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We present a fully analytical point scattering model that can be applied to arbitrary anisotropic magnetoelectric
dipole scatterers, including split ring resonators (SRRs) and chiral and anisotropic plasmonic scatterers. We have
taken proper account of reciprocity and radiation damping for electric and magnetic scatterers with any general
polarizability tensor, including magnetoelectric interactions. Our theory sheds new light on the magnitude of
cross sections for scattering and extinction, and, for instance, on the emergence of structural chirality in the
optical response of geometrically nonchiral scatterers such as SRRs and SRR clusters. Specifically, we predict
which observables in scattering experiments allow to fully quantify all components of the polarizability tensor
of SRR’s, including their off-diagonal magnetoelectric response. Finally, we show that our model describes well
the extinction of stereodimers of split rings, while providing a completely new interpretation of the coupling

mechanisms underlying recent experiments.
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I. INTRODUCTION

Research in the field of metamaterials is driven by the
possibility to control the properties of light on the nanoscale
by using coupled resonant nanoscatterers to create optical
materials with very unusual effective-medium parameters.
Engineering arbitrary values for the effective permittivity € and
permeability p would allow new forms of light control based
on achieving negative index materials,'~> or transformation
optics media* that arbitrarily reroute light through space.
To reach such control over ¢ and w, many metamaterial
building nanoblocks have previously been identified as having
an electric and magnetic response to incident light, including
split ring resonators (SRR’s),>"'? rod pairs,'! cut-wire pairs,'?
fishnet structures,'>!> and coaxial waveguides.'® In many
instances, the nanoscatterers are not only interesting as
building blocks in subwavelength lattices of designed € and .
The building blocks are in fact very strong scatterers with large
cross sections,'’2 comparable to the large cross sections of
plasmonic structures. Therefore, metamaterial building blocks
are excellently suited to construct magnetic antennas, array
waveguides, and gratings in which electric and magnetic
dipoles couple and form cooperative excitations, in analogy
to the functionality imparted by plasmon hybridization.?!
Experiments outside the domain of effective media have
appeared only recently. These include experiments by Husnik
et al'’ and Banzer et al?* that quantify the extinction
cross section of single split rings under differently polarized
illumination, experiments where split ring resonators act as
near-field probes,”’ as well as a suite of experiments on coupled
systems. These experiments include extinction measurements
on split ring dimers®* that point to resonance hybridization,
as well as reports of magnetization waves®>> and structural
and geometrical chirality in arrays, as is evident in, e.g.,
massive circular dichroism,?= and chiral effects in split ring
stereodimers studied by Liu et al.>*

To understand the light-metamatter interaction in systems
of strongly coupled magnetoelectric scatterers, it is important
to understand how individual metamaterial building blocks
are excited and how they scatter. So far, explanations of
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the observed phenomena have mainly rested on two pillars.
On the one hand, data are compared to brute force finite-
difference time-domain (FDTD) simulations of Maxwell’s
equations, usually showing good correspondence.>-0-3:17:18.26.27
The FDTD method is essentially equivalent to performing
a rigorous numerical experiment that still requires further
interpretation to understand how split rings scatter or hybridize
in coupled systems. There is general consensus that to lowest
order, metamaterial interactions in lattices of scatterers like
SRR’s must be described by magnetoelectric point-dipole
interactions. Hence, simple models with dipolar coupling
terms are the second main interpretative tool to predict, e.g.,
frequency shifts due to electric and magnetic dipole-dipole
interactions in lattices and oligomers. These models either
take the form of dipole models in which electrostatic and
magnetostatic polarizabilities are coupled to predict, e.g., €
and u, and the existence of coupled excitations like magneto-
inductive waves,»*! or they take the form of Lagrangian
equations of motion for current oscillation in coupled LC
circuits.>2*3%*2 To rationalize this LC circuit intuition, several
authors have analyzed current distributions obtained by FDTD
simulations to retrieve the microscopic parameters (i.e., the
polarizability) underlying such a dipolar interaction model,
and to estimate multipolar corrections.!8-2043-46

While there is general consensus that to lowest order,
metamaterial interactions must essentially be magnetoelectric
point dipole interactions, we note that the dipolar circuit
models that are adequate to explain many basic features
of subwavelength clusters and metamaterial arrays have
significant limitations when applied to strong scatterers and
larger clusters. This is a consequence of the fact that electric
circuit theories lack the velocity of light ¢ as a parameter,
by assuming ¢ = oo (k = 0).>?*342 Such theories will be
referred to in this work as “quasistatic” or ‘“‘electrostatic”
and “magnetostatic.” Their validity ends when retardation or
interference become important, quantitative cross sections are
required, or super- and subradiant radiative damping plays a
role. A fair comparison of experiments with intuitive dipole
requires a fully electrodynamic theory that (i) contains finite c,
(ii) satisfies energy conservation in the form of an appropriate
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optical theorem, and (iii) can be used for dipoles with tensorial
electric, magnetic, and magnetoelectric response. Indeed,
actual metamaterial scatterers are very strongly bi-anisotropic,
with large magnetoelectric cross coupling whereby magnetic
fields induce strong electric dipoles and vice versa. We
note that the theories existing so far can be divided in two
classes. On the one hand, LC models and electrostatic and
magnetostatic polarizability approaches”>*34? correctly deal
with (iii), but not with (i) and (ii). On the other hand, textbook
electric point dipole scattering theories exist that correctly
deal with (i) and (ii), but not with magnetoelectric effects
(iii). Electric point dipole scattering theory is well known as a
very effective means to describe random media, extraordinary
transmission, and plasmon particle arrays,*’*° and it has
been applied to metamaterial problems, but only in cases
without magnetoelectric effects.’®>! In this paper, we derive an
electrodynamic theory for general magnetoelectric scatterers
that satisfies all three requirements. Essential ingredients for
a consistent theory are generalized Onsager constraints*!>33
for the electrodynamic polarizability, and a magnetoelectric
optical theorem first derived by Belov.”* While our theory
sheds no light on the microscopic origin of the polarizability,>
a unique contribution is that we show how any quasistatic
model®**3442 can be converted into an electrodynamically
consistent scattering theory by a new tensorial method of radia-
tion damping addition. Furthermore, we predict how extinction
measurements and measurements of radiation patterns (i.e.,
differential scattering cross section) can be used to quantify
the polarizability tensor.

