local maxima for each significant cluster in the relevant comparisons (p < 0.05 corrected cluster-level, threshold

p < 0.001 uncorrected voxelwise). Anatomical labels are derived from the Automatic Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002) and from Brodmann’s

atlas. Cluster-level statistics are listed for each cluster, voxel-level statistics also for local maxima.
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FIGURE 3 | Results. Shown are the effect of sense masked
exclusively for reference, for reference masked exclusively for sense,
and the conjunction of the two. p < 0.05 cluster-level FWE corrected

for simple effects, maps thresholded at p < 0.001 voxelwise
uncorrected, exclusive masks thresholded at p < 0.20 voxelwise
uncorrected.

information on, for instance, space, time, intentionality, causa-
tion and protagonists (Zwaan and Radvansky, 1998). These are
integrated and updated over several sentences and also contain all
inferences that were not explicitly stated but are necessary for com-
prehension (Zwaan and Radvansky, 1998). The difference between
reference as discussed above and situation models is that the latter
pertain to the integration of referents of several utterances into
one mental model and also contain unstated information, arrived
at through inferences. A similar distinction is likely in produc-
tion: the situation model may contain any information that the
speaker knows pertains to the situation, but that he does not men-
tion. Right inferior frontal gyrus has repeatedly been found to be
involved in generating inferences (Mason and Just, 2004; Kuper-
berg et al., 2006). The first presentation of a referent may therefore
induce the start of situation model construction. This same area
did not show enhancement in the control experiment, support-
ing the idea that the process in which this region is involved is
language-related. We do not currently have an explanation for the
enhancement effect found in right middle temporal gyrus in the
control experiment.

The second main step in semantic encoding is to map the rep-
resentation that we want to talk about onto a linguistic structure
that can be syntactically encoded – the actual process of encoding.
This would presumably involve areas sensitive to both reference
and sense, interfacing between the mental representation of the
situation that will be described and the linguistic representation
describing it. What is perhaps most striking about our data, is the
great extent to which these two processes are neurally intertwined:
bilateral posterior middle temporal gyri (BA 37), superior pari-
etal areas (BA 7), precentral gyrus (BA 6) and LIFG (BA 44/6)
all show largely overlapping suppression effects for reference and

sense. Our data show that large parts of the language network
are involved in processing reference, and that reference therefore
presumably is important throughout much of the task of build-
ing an utterance. But what is the contribution of all these areas
to semantic encoding? Due to the proximity of areas coding the
perceptual representation of the referent and some of the areas
involved in processing both reference and sense, we hypothesize
that the bilateral temporal areas sensitive to reference and sense are
primarily involved in mapping one onto the other. Such mapping
requires the retrieval of the relevant lexical items from the men-
tal lexicon, which indeed has often been postulated to involve the
posterior middle temporal gyrus (Hagoort, 2005; Jung-Beeman,
2005). The bilateral superior parietal lobes also showed suppres-
sion to the repetition of both reference and sense. These parietal
areas have previously been found involved in studies investigating
linguistic inference (Nieuwland et al., 2007; Monti et al., 2009). In
the sense/reference fMRI study discussed in the introduction, the
parietal areas were more strongly activated for both referentially
ambiguous and anomalous conditions compared to coherent con-
ditions, but this effect was more pronounced for the ambiguous
condition (Nieuwland et al., 2007). In a study on linguistic and log-
ical inference, this area was found to be common to both types of
inference compared to detection of grammatical violations (Monti
et al., 2009). Our suppression effect in this area may reflect that
in a situation where sense, reference, or both are repeated, less
inferences are required than in a situation where that is not the
case. The superior LIFG (BA6) also showed suppression both to
repetition of sense and of reference. On the hypothesis that IFG is
involved in unifying different elements into a coherent representa-
tion (Hagoort, 2005), this means that the reference of an utterance
is also kept active in the working space of language. The fact that
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Table 3 | Results from control experiment.

Effect Cluster BA Anatomical label Global and local maxima Cluster-level Voxel-level

x y z K p T p (FWE)

Main effect reference

suppression

1 39 Temporal_Mid_L −44 −64 16 885 0.000 6.42 0.000

37 Temporal_Mid_L −54 −54 4 4.97 0.015

19 Occipital_Mid_L −34 −76 26 3.26 0.996

2 39 Temporal_Mid_R 40 −62 18 1379 0.000 5.66 0.001

21 Temporal_Mid_R 46 −56 12 5.34 0.009

37 Temporal_Mid_R 50 −66 6 5.31 0.009

Main effect reference

enhancement

1 21 Termporal_Mid_R 56 −24 −8 275 0.010 5.22 0.005

Reference masked for sense 1 39 Temporal_Mid_L −44 −64 16 695 0.000 6.42 0.000

37 Temporal_Mid_L −54 −54 4 4.97 0.015

39 Occipital_Mid_L −34 −76 26 3.26 0.996

2 39 Temporal_Mid_R 40 −62 18 1313 0.000 5.66 0.001

39 Temporal_Mid_R 46 −56 12 5.34 0.009

37 Temporal_Mid_R 50 −66 6 5.31 0.009

Conjunction reference

speaking and reference control

1 39 Temporal_Mid_L −44 −64 16 885 0.000 6.42 0.000
37 Temporal_Mid_L −54 −54 4 4.97 0.015

