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We present the performance of searches for gravitational wave bursts associated with external
astrophysical triggers as a function of the search sky region. We discuss both the case of Gaussian
noise and real noise of gravitational wave detectors for arbitrary detector networks. We demonstrate
the ability to reach Gaussian limited sensitivity in real non-Gaussian data, and show the conditions
required to attain it. We find that a single sky position search is ∼20% more sensitive than an
all-sky search of the same data.
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I. INTRODUCTION

Searches for transient gravitational waves (bursts) typ-
ically fall into one of two categories: all-sky untriggered
searches, which scan the entire sky and search through-
out the available data; and triggered or directed searches,
which historically analyze only a single point on the sky
corresponding to some astrophysical source of interest
(see for example Refs. [1, 2]). However, some instru-
ments provide only an approximate sky location for ex-
ternal triggers, which requires scanning a relatively large
patch on the sky for an associated gravitational wave. For
instance, this is the case for gamma-ray bursts (GRBs)
localized by the Gamma-ray Burst Monitor (GBM) [3, 4]
on Fermi, and for some high energy neutrino candi-
dates [5].

We present an implementation of a gravitational wave
burst (GWB) search which is able to scan arbitrary sky
patches and demonstrate how the sensitivity of the anal-
ysis varies with the sky region searched. In Gaussian
noise we find that the sensitivity is a function of the
total signal-to-noise-ratio received by the gravitational
wave detector network, which is the expected result for
an optimal search in Gaussian noise. However for real
non-Gaussian gravitational-wave detector noise, we find
a different dependence of the sensitivity, due to the re-
quirement that the gravitational wave signal be seen by
at least two detectors to be distinguished from spurious
noise transients. We obtain an empirical formula for the
sensitivity of the search in real noise as a function of
the sky position for arbitrary detector networks. In par-
ticular, a sensitivity loss of ∼20% is observed between
searching at a single sky position and an all-sky search
of the same data.
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Finally, we demonstrate the ability to reach Gaussian
limited sensitivity in real non-Gaussian data, and show
the conditions required to attain it. Specifically, we find
that all of the detectors present in the network need to
have comparable sensitivity. Moreover, we show that in
practice adding a detector to a gravitational wave detec-
tor network may actually reduce the search sensitivity for
some sky areas when analyzing real data.

We begin in Sec. II with a brief introduction to co-
herent searches for GWBs. We follow in Sec. III with
details of the detection statistic and sky scanning algo-
rithm used in this paper. The spurious-noise rejection
tests are presented in Sec. IV. In Sec. V we present the
performance of the search for GWBs; in particular, the
sky dependence is discussed in Sec. VA, the comparison
between real and Gaussian noise is shown in Sec. VB,
and the dependence on the size of the sky region is pre-
sented in Sec. VC. We conclude with some comments on
the implications of these results in Sec. VI.

II. COHERENT ANALYSIS OVERVIEW

For a gravitational wave (h+(t), h×(t)) incoming from

a sky location Ω̂ the calibrated data from a gravitational
wave detector α are of the form

dα(t+∆tα(Ω̂)) =

F+
α (Ω̂)h+(t) + F×

α (Ω̂)h×(t) + nα(t+∆tα(Ω̂)) . (1)

Here F+
α (Ω̂), F×

α (Ω̂) are the antenna response functions

of the given detector to the plus (+) and cross (×) polar-
ized gravitational waves, nα is a time series of detector
noise, and ∆tα(Ω̂) is the gravitational wave travel time
between the position ~rα of the detector and an arbitrary
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reference point ~r0:

∆tα(Ω̂) =
1

c
(~r0 − ~rα) · Ω̂ . (2)

