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Abstract In most species—from cyanobacteria to humans—
endogenous clocks have evolved that drive 24-h rhythms of
behavior and physiology. In mammals, these circadian
rhythms are regulated by a hierarchical network of cellular
oscillators controlled by a set of clock genes organized in a
system of interlocked transcriptional feedback loops. One of
the most prominent outputs of the circadian system is the
synchronization of the sleep–wake cycle with external (day-)
time. Clock genes also have a strong impact on many other
biological functions, such as memory formation, energy
metabolism, and immunity. Remarkably, large overlaps exist
between clock gene and sleep (loss) mediated effects on these
processes. This review summarizes sleep clock gene inter-
actions for these three phenomena, highlighting potential
mediators linking sleep and/or clock function to physiological
output in an attempt to better understand the complexity of
diurnal adaptation and its consequences for health and disease.
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Introduction

Almost 40 years have passed since the first clock gene,
period, was discovered by Ronald Konopka and Seymour

Benzer in a forward genetic screen on fruit flies [75].
Starting from this landmark finding, N-ethyl-N-nitrosourea
(ENU) mutagenesis phenotypic screens became a powerful
tool to unravel the genetic basis of circadian rhythms. In the
mid-1990s, the first mammalian clock gene, circadian
locomotor output cycles kaput (Clock), was identified and
cloned by Martha Vitaterna in the lab of Joseph Takahashi
[71, 156]. In mammals—as in most organisms studied so
far—circadian rhythms are controlled by a set of clock
genes forming a network of positive and negative auto-
regulatory feedback loops [57, 120]. These clock genes are
expressed in most tissues. A circadian pacemaker located in
the suprachiasmatic nuclei (SCN) of the hypothalamus is
reset by external light stimuli and synchronizes peripheral
oscillators throughout the body with each other and with the
light–dark cycle via humoral, neuronal, and behavioral cues
[120]. At its heart, the cellular circadian clockwork consists
of a main (or core) and an auxiliary (or accessory)
transcriptional-translational feedback loop (TTL; Fig. 1, left
side). The former is composed of the positive components
brain and muscle ARNT-like 1 (BMAL1 or ARNTL),
CLOCK and neuronal PAS domain protein 2 (NPAS2), as
well as the negative components CRYPTOCHROME 1/2
(CRY1/2) and PERIOD 1–3 (PER1-3). BMAL1, CLOCK,
and NPAS2 are members of the basic helix–loop–helix
(bHLH) Per-Arnt-Sim (PAS) family of transcription factors.
In the SCN, CLOCK/NPAS2 and BMAL1 form heterodimers
that bind to specific circadian E-box elements on the
promoters of their targets, thereby activating Cry and Per
transcription during the (subjective) day. In the late afternoon,
PER and CRY protein levels reach a critical concentration
and, now forming complexes themselves, translocate into the
nucleus. There, they interact with CLOCK/NPAS2-BMAL1
and, by repressing the transcription of their own genes, form
a negative feedback loop. Progressive degradation of negative
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regulators towards the end of the subjective night starts a new
cycle by the re-activation of Per/Cry transcription. Posttran-
scriptional modifications are heavily involved in clock
oscillations and impart precision and robustness to the TTL.
In particular, members of the casein kinase family (e.g.,
CKIε, CKIδ) are known to phosphorylate PER proteins at
conserved residues and promote degradation, thereby delay-
ing PER nuclear entry [48, 83]. The auxiliary loop comprises
two genes of the orphan nuclear receptor family, Rev-erbα
(Nr1d1) and Rorα (Rora). REV-ERBα and RORα repress or
activate, respectively, the transcription of genes with ROR
elements in their promoters, such as Bmal1 and Npas2.
Rev-erbα and Rorα are considered to be dispensable for
cellular rhythm generation, yet they were shown to
regulate phasing and amplitude of clock gene expression
rhythms [116, 127]. Further ancillary loops have been
described. The CLOCK/NPAS2-BMAL1-regulated bHLH
transcription factors DEC1 (BHLHE40) and DEC2
(BHLHE41) were shown to bind E-box elements and
modulate CLOCK/NPAS2/BMAL1-driven circadian tran-
scription [62, 124]. Another TTL involves the two
transcription factors D-site albumin promoter binding
protein and E4BP4 (NFIL3) that compete for binding of
D-boxes, a third circadian regulatory DNA motif, at the
promoters of Per1-3, Rev-erbα, Rorα, and various clock-
controlled genes (CCGs) [90, 101]. Similarly, in Drosophila,
CYCLE (CYC) and CLOCK (CLK), the orthologs of
BMAL1 and CLOCK, form heterodimers and activate
transcription of the circadian repressor genes Timeless (Tim)
and Period (Per) via E-boxes (Fig. 1, right side). TIM is a
substitute for mammalian CRYs as the major core TTL

inhibitor, whereas in the fly, CRY functions primarily as a
photoreceptor and helps to synchronize the clock to the light–
dark cycle [142]. TIM/PER complexes are transported to the
nucleus to repress CYC/CLK-mediated transcription [56].
DOUBLETIME, a homolog of casein kinase I, phosphor-
ylates PER, assigning it for sequestration via the proteasomal
pathway [72, 117]. Similar to mammals, the fly clock
contains at least one auxiliary loop consisting of VRILLE
(VRI) and PAR-domain protein-1 (PDP1). The former
inhibits, whereas the latter activates Clk transcription [26].

