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Abstract. This paper introduces and evaluates the second
version of the global aerosol-climate model ECHAM-HAM.
Major changes have been brought into the model, includ-
ing new parameterizations for aerosol nucleation and water
uptake, an explicit treatment of secondary organic aerosols,
modified emission calculations for sea salt and mineral
dust, the coupling of aerosol microphysics to a two-moment
stratiform cloud microphysics scheme, and alternative wet
scavenging parameterizations. These revisions extend the
model’s capability to represent details of the aerosol lifecy-
cle and its interaction with climate. Nudged simulations of
the year 2000 are carried out to compare the aerosol prop-
erties and global distribution in HAM1 and HAM2, and to
evaluate them against various observations. Sensitivity ex-
periments are performed to help identify the impact of each
individual update in model formulation.

Results indicate that from HAM1 to HAM2 there is a
marked weakening of aerosol water uptake in the lower tro-
posphere, reducing the total aerosol water burden from 75 Tg
to 51 Tg. The main reason is the newly introducedκ-Köhler-
theory-based water uptake scheme uses a lower value for the
maximum relative humidity cutoff. Particulate organic matter
loading in HAM2 is considerably higher in the upper tropo-
sphere, because the explicit treatment of secondary organic

aerosols allows highly volatile oxidation products of the pre-
cursors to be vertically transported to regions of very low
temperature and to form aerosols there. Sulfate, black car-
bon, particulate organic matter and mineral dust in HAM2
have longer lifetimes than in HAM1 because of weaker in-
cloud scavenging, which is in turn related to lower autocon-
version efficiency in the newly introduced two-moment cloud
microphysics scheme. Modification in the sea salt emission
scheme causes a significant increase in the ratio (from 1.6
to 7.7) between accumulation mode and coarse mode emis-
sion fluxes of aerosol number concentration. This leads to a
general increase in the number concentration of smaller par-
ticles over the oceans in HAM2, as reflected by the higher
Ångstr̈om parameters.

Evaluation against observation reveals that in terms of
model performance, main improvements in HAM2 include
a marked decrease of the systematic negative bias in the
absorption aerosol optical depth, as well as smaller biases
over the oceans in̊Angstr̈om parameter and in the accumu-
lation mode number concentration. The simulated geograph-
ical distribution of aerosol optical depth (AOD) is better cor-
related with the MODIS data, while the surface aerosol mass
concentrations are very similar to those in the old version.
The total aerosol water content in HAM2 is considerably
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closer to the multi-model average from Phase I of the Ae-
roCom intercomparison project. Model deficiencies that re-
quire further efforts in the future include (i) positive biases in
AOD over the ocean, (ii) negative biases in AOD and aerosol
mass concentration in high-latitude regions, and (iii) nega-
tive biases in particle number concentration, especially that
of the Aitken mode, in the lower troposphere in heavily pol-
luted regions.

1 Introduction

Although it is widely believed that natural and anthropogenic
aerosols play an important role in determining the current
state and future changes of the Earth’s climate, various phys-
ical processes in the aerosol lifecycle are not yet under-
stood with certainty. Quantifications of the climatic effects
of aerosols, particularly through their impacts on clouds, re-
main insufficient. Numerical models, together with observa-
tional data from a variety of sources, provide a powerful tool
for advancing our understanding of the complex interactions
between aerosols and climate. Lessons learnt from earlier
studies using simple bulk methods (e.g.Langner and Rodhe,
1991; Feichter et al., 1996) gradually led to appreciation of
the importance of microphysics in aerosol modelling. The
newer models have thus included more detailed descriptions
of aerosol composition and size distribution, using differ-
ent approaches (Wilson et al., 2001; Jacobson, 2001; Vignati
et al., 2004; Easter et al., 2004; Stier et al., 2005; Spracklen
et al., 2005; Liu et al., 2005; Bauer et al., 2008; Liu et al.,
2012).

The ECHAM5-HAM model (Stier et al., 2005) developed
at the Max Planck Institute for Meteorology was one of the
earlier examples of a global atmospheric general circulation
model that can dynamically predict the composition and size
distribution of aerosols by taking into account the most im-
portant chemical and physical processes ranging from the
micro- to the global scale, and in return, calculate the ra-
diative effects of aerosols on the atmospheric dynamics. In
addition to the evaluation presented byStier et al.(2005),
the model has been compared with other models and with
observations through participation in the AeroCom (Aerosol
Comparisons between Observations and Models) model in-
tercomparison project (http://aerocom.met.no), as well as the
EUCAARI (European Integrated project on Aerosol Cloud
Climate and Air Quality interactions) model intercomparison
(Kulmala et al., 2011). The simulated aerosol mass budget,
residence time, and optical properties are within the ranges
of multi-model spread (Textor et al., 2006, 2007; Kinne et al.,
2006). The estimated direct forcing of aerosols is close to the
multi-model mean (Schulz et al., 2006).

Since first released in 2005, the model has been widely
used in process studies (e.g.Hoose et al., 2008; Croft et al.,
2009; Makkonen et al., 2009) and for investigations in the

climate impact of aerosols (e.g.Roeckner et al., 2006b;
Stier et al., 2006; Kloster et al., 2008; Lohmann and Hoose,
2009; Fischer-Bruns et al., 2010; Folini and Wild, 2011;
Kazil et al., 2012). The first released version, designed with
a focus on tropospheric aerosols, has been extended into
the stratosphere and used in volcanic eruption and geo-
engineering studies (e.g.Niemeier et al., 2009; Timmreck
et al., 2010; Niemeier et al., 2011). Apart from being coupled
with ECHAM5 (Roeckner et al., 2003, 2006a), the complete
aerosol module HAM, or substantial parts of it, has been im-
plemented in several other model systems, for example by
Mashayekhi et al.(2009), Pringle et al.(2010), Zhang et al.
(2010), andBergman et al.(2012).

In the past years, through further evaluation as well as var-
ious applications, several biases in ECHAM-HAM have been
brought to attention. For example, the simulated aerosol ab-
sorption featured negative biases (Stier et al., 2007). In com-
parison to aircraft measurements, the Aitken mode particle
number concentration was underestimated in the lower tro-
posphere over the industrial regions (Stier et al., 2005; Zhang
et al., 2010). According to ship measurements, the accumu-
lation mode number concentration over the ocean was also
underestimated (Hoose et al., 2008). The simulated aerosol
optical depth (AOD) and extinction profiles had systematic
negative biases in high-latitude regions (Koch et al., 2009;
Bourgeois and Bey, 2011) and positive biases over the open
oceans (Croft et al., 2009). The Ångstr̈om parameter over
the ocean was on the large large side compared to the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) satel-
lite retrieval. These issues, together with the simplifications
made for secondary organic aerosols (SOA) and the lack of
physically-based coupling between aerosols and clouds, mo-
tivated further improvement of ECHAM-HAM.