The paper is structured in the following way: In Sec. II,
we review in detail the general theory, taking into full account
reciprocity, the optical theorem, and radiation damping. In
Sec. III, we apply this theory to set up the polarizability
of the archetypical metamaterial building block, a single
SRR. In Sec. IV, we show which set of experiments can
be used to retrieve the tensor polarizability «. We find that
magnetoelectric coupling directly implies circular dichroism
in the extinction of single split rings, evidencing the util-
ity of our theory to describe structural chirality.?*3 We
show in Sec. V that the theory can be simply applied to
obtain quantitative scattering spectra of coupled systems.
By way of example, we examine the case of two cou-
pled resonators in the stereodimer configuration reported by
Liu et al.**

II. MAGNETOELECTRIC POINT SCATTERER

A. Dynamic polarizability

A paradigm in scattering theory is the point dipole
scatterer?’ 937 to model scattering by very small but
strongly scattering particles. In such a theory, each scatterer
is approximated as an electric dipole with an electric dipole
moment p = aggE that is proportional to the driving electric
field E. The proportionality constant is the polarizability ag.
Generally, incident fields E and H induce a (complex) current
distribution in an arbitrary scatterer. It is the express point
of this paper to assess what the scattering properties are of
subwavelength scatterers with strong electric and magnetic
dipole moments, as this represents the physics expected of
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metamaterial building blocks.?-24344258 Therefore, we retain
only electric and magnetic dipole terms, neglecting higher-
order multipoles. We derive a generalized point scattering
theory for metamaterials that includes a magnetic dipole
moment m on an equal footing with the electric dipole moment
p. By definition, the electric and magnetic fields due to an
induced p and m are equal to

(i) = ().

with a dyadic Green tensor G° that describes the field
at position r = (x,y,z) due to a dipole at ' = (x',y’,7)).
Throughout this paper, we suppress harmonic time dependence
e~ We use a rationalized unit system that significantly
simplifies all equations and is fully explained in the Appendix.
The 6 x 6 Green dyadic of free space can be divided into four
3 x 3 blocks,
Gr,r) = (

G (r,r)
GY . (r,r)

GO , /
£n(ror )> . @

GY,,(r,r)

The 3 x 3 diagonals correspond to the familiar known electric-
field Green dyadic*®** and magnetic-field Green dyadic of
free space, which in our unit system (see the Appendix) both
equal

ik|r—r'|
, e
Gre(r.r') = Glyy(rir) = AR + YY) ()
The off-diagonal blocks correspond to the mixed dyadics that
specify the electric field at r due to a magnetic dipole at r’,
and the magnetic field at r due to an electric dipole at r’,
respectively. Explicitly,

GY(r.r)=—GY(r,r)
. 0 9 =y \ iklr—r]
—ik| -5, 0 & R
o, -9, 0 )Ir—=r

The central starting point in this work is that we assume
that p and m can be induced by both the external electric and
magnetic fields E and H according to the most general linear

response,
p _ Ein
(m) =) ®

In Eq. (5), a is a 6 x 6 polarizability tensor, which consists of
four 3 x 3 blocks, each of which describes part of the dipole
response to the electric or magnetic component of the incident

light,
o = (OlEE OEH ) ) (6)
OCHE OHH

This form and interpretation of the 6 x 6 polarizability in
Eq. (6) is very well known in the field of bi-isotropic and bi-
anisotropic media. In this field, many authors have analyzed the
electrostatic and magnetostatic polarizability of € particles,
split ring resonators, bi-(an)isotropic spheres in the Rayleigh
limit, and chiral scatterers such as wire helices.?3%4153 In
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addition to the purely electric polarizability & gz known from
plasmonics,59 the tensor also contains « g 5, which quantifies-
the magnetic dipole induced purely by a driving magnetic field.
Finally, the off-diagonal blocks represent magnetoelectric
coupling. The lower diagonal a g quantifies the magnetic
dipole induced by an incident electric field, and & g i quantifies
the electric dipole induced by an incident magnetic field.
Such magnetoelectric coupling is well known to occur in the
constitutive tensors of metamaterials.”** However, the relative
strength of magnetoelectric coupling in the polarizability, i.e.,
a gy and oy g, has not been experimentally quantified for the
archetypical building blocks, such as split ring resonators.

An important distinction with earlier analyses of the 6 x 6
polarizability tensor in quasistatic models®>3%413 s that
in any scattering theory, a is constrained by reciprocity
and energy conservation. As we discuss below, energy
conservation requires that the polarizability e must depend
on frequency w and the velocity of light ¢. Hence, the
polarizability that we discuss in this work is not a static
polarizability, but is known as dynamic polarizability.*’*3 This
dynamic polarizability is equivalent to the single scatterer
t-matrix.*

B. Onsager relation for dynamic polarizability

There are several constraints on «. In addition to any
symmetry of the scatterer itself that may impose zeros in the
polarizability tensor, these constraints are due to reciprocity
and to energy conservation. We start by examining the
constraints imposed by reciprocity. It is well known from
the field of bi-anisotropic materials>® that reciprocity imposes
so-called Onsager constraints on the most general constitutive
tensors relating (D, B) to (E,H). Several textbooks*'”3 and
Garcia-Garcia et al.’® proposed that such Onsager constraints
carry over directly to static polarizabilities. Reference 41
(Chap. 7.1) lists Onsager relations for the static polarizability
in the following form:
and gy = —ahp. @)

T T
OFg =O®pp, OHH =O0gg,

These textbooks*!”* derive the Onsager relations rigorously
for constitutive tensors (€, u, and cross terms) by solving
the wave equation in homogeneous, bi-anisotropic space. To
the best of our knowledge, the quoted Onsager relations
for static polarizabilities are based on the assumption that
Onsager relations derived for effective-medium tensors must
hold also for microscopic constituent polarizabilities, as we
could not find any independent proof in the literature. Here
we rigorously derive the Onsager relations Eq. (7) for the
dynamic polarizability of electrodynamic magnetoelectric
point scatterers, and thereby show that the general point dipoles
proposed in this work can indeed be used as microscopic
building blocks for an exact scattering theory that describes
the formation of bi-anisotropic media from dense lattices
of scatterers in the effective-medium limit. Since the point
scattering building blocks fulfill the Onsager constraints, they
are indeed the natural building blocks to derive effective media
constitutive tensors by homogenization that also satisfy the
Onsager relations.