Interaction between circadian and homeostatic sleep
components

The current model predicts that sleep is regulated by two
principle mechanisms [13, 27]. The first, termed process c,
determines the appropriate timing of sleep. Nocturnal
animals experience sleep mostly during the day, while
diurnal species such as humans rest predominantly during
the night. The SCN, as master circadian pacemaker, sends
projections to important sleep regulatory nuclei such as the
ventrolateral pre-optic area, the dorsomedial nucleus of the
hypothalamus, and the hypocretin/orexin neurons of the
lateral hypothalamus. Process c is complemented by a
homeostatically controlled sleep drive, process s, which
builds up an increased need for sleep in response to
extended wake periods, independent of the time of day.
So far, the anatomical substrate of process s remains
elusive. Of note, sleep in mammals and birds is quantified
primarily by electro-encephalography (EEG). In contrast,
characterization of sleep in insects, where rhythm and
homeostasis appear to be as robust as in mammals, relies
mostly on measurements of rest/activity periods and arousal
thresholds [60, 131]. SCN-lesioned rats and mice show
disrupted sleep timing and consolidation, though the overall
time spent asleep each day and the delta response to sleep
deprivation remain uncompromised [67, 100, 147]. Previous
studies conveyed on humans under forced desynchrony
protocols demonstrated that slow wave activity was largely
independent of internal circadian phase, though distribution
of REM sleep and spindle activity in non-rapid eye
movement (NREM) sleep correlated with body temperature
rhythms [34]. At the same time, homeostatic sleep compo-
nents can modify circadian pacemaker function. Sleep states
affect activity of SCN neurons with decreasing firing rates
during NREM phase and after sleep deprivation [30, 31].
Moreover, prolonged awaking effects the expression of clock
genes in the cerebral cortex, upregulating both of Per1
and Per2 [161, 162]. This body of evidence suggests that
the circadian clock regulates sleep–wake timing and
opposes process s in order to gate consolidated bouts of
sleep and waking.
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Fig. 1 Transcriptional-translational feedback loops regulate cellular
circadian rhythms in mammals and flies. Both vertebrate and
invertebrate clockworks are based on similar mechanistic concepts
and share a number of genetic components. In mammals (left), a core
loop is composed of PER and CRY proteins that inhibit their own
transcription by inhibition of CLOCK (NPAS2)/BMAL1. An acces-
sory loop involves REV-ERBα and RORα that regulate Bmal1
transcriptional rhythms. In Drosophila (right), CLC/CYC activate
PER/TIM that feedback on CLC/CYC activity. VRI and PDP1 form
an accessory loop that regulates Clc transcriptional rhythms
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Clock genes and sleep timing

In humans, naturally occurring polymorphisms in clock genes
correlate with early or late chronotype. A PER3 gene length
polymorphism is linked to extreme diurnal preferences [4].
The longer allele, which carries five repetitions (PER35/5) of
a variable number tandem repeat, is associated with early
morning type, whereas the shorter allele (PER34/4) correlates
with eveningness and delayed sleep phase syndrome
(DSPS). Recently, it was demonstrated that a polymorphism
in the PER3 promoter is also associated with DSPS [6].
Similar correlations of polymorphic alleles with diurnal
preferences are observed for PER1 and the 5′untranslated
region of PER2 [18, 19].

Circadian control of sleep can be better demonstrated on
disorders associated with extremely shifted sleep–wake
time. In familiar advanced sleep phase syndrome (FASPS),
genetic studies identified mutations in the PER2 (S662G)
and CKIδ (T44A) genes in some families [148, 164].
Remarkably, both mutations affect an evolutionary con-
served process, the phosphorylation of the PER2 protein by
CKI. Xu et al. [164] have shown that a single amino acid
substitution (T44A) in the human CKIδ protein decreases
its enzymatic activity in vitro. The corresponding mutation,
when reproduced in mice, causes a shortened circadian
period length, which is consistent with symptoms of FASPS
patients. Surprisingly, a miss-sense mutation in the same
conserved residue of the Drosophila CK1 ortholog Dbt
leads to an increase in the free-running period [164], as

would be expected from DSPS patients. These findings
highlight the different organization of circadian/sleep
regulatory mechanisms in insects and mammals, despite
the fact that individual components share a great similarity
between vertebrate and invertebrate systems (see also
Fig. 1). In another study, transgenic mice expressing human
PER2 with the S662G mutation on a Per2-deficient
background display a shorter period resembling humans
with FASPS. Conversely, an aspartate substitution at the
same residue (S662D), mimicking a constitutively phos-
phorylated state, correlates with a longer period [165].