A series of attempts have been made to identify the sources
of these errors and to improve model performance. The
refractive index for black carbon has been updated to re-
duce the negative bias of absorption aerosol optical depth
(Stier et al., 2007). The four-band shortwave radiative trans-
fer scheme in the atmospheric model has been extended
with two more bands (Cagnazzo et al., 2007). A newer
aerosol nucleation parameterization has been adopted, and
additional mechanisms included (Kazil et al., 2010). A more
detailed and explicit treatment of SOA was implemented
(O’Donnell et al., 2011), as well as a new scheme for cal-
culating the hygroscopic growth of aerosol particles. The
wet scavenging schemes have been updated (Croft et al.,
2009, and this work). A two-moment cloud microphysics
scheme is implemented and coupled with aerosol micro-
physics (Lohmann et al., 2007). The on-line calculation of
dust and sea salt emissions have also been modified (Cheng
et al., 2008, and this work). A satellite simulator (Quaas
et al., 2004, see alsohttp://www.euclipse.eu/downloads/D1.
2 euclipsemodissimulator.pdf) is implemented in the model
which diagnoses cloud quantities consistently with pas-
sive satellite retrievals as from the MODIS instrument, and
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samples the spatial and temporal incidences of the overpasses
of polar-orbiting satellites. This facilitates the comparison
between model results and the observations from spaceborne
instruments. These revisions have brought us to the point
where a second version of this aerosol-climate model is ready
for release. This new version, referred to as ECHAM-HAM2
(or simply HAM2), participated in phase II of the AeroCom
model intercomparison (Schulz et al., 2009).

The main objective of the present paper is to analyse and
quantify the effects of improvements in the process repre-
sentation on the simulated aerosol properties, global distri-
bution, and radiative effects. Although some of the new fea-
tures have already been discussed in the publications cited
above, the authors therein mainly concentrated on specific
schemes for individual processes. The model evaluation was
often limited to aspects most closely related to the pro-
cess in question. Furthermore, some of the above-cited stud-
ies with ECHAM-HAM were based on intermediate (unre-
leased) code versions that included incremental changes in
model configuration. As the aerosol processes and their in-
teractions with each other and with model meteorology are
often nonlinear, it is not always easy to draw conclusions on
the effect of a particular modification by intercomparing re-
sults reported in these publications. An important part of the
present paper is a series of sensitivity simulations that are all
performed with the “official” HAM2 as reference, and with
a single aspect of the model updates reverted to the HAM1
configuration. In this way we attempt to provide a clean eval-
uation of the impact of each individual modification. These
sensitivity simulations are discussed in Sect.4. The com-
bined effects are analysed in Sect.5, in which the HAM2
results are compared with those from the previous version,
as well as against observation. Before showing these results,
we provide a summary of the basic features of the ECHAM-
HAM model in Sect.2, and describe the simulation design
in Sect.3. Conclusions drawn from this work are presented
in Sect.6. As in the paper byStier et al.(2005), we con-
centrate our analysis on aerosols in the troposphere. There
are some additional model updates related to stratospheric
aerosols which have not yet been included in the code used in
this study. These developments were presented inNiemeier
et al.(2009).

2 Model overview

The aerosol module HAM (Stier et al., 2005) was designed as
a component of the global climate model ECHAM5 (Roeck-
ner et al., 2003, 2006a) for the purpose of investigating
aerosol-climate interactions. The host model ECHAM5 em-
ploys a spectral transform dynamical core inherited from
the European Centre for Medium-range Weather Forecasts
(ECMWF), and a flux-form semi-Langrangian tracer trans-
port algorithm of Lin and Rood (1996) with piecewise
parabolic sub-grid distribution. As for the parameterized

physics, cumulus convection and convective tracer transport
are represented by the mass-flux scheme ofTiedtke(1989)
with further modifications byNordeng (1994). Turbulent
transport of momentum, heat, moisture and passive tracers is
described by the eddy diffusivity theory (Louis, 1979), with
the vertical diffusion coefficient computed as functions of at-
mospheric stability and the turbulent kinetic energy (Brinkop
and Roeckner, 1995). Shortwave and longwave radiative
transfer calculations follow the methods ofFouquart and
Bonnel (1980) and Mlawer et al.(1997), respectively. The
longwave scheme considers 16 spectral bands. The short-
wave scheme has 4 or 6 bands depending on model ver-
sion. The 6-band version adapted from the ECMWF model
by Cagnazzo et al.(2007) has the 250–690 nm interval sub-
divided to better consider the absorption by water vapor at
440–690 nm. In addition, an ultra-violet band is added to
consider the absorption by ozone, resulting in a total of 3
bands in the ultra-violet and visible range (185–250 nm, 250–
440 nm and 440–690 nm).

The tropospheric version of ECHAM5 is most often used
at T63 resolution (approximately 2◦ latitude× 2◦ longitude
grid spacing), with 31 vertical levels up to 10 hPa and a
default time step of 12 min. This is also the configuration
used in this study. Most of the AeroCom Phase I models
(Textor et al., 2006) used resolutions between 1.1◦

×1.1◦ to
5◦

×4◦, except ULAQ which was 22.5◦×10◦. The T63 reso-
lution we are using in this study is similar to the GOCART
(2.5◦

×2.0◦, Chin et al., 2000), MATCH (1.9◦
×1.9◦, Barth

et al., 2000), MOZGN (1.9◦×1.9◦, Tie et al., 2001), UMI
(2.5◦

×2◦, Liu and Penner, 2002), and PNNL (2.5◦×2.0◦,
Easter et al., 2004) models.

ECHAM drives the aerosol module by providing meteo-
rological conditions such as horizontal wind, temperature,
pressure, humidity. The large-scale, convective, and turbu-
lent transport of aerosols and their precursors are handled in
the same way as other passive tracers in the host model (e.g.
water vapor and hydrometeors). The aerosol module pro-
vides feedback to ECHAM by affecting the radiative transfer
(Sect.2.6) and cloud microphysics (Sect.2.7).

In the remainder of this section the main components of
the aerosol module HAM are described. To avoid repeating
the details already provided byStier et al.(2005), we restrict
ourselves to an extended summary of the modeling concept,
and provide the references when necessary. Note that this
section focuses on the aspects that remain unchanged since
2005. Later in the paper, when mentioning these features, or
the model development effort in general, we use the term
“ECHAM-HAM” or simply “HAM”. When it is necessary
to distinguish, “HAM1” refers to the specific model configu-
ration described byStier et al.(2005), and “HAM2” the new
version presented in this paper. An overview of the updates in
HAM2 with respect to HAM1 is provided by Table1. Further
details and the impacts on aerosol simulation are discussed in
Sect.4.
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Table 1. An overview of the main differences between HAM1 and HAM2 in model configuration.

HAM1 and HAM2 shared features HAM1 specifics HAM2 specifics

Atmospheric dynamics
and physics

ECHAM5 (Roeckner et al., 2003,
2006a)

Stratiform cloud microphysics scheme by
Lohmann and Roeckner(1996); Solar ra-
diation scheme with four bands (Fouquart
and Bonnel, 1980).

Two-moment stratiform cloud microphysics
scheme byLohmann et al. (2007); So-
lar radiation scheme extended to six bands
(Cagnazzo et al., 2007)

Sulfuric acid gas Sources and sinks include transport,
chemical production, condensation,
and aerosol nucleation.

Concentration equation is solved with
three-step sequential operator splitting us-
ing explicit time stepping scheme; No dis-
tinction between cloudy and cloud-free
parts of a model grid box.

Concentration equation is solved by a two-
step operator splitting scheme with analyti-
cal solution for production and condensation
(Kokkola et al., 2009); Complete removal of
sulfuric acid gas from the air is assumed in
the cloudy part of a model grid box (Kazil
et al., 2010).

Aerosol nucleation Vehkam̈aki et al.(2002) or Kulmala
et al.(1998)

Vehkam̈aki et al.(2002) as default New scheme byKazil et al. (2010) as de-
fault, with optional H2SO4-organic nucle-
ation based on the kinetic nucleation the-
ory (Kuang et al., 2008) or cluster activa-
tion (Kulmala et al., 2006; Riipinen et al.,
2007; Kazil et al., 2010). Old schemes by
Vehkam̈aki et al. (2002) and by Kulmala
et al.(1998) are still optional.