In this work, we focus solely on scatterers made from
reciprocal materials (typically gold and silver), as is commonly
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true for the metallic scatterers that constitute metamaterials.
Since the materials that compose our scatterers are assumed
to satisfy reciprocity microscopically, the polarizability tensor
must also lead to a scattering theory that satisfies reciprocity.
To derive reciprocity constraints on &, it is sufficient to examine
the Green function in the presence of just one point scatterer
at the origin. This Green function that quantifies the field at r;
due to a source at r| in the presence of a single scatterer at r
can be written as*748:61

G(ry,r1) = G'(ry,r)) + G(ry,r)aG(ry,ry).  (8)

Reciprocity requires for any Green function G (similarly split
in four blocks) that

(GEE(rZarl) GEH("zJ'1)>

Gup(ra,r1) Guy(ra,ry)

_ ( Gee(ri.ry) _GEH(rlvr2)>T
—Gue(ri,r2)  Guu(ry,ra)

©))

which is equivalent to noting that swapping the source and the
detector leaves the detected field unchanged, up to a change
in sign. An extra minus occurs for the off-diagonal terms, i.e.,
when swapping a magnetic (electric) detector with an electric
(magnetic) source. It is easy to verify that Eq. (9) is indeed
satisfied by the free-space Green function G°.

Using this fact, we evaluate Eq. (9) for the Green function
in Eq. (8) to find if reciprocity constrains . Since reciprocity
is clearly satisfied for the first term in Eq. (8), we now focus
on verifying if:,

G'(ry,r)aG(rs,r1) = [G'(r1,r)aG (rs,r)]"™,  (10)

Where [.]T~ means transpose, and reverse sign of off-diagonal
blocks, as in Eq. (9). Expanding the matrix products in Eq. (9)
while making use of the reciprocity of the free Green function
results in the Onsager relations for the dynamic polarizability
that are listed in Eq. (7). These relations are identical in form
to the Onsager relations for constitutive tensors,’> but are now
derived on very different grounds. Whereas for bi-anisotropic
media, Onsager relations on constitutive tensors are derived by
solving for the Green function of homogeneous bi-anisotropic
space, our new proof for Onsager relations that constrain
dynamic polarizabilities only uses reciprocity of the Green
function of vacuum.

C. Tensorial magnetoelectric optical theorem

Energy conservation imposes an “optical theorem” that
constrains the dynamic polarizability such that (in the absence
of material absorption) extinction equals scattering. The
optical theorem for scalar electric dipole scatterers has been
amply discussed in the literature, for instance in the work
by Sipe and Van Kranendonk®® on resonant dielectrics, as
well as in various references dealing with multiple scattering
theory of random media and plasmonics.*’* This same
scalar optical theorem has also been applied in the context of
metamaterials to scatterers with a magnetic response>’>! that is
completely uncoupled from the electric response. Extension of
the optical theorem to 6 x 6 tensorial scatterers, i.e., including
magnetoelectric cross coupling, is not immediately trivial as
one needs to reevaluate the definition of extinction, and of
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the amount of power radiated into the far field. Such an
extension to the general case is reported by Belov et al. in
Ref. 54.

For completeness, we summarize the derivation of this
optical theorem reported by Belov et al.>* As in the scalar
electric case,*’**%? the optical theorem is based on equating
extinction to scattering. Here, extinction corresponds to the
amount of work done per unit cycle by the incident field
E;, and H;i, to drive p and m, which is equal to W =
((ReEjy, ~Re% + ReH, - Re‘;—’:’)). The work per cycle can
also be converted into an extinction cross section by dividing
out the incident intensity | E|?/(2Z) (where Z is the impedance
of the surrounding medium),

Oext = 2

(forscalar « : Oy = 4wk Ima).

7 w

|E|?
The power per solid angle radiated by the induced dipoles in
a direction specified by a unit vector 7 is found by calculating
the far-field Poynting vector from Eq. (1). It is composed of
three terms,

dp  dpP, dP, k* .
79 - 49 70 +ZZRe(p><m) 7, an
The first term in Eq. (11) represents the scattered radiation of
just the electric dipole p, which integrates to a total scattered
power given by Larmor’s formula P, = ;‘—’;k“l p|?. The second
term in Eq. (11) represents the radiation pattern of just the
magnetic dipole m, again given by Larmor’s formula. The third
term, however, can completely change the radiation pattern,
as it contains the interference between the fields of p and
m. Hence the relative phase between the induced p and m is
important for the differential scattering cross section. To obtain
the total scattered power, one should integrate Eq. (11) over all
solid angles. The interference term integrates to 0, as it is an
odd function of 7. Therefore, despite the fact that interference
makes radiation patterns of magnetoelectric scatterers non-
trivial, Larmor’s formula for the scattered power immediately
generalizes to P = ;‘—%k“(l p|? + |m|?). The optical theorem is
obtained by equating scattered power P to the work W done
by the incident field (Ei,, Hin),

m [( Ey Hiy)'a ( o )}

_ 2 3 *  xT Ein
—gk |:(Ein Hin)a a<Hin):|’ (12)

where ()* indicates complex conjugate. The incident field can
be eliminated by expanding Im() = %[() — ()*] to yield

1 *T 2 3 T
2l_[oz o ]—3k¢x o. (13)
This optical theorem clearly reduces to the well-known scalar
optical theorem Ima = 2/3k3|a|*> in cases in which « is
not a tensor, and can easily be converted in the Sipe—Van
Kranendonk form reported by Belov,’* provided that o is
invertible.

D. Addition of radiation damping to general « tensor

The optical theorem (13) in itself should be viewed as a
condition that can be checked for any given polarizability
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tensor to verify if it leads to an energy-conserving scattering
theory. Given the large number of microscopic quasistatic
models for metamaterial scatterers, it is unfortunate that
the optical theorem in itself does not provide a recipe that
specifies how to amend an electrostatic polarizability to
satisfy energy conservation. In this section, we provide such
a recipe. Such a method is well known for simple electric
scatterers, where it is, for instance, known that an electrostatic
Rayleigh polarizability o =3V (e — 1)/(e +2) for a small
sphere of dielectric constant €, that in itself violates the
optical theorem,®® can be amended by “addition of radiation
damping.” Any electrostatic oy can be converted into a bona
fide dynamic polarizability that satisfies the optical theorem
by adding radiation damping*®+°

l:i—iglé. (14)
o 3
Addition of radiation damping is key in any point dipole theory
for, e.g., strongly interacting plasmon particles, and has been
derived on independent grounds both from the optical theorem
and from size parameter expansions of dipolar scattering
coefficients in Mie theory for spheroids. %

Here we derive a general method to add radiation damping
to any electro- and magnetostatic polarizability. This allows
any polarizability that is derived from a circuit model to be
generalized to be a building block in an electrodynamically
consistent scattering theory. We start from Eq. (12), but now
assume that o can be diagonalized. This assumption is verified
for split rings below. We call the eigenvectors v;, and denote the
eigenvalues, which we will refer to as “eigenpolarizabilities,”
with A;. Expanding the incident field at the position of the
origin in the orthogonal eigenvectors