Clock genes and sleep homeostasis

A number of recent studies suggest that clock genes,
besides regulating circadian sleep–wake timing, also con-
tribute to sleep homeostatic control (reviewed in [47] and
summarized in Table 1). Naylor et al. [105] demonstrated
that mutations in Clock have effects on a variety of sleep–
wake parameters in the mouse. Clock mutant animals show
a reduction in total sleep time (around 2 h) under light/dark
(LD) conditions, mostly due to reduced NREM sleep. In
constant darkness (DD), homozygous mutants spend more
time of their circadian cycle awake, mostly sacrificing
NREM sleep, even when the results are normalized to their
longer endogenous circadian period of 28.8 h. The response
to sleep deprivation is also altered in these mice with
decreased REM sleep rebounds, though the effects on

Table 1 Clock gene mutant mice with sleep abnormalities

Mouse mutant Circadian
phenotype

Sleep phenotype

Sleep amount,
light/dark phase

REM, light/
dark phase

NREM, light/
dark phase

Delta power in
NREM, light/
dark phase

Response to sleep
deprivation

References

Bmal1−/− Arrhythmic Normal/elevated Normal/elevated Normal/elevated Elevated/reduced Attenuated NREM/
REM

[81]

Npas2−/− Short period Normal/reduced Normal/reduced Normal/reduced Normal/normal Attenuated NREM,
reduced delta
power

[39, 46]

ClockΔ19 Long period Reduced/reduced Normal/normal Reduced/reduced – Attenuated REM [105]

Per1/2m/m Arrhythmic Reduced/normal Normal/normal Reduced/normal Normal/normal Increased delta
power

[135]

Cry1/2−/− Arrhythmic Normal/elevated Reduced/elevated Normal/elevated Elevated/elevated Attenuated NREM/
REM, reduced
delta power

[161]

Dbp−/− Short period Normal/normal Reduced/normal Normal/normal Normal/reduced Attenuated REM [45]

Dec2P385R Normal Reduced/normal Reduced/normal Reduced/normal Normal/normal Attenuated NREM/
REM, reduced
delta power

[59]

PK2−/− Attenuated
amplitude

Reduced/normal Normal/elevated Reduced/normal Normal/normal Attenuated NREM/
REM, reduced
delta power

[65]

Vipr2−/− Arrhythmic Reduced/elevated Reduced/elevated Reduced/elevated Normal/normal – [133]
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NREM and total sleep are unchanged [105]. Gene
association studies performed on two independent popula-
tions of humans report links between sequence variants of
CLOCK and sleep duration [1]. In the clock machinery,
Npas2 acts as a functional paralog of Clock, yet their
expression in the brain rarely overlaps [2, 50, 71].
Consistent with this, Npas2-deficient mice show about
25% reduction in NREM and REM sleep as well as reduced
sleep consolidation [39]. Subjected to 8 h of prolonged
waking, Npas2 mutants display a smaller compensatory
increase in NREM sleep and in delta activity [46].

Bmal1-deficient mice are to date the only reported
mouse strain in which the deletion of a single gene
totally disrupts circadian molecular and behavioral
rhythms [17]. Consistent with their arrhythmic behavior,
homozygous Bmal1−/− mice show attenuated sleep–wake
rhythms and increased sleep fragmentation. In contrast to
Clock mutants, Bmal1−/− animals exhibit longer REM and
NREM periods under LD and DD conditions. Further-
more, during the light phase delta power is constantly
high, indicating that these animals are persistently under
elevated sleep pressure. Paradoxically, when actively sleep
deprived, Bmal1 mutants show an attenuated homeostatic
response. This might be due to a lesser amount of sleep
lost during sleep restriction when compared to wild-type
animals [81].