19 Occipital_Mid_L −34 −76 26 3.26 0.996

2 39 Temporal_Mid_R 40 −62 18 1346 0.000 5.66 0.001

21 Temporal_Mid_R 46 −56 12 5.34 0.003

37 Temporal_Mid_R 50 −66 6 5.31 0.003

Sense No significant clusters

Actors No significant clusters

Words No significant clusters

Listed are the MNI-coordinates for the first three local maxima for each significant cluster in the relevant comparisons (p < 0.05 corrected cluster-level, threshold

p < 0.001 uncorrected voxelwise). Anatomical labels are derived from the Automatic Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002) and from Brodmann’s

atlas. Cluster-level statistics are listed for each cluster, voxel-level statistics also for local maxima.

none of the regions outlined above are sensitive to any of our fac-
tors in the control experiment further indicates that the process
they are involved in is linguistic in nature.

The output of semantic encoding is the sense. One area showed
a repetition suppression effect for sense but not reference: the
left inferior IFG (BA 45). The final, linguistic, sense is apparently
assembled in LIFG. This effect may, however, also be partly due to
the repetition of the exact sentence, therefore by repetition of not
just semantic but also both syntactic and phonological sequencing
processes, which are related to actual speech output and are not
part of the sense. In fact, the focus of the effect, lying at the heart of
the part of LIFG most often found involved in syntactic processing
(Bookheimer, 2002), suggests just that. Ventral LIFG, most com-
monly known to be involved in meaning processing (Bookheimer,
2002), remains sensitive to reference throughout.

Repetition of sense also elicits enhancement in two areas. The
exact same left hemispheric frontal and parietal areas here show-
ing repetition enhancement for sense have previously been found
to be involved in semantic inhibition (Hoenig and Scheef, 2009),
that is, inhibition of contextually inappropriate meanings. In the
present paradigm, each word (MAN, BOY, WOMAN, GIRL) has
two prominent possible referents. One of them has to be sup-
pressed in mapping the intended referent onto the sense. While

this would seem harder in the case where sense is not repeated
(and therefore elicit suppression instead of enhancement upon
repetition), this seeming incongruity can be readily explained: the
BOLD-response in both areas shows consistent deactivation in
any of the conditions compared to an implicit baseline. The deac-
tivations are less strong in the conditions with repeated sense,
than those where sense is novel. This mirrors activation patterns
in the so-called default mode network, which shows increasing
deactivations depending on task difficulty (Greicius et al., 2003).
Both areas have been shown to be part of the default mode
network.

In sum, our data suggest that the bilateral temporo-parietal-
occipital junctions are involved in constructing a mental repre-
sentation of a percept (the reference), that the bilateral posterior
middle temporal gyri map this representation onto lexical items
that can be expressed, and that the final sense is unified in left infe-
rior frontal gyrus – this can then serve as input to both syntactic
and phonological encoding which also involve left inferior frontal
gyrus.

Some caveats are in order: in operationalizing reference and
sense for the purpose of this study, we have made some deci-
sions that limit the generalizability of our findings. Most notably,
our experiments concern visual representations of concrete events.
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As we have stressed above, we consider referents to be men-
tal representations in our mind. These mental representations
are likely to differ depending on the material underlying them.
They will likely be different for auditory and visual objects, for
events involving people and for non-human objects, for con-
crete objects and for abstract concepts. But that is precisely
the point: our brains need to convert non-linguistic mental
(i.e., conceptual) representations, whatever they are “made of”
into language. Therefore, while we believe our findings con-
cerning sense, and the mapping of reference onto sense will at
least to a large extent hold irrespective of the underlying ref-
erence, what brain areas are involved in processing reference
alone will depend on the specifics of the mental representation
involved.

Another constraint concerns our task. We had participants
describe a long list of pictures. If these subsequent sentences were
to be perceived as part of an ongoing discourse, then some unnat-
ural situations would arise: normally, we would avoid repeating
the same sentence twice in a row, let alone while using it to refer
to different things. Our behavioral data, however, provide an indi-
cation that participants were not too affected by such concerns.
First, the instructions specified that they had to name the people,
the colors, and the action (which was given by the verb presented
prior to the picture). Though this precluded using pronouns, this
did not prevent participants from adding specifications such as
“the other,” “again,” “now,” etc., to specify the relation between

pictures. No participants chose to do so. Second, if repeating the
sentence were more difficult than not repeating it, we should have
seen an inhibitory effect of priming. While we did see this in the
speaking times, we did not in the planning times, and the total
time taken to compete an utterance was shorter for the primed
than the unprimed conditions. These are indications that our par-
ticipants were happy to consider every trial an independent unit.
We believe that single sentence processing is conceptually the same
as discourse processing, but on a smaller scale. Therefore, we pre-
dict our general findings would hold for more natural processing
of language in context.

To conclude, our data confirm that the theoretical distinction
between reference and sense is psychologically real, both in terms
of behavior and of neuroanatomy. The behavioral data shows that
priming of both processes can affect the ease of production. The
fMRI data shows that indeed some brain regions are selectively
affected by one of these computations. However, the neuronal
infrastructure underlying the computation of reference and sense
is largely shared in the brain. This indicates that processing ref-
erence and sense is highly interactive throughout the language
system.
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