For the case where the sky location Ω̂ is known a priori,
the first step of the analysis is to time shift the data dα
by the known ∆tα(Ω̂) in order to obtain a gravitational
wave contribution which is synchronous between the dif-
ferent data time series. The data from each detector
are then whitened and decomposed in a time-frequency
representation, e.g. using a short Fourier transform or
a wavelet decomposition, where the time-frequency ba-
sis functions typically have length between several mil-
liseconds and several hundred milliseconds. For a given
time-frequency pixel (basis function) of center time t and
center frequency f the obtained decomposition can be
written compactly as

d = F+h+ + F×h× + n , (3)

where the bold face symbols denote the vector of
whitened, time-frequency decomposed time series in the
D dimensional space of detectors:

d =







d1(t, f)/
√

S1(f)
...

dD(t, f)/
√

SD(f)






(4a)

n =







n1(t, f)/
√

S1(f)
...

nD(t, f)/
√

SD(f)






(4b)

F+,× =







F+,×
1 /

√

S1(f)
...

F+,×
D /

√

SD(f)






(4c)

Note that the gravitational wave contribution h+, h×

are the projection on a time-frequency basis function
without any whitening.

The detector basis used in Eqs. (4) to describe vectors
in the D dimensional space of detectors is not adapted to
the gravitational wave contribution. Given that the data
are whitened and detector noise can be assumed as uncor-
related between detectors, the vector n has an identity
covariance matrix, which is invariant under change of or-
thonormal basis. Hence we can construct a new adapted
orthonormal basis, in which the first two vectors span
the gravitational wave plane [6] generated by the F+

and F× vectors, and the D − 2 remaining vectors span
the null space, the space orthogonal to the gravitational
wave plane.

This basis can be further refined in various ways, such
as by choosing the first two vectors along the directions
of maximal and minimal response to a linearly polarized
gravitational wave. These two directions are orthogonal
and correspond to the dominant polarization choice [7] of
the arbitrary gravitational wave polarization angle refer-
ence, which is a particular choice of the definition of the

plus and cross polarization. We denote the antenna re-
sponse vectors for this special polarization choice by f+

and f×. They have the properties

|f+|2 ≥ |f×|2 , (5a)

f+ · f× = 0 . (5b)

Note that the choice of which of the plus and cross vector
has a larger amplitude is purely conventional. The unit
vectors of our adapted basis are hence e+ = f+/|f+|
and e× = f×/|f×|, complemented by vectors spanning
the null space, for instance en = e+ ∧ e× for the case of
3 non-aligned detectors.

An alternative basis choice may be appropriate when
we have prior information on the expected gravitational-
wave polarization. For example, for a circularly polar-
ized gravitational wave signal the projection onto a time-
frequency basis function of the two polarizations are re-
lated by

h× = ±ih+ , (6)

depending on whether the signal is left or right-hand po-
larized. Hence in the detector space the gravitational
wave contribution will lie along either the left or right-
handed response vectors

f� = f+ + if×, f	 = f+ − if× , (7)

with corresponding unit vectors e� = f�/|f�|, e	 =
f	/|f	|. To construct a left or right-handed basis we
use the vectors orthogonal to the response vectors in the
gravitational wave plane

fn� =
f+

|f+|2
− i

f×

|f×|2
, fn	 =

f+

|f+|2
+ i

f×

|f×|2
, (8)

with the corresponding unit vectors en� = fn�/|fn�|
and en	 = fn	/|fn	|.

Either basis (dominant or circular) can be used to con-
struct two types of statistics: detection statistics and co-

herent consistency statistics. A detection statistic is used
to ranks events as more consistent with a given model of
signal buried in noise than a model of noise only. It
is usually expressed as the log-likelihood ratio between
these two models. Coherent consistency tests, on the
other hand, are used to reject spurious noise transients
which are usually not included in the noise model of the
detection statistic. We discuss the formulation of detec-
tion statistics in Sec. III, and coherent consistency tests
in Sec. IV; for the moment we note that these statistics
are only functions of the data vector d and the antenna
response vectors f+ and f× or f�,f	 and fn�,fn	.
The value of each statistic is computed independently
for each time-frequency pixel, and the resulting values of
the detection statistic over the array of time-frequency
pixels is used to define gravitational wave events. Specif-
ically, all time-frequency pixels with detection statistic
above a certain threshold are clustered to form events,
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for instance using nearest-neighbor clustering [8]. The fi-
nal detection statistic of such an event is simply the sum
of the detection statistic of all the pixels composing the
event due to the additive properties of the log-likelihood
ratio. The other statistics are also summed over the clus-
ter of pixels composing the event.