Aerosol water uptake Dependent on the chemical com-
positions of aerosol particles and
ambient relative humidity (with re-
spect to water).

Considered only for non-organic aerosols,
based onZeleznik (1991), Zdanovskii
(1948) andStokes and Robinson(1966)

Considered for non-organic and organic
aerosols, based on theκ-Köhler theory
(Petters and Kreidenweis, 2007; O’Donnell
et al., 2011)

Secondary organic
aerosol (SOA)

SOA is approximated as 15% of monoter-
pene emissions at surface (Dentener et al.,
2006) and is assumed to condense imme-
diately on existing aerosol particles and
to have identical properties to primary or-
ganic aerosols (Stier et al., 2005).

The lifecycle of SOA is explicitly simu-
lated; Emissions of biogenic precursors are
computed interactively; Anthropogenic pre-
cursor emissions are prescribed (O’Donnell
et al., 2011).

Sea salt emission Interactive calculation based on
Monahan et al.(1986) and Smith
and Harrison(1998)

Smooth merging of emission functions in
the particle radius range of 2–4 µm (Stier
et al., 2005)

Monahan et al.(1986) formula for the radius
range of 2–4 µm (cf. Sect.4.1.4)

Dust emission Interactive calculation using the
Tegen et al.(2002) scheme

East Asia soil properties updated byCheng
et al.(2008)

Aerosol radiative
effects

Optical properties of aerosols are
first calculated mode by mode as-
suming different compositions in a
mode are internally mixed. Synthe-
sized parameters are then derived
for the radiative transfer calcula-
tion, assuming external mixing of
different modes.

Aerosol effects considered only for short-
wave radiation.

Aerosol effects are considered for both
shortwave and longwave radiation; Refrac-
tive indices of BC updated byStier et al.
(2007).

In-cloud scavenging of
aerosols

Prescribed scavenging coefficient
for each aerosol mode and cloud
type (Stier et al., 2005).

Scavenging parameters are prescribed for
three ambient temperature ranges (liquid
cloud: T > 273 K, mixed-phase cloud:
238 K< T <273 K, and ice cloud:T <

238 K).

Option to use temperature denpendent scav-
enging parameters for mixed-phase strati-
form clouds based on a relationship from
(Verheggen et al., 2007).

Below-cloud
scavenging of aerosols

Considered separately for rain and
snow

Prescribed, mode dependent impaction
scavenging coefficients for rain; One fixed
coefficient for snow (Stier et al., 2005)

Optional scheme byCroft et al.(2009): Im-
paction scavenging coefficients for rain de-
pend on the size distributions of aerosols and
collectors; The coefficients for snow depend
on aerosol size.
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Fig. 1. Aerosol modes and compositions considered in HAM1 and HAM2. The chemical compositions include sulfate (SU), black carbon
(BC), primary organic aerosol (POA), mineral dust (DU), sea salt (SS), and secondary organic aerosol (SOA). SOA can be further divided into
different products from isoprene oxidation (SOAIS1 and SOAIS2), from monoterpene oxidation (SOAMO1 and SOAMO2), and from
the oxidation of anthropogenic precursors (SOAANT). In HAM1, SOA and POA are assumed to have the same properties, thus are denoted
collectively by OA in the diagram. The text in green highlights differences between the two model versions. As for the mode parameters,r

stands for the number median radius, andσ the prescribed standard deviation. Modified from Table 1 inStier et al.(2005).

2.1 Aerosol composition and size distribution

The aerosol module HAM predicts the evolution of an
aerosol ensemble of five compositions: sulfate (SU), black
carbon (BC), particulate organic matter (POM), sea salt (SS),
and mineral dust (DU). The size distribution of this aerosol
population is described by 7 log-normal modes with pre-
scribed variance. A schematic is shown in Fig.1. The de-
tailed mathematical formulation can be found inStier et al.
(2005, Eq. (1) therein). Different compositions within a
mode are assumed to be internally mixed, meaning that each
particle consists of multiple compositions. Aerosols of dif-
ferent modes are externally mixed, meaning that they co-
exist in the atmosphere as independent particles. Four of the
modes contain at least one soluble composition, thus the par-
ticles can take up water. These are referred to as soluble
modes. The other three modes consist of insoluble species
only. Through the aging processes, insoluble particles can
become soluble (explained in Sect.2.4).

The HAM module predicts the particle number concen-
tration of each mode, as well as the mass concentration of
the compositions present in that mode. Not counting the sec-

ondary organic aerosol (SOA), there are 25 aerosol tracers
in the model that are affected by large-scale, convective and
turbulent transport. The 3 precursor gases of sulfate, namely
SO2, dimethyl sulfide and sulfuric acid gas, are also trans-
ported. In HAM1, SOA was considered to have the same
properties as POA (primary organic aerosol). They are de-
noted collectively by OA in Fig.1, implying there is no ad-
ditional tracer for SOA. In HAM2, different SOA species
are distinguished according to their sources (anthropogenic,
isoprene-derived and terpene-derived). The actual number
of SOA-related tracers (including precursors and semi- and
non-volatile secondary organics) depends on the lumping as-
sumption. In this study we have 13 transported tracers in the
SOA module. The details are explained in Sect.4.1.2.

2.2 Emissions of aerosols and their precursors

The emissions of sea salt and dust are computed interactively
for each mode that contains these compositions, based on the
work of Monahan et al.(1986), Smith and Harrison(1998),
andTegen et al.(2002). The number and mass fluxes of sea
salt are parameterized as functions of the 10 m wind speed

www.atmos-chem-phys.net/12/8911/2012/ Atmos. Chem. Phys., 12, 8911–8949, 2012
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Table 2. Partitioning (mass fraction) of the primary aerosol emissions of sulfate, black carbon (BC) and organic aerosols (POA and SOA)
among different modes in ECHAM-HAM.rm andσ are the median radius and standard deviation of the emitted particles. Note that SOA
emissions are considered as primary emissions in HAM1, while in HAM2 the formation of SOA via chemical production is explicitly
represented.

Insoluble Aitken Soluble Aitken Soluble accumulation Soluble coarse
Composition Emission type rm = 0.03 µm rm = 0.03 µm rm = 0.075 µm rm = 0.75 µm

σ = 1.59 σ = 1.59 σ = 1.59 σ = 2.00

BC
bio-fuel 100 %
fossil fuel 100 %
biomass burning 100 %

POA
fossil fuel 100 %
bio-fuel 35 % 65 %
biomass burning 35 % 65 %

SOA* biogenic 35 % 32.5 % 32.5 %

Sulfate

off-road 50 % 50 %
road transport 50 % 50 %
domestic 50 % 50 %
international shipping 50 % 50 %
industry 50 % 50 %
power plant 50 % 50 %
biomass burning 50 % 50 %
continuous volcano 50 % 50 %
eruptive volcano 50 % 50 %

(cf. Table1). The dust fluxes depend on wind speed and soil
properties.

Natural emissions of dimethyl sulfide (DMS) from the ma-
rine biosphere are calculated online followingNightingale
et al. (2000). The fluxes depend on the model-calculated
air-sea exchange rate as well as the DMS seawater con-
centration. The monthly mean DMS seawater concentrations
are prescribed according to the work ofKettle and Andreae
(2000). Terrestial DMS emissions are prescribed according
to Pham et al.(1995).