Mice lacking both Cry1 and Cry2 genes are frequently
used as a genetic model of circadian arrhythmicity [152,
157]. In Cry1/2−/− mice, sleep parameters do not differ
between light and dark phases, indicating a non-circadian
distribution of sleep. Both NREM sleep and EEG delta
power are increased during the light phase, and Cry1/2
mutants also show attenuated responses to sleep restriction
[161]. Of note, single Cry1 or Cry2 knockouts do not
display any significant differences in sleep parameters
consistent with their—at least partially—redundant role in
the circadian clock [162]. Similarly, Per gene mutations
have only modest effects on sleep homeostasis. Studies
done on both Per1 and Per2 single mutant mice reveal
altered 24-h distribution of sleep but normal responses to
sleep deprivation [76, 135, 162]. However, behaviorally
arrhythmic Per1/2 double mutant animals show decreased
REM and NREM sleep periods during the light phase and
moderately increased delta power after prolonged waking
[135]. Remarkably, in rats, expression of Per1 in the
dorsomedial SCN was correlated with timing of REM
sleep occurrence, pointing to a function of the central
pacemaker itself in sleep architecture regulation [84]. In
humans, the PER3 gene also plays a role in sleep
homeostasis. Individuals bearing the gene length variant
PER35/5 show longer durations of NREM sleep bouts,
higher delta power, and an exaggerated response to sleep
deprivation [155].

In Drosophila, mutants of mammalian clock gene
orthologs also exhibit profound changes in sleep homeo-
stasis. In particular clkjrk, per01, and tim01 flies show
increased sleep rebounds after 7, 9, and 12 h of sleep
deprivation and recover 100% (compared to 30–40% in
wild-type Canton-S flies) of sleep lost within 12 h [132]. In
turn, more tremendous sleep rebound and even lethality in
response to 12 h of sleep deprivation have been observed in
cyc01 mutants [132]. Interestingly, this phenotype differs
between genders with stronger effects seen in females [61].

Dbp knockout mice were the first animal model
investigated for the role of clock genes in sleep homeostasis
[45]. In constant darkness, Dbp-deficient mice exhibit a
slightly shorter free-running period and decreased overall
activity [90]. On EEG recordings Dbp mutants show
reduced REM sleep during the light phase as well as less
delta power activity in the dark. After 6 h of sleep
restriction, significantly attenuated REM responses are
observed [45]. In a recent study, He and co-workers [59]
found DEC2 to regulate sleep length in humans. They
identified a miss-sense mutation in the human DEC2 gene
that is associated with a sleep phenotype (6 vs. 8 h sleep
duration in control subjects). When this point substitution is
reproduced in mice, it decreases total sleep time via both
REM and NREM without affecting circadian period [59]. A
targeted deletion of Dec2, however, does only produce a
mild sleep phenotype in mice [59]. Interestingly, in the fly
homolog of DEC2, CLOCKWORK ORANGE (CWO)
[87], the affected amino acid residue (P385) is not
conserved, but flies expressing a mutant mouse Dec2 show
a similar sleep phenotype [59].

Of note, some of the genes known to mediate transcrip-
tional output from the circadian clock machinery have also
been implicated in sleep regulation. For instance, targeted
deletion of Prokineticin2 (Pk2), encoding a peptide secreted
from the SCN and critical for the maintenance of robust
circadian behavioral rhythms [24, 86], produces profound
alterations in sleep homeostasis. Pk2 mutants show a 20%
reduction in total sleep time, mostly due to a decrease in
NREM sleep in the light phase, whereas REM sleep is
increased. Delta power and REM sleep rebound after sleep
deprivation are also attenuated in these mice [65]. A recent
study on the VPAC2 subtype of the VIP receptor (VIPR2)
implicated in the coupling of cellular oscillators within the
SCN pacemaker demonstrates the significance of synchro-
nization of electrical activity in SCN neurons on sleep
regulation. Consistent with locomotor activity data, an
attenuated diurnal rhythm of sleep and wakefulness is seen
in Vipr2-deficient mice, although total sleep time and other
homeostatic parameters are not affected [58, 133]. Interest-
ingly, in flies, a disruption of the VIP analog neuropeptide
pigment dispersing factor (PDF) increases sleep and causes
reduced responsiveness to external stimuli [25]. Together,
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these studies clearly show that circadian and homeostatic
regulatory circuits show a high degree of interaction. It
remains unclear, however, how this cross-talk is mediated at
the molecular level and which neuronal circuits are
involved.

Clock genes and sleep-associated functions

Clock genes do not only influence sleep architecture and
quality. They might also be involved in sleep and sleep-
correlated functions within an organism [51]. In many
cases, clock gene mutations and sleep disorders share the
same symptoms and phenotypes. Sleep loss, for example,
has been correlated to numerous metabolic symptoms,
which are also observed in circadian clock-deficient animal
models. Clock genes affect synaptic plasticity in learning
and memory formation and modulate immune functions
during the course of the day. In the same way, sleep—or the
lack thereof—has a strong impact on these processes.