This event generation procedure is used on numerous
background samples (generated from real data using the
time slide technique) and signal samples (generated by
adding simulated gravitational wave signals to real data).
The obtained background and signal events are used to
tune the coherent consistency tests to reject the tail of
spurious noise transients inconsistent with the gravita-
tional wave signal hypothesis. Independent samples of
background events are then used to estimate the distri-
bution of background events that survive the consistency
tests, which is used in turn to define the statistical signifi-
cance of any candidate gravitational wave events from the
analysis of data coincident with the external astrophys-
ical trigger. An independent sample of simulated signal
events is used to estimate the sensitivity of the analy-
sis as a function of gravitational wave signal amplitude,
and construct upper limits on the gravitational wave sig-
nal amplitude whenever no significant gravitational wave
event is found.

III. DETECTION STATISTIC

In a gravitational wave search, the detection statistic
is used to ranks events as more consistent with a given
model of signal buried in noise than with a model of noise
only. The detection statistic is often based on some mea-
sure of the energy in the data, motivated by a likelihood-
ratio analysis. For the present analysis, we construct
a detection statistic following the Bayesian formalism
of Ref. [9]. The signal model is a circularly polarized
gravitational wave signal with Gaussian amplitude dis-
tribution of width σh, and the noise model is Gaussian.
The circular polarization assumption is well motivated
for some astrophysical sources, for instance gamma-ray
bursts, as discussed in Sec. IVB. For a right circularly
polarized signal we obtain the log-likelihood ratio

2L(d| �, σh) =
|e� · d|2

1 + 1/(σh|f�|)2
− log(1+σ2

h|f
�|2) , (9)

and the left circular polarization log-likelihood ratio
L(d| 	, σh) has an analogous form. The final likelihood
ratio is obtained by marginalizing over the left versus
right choice, and over a discrete set A of σh covering the
range [10−23, 10−21] Hz1/2 of realistic detectable signals.
The detection statistic used has thus the form

Sdetection = L(d) =

log
∑

σh∈A

1

2|A|
[expL(d| �, σh) + expL(d| 	, σh)] . (10)

The discussion so far has assumed we know the sky
position Ω̂ of the gravitational wave source a priori.
For some searches this is indeed the case, such as for
gamma-ray bursts detected by the Swift satellite [10]. In

other cases, such as untriggered all-sky searches, Ω̂ is not
known, or may only be constrained to some large region
of the sky. An example of the latter is gamma-ray bursts
detected by the GBM, which has relatively large sky loca-
tion systematic uncertainties of a few degrees [3] and sta-
tistical errors typically between a fraction of and a dozen
of degrees depending on the γ-ray flux and spectrum.
An error of a few degrees in the sky location used to
synchronize the data time series from gravitational wave
detectors causes a few milliseconds timing discrepancy.
A potential gravitational wave signal at a few hundred
hertz could easily be shifted by a quarter of a period or
more between a pair of gravitational wave detectors, and
the signal could be rejected by a coherent consistency
test.

The standard solution in gravitational wave coherent
searches is to repeat the analysis over a discrete grid of
sky positions covering most of the source sky location
probability distribution. Here we use a simple regular
grid, composed of concentric circles around the best es-
timate of the source sky location, which covers at least
95% of the sky location probability distribution. The
constant grid step is chosen so that the timing synchro-
nization error between any sky location in the error box
and the nearest analysis grid point is less than 10% of
the period for the highest frequency gravitational wave
signals included in the search.