Emissions of sulfur dioxide (SO2) and particulate sulfate,
black carbon and primary organic aerosols (POA) are pre-
scribed following the year 2000 specifications of AeroCom
(Dentener et al., 2006): non-eruptive volcanic SO2 emissions
are taken fromAndres and Kasgnoc(1998). Locations of
eruptive emissions are fromHalmer et al.(2002). The total
strength of volcanic SO2 emission follows the recommenda-
tion of the GEIA inventory (http://www.geiacenter.org). An-
thropogenically modified sources of SO2, BC and POA in-
clude wild-land fire, biofuel emissions and fossil-fuel emis-
sions. Wild-land fire emissions are based on the Global Fire
Emission Database inventory (van der Werf et al., 2004). Bio-
fuel and fossil-fuel emissions of BC and POA are prescribed
according to the Speciated Particulate Emissions Wizard in-
ventory (Bond et al., 2004). Biofuel and fossil-fuel emissions
of SO2 (including off-road, road transport, domestic, inter-
national shipping, industry, and power plant emissions) are
based onCofala et al.(2005) and EDGAR (Olivier et al.,
2005a). The injection heights follow Table 1 inDentener
et al.(2006).

Primary aerosol emissions are distributed to different
aerosol modes according to the emission type and the as-
sumed soluble fraction. For sulfur emissions except DMS,
2.5 % of the emission is assumed to be in the form of primary
sulfate aerosols. For POA, 65 % of the biomass burning and
biogenic emissions are assumed to be soluble. Table2 sum-
marizes the partitioning mass fraction of the primary aerosol
emissions among different modes in ECHAM-HAM. Further
implementation details can be found in Sects. 2.3.1 and 2.3.2
of Stier et al.(2005).

The SOA emissions are treated differently in HAM1 and
HAM2 due to the implementation of an explicit SOA module
in the new version. This is explained later in Sect.4.1.2. A
brief summary can be found in Table1.

2.3 Sulfur chemistry

The sulfur chemistry module is based on the work byFe-
ichter et al. (1996). Prognostic variables include concen-
trations of DMS, SO2 and gas- and aqueous-phase sulfate.
Oxidant fields, including hydroxyl radical (OH), hydrogen
peroxide (H2O2), nitrogen dioxide (NO2), and ozone (O3),
are prescribed using three-dimensional monthly mean model
output for present-day condition from the MOZART model
(Horowitz et al., 2003). Sulfuric acid gas produced from gas-
phase chemistry can either condense on existing aerosol par-
ticles or nucleate to form new particles. Sulfate produced
from aqueous phase chemistry is distributed to pre-existing
soluble accumulation mode and coarse mode aerosol parti-
cles.

Atmos. Chem. Phys., 12, 8911–8949, 2012 www.atmos-chem-phys.net/12/8911/2012/
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2.4 Aerosol microphysics

The aerosol microphysics sub-module M7 ofVignati et al.
(2004) simulates the formation and growth of aerosol parti-
cles due to nucleation and condensation of sulfuric acid gas,
coagulation of particles, and aerosol water uptake. These pro-
cesses lead to re-distribution of particle number and mass
among different modes.

In the model the sulfuric acid gas concentration is affected
by emission, chemical production, and large-scale and sub-
grid-scale transport. It can also form new aerosol particles
(i.e. nucleation), or condense on particle surfaces. Conden-
sation can happen on pre-existing particles of all sizes. The
first-order mass transfer coefficient is computed following
Fuchs(1959). Different accommodation coefficients are as-
sumed for insoluble (0.3) and soluble (1.0) particles (Vignati
et al., 2004). The numerical method used to solve the sulfu-
ric acid gas evolution equation is updated in HAM2. This is
noted in Table1 and further explained in Sect.4.1.1.

The coagulation rate is parameterized as a function of par-
ticle number concentration and a coefficient that depends on
particle size and the thermodynamic state of air. Calculation
of the coefficient followsFuchs(1964). Both intramodal and
intermodal coagulations are considered, although intramodal
coagulation is neglected for the accumulation insoluble mode
and the two (soluble and insoluble) coarse modes.

Coagulation of insoluble particles with soluble ones, as
well as the condensation of sulfuric acid gas, can lead to addi-
tion of soluble mass (sulfate) to insoluble particles. When the
amount of soluble composition is sufficient to form a mono-
layer coating, the particles becomes soluble. In M7, the num-
ber of converted (i.e. aged) particles during each time step is
computed from the newly attached sulfate mass and the aver-
aged surface area of particles in each insoluble mode (Vignati
et al., 2004).

The water content of aerosols in each mode is calculated
from their chemical composition and the ambient relative
humidity. Different parameterization schemes are used in
HAM1 and HAM2. Further details are given in Table1 and
Sect.4.1.3.

2.5 Removal processes

Sink processes of aerosols, namely dry deposition, sedimen-
tation and wet deposition, are parameterized as functions of
particle size, composition and mixing state, as well as the
meteorological conditions.

The loss of aerosol particles due to their role as cloud
condensation nuclei or ice nuclei and due to collisions with
cloud droplets or ice crystals is parameterized via a scaveng-
ing coefficient. This coefficient denotes the fraction of the
available aerosols in the cloudy part of a grid box that is
embedded in the cloud droplets and ice crystals. Different
values of the scavenging coefficient are prescribed for differ-
ent aerosol modes and cloud types, as documented in Table

3 of Stier et al.(2005). Because interstitial and cloud-born
aerosols are not distinguished in our model, the particles em-
bedded in cloud water/ice are considered as removed from
the atmosphere only when the condensate is converted into
precipitation.

Below-cloud scavenging describes the removal of aerosols
due to collection by rain or snow. The removal rate depends
on the precipitation rate and area, as well as the collection
efficiency (Seinfeld and Pandis, 1998; Stier et al., 2005). Dif-
ferent collection efficiencies are assumed for rain and snow.

Turbulent dry deposition of aerosols is considered for all
modes except for the nucleation mode, followingGanzeveld
et al. (1998). The deposition flux is computed as the prod-
uct of tracer concentration, air density and deposition veloc-
ity, first calculated for each of the surface types considered
by the ECHAM5 model (snow/ice, bare soil, vegetation, wet
skin, open water, and sea ice), and subsequently summed
up using the fractional surface area. Deposition velocity is
obtained from the aerodynamic resistance and surface re-
sistance which in turn depend on particle size and density,
properties of the Earth’s surface, and characteristics of atmo-
spheric turbulence.

Gravitational sedimentation of a single aerosol particle is
described by the Stokes theory (Seinfeld and Pandis, 1998).
The correction ofSlinn and Slinn(1980) is applied to get the
sedimentation velocity of a log-normal mode. To avoid vio-
lation of the Courant-Friedrich-Lewy stability criterion, the
sedimentation velocity is limited toVs ≤

1z
1t

where1z and
1t are the model layer thickness and time step, respectively.
In our model, sedimentation is considered only for the larger
particles, i.e. the accumulation and coarse modes.

For precursor gases, in-cloud and below-cloud scaveng-
ing are calculated according to Henry’s law (Seinfeld and
Pandis, 1998). The dry deposition velocity is calculated with
the big leaf approach, as a function of aerodynamic resis-
tance, quasi-laminar boundary layer resistance, and surface
resistance (Ganzeveld and Lelieveld, 1995; Ganzeveld et al.,
1998). Gravitational sedimentation is ignored for gases.