<f,) =Y e (1)

and with «v; = A;v; and (v;|v;) = §;;, Eq. (12) reduces to
P 6
3 21412 2
3 ;m A;> > ;m ImA;, (16)

with strict equality for lossless scatterers. Since this equation
must be satisfied for any choice of incident wave (i.e., any
combination of c¢;), the generalized optical theorem for 6 x
6 polarizability tensors in Eq. (13) and Ref. 54 can also be
expressed in terms of the eigenpolarizabilities as

23| Ai* > ImA, Vi=1,...,6, (17)
again with strict equality for lossless scatterers. Equation (17)
implies that the polarizability tensor represents an energy-
conserving scatterer if and only if each of its six eigenpolariz-
abilities are chosen to satisfy the simple scalar optical theorem
Ima = 2/3k?|a|? derived for electric scatterers in Refs. 47-49
and 62 This new interpretation of the generalized optical
theorem highlights the importance of two new quantities:
the eigenpolarizabilities and the corresponding eigenvectors
of the point scatterer polarizability. It is now evident that we
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can simply apply the scalar recipe to each eigenpolarizability
separately. A compact notation for this method is

! =ay' = 3L (18)

We note that this expression, which is identical to Eq. (14)
upon replacement of 1/() by matrix inversion, provides a
unique relation to translate a magnetostatic and electrostatic
polarizability tensor e derived from LC circuit theory, to
the corresponding electrodynamic polarizability that satisfies
the optical theorem. We can hence consistently assess how
intuitive ideas based on a microscopic circuit model for
electrostatic and magnetostatic dipoles lead to quantitative
predictions for extinction, scattering, as well as resonance
hybridization, diffraction, and superradiant and subradiant
damping in coupled systems, such as periodic systems, or
arbitrary finite clusters.

In addition to its application to metamaterial scatterers
discussed in the remainder of this paper, the formalism
derived here can be used also for many other problems of
current interest. For instance, Alu and Engheta have recently
resolved an interesting paradox first introduced by Kerker ez al.
concerning the possibility of realizing zero-forward-scattering
magnetodielectric nanoparticles that appear to violate the
optical theorem.®>%® Ald and Engheta used a size parameter
expansion of the Mie coefficients of small magnetodielectric
spheres to show that magnetodielectric spheres with elec-
tric and magnetic polarizabilities that are almost equal in
magnitude but opposite in sign have a highly anisotropic
scattering pattern, and violate the optical theorem unless one
includes size expansion terms beyond the quasistatic limit.
We note that all the essential physics of this problem can
also be studied with ease using our formalism. It is easy
to verify that a diagonal isotropic tensor with ap = —ay
indeed corresponds to a spherical scatterer with a highly
anisotropic radiation pattern according to Eq. (11), with very
small forward scattering. If radiation damping is added as
in Eq. (18), the optical theorem is indeed satisfied, and
forward scattering is low but not zero, in accordance with
Ref. 65. First, this simple example shows that magnetoelectric
point dipoles can have counterintuitive properties, such as
highly anisotropic radiation patterns, very much unlike simple
electric dipoles. Secondly, our formalism provides an easy
analytical model, which does not need a size parameter
expansion of an exact solution, to study or design how far
the zero-forward scattering paradox extends to anisotropic
particles that also have off-diagonal, magnetoelectric
elements.

III. POLARIZABILITY OF SPLIT
RING RESONATORS

A. Symmetry

As an example of our general theory, we consider the
specific example of split ring resonators. The quasistatic
polarizability of split ring resonators was discussed in detail
by Garcia-Garcia et al.>® and also analyzed by Belov et al.,”’
Shamonina et al.,>® Gorkunov et al.,*® and Marqués et al
We consider the LC resonance of an infinitely thin split ring
in the xy plane, with split oriented along the x axis, as shown
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in Fig. 1(a). Such a split ring can only have an electric dipole

moment along x and a magnetic dipole moment along z. As

outlined in Ref. 58, the only nonzero tensor elements are ',

2z 3 X Xz
aj;y» and the cross-coupling terms o, 05y,

oy 0 - 0 ag,
0 0
oasRrR = | - B (19)
0 0
agg 0 0 0 oy

The symmetry constraints that set which elements of aggr
are zero are valid both for the electrodynamic and quasistatic
polarizability of split rings.

B. Quasistatic RLC model

We now construct the electrodynamic polarizability by
starting from a quasielectrostatic and magnetostatic polariz-
ability derived from a single resonant R L C equation of motion.
Therefore, we take a common resonant frequency dependence
out of the tensor elements, writing

ne 0 - 0 inc
0 0
e =a@) | S N CI0))
0 0
—inc 0 -+ 0 nm

where ng, nc, and ny are constant and «(w) is a Lorentzian
prefactor,

2
wyV
2

(@) = ———.
Wy — w? —iwy

2y

Here, wy is the SRR resonance frequency wy ~ \/%, y is
the damping rate due to the Ohmic loss of gold, and V
is the physical particle volume. As in the plasmonic case,
this approximation is coined “quasi”’-static, as it does contain
frequency w, but it does not contain the velocity of light c. In
this formulation, all the frequency dependence and the units
of aggrr are contained in o(w). The parameters ng, ny, and n¢
are dimensionless. For a lossless split ring, ng, ny, and n¢ are
all real and assumed positive on the basis of the anticipated
in-phase response at very low frequencies.’® The i multiplying
nc is needed to ensure lossless scattering (for y = 0), and can
be understood microscopically as reflecting the fact that any
charge separation that is induced through a current lags the
current by a quarter wave (and vice versa). In our model, all
Ohmic losses are introduced via y .