Energy metabolism

The efficient regulation of energy homeostasis is an
essential factor for an organism’s survival. It comprises
a range of different processes, including energy uptake
(i.e. eating), storage (mostly as lipids, glycogen or tissue
protein), and expenditure (energy usage for biosynthetic
processes, heat production or locomotion). Energy is
taken up in the form of macronutrients—carbohydrates,
fat, or protein. In most species, nutrient ingestion
follows a strict circadian rhythm, and several clock
genes have been shown to be involved in the regulation
of metabolic homeostasis. Clock mutant mice show
blunted diurnal activity rhythms resulting in elevated food
intake during the usual resting phase (day) and less
ingestion during the active phase (night). These mice
become hyperphagic and obese [151]. Another study
showed that daytime high fat diet (HFD) in mice leads
to a significant higher weight gain than nighttime HFD
[3]. This is a possible explanation for the clock mutants’
obese phenotype. Similarly, Per2 mutant mice show
arrhythmic feeding behavior and eat significantly more under
(HFD) conditions. These effects are based on a decreased
level of alpha melanocyte-stimulating hormone (α-MSH), a
well-known appetite suppressor, at the beginning of the light
phase. Constant administration of α-MSH to Per2 mutants
leads to reduced food uptake, revealing α-MSH as a direct
target of the clock gene Per2, independent of rhythmicity
[167]. Interestingly, some of these effects are also seen after
sleep restriction in rodents and in humans. In the latter, a
restriction of sleep time to 4 h for only a few consecutive

nights is enough to significantly increase appetite [139, 140].
Rats that are kept awake for 2 weeks using the classic disc-
over-water technique show hyperphagy—although they lose
weight under these conditions [119]. Of note, a number of
other animal studies failed to confirm an increase in food
uptake in response to sleep restriction, indicating that small
variations in experimental procedures may have a significant
impact on these processes [9, 170]. A straight-forward
mechanistic explanation for a sleep-loss-mediated increase
in energy uptake remains elusive. It was suggested that a
temporal deregulation of peripheral orexigenic and anorex-
igenic hormones could underlie this effect. The most
promising candidates are the gastrointestinal peptide ghrelin
[29, 73] and the adipokine leptin secreted by white
adipocytes [89]. In humans as well as in animals, sleep
restriction or total sleep deprivation cause significant
decreases in circulating leptin and increased ghrelin, thus
promoting appetite and hunger [11, 44, 140, 145]. Human
leptin plasma levels are partially dependent on meal time
[128] and also on the circadian time and sleep state. Under
un-stressed and constant feeding conditions, leptin shows a
marked nocturnal rise in humans [128]. When sleeping time
is shifted by 8 h, leptin levels are differentially regulated by
both the circadian system and sleep, resulting in a short
period rhythm with peaks in the night and around mid-sleep
phase [136]. In contrast, the diurnal expression of ghrelin
seems not to be directly clock-regulated. Under ad libitum
feeding conditions ghrelin shows a bimodal rhythm with
peaks in the afternoon and towards the end of the dark phase
in rats, correlating with gastric emptying and filling [103].
However, in humans, sleep triggers ghrelin release during
night. Comparable to rats, humans also show a bimodal
ghrelin rhythm with one peak in the afternoon and one peak
during night. The peak during night is absent when test
persons were sleep deprived [40]. Ghrelin signaling seems to
have a strong influence on the circadian system. In cultured
mouse brain slices containing the SCN, ghrelin administra-
tion increases firing rate of individual SCN neurons. Ghrelin
receptor activation phase shifts SCN bioluminescence
rhythms in culture and resets locomotor activity rhythms in
intact mice [168]. Another agent connecting the circadian
system, sleep, and food uptake is the neuropeptide orexin
(or hypocretin/HCRT). Its two isoforms, orexin A and B,
are exclusively expressed in neurons of the lateral
hypothalamus. Both have potent wake-promoting effects
and at the same time stimulate food intake [126]. Orexin
release is circadian clock-controlled and Hcrt transcription
rhythms are abolished in Clock mutant mice [151]. The
SCN directly innervates orexigenic neurons [104]. Under
starvation conditions, the sleep duration of rats is
shortened [28], while sleep deprivation increases energy
uptake [119]. The orexin system constitutes a potential
candidate linking both processes.
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Similar to food uptake, energy metabolism is influenced
by the circadian system and sleep. Both sleep and clock
disruptions have strong effects on glucose and lipid
metabolism. Several clock gene mutant mouse strains show
phenotypes resembling aspects of the type II diabetes
pathology. The overexpression of mutant Cry1 protein
results in polydipsia, polyuria, and hyperglycemia [109].
Clock mutant mice show hyperglycemia and hypoinsuline-
mia [151]. Moreover, Clock mutant and Bmal1−/− mice
exhibit impaired glucose liberation from the liver. Under
HFD conditions, these mice show deficient insulin
regulation and beta cell function in the pancreas
[125]. A liver-specific deletion of Bmal1 promotes
hypoglycemia and deregulated expression of genes
involved in glucose metabolism, such as phosphoenol-
pyruvate carboxykinase 1 (Pck1), glucokinase (Gck), and
glucose-6-phosphate translocase 1 (G6pt1/Slc37a4) [79].
The fact that polymorphisms in the Clock gene are
associated with metabolic syndrome in man and that
several Bmal1 haplotypes in rats are connected to type II
diabetes underlines the connection between circadian
genes and metabolism [130, 163]. CCG mutations can
also cause diabetic symptoms. Nocturnin is a clock-
controlled deadenylase involved in post-transcriptional
regulation of gene expression. Loss of Nocturnin
(Ccrnl4) has strong effects on insulin sensitivity and
glucose tolerance [53]. Other examples are the orphan
nuclear receptor peroxisome proliferator-activated recep-
tor α (Ppara) and tumor necrosis factor alpha (TNF-α)
[54, 108]. Strikingly similar effects on metabolism have
been attributed to sleep (or the lack thereof). The global
trend towards shorter sleep times during the last decades
was suggested as one of the factors underlying the
alarming increase in the prevalence of the metabolic
syndrome and type II diabetes [52, 106]. In line with this,
poor sleep quality is a risk factor for type II diabetes
[146]. Experimentally, restriction of sleep to 4 h per night
for less than a week increases blood glucose levels while
at the same time decreasing insulin sensitivity [139],
suggesting that a chronic reduction of sleep time raises
the risk of developing diabetes.