2.6 Aerosol optical properties and radiative effects

Radiative properties of aerosols are dynamically computed in
the model. From the chemical composition (including water
content) and particle size, the Mie-scattering size parameter
and volume-averaged refractive indices are derived for each
aerosol mode assuming internal mixing of different chemical
compositions. They are passed on to a look-up table that pro-
vides the extinction cross-sectionϕ, single scattering albedo
ω and asymmetry parameterγ . The look-up table is estab-
lished using the Mie theory assuming 24 spectral bands for
shortwave and 16 bands for longwave radiation. Theϕ, ω, γ

parameters are then re-mapped to the bands of the ECHAM
radiation scheme. For each band, theϕ, ω, γ parameters of
different modes are synthesized into a single triplet for the
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Table 3. References for the shortwave and longwave refractive indices for each aerosol composition in the HAM model. For the shortwave
part, the refractive index at 550 nm wavelength is listed, in whichi denotes the imaginary unit. AfterStier et al.(2005), Stier et al.(2007),
andO’Donnell et al.(2011).

Species Refractive index at 550 nm Shortwave Reference Longwave Reference

HAM1

Sulfate 1.43+ 1.0× 10−8i Hess et al.(1998)
Black carbon 1.75+ 4.4× 10−1i Hess et al.(1998)
POM 1.53+ 5.5× 10−3i Koepke et al.(1997)
Sea Salt 1.49+ 1.0× 10−3i Shettle and Fenn(1979)
Mineral dust 1.52+ 1.1× 10−3i Kinne et al.(2003)
Aerosol water 1.33+ 2.0× 10−7i Downing and Williams(1975)

HAM2

Sulfate 1.43+ 1.0× 10−8i Hess et al.(1998) Toon et al.(1976)
Black carbon 1.85+ 7.1× 10−1i Bond and Bergstrom(2006) Bond and Bergstrom(2006),

spectrally extrapolated withHess et al.(1998)
POA 1.53+ 5.5× 10−3i Koepke et al.(1997) Hess et al.(1998)
SOA 1.53+ 5.5× 10−3i Koepke et al.(1997) Hess et al.(1998)
Sea Salt 1.49+ 1.0× 10−3i Shettle and Fenn(1979) Shettle and Fenn(1979) andNilsson(1979)
Mineral dust 1.52+ 1.1× 10−3i Kinne et al.(2003) Irina Sokolik (pers. comm., 2006)
Aerosol water 1.33+ 2.0× 10−7i Downing and Williams(1975) Downing and Williams(1975)

radiative transfer calculation, assuming external mixing of
the modes (Stier et al., 2005).

The refractive indices of various aerosol compositions at
λ = 550 nm (shortwave) are listed in Table3, whereλ is
the wavelength. Corresponding quantities for the longwave
bands are shown in Fig. 1 ofStier et al.(2007) as functions of
wavenumber. The refractive indices of black carbon used in
HAM2 are the updated values evaluated byStier et al.(2007).
HAM2 considers both the longwave and shortwave effects of
aerosols, while HAM1 considers only the shortwave effects.
Radiative effects of the nucleation mode particles are ignored
due to their small sizes.

2.7 Aerosol indirect effects

In the earlier model ECHAM5-HAM1 aerosols did not di-
rectly affect clouds because the one-moment cloud micro-
physics scheme therein (Lohmann and Roeckner, 1996) as-
sumed fixed cloud droplet number concentration. In HAM2,
the aerosol activation and ice nucleation parameterizations of
the two-moment scheme ofLohmann et al.(2007) provide
links between the simulated aerosol population and the num-
ber concentrations of cloud droplet and ice crystal. This ver-
sion thus allows for the simulation of aerosol effects on cloud
microphysics (droplet number and size) and macrophysics
(liquid water path). More details are given in Sect.4.1.6.

3 Simulation setup

We performed simulations of the year 2000 forced by
sea surface temperature/sea ice prescriptions of the same
year from the Second Atmospheric Model Intercomparison
Project (http://www-pcmdi.llnl.gov/projects/amip/). Emis-

sions of anthropogenic aerosols and their precursors, as well
as biomass burning and volcanic aerosols are prescribed ac-
cording to AeroCom Phase I emission data for the year 2000
(Dentener et al., 2006). Each integration starts from a mete-
orological state that is routinely used in climate simulations
with ECHAM5. The initial concentrations of all aerosols and
prognostic precursors are zero. Three months of integration
are performed prior to January 2000 in each simulation. This
is considered as the spin-up phase and not included in the
analysis presented later in the paper.

Since the purpose of this study is to evaluate the aerosol
module HAM rather than the host model ECHAM5, we
carry out nudged simulations, which relax the meteorological
fields towards the ERA-40 reanalysis (Uppala et al., 2005).
This allows for detailed comparison between model results
and observations, and also reduces the length of simulation
that is required to draw sound conclusions.

To evaluate the aerosol properties in HAM2 and their dif-
ferences compared to the earlier version HAM1, integrations
are performed using the corresponding default model config-
urations. In addition, a number of sensitivity simulations are
carried out and are discussed in Sect.4. In each simulation,
one component of the parameterized sub-grid processes in
HAM2 is reverted to the old HAM1 setup, or replaced by an
alternative that is implemented in the new version but not yet
set as default. A list of simulations carried out in this study is
given in Table4.

4 Model updates and their effects

In this section we describe the model updates with respect
to HAM1, and discuss their impact on the simulated aerosol
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Table 4.List of simulations presented in this paper.

Simulation Description Section number

HAM1 ECHAM-HAM version 1 as described by (Stier et al., 2005) Sects.4.1.1–4.1.6, Sects.5.1–5.5
HAM2 Default configuration of ECHAM-HAM version 2 (this work) Sects.4.1.1–4.1.6, Sects.5.1–5.5
HAM2 H2SO4 Same as HAM2 but with the old treatment for the sulfuric acid gas equation Sect.4.1.1
HAM2 NUL Same as HAM2 but with the old nucleation scheme and numerics for the sulfric acid equation. Sect.4.1.1
HAM2 OA Same as HAM2 but with the old treatment with organic aerosol Sect.4.1.2
HAM2 WAT Same as HAM2 but with the old water-uptake scheme Sect.4.1.3
HAM2 SS Same as HAM2 but with the old sea salt emission scheme Sect.4.1.4
HAM2 DU Same as HAM2 but with the old dust emission scheme Sect.4.1.5
HAM2 CLD Same as HAM2 but with theLohmann and Roeckner(1996) cloud microphysics without aerosol-cloud interaction Sect.4.1.6
HAM2 INCLD Same as HAM2 but with the modified in-cloud wet scavenging scheme for mixed-phase cloud Sect.4.2.1
HAM2 BLCLD Same as HAM2 but with the below-cloud wet scavenging scheme proposed byCroft et al.(2009) Sect.4.2.2
HAM2 cluster Same as HAM2 but with cluster activation nucleation in the forested boundary layer Sect.4.2.3, 5.3
HAM2 kinetic Same as HAM2 but with kinetic nucleation in the forested boundary layer Sects.4.2.3, 5.3

distributions and properties. Those detailed in Sect.4.1have
become part of the standard configuration of HAM2, while
Sect.4.2 describes alternative configurations that are of im-
portance for scientific process studies (e.g.Makkonen et al.,
2009; Kazil et al., 2010). They are included in this paper to
provide the model users with a clear idea about the basis for
future research.