Gravitational wave triggers are produced indepen-
dently for each sky position grid point. The detection
statistic Sdetection, written as a log-likelihood ratio be-
tween a signal and a background model, is penalized by
the given sky location probability pEM(Ω) of being the
true one, by adding the logarithm of that probability to
the detection statistic

Spenalized = Sdetection + log pEM(Ω) . (11)

The reconstructed source sky position for a given signal
is the sky position for which the trigger has the largest
penalized detection statistic. Only that maximal trigger
is kept by the analysis of the grid of sky positions.

As a simple model of γ-ray satellite errors we use a
Fisher probability [11]

pEM(Ω) = pFisher(θ;κ) =
κ sin θ

eκ − e−κ
eκ cos θ, (12)

where θ is the angle between the best estimate sky loca-
tion and the analyzed one. We choose the parameter κ so
that the 95% coverage radius of this Fisher distribution
is equal to the 95% coverage radius for a given GRB sky
location reconstruction (with statistical and systematic
errors added in quadrature). This model is a reasonable
approximation for localization performed by a single γ-
ray spacecraft, such as Fermi or Swift, however it may not
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apply to other instruments, for instance to localization by
the Third Interplanetary Network of satellites [12].

IV. COHERENT CONSISTENCY TESTS

A. General framework

Detection statistics such as Eq. (10) are usually con-
structed without taking fully into account spurious noise
transients, mainly because no good model of these tran-
sients is available. However these transients are uncorre-
lated between the different gravitational wave detectors,
and powerful coherent consistency tests to reject them
can be constructed on that basis [13–16].

An effective method for rejecting noise transients is
to project the gravitational wave data vector d onto the
null space, and to compare the squared magnitude of
this projection with the autocorrelation terms of that
projection [15]. For simplicity let us consider the case
of a one dimensional null space along a vector en. The
squared magnitude of the projection on this vector, also
called the coherent null energy, is

En = |en · d|2 =
∑

α,β

en∗α enβ d
∗
αdβ . (13)

The autocorrelation part of the null energy, called the
incoherent null energy, is

In =
∑

α

en∗α enα d∗αdα =
∑

α

|enα|
2|dα|

2 . (14)

For a strong gravitational wave signal the contribution
from the different detectors cancel each other in the co-
herent null energy, but stay present in the incoherent null
energy, hence En ≪ In is expected. For noise transients
the contributions of each detector are expected to be un-
correlated, hence En ≃ In. Thus, a threshold on the
ratio of the incoherent and coherent null energy can be
used to reject noise transients.

Several extensions of this framework have been previ-
ously implemented and discussed in Ref. [17]. First, the
separation between the coherent and incoherent energy
for both noise transients and gravitational wave signals
depends on the value of the incoherent energy, that is
the strength of the deviation from the Gaussian noise
hypothesis, hence a more complicated separation line in
the coherent/incoherent energy plane than a simple ratio
is used in practice. Second, the framework has also been
extended to projection vectors that are not in the null
space, but in the gravitational wave plane. The incoher-
ent energy will remain comparable to the coherent energy
for the case of noise transients, but for gravitational wave
signals it will be much smaller or larger than the coher-
ent energy. The previously proposed extension [17] is to
use the plus and cross polarization directions in the dom-
inant polarization frame. Along e+ a coherent buildup

of energy is expected for most gravitational wave sig-
nals, whereas for many network configurations and large
fractions of the sky |f×| ≪ |f+| [7], and the projection
on the e× vector can be considered as an effective null
stream.

B. Extension to circular polarization

The main issue with the previously described projec-
tions is that none of them is effective for the case of two
gravitational wave detectors which see roughly indepen-
dent linear polarizations [18], which occurs frequently for
networks consisting of one LIGO detector plus Virgo. In
that case the coherent consistency tests based on the
plus and cross energies perform poorly, as the cross-
correlation terms are small, and the incoherent and co-
herent energy are roughly equal for both gravitational
waves and noise transients.