Other processes associated with clock gene function are
lipid metabolism in adipocytes and energy expenditure in
the muscles. Clock mutant mice suffer from hyperlipidemia
[151], and Bmal1 is necessary for adipocyte differentiation
from mouse embryonic fibroblast cultures. Restoration of
BMAL1-expression in Bmal1-deficient 3T3-L1 precursor
cells rescues adipogenesis. A treatment with PPARγ ligands
reconstitutes the differentiation potential of these cells. In
addition, many other lipid metabolism-related genes, like
aP2, SREBP-1α, and perilipin, are effected by Bmal1
restoration, indicating that all these genes are direct targets
of Bmal1 [134]. Interestingly, Bmal1−/− mice exhibit no

alterations in body weight gain under a variety of diet
conditions. However, a possible obesity phenotype in these
animals might be confounded by their premature aging
[74]. The Bmal1 regulator RORα promotes fatty acid
oxidation via its targets, caveolin-3 and CPT-1, lipogenesis,
and lipid storage in skeletal muscles [82], while Nocturnin-
deficient mice show resistance to diet-induced obesity [53].
Although the molecular mechanisms are less well under-
stood, several studies suggest that shortened sleep also has
a strong influence on lipid metabolism. A chronic lack of
sleep, either shortened sleep time or poor sleep quality, is a
strong risk factor for obesity and the development of the
metabolic syndrome [49, 69]. In a large longitudinal study
on nurses, Patel et al. [112] observed a cross-sectional U-
shaped association between sleep duration and body mass
index (BMI) development over several years. It was
suggested that sleep effects on lipid metabolism are
mediated by endocrine factors, such as cortisol, prolactin,
or insulin, as well as by sympathetic hyperactivity, which
had previously been linked to obesity and insulin
resistance. In this manner, sleep restriction represents a
minor form of chronic stress, thus activating the
sympathicus and elevating epinephrine and norepinephrine
secretion from the adrenal medulla. In line with this,
sympathetic activation and catecholamine administration
inhibit leptin expression and secretion [137], increase free
fatty acid levels [66], and decrease insulin sensitivity [94].
Restricted sleep and sleep deprivation elevate glucocorti-
coid levels [85], further promoting visceral fat deposition
and insulin resistance [122].

Several endocrine factors have been suggested as
potential modulators of clock and sleep regulated
aspects of energy metabolism, including adrenal gluco-
corticoids, pituitary hormones, as well as the “night
hormone” melatonin. In most mammals and birds,
melatonin is produced in the pineal gland during the
night. The pineal receives direct and indirect signals
from the SCN and is, therefore, rhythmically locked to
the circadian master clock. Bi-directional links have
been described between melatonin production and the
regulation of glucose metabolism. In diabetic Goto-
Kakizaki (GK) rats, melatonin levels are significantly
reduced, while melatonin receptor expression in the
pancreas is increased [113]. In line with this, melatonin
signaling has a strong influence on insulin secretion from
the pancreatic beta cells [102].