4.1 Standard configuration of HAM2

4.1.1 Sulfuric acid gas and aerosol nucleation

The conversion of sulfuric acid (H2SO4) gas to aerosol parti-
cles is one of the major mechanisms of particle formation in
the atmosphere. In the HAM model sulfuric acid gas is pro-
duced by the oxidation of SO2, and removed by nucleation as
well as condensation onto pre-existing aerosol particles. The
strength of nucleation in the model is not only determined by
the nucleation mechanism, but also strongly affected by the
abundance of H2SO4 gas and the balance between its source
and sink terms.

Nucleation of H2SO4/H2O in the earlier model version
was described with the scheme ofVehkam̈aki et al.(2002)
or that of Kulmala et al.(1998). The former was the de-
fault choice because it is based on a thermodynamically con-
sistent version of the classical binary homogeneous nucle-
ation theory, and is valid for a broader range of thermody-
namical conditions (cf. Table5). Kazil et al. (2010) imple-
mented the scheme ofKazil and Lovejoy(2007) for neutral
and charged nucleation of H2SO4 and H2O. This parameter-
ization is based on laboratory measurements using a semi-
analytical approach to calculate aerosol formation rates. It is
now the default nucleation scheme in HAM2.

Another major change between HAM1 and HAM2 is the
treatment of sulfuric acid gas. In the model, production and
condensation are linear processes from the point of view of
the gas-phase H2SO4 equation (cf. Eq. (2) inVignati et al.,
2004), while nucleation is a nonlinear process. In the default
HAM1 configuration the gas-phase H2SO4 equation was nu-
merically solved in three consecutive steps, each taking care
of one process and using explicit time integration to update

the H2SO4 concentration for the next step.Kokkola et al.
(2009) proposed a different operator-splitting algorithm in
which the production-condensation equation is solved an-
alytically in the first step to provide an intermediate esti-
mate of sulfuric acid gas concentration, followed by a sec-
ond step accounting for nucleation. This new algorithm has
the advantage of converging towards the exact solution of the
production-condensation equation when nucleation is weak.
Kokkola et al.(2009) showed with a box model that this time
stepping outperformed the original one. In addition to the re-
vised numerics,Kazil et al.(2010) introduced the assumption
that in the cloudy portion of a grid box, all H2SO4 gas con-
denses on the largest soluble particles if there is any, and on
the largest insoluble particles otherwise. There is complete
removal of sulfuric acid gas in clouds, where no aerosol nu-
cleation takes place.

To demonstrate the impact of these changes at the global
scale, we present vertical cross-sections of the number con-
centration of ultra-fine (nucleation mode) particles together
with the mass concentration of H2SO4 gas in Fig.2. The
right column shows results from the standard HAM2 con-
figuration; The middle column uses theKazil et al. (2010)
(HAM2 default) nucleation parameterization but the old time
stepping method and without complete in-cloud removal (re-
ferred to as experiment HAM2H2SO4 in Table4). The left
column, corresponding to experiment HAM2NUL, uses the
HAM1 set-up which includes theVehkam̈aki et al.(2002) pa-
rameterization, three-step explicit numerics, and no distinc-
tion between condensation in clouds and in the cloud-free
parts. All other aspects are identical in the three simulations.

Switching fromVehkam̈aki et al.(2002) to theKazil and
Lovejoy (2007) parameterization leads to an upward shift of
the highest concentrations of fine particles (Fig.2a–b), due to
a strong reduction of nucleation at altitudes of 400–150 hPa
and a moderate increase at 150–50 hPa (not shown). Accord-
ingly, there is more sulfuric acid gas remaining in the air in
the upper troposphere, and less near the tropical tropopause
(Fig. 2d–e).

Changing the handling of the H2SO4 gas equation, on the
other hand, results in higher concentrations for the nucleation
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Table 5. Binary aerosol nucleation schemes available in ECHAM-HAM2 and their valid range of thermodynamical conditions. Boundary
values are used in case the actual atmospheric condition is out of range.

Temperature Relative Humidity H2SO4 Concentration Note

Kulmala et al.(1998) 233–298 K 10–100% (No constraint)
Vehkam̈aki et al.(2002) 230.15–305.15 K 0.01–100% 104 cm−3–1011cm−3 HAM1 default
Kazil et al.(2010) 180–320 K 1–101% 105 cm−3–5×109 cm−3 HAM2 default

Fig. 2. Annual and zonal mean vertical cross-sections of the number concentration of nucleation mode particles (upper row, unit: par-
ticles cm−3 STP (1013.25 hPa, 273.15 K)) and mass concentration of H2SO4 gas (lower row, unit: molecules cm−3). The three columns
correspond to different simulations, as indicated by the title of each panel: “HAM2” refers to the standard ECHAM-HAM2 configuration;
“HAM2 H2SO4” uses theKazil et al. (2010) aerosol nucleation scheme but the old handling of the H2SO4 equation (cf. Sect.4.1.1);
“HAM2 NUL” is similar to “HAM2 H2SO4” but uses theVehkam̈aki et al.(2002) nucleation parameterization. All other aspects of model
configuration are identical in the three simulations.

mode particle number (Fig.2b–c), and a qualitative change
in the vertical distribution of the sulfuric acid gas (Fig.2e–f).
An additional simulation reveals that the differences between
panels e and f in the tropical upper troposphere and above
the Southern Hemisphere storm track are caused by the dis-
tinction between cloud-free and in-cloud condensation of the
H2SO4 gas in HAM2 (not shown). The other differences seen
in the middle and right columns in the figure are caused by
the revised numerical method.

It is worth noting that in HAM1, due to the sequential op-
erator splitting, the H2SO4 concentration seen by the con-
densation calculation is the value updated after taking into
accountonly the chemical production. Because of the large
time step used in the climate model, this intermediate con-
centration has a large positive bias when production is strong.
The subsequently computed condensation rate is thus sig-
nificantly overestimated. This explains the box model re-
sults in Fig. 1 ofKokkola et al.(2009) in which the “M7
original” scheme systematically underestimates the sulfuric
acid gas concentrations in all three scenarios investigated
therein. We have carried out a sensitivity experiment simi-
lar to HAM2 H2SO4, in which the first two steps (produc-
tion and condensation) in the old time integration scheme

are solved together using a simple Euler forward scheme. In
other words, the sequential split between production and con-
densation is replaced by parallel split. The effect is a clear in-
crease of the H2SO4 concentration in comparison to Fig.2d–
e. In particular, in the near-surface layers, the magnitudes
and characteristic pattern become very similar to Fig.2f (not
shown).

In both HAM1 and HAM2, nucleation is computed af-
ter production and condensation, using sequential operator
splitting. When the model time step is long and nucleation is
strong, this can also lead to numerical errors in the simulated
nucleation rate and H2SO4 gas concentration. We have per-
formed numerical convergence test for the sulfuric acid gas
equation using sub-stepping and various time integrations
schemes, from which a reference solution is established. It
is found that the simulated H2SO4 gas concentration and
aerosol nucleation rate are more sensitive to the splitting
technique applied between production and condensation than
that for nucleation. With respect to the reference solution, the
error in annual mean H2SO4 gas burden is reduced by a fac-
tor of more than 10 from the HAM1 numerics to HAM2. The
error in total nucleation rate is reduced by a factor of about
5. Reduction of error can be seen at most of the model grid
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points though the factor is not homogeneously distributed.
This indicates that from a numerical point of view, the so-
lution procedure in HAM2 better represents the H2SO4 pro-
cesses.

Currently there is research going on in the ECHAM-HAM
community to implement and evaluate additional nucleation
parameterization schemes in the planetary boundary layer.
In this context, the numerical methods used for the H2SO4
processes will possibly be refined. Time integration schemes
with adaptive step size and dynamical error control, such as
those used byHerzog et al.(2004) andZaveri et al.(2008)
will be considered.