Here we propose to expand the possible projection vec-
tors using the assumption of a circularly polarized grav-
itational wave signal. This allows to introduce correla-
tions between independent linear polarizations, and to
construct effective consistency tests even for the case
of two strongly misaligned gravitational wave detectors.
Also, the circular polarization assumption is valid for
many astrophysical scenarios. For instance for the case of
gamma-ray bursts, the expected beamed emission of the
gamma-rays means that the progenitor is seen roughly
along its axis of rotation. And gravitational wave emis-
sion models which could be seen at extra-galactic dis-
tances emit predominantly circularly polarized gravita-
tional waves along their rotation axis [19–23].

We consider the projection onto the manifold of circu-
larly polarized gravitational waves, which is formed by
the two complex lines along the left and right handed
polarized directions. The magnitude of the projection is
simply the maximum of the projection on the left and
right handed response unit vectors e� and e	, which we
defined in Sec. II,

Ecircular = max
(

|e� · d|2, |e	 · d|2
)

. (15)

This projection can be compared to its incoherent part

Icircular = I� = I	 , (16)

which is equal for both the right and left projec-
tion. Using the pair of incoherent/coherent energies
Ecircular, Icircular a consistency test can be constructed
analogously to the ones based on the plus or cross ener-
gies.

Furthermore, given the circular polarization assump-
tion a null test can be constructed by considering the unit
vectors en� and en	 that are orthogonal to the circular
projection and are defined in Sec. II. The null circular
energy is then defined as the minimum of the magnitude
of the projection onto these two unit vectors

Enull circular = min
(

|en� · d|2, |en	 · d|2
)

. (17)
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FIG. 1. Strain noise spectra from the LIGO detectors used
in this study. Note that H2 data are treated as if the de-
tector was located at the Virgo site in order to simulate the
gravitational wave detector network operated in 2009-2010.

Analogously to the previous cases an incoherent counter-
part can be defined, and the autocorrelation terms of the
null left and right projection are equal.

V. ANALYSIS PERFORMANCE

The analysis methodology described above has been
implemented in X-Pipeline [17], a software package de-
signed for GWB searches in association with external
astrophysical triggers. Earlier versions of this package
have been used to search for GWBs associated with
GRBs [2, 24] .

In order to understand the sky dependence of the sen-
sitivity of GWB searches, we study the performance of
X-Pipeline in searching for circularly polarized gravi-
tational wave bursts. Specifically, we wish to character-
ize the performance for a typical GRB-trigger scenario
for the most recent science run of the LIGO-Virgo net-
work [25–27], from 2009-2010. Since data from that pe-
riod have not yet been released for data analysis perfor-
mance studies of the type presented here, we use as a
proxy a 3 hour long sample of LIGO data from 23 Febru-
ary 2006. At that time the two detectors at the Hanford
site and the detector at the Livingston site were taking
science quality data; the spectra of the data at the center
of that sample are shown on Fig. 1. To be representative
of the full network of large scale interferometric gravita-
tional wave detectors which was operational during 2009-
2010, we use the data from 2 km detector Hanford site
as if that detector was located at the Virgo site, hence
we will denote throughout this article these data as from
V1. The factor ∼2 difference in sensitivity is roughly rep-
resentative in the difference in sensitivity between Virgo

and the two 4 km LIGO detectors (H1 and L1) in the
2009-2010 data set.

These data are used to generate background data sam-
ples using the time slide method, and to generate simu-
lated signal samples by adding circularly polarized sine-
Gaussian and compact binary inspiral waveforms into
these data. We perform full autonomous analyses as used
in real externally triggered gravitational wave searches
to determine the sensitivity for these signal models. We
use a 660 s long time window around fiducial external
triggers, and search for gravitational waves over the fre-
quency band 64−500 Hz. These are the parameters
used in the search for gravitational waves associated with
GRBs in 2009-2010 LIGO-Virgo data [28]. For reference,
we also use Gaussian noise with the same spectral proper-
ties. With this reference the effect of non-Gaussian noise
transients present in real data can be assessed.