Neuronal plasticity

Clock gene–sleep interactions have also been reported in
the context of neuronal plasticity and learning processes
[51]. These include both short and long-term memory
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(LTM) formation and recall. The latter is thought to depend
primarily on hippocampal long-term potentiation (LTP), a
form of synaptic plasticity [96]. LTP efficiency is time-of-
day dependent in the hippocampus and in the SCN [10, 22,
107]. Several studies show that circadian core clock genes
are involved in long-term memory formation. Mutations of
Npas2 cause impaired LTM in a fear conditioning paradigm
[50]. Several clock output factors also have a role in
memory formation. Inhibition of melatonin or deletion of
the gene encoding the SCN-secreted peptide vasoactive
intestinal polypeptide (VIP) disrupts memory formation
[23, 159]. These phenotypes are often connected to cAMP
signaling [158, 169]. MAPK phosphorylation and cAMP
and CREB phosphorylation are clock gene controlled in the
hippocampus. The nadir of these events corresponds to the
time when the strongest learning deficits are observed and
pharmacological inhibition of MAPK phosphorylation
during a learning task impairs memory formation [41].
Like memory formation, memory recall is under direct
influence of clock genes. Cry1/2−/− mice show normal
spatial memory and perform well in simple avoidance tasks.
They are, however, unable to efficiently learn in a more
complex time–place context [153]. Similar findings were
reported from Per2 mutant animals [160]. In a food-
rewarded hippocampus-dependent spatial memory task
(eight-arm radial maze) [129], Per1−/− mice fail more
frequently than wild-type littermates [70]. Various publica-
tions show strong influences of sleep on memory. For
instance, individuals carrying homozygous Per35/5 alleles
exhibit an interesting connection among their clock
genotype, sleep, and regional brain response patterns to an
executive task. In contrast to PER34/4 participants, sleep
deprivation correlates to changes in brain activity only in
PER35/5 participants [154].

Although the influence of sleep on memory processes
has primarily been studied in a neurophysiological
rather than in a molecular context, there are several
common features of sleep and clock gene impact on
memory processes. The hypothesis that sleep has a
positive influence on memory formation is not new
[68]. Numerous studies provide evidence that both
declarative and procedural memory processes benefit
from proper sleep [95, 138]. Even very short naps of a
few minutes have been shown to improve declarative and
procedural memory formation and recall [77, 78, 99,
150]. Re-entrainment of sleep patterns can restore
cognitive functions either in transgenic mice carrying
the Huntington’s disease mutation [111] or in elderly
patients showing symptoms of dementia [121]. However,
until now, it is not fully clarified whether sleep has, like
clock gene function, an influence on the formation of LTP.
LTP can occur during REM sleep [15], and REM
deprivation impairs LTP in the rat hippocampus [123].

On the other hand, REM deprivation does not necessary
lead to disturbed memory formation [118]. Total sleep
deprivation can lead to problems in learning [32], but this
effect seems to be highly dependent on the subjects’
general cognitive capacity [33]. In animals, current sleep
deprivation protocols always include a certain stress
component, which in itself can interfere with memory
formation [63].

Immune functions

Similar to the brain, the immune system acts as a
bidirectional interface between the organism and its
environment. From a more general perspective, it also
functions in a very similar way in terms of detection of,
reaction to, and memorization of information. Sleep has a
strong influence on the immune system and vice versa [93].
Inflammation state affects sleep time and quality in animals
and humans [16, 30, 38], while sleep restriction leads to
higher mortality rates upon infection or sepsis [42, 43, 149].
Several immune parameters show circadian rhythmicity in
the blood of humans and other mammals [80]. Clock gene
expression is rhythmic in peripheral leukocytes [5].
Moreover, the secretion of important neuroendocrine
immune modulators is under circadian as well as under
sleep control. The activities of the hypothalamus pituitary
adrenal (HPA) axis and the sympathetic nervous system,
both stress activated, are influenced by the circadian system
and sleep. In arrhythmicPer2/Cry1 double mutant mice, HPA
axis regulation is strongly affected. The responsiveness of
the adrenal to adrenocorticotropin stimulation and, thus, the
production of glucocorticoids are regulated by adrenocortical
circadian clocks [110]. Humans show elevated cortisol and
norepinephrine levels in response to sleep deprivation while
epinephrine levels become arrhythmic [80]. These effects
will likely give rise to changes observed in leukocyte
production. For leukocytes, strong diurnal rhythms have
been reported [14, 144], some of which seem to directly
respond to cortisol secretion during night time and to
epinephrine during the day [36, 37]. Moreover, sleep loss
affects levels of lymphocytes, monocytes, natural killer (NK)
cells, and T-cell proliferation in humans [12, 14, 35, 97]. Not
only the appearance of immune cells is circadian as well as
sleep-controlled but also the levels of several cytokines [93].
While interleukin (IL)-6 production seems to primarily
depend on clock function, rhythmic TNF-α, IL-10, and IL-
12 release from monocytes as well as IL-12 production
by dendritic cells depend critically on sleep–wake
conditions [80].