4.1.2 Secondary organic aerosol (SOA)

The first version of HAM had a very simple treatment of sec-
ondary organic aerosols following the AeroCom approach
(Dentener et al., 2006). 15 % of the prescribed natural terpene
emission was oxidized in the surface layer and condensed
immediately on existing aerosol particles (Stier et al., 2005;
Kanakidou et al., 2005). The SOA therein was assumed to
have identical properties to primary organic aerosols (POA).

O’Donnell et al. (2011) implemented an explicit SOA
module in ECHAM-HAM, which considers aerosols origi-
nating from biogenic (isoprene and monoterpenes) and an-
thropogenic sources (xylene, toluene and benzene). The
emissions of biogenic precursors are computed online us-
ing MEGAN (Guenther et al., 2006; Guenther, 2007) for iso-
prene, and following the work ofGuenther et al.(1995) for
monoterpenes. Emission of anthropogenic precursors is pre-
scribed according to EDGAR (fast-track issue,Olivier et al.,
2005b).

Oxidation processes of the precursors are explicitly de-
scribed. An oxidation product is considered either as volatile
or semi-volatile, depending on the precursor. Organic mat-
ter formed from anthropogenic sources is assumed as non-
volatile following Ng et al.(2007). Its mass is allocated to
the aerosol phase immediately on formation. Products of xy-
lene, toluene and benzene can be either lumped together or
tracked separately in the model. The oxidation products of
isoprene and terpene are considered to be semi-volatile. The
mass is partitioned between the gas and aerosol phases based
on an equilibrium scheme, namely the two-product model of
Odum et al.(1996). The absorption-based theory ofPankow
(1994a,b) is used to further partition the condensed mass to
size-resolved modes. Different SOA products are assumed
to be absorbed by POA and by each other, thus the modes
in which SOA can occur are the same as those that contain
POA, namely the Aitken insoluble, Aitken soluble, accumu-
lation soluble, and coarse soluble modes (cf. Fig.1).

The SOA module introduces 13 or 21 new tracers to the
model that need to be transported, depending on whether
the xylene-, toluene- and benzene-derived SOA is lumped
together. This include 5 precursor gases (isoprene, monoter-
penes, xylene, toluene and benzene), 4 condensable organics

from the oxidation of isoprene and monoterpenes (i.e. 2 pre-
cursors× 2 products each, before gas-aerosol partitioning),
and 1 (lumped) or 3 (not lumped) anthropogenic SOA mass
concentrations in each of the mode that contains organic mat-
ter (cf. previous paragraph and Fig.1).

Refractive indices of SOA are assumed the same as those
of POA (Table3). Further details of the SOA scheme can be
found inO’Donnell et al.(2011).

When the new SOA scheme is switched on, the
interactively computed biogenic precursor emissions
(441.6 Tg yr−1 isoprene and 86.3 Tg yr−1 monoterpenes)
produce about 119.1 Tg yr−1 semi-volatile condensable
species (106.5 Tg yr−1 from isoprene, 12.6 Tg yr−1 from
monoterpenes). These oxidation products form 15.7 Tg SOA
per year, which, in terms of absolute value, is not far away
from the old scheme (19.1 Tg yr−1, Dentener et al., 2006).
The SOA yield, however, is only 3 % and much smaller than
specified by AeroCom (15 %). The yield of 15 % used in
AeroCom is realistic at lab temperatures (typically 25◦C),
while our model has a temperature-dependent SOA yield
from monoterpenes (Saathoff et al., 2009) which predicts
decreasing SOA formation with increasing temperature.
Since the majority (over 75 %) of the monoterpene mass is
emitted at high temperatures in the tropics, the SOA yield
drops below the figure used for AeroCom. The fact that we
get a SOA production similar to the AeroCom specification
despite a considerably lower yield reflects the dominance
of isoprene emissions, which were not included in the old
scheme. The anthropogenic emissions result in 5.5 Tg yr−1

oxidation products, which are assumed non-volatile and
convert totally to SOA.

The spatial distribution of aerosol concentrations also
changes substantially. In Fig.3 we present zonal mean mass
concentration of total organic aerosols (also referred to as
particulate organic matter, POM) simulated by HAM2 with
different SOA schemes. The most evident effect of the new
scheme is the higher loading in the upper troposphere, associ-
ated with enhanced SOA formation due to tropical convective
transport of the condensable oxidation products, especially
high-volatility products associated with isoprene oxidation,
which condense only at very low temperatures. Results ob-
tained with the original SOA scheme (Fig.3a), in contrast,
resembles closely the POA distribution of HAM1 (shown in
Fig. 5 of O’Donnell et al., 2011) as one would expect. The
differences in the lower troposphere in Fig.3c mainly reflect
the changes in precursor emissions. The increased concentra-
tions between 20◦ S and 15◦ N are connected to the biogenic
sources, while those at 15–40◦ N are primarily related to the
anthropogenic sources.

Following Heald et al.(2011) we compared the vertical
profiles of total POM (POA+ SOA) mass concentration in
HAM1 and HAM2 sampled in the month-of-year and re-
gions of 17 field campaigns (not shown). Consistent with
Fig. 3, increases in POM concentration are seen in HAM2
in the lower troposphere. Despite such increases, the model
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Fig. 3. Temporal and zonal mean vertical cross-sections of the mass concentration of particulate organic matter (POM) (unit: µg m−3). The
middle panel shows results from the standard ECHAM-HAM2 model (i.e. with theO’Donnell et al.(2011) SOA submodel switched on);
The left panel corresponds to a sensitivity experiment HAM2OA that uses the old (HAM1) simple SOA scheme described in Sect.4.1.2and
in Stier et al.(2005); Differences between the two simulations are indicated in the rightmost panel.

Table 6.Values of the hygroscopicity parameterκ used in ECHAM-
HAM2 for theκ-Köhler theory based water uptake scheme. The ob-
served ranges ofκ listed in the rightmost column are quoted from
Table 1 inPetters and Kreidenweis(2007), which were derived from
the laboratory measured growth factor of particle radius. For pri-
mary organic aerosols, the observed range is obtained from meanκ

values of various organic compounds other than secondary organic
aerosol.

Species κ Observed Range ofκ

Sulfate 0.60 0.33–0.72
Sea salt 1.12 0.91–1.33
Primary organic aerosol 0.06 0.006–0.44
Secondary organic aerosol 0.037 0.022–0.070
Black carbon 0 –
Mineral dust 0 –

still generally underestimates organic mass compared to the
observations presented in Fig. 3 ofHeald et al.(2011). Our
results are similar to the GEOS-Chem model discussed in
their paper, which also has an explicit treatment for the semi-
volatile SOA.

4.1.3 Water uptake

Water uptake is an important process that changes the size
and optical properties of aerosol particles. In the real world
non-organic aerosols that contain sulfate and/or sea salt, and
some organic aerosols, are hygroscopic. In HAM1, however,
water uptake was considered only for non-organic particles.
For pure sulfate particles, water uptake was calculated using
regression fits to solutions of the generalized Kelvin equation
(Zeleznik, 1991); For mixed particles that contain sulfate but
not sea salt, sulfate mass was regarded as the effective solu-
ble mass and used in the calculation of the equilibrium par-
ticle density; For particles containing sea salt, complete ion
dissociation was assumed, with the water uptake calculated
according to the ZSR method (Zdanovskii, 1948; Stokes and
Robinson, 1966), which regards an aerosol particle as a solu-
tion of mixed electrolytes. The scheme assumes a 95 % ceil-

ing of ambient relative humidity (RH) when calculating wa-
ter content of the nucleation and Aitken mode particles, and
a ceiling of 100 % for the accumulation and coarse modes.