A. Single sky position analysis

To study the effect of different antenna pattern con-
figurations, we perform the analysis of fiducial external
triggers well localized to different points in the sky, which
is representative of gamma-ray bursts reported by Swift.
We use the same time for all these external triggers, but
select sky locations which probe different combinations
of contributions from the various detectors in the grav-
itational wave detector network. The fiducial sky loca-
tions and gravitational wave detector networks used in
this study are shown on the 3 panels of Fig. 2.

For our first measure of signal strength, we define the
coherent network SNR

ρc =

√

∑

α∈network

ρ2α (18)

of a gravitational wave signal as the root-sum-square of
the individual SNRs ρα of that signal in each detector α
across the network.

We define the detection sensitivity for a particular sig-
nal model as the distance d50% at which that signal is
found with 50% efficiency while holding the background
false-alarm probability fixed at 1%. For an ideal matched
filter search in Gaussian noise d50% should correspond to
the distance at which the median of ρc for that signal
model crosses a certain threshold. This threshold de-
pends on the number of degrees of freedom of the filtering
template and the effective number of independent times.

In the case of the search considered here, the number
of independent trials is of the order of 3× 105: the total
time-frequency volume in the on-source window. The
false alarm probability per trial is thus approximately
3×10−8. The number of degrees of freedom is 2 (real and
imaginary parts of the data) times the number of time-
frequency pixels in a Gaussian noise cluster (typically in
the 4−6 range). Hence using a χ2 distribution we obtain
an expected threshold on ρc in the 7.1−7.7 range.
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FIG. 2. Sky dependence of the penalty factor λc/ρc [Eq. (20)]
assuming that V1 is a factor 2 less sensitive than H1 and L1.
From top to bottom the penalty factor for respectively the
H1L1, L1V1 and H1L1V1 networks are shown. The coordi-
nates used are the longitude and latitude in a Mollweid pro-
jection, as the detectors are fixed to the Earth. The location
of the detectors in the considered network are marked by blue
dots, for each detector the projection on the celestial sphere
of the location (and its opposite) are the points of maximum
antenna response. For the 2 detector networks the zero points
of the penalty factor correspond to the null of the antenna re-
sponse for one of the two detectors. The plus marks show
the sky location of the fiducial triggers analyzed to produce
Fig. 3, whereas the circles show the large sky regions used for
the study shown in Fig. 5. We omit the map for the H1V1
network as it is very similar to the L1V1 map.

However, for an analysis of real data, ρc is not neces-
sarily a good figure of merit, as a signal needs also to pass
coherent consistency tests to be distinguished from non-
Gaussian noise transients. Heuristically, a signal needs
a sufficient E − I difference that Gaussian noise fluctu-
ations will not destroy the signal consistency as seen by
the coherent tests described in Sec. IV. Empirically we

4 5 6 7 8 9 10 12 15 20 25 30
4
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ρ
c

λ c

 

 

real H1L1
real L1V1
real H1L1V1
simulated H1L1V1

FIG. 3. Values of ρc and λc corresponding to the detec-
tion sensitivity d50% found when analyzing real and simulated
data. Plus marks are for real data from the H1L1 network,
cross marks for real data from the L1V1 network, star marks
for real data from the H1L1V1 network, and circles are for
simulated data from the H1L1V1 network. The analyzed sky
position are shown as crosses on Fig. 2.

found that the penalized coherent SNR

λc = ρc

[

Ndet + 1

Ndet − 1

Esignal
circular − Isignal

circular

Esignal
circular + Isignal

circular

]1/4

(19)