Circadian rhythm disruption has been shown to severely
weaken the immune system. Mice exposed to four
consecutive weekly 6-h phase advances of the light/dark
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schedule (a repetitive jet lag paradigm) show increased
mortality in response to lipopolysaccharide (LPS) injection
[20]. Likewise, the clock gene Per2 has been identified to
play a direct role in the activation of macrophages by
controlling the expression of interferon-γ (IFN-γ), a
macrophage activating factor, in the mouse spleen [7].
The same is true for the natural killer (NK) cell receptors
LY49C and NKG2D [91]. NK cell-specific knockdown of
Per2 leads to decreased protein levels of the immune
factors granzyme B and perforin in rats, but not of IFN-γ
[8]. Interestingly, LPS administration in Per2-deficient mice
provokes attenuated immune responses and yields
considerable higher survival rates than in wild-type
animals [88]. Bmal1−/− mice show significantly reduced
levels of B cells in peripheral blood, spleen and bonemarrow
[143]. PER35/5 individuals show elevated IL-6 concentra-
tions compared to those with the PER4/4 genotype [55]. As
for metabolism, melatonin secretion might be one of the
messengers linking sleep, circadian system, and immune
function. Chemical inhibition of melatonin secretion leads to
decreased antibody responses in mice. This effect is reversed
by melatonin administration [92]. Melatonin further pro-
motes the production of macrophage and granulocyte
progenitor cells and affects the production of cytokines,
such as IL-1, IL-2, IL-6, IL-12, TGF-β, M-CSF, and TNF-α
[141]. Vice versa, cytokines might have influence on clock
gene expression. TNF-α and IL-1β suppress the expression
of Per1-3 and Rev-erbα in fibroblasts and liver of mice [21]
in a p38 MAP kinase and calcium-dependent way [114].
This impairment of clock genes might lead to increased
fatigue seen after infections.

Both sleep deprivation and clock mutations deregu-
late the production of pro-inflammatory cytokines, and
low-grade systemic inflammation is a known patholog-
ical component of obesity and metabolic syndrome [64,
98]. Moreover, the production of IL-1 is increased in
humans with self-reported poor sleep quality. Remarkably,
this correlation of sleep debt and IL-1 levels does not
apply for obese humans (BMI≥30) [115]. Elderly people
with metabolic syndrome and systemic inflammation
show a higher risk of cognitive impairment compared
with those without metabolic syndrome or with metabolic
syndrome but without inflammation [166]. This leads to
the suggestion of a direct connection between sleep,
circadian clock genes, metabolism, cognition, and the
immune system.

Conclusions

Although it seems clear that sleep and clock genes have
strong influences on various physiological processes, it is
often technically difficult to disentangle clock gene,

circadian rhythm, and sleep-specific influences because of
their mutual dependency and because only little so far is
known about the underlying mechanisms and circuits
(summarized in Fig. 2). While, in this paper, we have
independently evaluated the impact of both processes, it is
well conceivable that some of the physiological functions
of one might be mediated via regulation of the other, i.e.,
sleep regulates clocks regulate physiology or clocks
regulate sleep regulate physiology—and vice versa. While
tremendous progress has been made in deciphering the
molecular machinery of circadian clocks, little is still
known of how different tissue oscillators communicate
with each other to synchronize behavior and physiology.
Even less understood are the processes underlying sleep. In
fact, the tight interaction between clocks and sleep
processes and the surprisingly strong effect that clock gene
mutations have on both processes c and s might provide
new inroads into mapping the sleep circuitry of the brain
and into identifying molecular substrates of sleep within
neuronal cells. With the advent of conditional genetics in
mice and functional brain imaging techniques in humans,
new tools have been developed to more specifically address
these issues in the living organism. On the other hand,
improved experimental paradigms need to be developed to
resolve some of the conflicting findings from animal and
human studies. The pathological long-term effects of the
progressing sleeplessness and circadian desynchrony of
modern societies will be in the focus of future research. A
better understanding of the underlying mechanisms might
well become a key for advanced therapeutic strategies
against some of the most pressing health issues such as
diabetes and neuropsychiatric disorders.

Clock genes
& sleep

Plasticity

MetabolismImmunity

ANS
Melatonin
Corticoids

Food uptake

Melatonin
Corticoids
Prolactin

Adipokines
GhrelinCytokines

Fig. 2 Interaction of sleep and clocks in the regulation of
cognitive and physiological processes. A reciprocal interactivity
exists between sleep and circadian clock function. Both neuronal
and blood-borne factors have been proposed to mediate clock–
sleep and sleep–physiology communication. On the other hand,
peripheral humoral factors have been shown to provide feedback
about the physiological state to sleep and clock regulatory
circuits. The local regulation of physiology by tissue clocks
may serve to integrate sleep state and timing signals at the
cellular level. For details, see text
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