C. Limit on magnetoelectric coupling

Having constructed a quasistatic polarizability in accor-
dance with RLC circuit models proposed in earlier reports,
we apply radiation damping according to Eq. (18) to obtain a
scatterer that has a correct energy balance:%’

- static —!
aspr = (adfy) — 3K°L (22)

So far we have not explicitly discussed absorption loss, except
through the inclusion of the material damping constant y
in the quasistatic polarizability. Starting from a quasistatic
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polarizability with quasistatic eigenpolarizabilities A$i, the
albedo for each eigenillumination v; can be expressed as

1

= 23
1 4 2K ImAj@ie @9

a;

This albedo quantifies the fraction of energy absorbed in the
scatterer compared to the total energy extinct by the scatterer
when illuminated at eigenillumination. It follows that for any
lossy scatterer, the imaginary part of each eigenvalue A‘?a‘ic
of the quasistatic polarizability tensor must be positive to
ensure 0 < a < 1. In the case of a tensorial & with loss
included as in Egs. (20) and (21), one needs to explicitly
verify that each eigenvalue has a positive imaginary part.
The eigenvalues of Eq. (20) are A%31¢ = a(w)ry with Ay =
1/2[ng + nu + /(e — nu)* + 4n2]. Since Ima(w) > 0 and
Ay are real, we find that both eigenvalues have a positive
imaginary part only if both A and A_ are positive. Thus, loss
sets an additional constraint on the polarizability tensor, and
limits the magnetoelectric coupling to

el < /MenH. 24)

This result implies a very important limitation on magne-
toelectric scatterers: it states that a magnetoelectric cross
coupling (n¢) can only be generated if there is a sufficiently
strong directly electric and directly magnetic response. We
note that this constraint is very similar to the constraint on
the magnetoelectric cross coupling in constitutive tensors
derived for homogeneous bi-anisotropic media in Ref. 53 that
recently attracted attention in the framework of proposals for
repulsive Casimir forces.®®%° While our derivation was specific
for split rings, we note that similar constraints hold for all
magnetoelectric scatterers. In the presence of material loss,
the magnetoelectric coupling terms are limited by the fact
that all quasistatic eigenpolarizabilities must have a positive
imaginary part.

(b)

i P sz
\.- f

k

|
y
k
k

X
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IV. PREDICTED SCATTERING PROPERTIES OF SINGLE
SPLIT RINGS

In the remainder of the paper, we discuss some insights that
the proposed magnetoelectric point scattering theory provides
in how split rings scatter. In this section, we will consider
the eigenmodes and the radiation patterns of a single SRR
for « given by Eq. (22). Next, we predict which set of
experiments will provide full information on the elements of
the polarizability tensor. We will show how the extinction cross
sections can be translated back to retrieve SRR polarizabilities
and magnetoelectric cross polarizabilities of a single SRR.
Although the results we present are general, we use a specific
set of parameters for all the figures presented in this paper.
These parameters are chosen to fit to the properties of split
rings that are resonant at A = 1.5 um (wy/27 = 200 THz)
and that consist of 200 x 200 nm gold split rings with a
thickness of 30 nm and a gap width of 90 nm. Thus we
take V =200 x 200 x 30 nm?. We set the damping rate
to be that of gold y = 1.25 x 10" s~! as fitted to optical
constants tabulated in Ref. 70. We use ng = 0.7, nyg = 0.3,
and nc = 0.4. These parameters were chosen because (a)
they reproduce quantitatively the extinction cross section
under normal incidence along the z axis measured by Husnik
et al,'" and (b) they fit well to our transmission data on
arrays of different densities of split rings taken at normal
incidence’ and as a function of incidence angle.”' The chosen
values correspond to on-resonance polarizabilities agpg =
4.6V, agy =2.1V, and agy = 2.5V, all well in excess of
the physical SRR volume V as is typical for strong scatterers.
Finally, we note that the calculated albedo fits well to the
albedo a = 0.5-0.75 calculated by FDTD by Husnik et al.'”

A. Radiation patterns and eigenvectors of the polarizability
tensor

In Fig. 1, we consider the eigenstates of the split ring
polarizability tensor presented in Eq. (22). We first assume

0
a
S _ go0.063 ¥
N F
kZ L—/. =
K kMl

FIG. 1. (Color online) Split ring radiation patterns corresponding to the polarizability tensor eigenvectors. (a) (Sketch) A single split ring
resonator can have an electric dipole moment p along the x axis due to charging of the split. Circulating current j in the ring gives rise to
a magnetic dipole moment m in the z direction. (b),(c) Radiation patterns of the two eigenmodes of an SRR in the case of no off-diagonal
magnetoelectric coupling (ng = 0.7,ny = 0.3,n¢ = 0). The electric dipole moment oriented along the x axis radiates most of its amplitude
in the ky,kz plane, while the magnetic dipole oriented along the z axis radiates mostly into the kx,ky plane. (d),(e) Radiation patterns of the
eigenvectors with magnetoelectric cross coupling (nc = 0.4). (f) Indication of the polarization of the light radiated by the eigenvector with a
largest eigenvalue [(c)]. Light is linearly polarized for wave vectors along the Cartesian axes, but elliptically polarized in general. The direction
of strongest circular dichroism in extinction and scattering is in the xz plane.
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that the cross-coupling terms are absent, i.e., ¢ = 0, in which
case the polarizability tensor is diagonal, with eigenpolariz-
abilities a(w)ng and a(w)ny. The corresponding orthogonal
eigenmodes are (p,,m;) = (1,0) and (p,,m;) = (0,1). Figures
1(b) and 1(c) show radiation patterns of the two eigenmodes.
Figure 1(b) shows the radiation pattern of the purely electric
eigenmode (p,,m;) = (1,0), and Fig. 1(c) shows the radiation
pattern of the purely magnetic eigenmode (p,,m;) = (0,1).
Note that both p, and m, radiate as simple dipoles with
a sin’@ far-field radiation pattern.”” The two eigenmodes
can be selectively excited by impinging with a plane wave
incident along the z axis with an x-polarized E field (electric
eigenmode), or with a plane wave incident along the x axis
with y polarization (z-polarized H field, magnetic eigenmode).
The extinction cross section of a single split ring at these
two incidence conditions is set by oexy = 4wk Im(agg) and
Oext = 4k Im(ocyy).
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Next, we consider extinction and eigenmodes for arbi-
trary values of the cross coupling. It is easy to see that
the extinction cross section at the two special illumination
conditions (incident along z- and x-polarized and incident
along x with y polarization, respectively) remain equal to
Oext = 4k Im(agg) and oeyy = 4wk Im(ay ). However, for
nonzero 17¢, these incidence conditions and polarizabilities
no longer correspond to the eigenvalues and eigenvectors of
the polarizability tensor, which now have mixed magneto-
electric character. In the extreme case of strongest magne-
toelectric coupling (n¢ = \/Nenn), the eigenvectors reduce
to (px.mz) = (Liv/ne/nu) and (pxm:) = (1, —i/nu/nEe).
The associated far-field radiation patterns of these eigenvectors
correspond to coherent superpositions of the radiation pattern
of an x-oriented electric dipole and a z-oriented magnetic
dipole, with a quarter wave phase difference. Figures 1(d)
and 1(e) show the on-resonance radiation pattern, assuming

o .
y
-90°
90°
X
.—;._Cti':u_Iar_' R rdmeeten
| —-- Linear AmkImorg
2nkimao,
4nklma,,
2nkimo

Incidence angle (degrees)