= ρc

[

Ndet + 1

Ndet − 1

∑

α6=β |f
�
α |2|f�

β |2

|f�|4 +
∑

α |f�
α |4

]1/4

, (20)

where Ndet is the number of detectors in the network, is
a good figure of merit for signals in non-Gaussian noise
from real gravitational wave detectors. The normaliza-
tion factor (Ndet + 1)/(Ndet − 1) is chosen so that the
penalty factor λc/ρc is equal to 1 at its maximum. Note
that the magnitudes of the right and left-handed sensi-
tivity vectors are equal

|f�
α | = |f	

α | =
(

f+
α

2
+ f×

α
2
)1/2

, (21)

so it does not matter which is used to evaluate Eq. (20).
The distribution on the sky of the penalty factor for

different networks is shown in Fig. 2. The maximum of
the factor for any network is attained when the sensitivity
of all detectors in the network is equal, that is when all
|f�

α | are equal. For the 2 detector networks the zero
points of the penalty factor correspond to the blind spots
of one of the two detectors in the network.

The test sky positions used in the comparison are also
shown in Fig. 2. They are chosen along a line which
samples a wide range of penalty factors, in order to dis-
tinguish λc and ρc. We use a larger sample of test sky
positions for the L1V1 network, as this is the network for
which the penalty factor effect is most important.



7

FIG. 4. Cumulative distribution over the sky of the sensitive
distance d50% assuming that V1 is a factor 2 less sensitive
than H1 and L1. The lines show the distribution when d50% is
assumed to be given by a threshold on λc (real data analysis):
blue dashed line for the H1L1 network, red dotted line for the
L1V1 network and black solid line for the H1L1V1 network.
The marks show the distribution when d50% is assumed to
be given by a threshold on ρc (Gaussian data analysis): blue
pluses for the H1L1 network, red crosses for L1V1 network
and black stars for the H1L1V1 network.

The values of ρc and λc corresponding to the obtained
detection sensitivities are shown in Fig. 3 for both simu-
lated and real noise. For simulated noise we obtain the
expected result that d50% corresponds to a threshold on
ρc, here equal to ∼ 7.4, which falls into the expected
range of 7.1 − 7.7. However, for real noise the obtained
value of ρc is spread over a much larger range of 7.5−30,
whereas λc fluctuates by only 5% around ∼ 7.5. Two
conclusions can be drawn from these results:

1. λc is a good predictor of the analysis sensitivity in
real noise as a function of sky position for a given
signal model;

2. a sensitivity as good as in Gaussian noise can be
attained for sky positions where the penalty factor
is close to 1 (all detectors have comparable sen-
sitivity), which corresponds to the white areas on
Fig. 2.

B. Distribution of sensitive distance

The good performance of the penalized coherent SNR
λc in predicting the sensitivity of real data analysis allows
us to study analytically the sensitivity sky dependence,
and to compare it with the Gaussian noise case which is
given by ρc.

Fig. 4 shows the cumulative distribution of the sensi-
tive distance d50% assuming that V1 is a factor 2 less
sensitive than H1 and L1. We consider two cases: a

Gaussian noise analysis where the sensitivity is given by
a threshold on ρc and a real noise analysis where the
sensitivity is given by the same threshold but on λc.

For the H1L1 network the real and Gaussian noise sen-
sitivities are very close; our analysis of real data is only
a few percent less sensitive than the ideal Gaussian case.
However for networks including Virgo, especially for the
L1V1 network of two non-aligned detectors, the sensitiv-
ity is as much as 20% lower with real data than with
ideal Gaussian noise. This is an expected effect of the
two detectors having maximum antenna responses near
the null response of the other detector, which limits the
spurious transient noise rejection methods as they rely
on the signal being visible above the Gaussian part of
the noise in at least two detectors.

Interestingly for 30% of the sky the sensitivity of the
H1L1V1 network is worse than that of the H1L1 network
for the real data case. The sensitivity loss occurs for
areas of the sky where the antenna patterns are optimal
for the H1 and L1 detectors, and relatively poor for V1.
Hence for these sky regions Virgo brings additional non-
stationary noise but only a very small increase in the total
gravitational wave signal. We note that the sensitivity
difference is less than 10%, and is a consequence of the
non-optimality of our analysis of real data. To cross-
check this result, we repeated the analysis of a dozen
of sky positions in those regions for both the H1L1 and
H1L1V1 network. The comparison of the obtained d50%
confirms that the H1L1V1 network is less sensitive in
those sky regions by up to 10%.