FIG. 2. (Color online) We calculate the extinction cross section oy as a function of illumination angle and polarization. In panel (a), we

sweep the incident wave vector over a total angular range of 180°, over a trajectory [see panel (a), top] starting from the z axis (labeled 0°) to the
— axis (labeled 90°), and then through the xy plane to the x axis (full 180°). The red dashed line represents o,y for linearly polarized incident
illumination, where in (a) the polarization is kept in the xy plane as shown (i.e., polarization is along x for the first 90° of the trajectory, rotating
continuously to polarization vector along y in the second part of the trajectory). The blue solid curve represents extinction for right-handed
circularly polarized illumination, which for the incidence conditions in (a) is half the extinction seen for linearly polarized light. For the
trajectory of incident wave vectors in panel (a), oey at normal incidence to the split ring is a measure for only agr as E, is the only driving
field. Increasing the angle to 90°, both polarizations E, and H, excite the dipoles in the SRR, so 0. is a measure for the sum of the terms
on the diagonal of the polarizability tensor (¢gr + oy ). Changing the incidence condition to 180° removes the E, component of the field,
leaving only H, of the incident light to drive the SRR. Hence oy at 180° in panel (a) is a measure for purely oy y. In panel (b) we sweep the
incident wave vector from the —x axis (labeled —90°) via the z axis (again labeled 0°) to the +x axis (labeled 90°). The color- and linetype
coding is as in panel (a). However, now we constrain the linear polarization to have no y component. Panel (b) o.x, shows that as a function of
the incident angle in the xz plane for right-handed circular polarization, minima and maxima in o occur as a function of angle, which are a
measure for the eigenpolarizabilities «_ and o, respectively. Both sets of measurements in panels (a) and (b) together provide information on
all the components of the polarizability tensor, ¢gg, dppu, and adgy.
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neg = 0.7, ny = 0.3, and n¢ =0.4. Note that these parameters
are close to the limit of strongest possible magnetoelectric
coupling. Figures 1(d) and 1(e) reveal that the radiation
pattern of each eigenmode is nondipolar. Rather than a sin” 6
donut-shaped pattern, an elongated radiation pattern occurs,
with maximum extent in the y direction. The polarization in
the far field is linear for directions along the Cartesian axis,
but is generally elliptical.

B. Extinction cross sections to measure polarizability

Figure 2 shows the extinction cross section predicted by
our point scattering model of a single split ring for different
incidence conditions. In Fig. 2(a), the incident wave vector is
swept from the z direction to the y direction while maintaining
x-polarized light. For this set of incidence conditions, the
resulting extinction cross sections only depend on ogg
and appy, and are entirely independent of the off-diagonal
coupling strength o iy . The cross section increases from ey, =
4k Imog g as the split ring is only driven by the incident E,
field when light is incident along z, to Oexy = 4mk(Imogg +
Imoa g ) as the split ring is driven by the incident E, field plus
the incident H, field. When the wave vector is rotated to the
X axis, the extinction cross section diminishes to 47k Ima g g,
as the split ring is only driven by H,. The chosen values ng =
0.7,ny = 0.3, and n¢ = 0.4 that we also used for Figs. 1(d)
and 1(e) yield extinction cross sections oeyx = 4wk Ima gy =
0.29 um? and oo = 4k Imayy = 0.13 pum?. The predicted
Oext = 4k Imargp = 0.29 um? is consistent with the mea-
surement (oex; = 0.3 ,umz) reported by Husnik et al'7 1t is
important to note that measurements along Cartesian incidence
directions and with linear Cartesian polarizations yield only
the diagonal elements of the polarizability tensor. Indeed, the
proposed measurements form a redundant set of measurements
of apg,apy,and (¢gg + oy y), butdo not provide any insight
into the magnetoelectric cross coupling in the electrodynamic
polarizability tensor.”?

To measure the eigenpolarizabilities, it is necessary to
selectively address the eigenvectors of the polarizability tensor.
As noted above, the eigenvectors in the case of strong
magnetoelectric coupling n¢ ~ ,/negny tend to (py,m;) =
(Li/ne/ng) and (1, —i/nu/ng). These eigenvectors re-
quire simultaneous driving by E, and H,, with a quarter
wave phase difference. We note that such fields can be
generated by circularly polarized light with incident wave
vector constrained to the xz plane. Indeed, at maximally strong
magnetoelectric coupling and ng = ny, circularly polarized
light incident at 45° from the z axis would selectively excite
exactly one eigenmode. Therefore, we expect angle-resolved
extinction measurements for oppositely handed circularly
polarized beams to reveal the eigenpolarizabilities. Figure 2(b)
plots the extinction cross section for right-handed circular
polarization, as a function of the angle of incidence in the
z plane, for illumination tuned to the L C resonance frequency.
Naturally, at normal incidence the extinction is exactly half the
extinction obtained for linear polarization, as a consequence
of the fact that £, does not interact with the split ring
at all. Strikingly, the extinction cross section is predicted
to behave asymmetrically as a function of incidence angle.
The extinction increases when going to a positive angle and
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decreases when going to a negative angle. Changing handed-
ness is equivalent to swapping positive and negative angles.
A detailed analysis shows that the maximum in extinction
corresponds to the largest eigenvalue of the polarizability
tensor (0exy = 2wk Imar, ), while the minimum in extinction
corresponds to the smallest eigenvalue (0ext = 2k Ima_).
Therefore, circularly polarized measurements reveal the eigen-
values of the polarizability tensor. Combining such circularly
polarized extinction measurements with the measurements
under Cartesian incidence in Fig. 2(a), therefore, allows us to
extract all components of the polarizability tensor. In addition
to the contrast in extinction, the angle at which the maximum
circular dichroism occurs is a second, independent measure for
the magnetoelectric coupling strength. The measurements in
Figs. 2(a) and 2(a) together hence provide full, even redundant,
information on ng, ng, and n¢.

C. Structural chirality

The results plotted in Fig. 2(b) show that magnetoelectric
coupling in the 6 x 6 polarizability tensor directly implies
structural chirality. It is exhilarating that this interesting
phenomenon first reported by Refs. 27 and 31 for the
transmission of arrays of scatterers is naturally present in the
theory. However, while previous analysis of structural chirality
focused on transmission through periodic arrays, we predict
that circular dichroism already appears in the extinction cross
section of a single splitring, with a strength set by how close the
magnetoelectric coupling strength is to its limit , /7 g, 7y . Here
we use the term “circular dichroism in extinction” not to refer
to differential absorption of left and right circular polarization
as in usual circular dichroism, but to differential extinction.
Indeed, the circular dichroism in extinction is a difference in
extinction cross section for left and right circularly polarized
light that occurs independently of whether there is material
loss, as opposed to, e.g., asymmetric transmission phenomena
through arrays, which are claimed to require dissipation.?! For
maximally magnetoelectrically coupled systems, the smallest
eigenvalue is identically zero, implying that such a scatterer
is transparent for one circular polarization, and achieves its
strongest scattering for the opposite handedness. We expect
that our 6 x 6 polarizability tensor can be successfully used
to describe all structurally chiral scatterers reported today, as
well as clusters and periodic arrays thereof.

V. A COUPLED SYSTEM: SPLIT RING DIMERS

So far, this paper has focused purely on the scattering
properties of single magnetoelectric point scatterers. In the
remainder of the paper, we illustrate that our method can be
easily used to analyze multiple scattering by magnetoelectric
scattering clusters. To calculate the response of a system of
coupled magnetoelectric dipoles, we generalize the general
self-consistent equation that describes scattering of clusters of
electric dipoles p as reviewed in Ref. 49. Assuming a system
of N magnetoelectric point scatterers situated at positions
ry,...,ry,the response upon illumination by an incident field
(Ein(r),Hiy(r)) is determined by a set of N self-consistent
equations for the induced dipole moments in each scatterer.
The dipole moment induced in scatterer n with polarizability
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tensor a,, is

Dn _ Ein(rn)
<mn> _an[(Hin(rn)>

+ > GO(rn,rq)<5l‘fl>i|. (25)

Using this equation, we can attempt to reinterpret recent mea-
surements that evidence significant coupling in split rings in
two-dimensional (2D) arrays, as well as in oligomers.%?+3442
Here we focus on the extinction of a dimer of split rings in
a so-called “stereodimer” configuration, first studied by Liu
et al >* Figure 3 shows such a “stereodimer,” consisting of two
SRR’s in vacuum (V = 200 x 200 x 30 nm?>, resonant at a
wavelength around 1500 nm), both parallel to the xy plane,
vertically stacked with a small height difference of 150 nm.
The upper SRR is rotated by a twist angle i around the z
axis. On the basis of the report by Liu et al.,** we expect two
resonance peaks with an angle-dependent splitting, which can
be explained in an LC model as the summed effect of electric
dipole-dipole coupling and magnetic dipole-dipole coupling.

We calculate the extinction versus twist angle and wave-
length of an incident beam incident from the +z direction,
with x polarization. This beam directly excites p, in bothrings,
which also drive each other. We first analyze the experiment
assuming that there is no magnetoelectric coupling term
(setting nc = 0, althoughwekeepng = 0.7and ny = 0.3). As
Fig. 3(b) shows, the extinction shows a single strong resonance
that is blueshifted relative to the single SRR resonance at
200 THz. As a function of twist angle, this broad resonance
redshifts to 200 THz at a twist of 90°, and shifts back to
220 THz at a twist of 180°. There is no sign of a second
resonance, which might be hidden below the strong resonance.
To bring out the second resonance more clearly, we reduce the
loss in Fig. 3(b) to a 10-times-lower value y = 1.25 x 10'3s~!
for gold in Figs. 3(c) and 3(d). For this almost absorption-free
system, Fig. 3(c) indeed shows two resonances in extinction.
The blueshifted resonance is now observed to cross with
a narrow redshifted resonance. The crossing is symmetric
around 90° and is consistent with the hybridization of an
electric dipole fixed along x, with a second one above it twisted
by an amount . The two branches have a very different
width and strength, consistent with the fact that a symmetric
configuration of dipoles couples more strongly to external
fields (blueshifted resonance) than an antisymmetric “dark”
configuration (redshifted resonance).

To verify whether the two resonances observed in Fig. 3(a)
are all resonances in the system, we change the angle of
incidence to 45° in the xz plane, so that the exciting field has
an H, component to drive the split rings, in addition to an E,
component. Figure 3(d) shows that in this case, four resonances
occur in extinction. In addition to the two curved bands
excited by E,, there are also two nondispersive bands with a
twist-independent splitting. Obviously, these bands are due to
the coupling of two magnetic dipoles in symmetric (broad and
intense band) and antisymmetric head-to-tail configuration.
The existence of four instead of two modes is a new insight
compared to LC circuit models,**** but is logical in view of
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the fact that split rings have both a magnetic and an electric
response, which are decoupled under the assumption n¢ = 0.

Next we analyze the extinction in the presence of magne-
toelectric coupling, setting n¢ = 0.4. Again, we first examine
the extinction in the presence of realistic loss (y = 1.25 x
10 s71) for gold in Fig. 3(e). As also predicted by FDTD
simulations by Liu et al.,>* there appear to be two bands. The
blueshifted band is again very broad, but now has a frequency
shift away from the single SRR resonance that is significantly
larger for twist angle 180° than for 0°. These effects were
explained by Liu er al.* as due to an additive (subtractive)
correction to the dominant electric hybridization at twist
angle 180° (0°) that occurs due to magnetic dipole coupling.
A surprise is that the diagram is not symmetric anymore
around 90° twist as in the case of zero magnetic coupling.
Instead, the extinction appears to show an anticrossing at a
twist angle 60° These features were also predicted by FDTD
simulations by Liu et al.>* However, the presence of an
anticrossing at twist angle ¥ = 60° could not be interpreted
by Liu et al* within an LC static circuit model, except by
invoking higher-order multipolar corrections. Here we see
that a purely dipolar model may also explain all features
of the experiment provided that magnetoelectric coupling is
accounted for. While we do not claim that multipolar effects
are not present in actual experiments, it is an important insight
that split ring polarizabilities with magnetoelectric coupling
terms may provide much richer physics then expected from
quasistatic circuit theory. A main advantage of point dipole
theory is that the underlying mode structure does not need to
be recouped from FDTD simulations, but is easily resolved
by repeating a calculation of extinction cross sections with
low loss (as done in Fig. 3), or by analyzing the poles of the
coupling matrix in Eq. (25) that relates (p,m) to (E;,, Hip).
The computational effort for N split rings is equivalent to
diagonalizing or inverting a 6N x 6N matrix.