C. Large sky area analysis

In principle, searching over a large sky area should
lower the sensitivity, due to the trials factor incurred
from repeating the analysis over a grid of sky positions.
We have seen that the penalized coherent SNR λc is a
good figure of merit for the sensitivity of X-Pipeline as
a function of a single sky position. We therefore expect
that for large sky areas the 50% efficiency distance d50%
should correspond to a threshold on the median value of
λc over the analyzed sky area, where the median takes
into account the prior pEM(Ω) on the true source sky
position. Due to the trials factor, the threshold on this
median λc will typically be slightly higher than in the
single sky position case, and the ratio between the two
yields an estimate of the sensitivity loss due to a large
sky area analysis.

To assess this sensitivity loss we repeat the analysis us-
ing typical sky location uncertainties for the GBM instru-
ment on Fermi: a 5◦ statistical error and two-component
systematic error as described in Ref. [4]. This results in
a search grid of ∼700 square degrees in area. Due to lim-
ited computational resources only a small number of sky
regions and network combinations are used; the analysed
sky regions are shown as circles on Fig. 2. For complete-
ness, we also perform a full-sky analysis for the H1L1 and
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FIG. 5. Fractional value of d50% as a function of the number
of analyzed sky positions relative to the expectation based on
the typical threshold λc = 7.5, which we obtained in Fig. 3.
Blue plus marks denote results for the H1L1 network, red
cross marks for the L1V1 network and black circle marks for
the H1L1V1 network.

L1V1 networks.
The resulting sensitive distances d50% relative to the

expected value for a single sky point analysis are shown
in Fig. 5. We find that the performance loss of GBM-
type error regions compared to precisely-localized exter-
nal triggers is less than 10%. A complete lack of sky po-
sition information (requiring an all-sky search) decreases
the sensitivity by ∼ 20%. Hence the availability of exter-
nal triggers which are well localized on the sky (. 1 deg2)
improves the sensitivity by up to 20%.

VI. CONCLUSION

We have studied how the sensitivity of a search for
GWBs performed by X-Pipeline depends on the sky re-
gion specified by an external astrophysical trigger. Two
aspects of the sky region affect the search sensitivity: the
magnitudes of the antenna patterns of the various grav-
itational wave detectors in the network over this region;

and the area of the region, which affects the size of the
parameter space of the search.

For the case of Gaussian background noise we have
obtained the result expected for an optimal analysis,
namely the sensitivity is given by a threshold on the co-
herent SNR ρc, and this threshold falls into the range
predicted by a χ2 distribution given the number of inde-
pendent trials in the search.

For real data we introduce a penalized coherent SNR
λc, which proves to be a good predictor of the search
sensitivity in real non-Gaussian noise. It is expressed
as the coherent SNR times a penalty factor; this penalty
factor is equal to 1 (no penalty) if all detectors have equal
sensitivity for a given sky position, and to 0 if only one
of the detectors is sensitive. For regions of the sky where
the penalty factor is equal to 1, the sensitivity in real
noise is as good as in the Gaussian noise case.

The penalized coherent SNR λc allows us to separate
the effect of antenna patterns changing over the sky from
the effect of a search parameter space increase due to a
large search sky region. We find that trigger informa-
tion that allows us to restrict the search to a single sky
position increases the sensitivity by ∼ 20% compared to
searching over the whole sky, and by ∼ 10% compared to
searching over error boxes of a few hundred square de-
grees. This addresses part of the long-standing question
on how externally triggered searches relate to all-sky and
all-time searches for gravitational waves. However, a full
comparison requires discussing the astrophysics of a par-
ticular source, which is beyond the scope of this paper.
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