To more clearly bring out all the resonances, we artificially
reduce the damping y = 1.25 x 10'3 s~! to ten times less than
the damping of gold, and plot the response of the system under
normal incidence (f) and 45° incidence (g) in Figs. 3(f) and
3(g). The anticrossing at twist angle ¥ = 60° appears to be
due to the coupling of four modes, as opposed to the intuition
from L C circuit theory that only two resonances anticross. The
existence of four rather than two modes in a split ring dimer
appears surprising and is a second indication of the rich physics
of magnetoelectric scatterers. Intuition from LC circuits is that
although the subspace of driving fields is two-dimensional
(E, and H;), nonetheless only one mode per split ring
exists. The usual reasoning in LC models is that the relation
between electric and magnetic dipole moment is completely
fixed and independent of driving, since the loop current and
accumulated charge are directly related. Such a constraint is
not general: in electrodynamic multipole expansions, magnetic
polarizabilities are determined independently from the electric
ones. The intuition from LC theory that there is only one mode
per scatterer is only retrieved in our model right at the limit
of strongest magnetoelectric coupling n¢ = /ngnu, since in
that case one polarizability is identically zero. We note that the
values ng = 0.7, ng = 0.3, and n¢ = 0.4 used in this work
(that we fitted to our angle-resolved transmission experiments
on 200 x 200 nm Au split rings on glass) are close to the
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FIG. 3. (Color online) Extinction cross sections o.y Vs frequency and twist angle for an SRR stereodimer structure. Panel (a) shows the
geometry (top view and side view) in which two SRR’s are vertically stacked. The upper SRR is rotated around the z axis by the twist angle
Y. We calculate extinction for light impinging from the z direction with polarization along x, i.e., along the base of the lower SRR in (b),
(c), (e), and (f). In (d) and (g), we use 45° incidence in the xz plane, so that the H field of the excitation light directly couples also to
the magnetic polarizability. Panels (b), (c), and (d) show extinction assuming no cross-coupling term (nc = 0), while (e), (), and (g) show
extinction assuming strong magnetoelectric coupling (nc = 0.4). Panels (b) and (e) assume the damping rate of gold y = 1.25 x 10'*s™!. To
more clearly bring out the four mode structure, we reduce the damping tenfold for the calculations in (c), (d), (), and (g). There are four modes
present in the system. White lines in (b) and (e) indicate the frequencies of the modes, as taken from the resonances in the low-damping case,

i.e., the resonances in panels (d) and (g).

limit of strong magnetoelectric coupling. Whether a general
argument exists why physical scatterers are or are not exactly at
the limit of strongest magnetoelectric coupling ne = /Menn
is a question beyond the scope of this paper.

VI. CONCLUSION

In conclusion, we have developed a multiple scattering
theory by means of which we can calculate scattering and
extinction for any magnetoelectric scatterer with known
polarizability tensor, as well as for arbitrary finite clusters. As
opposed to LC circuit models, our model obeys energy conser-
vation, contains all interference effects, and allows quantitative
prediction of absolute cross sections, spectral linewidths, and
line shapes. While beyond the scope of this paper, the theory
is readily extended to deal with arbitrary periodic lattices by
generalizing Ewald lattice sums*’ to deal with both E and H.
Since the electrodynamic polarizability tensor can be directly
constructed from quasistatic circuit theory, we expect that our
model is readily applicable to many current experiments using
chiral and nonchiral metamaterial building blocks for which
quasistatic models have been proposed.

Our model does not give any insight into whether the
response of a given structure is truly dipolar. Also, our
model does not provide any insight or quantitative predictions
based on microscopic considerations for the magnitude of
the polarizability. For such microscopic considerations, based
on, e.g., current density distributions derived from full wave
simulations, we refer the reader to Refs. 18-20,43,45,46.
Rather, our model allows one to verify if specific data or
microscopic calculations are consistent at all with point

dipole interactions, allowing to verify or falsify common
intuitive explanations in the literature that have so far been
based on quasistatic considerations. Also, our model allows
one to assess if a single polarizability tensor indeed can
describe a range of different experiments with, e.g., split
ring clusters, as should be expected from a consistent model.
Finally, our model is the simplest electrodynamic model to
consistently describe how metamaterials and photonic crystals
are formed from magnetoelectric scatterers. A first step is
to confirm the parameters used in this work for ng,ny
and n¢ by targeted experiments. While the value for ng
used in this work is consistent with the extinction cross
section measured by Husnik et al.,'” we propose that the
new insight that magnetoelectric coupling is far stronger
than the magnetic polarizability be confirmed by off-normal
circularly polarized extinction measurements as proposed
in Sec. IV.

The most important property of our theory is that a polariz-
ability tensor validated for a single scatterer can readily be used
to predict all quantitative scattering properties of composite
lattices and antennas. We hence expect that new insights can
be obtained in effective-medium constants of metamaterial
arrays. Our analytical model not only facilitates design, but
will also allow us to determine rigorously whether, even in the
ideal case (no loss, no multipole corrections), metamaterial
building blocks can give rise to a desired € and u, despite
the large importance of electrodynamic corrections.”*’* In
addition to generating new insights for metamaterials, our
theory also opens new design routes for gratings and antennas
with unprecedented polarization properties. As an example,
in this paper we analyzed the four-mode anticrossing due

245102-10



MAGNETOELECTRIC POINT SCATTERING THEORY FOR ...

TABLE I. Conversion between SI units and the unit system used
throughout this paper.

Quantity Symbol relation to SI
Electric field E Es
Magnetic field H ZH g
Electric dipole moment P ps1/(4me)
Magnetic dipole moment m ms|[Z/(47)]
Electric-electric polarizability app oS, /(4me)
Magnetic-magnetic polarizability oyH ozi,l y/4m)
Electric-magnetic polarizability oLy a%IH [c/(4m)]
Magnetic-electric polarizability oHE a?} el Z/(4m)]
Electric-electric Green tensor Gre 4reGS,
Magnetic-magnetic Green tensor Gy 4n Gy,
Electric-magnetic Green tensor Gy 4r/Z Gy,
Magnetic-electric Green tensor Guye 4 /c Gi,' £

to magnetoelectric coupling in stereodimers. This analysis
is easily extended to magnetoelectric Yagi-Uda antennas,
diffractive gratings of chiral building blocks, and magneto-
inductive waveguides that may provide new ways to control
the propagation and emission of light.3”:>76
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APPENDIX: UNIT SYSTEM

Throughout this paper, we used units that significantly
simplify notation throughout, as they maximize the inter-
changeability of electric and magnetic fields. Conversion to
SI units is summarized in Table I. For the conversion in
Table I, we use € for the host dielectric constant, ¢ for the
velocity of light, and Z for the impedance of the background
medium. In this unit system, a plane wave has |E|/|H| =1
and intensity I = |E|*/(2Z), since the Poynting vector is
S =1/(2Z)Re(E* x H). In these units, the cycle-averaged
work done by an electric field E to drive an oscillating p
equals W =2nk/ZIm(E - p). The magnetic counterpart is
W =2rk/ZIm(H - m)
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