When introducing the new SOA scheme mentioned in the
previous subsection,O’Donnell et al.(2011) implemented a
semi-empirical water uptake scheme based on theκ-Köhler
theory (Petters and Kreidenweis, 2007), now used for all
hygroscopic aerosols in HAM2. This approach uses a pre-
scribed hygroscopicity parameterκ for each substance (Ta-
ble 6). For an internally-mixed aerosol particle, the overall
κ value is calculated by taking the volume-weighted sum of
the parameter of each soluble compound. Having computed
the hygroscopicity parameter of a particle, and with its dry
diameter, the air temperature and relative humidity known,
the growth factor of particle radius can be determined using
Eq. (11) ofPetters and Kreidenweis(2007) and therefore the
aerosol water content. In the model, a look-up table is used to
enhance computational efficiency. The RH ceiling in this im-
plementation is set to 95 % for all aerosol modes, considering
that theκ values are typically taken from the humidified tan-
dem differential mobility analyzer (HTDMA) below this RH
value (Kreidenweis et al., 2005).

For clarification it is worth noting that results in the work
of Kreidenweis et al.(2008), who applied simplifying as-
sumptions to the theory developed byPetters and Kreiden-
weis (2007), have been widely interpreted as meaning that
predictions using theκ-Köhler theory are inherently and
severely low-biased at low RH at least for certain species,
especially NaCl. In our model the simplifications ofKrei-
denweis et al.(2008) arenot used1. Our approach still un-
derpredicts the water uptake of pure NaCl when compared
to results from the Aerosol Inorganic Model (AIM,Wexler
and Clegg(2002), the reference model used in Kreiden-
weis et al., 2008), but not as severely as indicated in their

1Our implementation uses the fullκ-Köhler theory. Eq. (11) in
Petters and Kreidenweis(2007) is solved numerically for the growth
factor for each soluble mode, taking into account ambient temper-
ature and relative humidity, the mode’s number median particle ra-
dius, and theκ value.
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Fig. 4. Zonal and annual mean aerosol water content in(a) default HAM1,(b) default HAM2, and(c)–(d) two simulations performed with
HAM2 but the old water uptake scheme. Different RH ceilings are used in(c) and(d) in the calculation of water uptake by the accumulation
and coarse mode particles. Numbers noted in the figure are the annual mean global total aerosol water content as well as the absolute and
relative contributions of aerosol water to the aerosol optical depth (AOD). Further details can be found in Sect.4.1.3.

paper. Furthermore, relative humidity in the near-surface lay-
ers over the ocean (where most sea salt is found) is generally
in the higher range where theκ-Köhler theory and AIM are
in good agreement. For these reasons, we believe that un-
derestimation of the water uptake of certain species by the
κ-Köhler theory at low relative humidity has very limited ef-
fects on our model results.

As already mentioned, the purpose of updating the water
uptake parameterization in HAM2 was to implement a single
scheme that can be used also for SOA. The new scheme re-
sults in a significant decrease in water uptake in the lower tro-
posphere and a slight increase aloft (Fig.4a–b), reducing the
total aerosol water from 75 Tg (HAM1) to 51 Tg (HAM2),
the latter being closer to the multi-model average of the Ae-
roCom Project (35 Tg,Textor et al., 2006). The absolute and
relative contributions of aerosol water to the aerosol optical
depth (AOD) decrease from 0.105 and 74.8 % (HAM1) to
0.094 and 69.8 % (HAM2), respectively. Our investigation
reveals that this substantial decrease is largely caused by the
different RH ceilings used for the accumulation and coarse
mode particles (100 % in ZSR and 95 % forκ-Köhler). This
can be seen in Fig.4c–d which shows two sensitivity ex-
periments performed using HAM2 but with the water uptake
scheme reverted to ZSR. Despite an increase in dry aerosol
burden compared to HAM1 which is accompanied by an in-
crease in aerosol water content (Fig.4a, c), the change of

RH ceiling (Fig.4c, d) results in a considerable reduction
in aerosol water that more than compensates the dry bur-
den effect. Replacement of the ZSR method by theκ-Köhler
theory, in contrast, has only marginal effect on the results
(Fig. 4d and4a). These results are consistent with the work
of Adams et al.(2001) who found the use of higher maximum
RH cut-off resulted in stronger water uptake and higher esti-
mated direct forcing in the general circulation model of the
Goddard Institute for Space Studies, especially when relative
humidity is higher than 95 %.

4.1.4 Sea salt emission

Sea salt emission is a primary source of soluble accumulation
mode and coarse mode aerosol over the oceans in the model.
The emission fluxes are parameterized as functions of 10-
m wind speed following the work ofMonahan et al.(1986)
andSmith and Harrison(1998). In HAM1, look-up tables of
emission flux against 10-m wind were established using the
Monahan formula for small particles (dry radiusr <2 µm),
the Smith-Harrison formula for large particles (r >4 µm),
and a smoothly merged function for the size range in between
(Stier et al., 2005). Zhang et al.(2010) noticed that the parti-
tioning of sea salt emission between accumulation and coarse
modes in ECHAM-HAM1 was evidently different from two
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Fig. 5. Accumulation mode and coarse mode sea salt aerosol num-
ber fluxes (unit: m−2 s−1) as functions of 10-m wind speed (unit:
m s−1), given by different implementations of theMonahan et al.
(1986) andSmith and Harrison(1998) sea salt emission schemes.
The red curves correspond to the the old (HAM1) version, and blue
the new (HAM2) version.

other models using the same microphysics package, and at-
tributed the differences to the emission scheme.

In HAM2 we still use the source functions ofMonahan
et al.(1986) andSmith and Harrison(1998), but directly ap-
ply the Monahan et al.(1986) formula for the radius range
of 2–4 µm without merging, and replace the look-up tables
by online integration of the source functions. As shown in
Fig. 5, the new implementation produces stronger emissions
in the accumulation mode and weaker in the coarse mode in
terms of number flux. The ratio of the accumulation mode
number flux to that of the coarse mode is now 7.7 in con-
trast to 1.6 in HAM1, and is closer to the value 6.7 that can
be derived from theDentener et al.(2006) emission dataset
recommended for AeroCom. In terms of mass flux, there is
an increase of emission in both modes (not shown), imply-
ing that the emitted coarse mode particles are larger than in
HAM1. Further discussions of these changes are presented
in Sect.5.

4.1.5 Dust emission

Dust emissions in HAM1 were calculated interactively us-
ing the scheme ofTegen et al.(2002) which was based on
observations from Africa but resulted in considerable biases
in East Asia.Cheng et al.(2008) made attempts to improve
dust emission by modifying the surface conditions used in
the model. They employed a new global dataset of aerody-
namic roughness length derived byPrigent et al.(2005) from
satellite retrievals, and the East-Asian soil properties from
Laurent et al.(2006). In addition, impact of soil moisture was
taken into account when computing the threshold frictional
wind velocity of dust mobilization. Because the satellite-

Fig. 6. (a)Changes in the annual mean dust emission mass flux due
to modified soil properties in East Asia;(b) corresponding changes
in the mass concentration of dust aerosols in the lowest model layer;
(c) the resulting changes in aerosol optical depth (AOD).

derived roughness lengths were much larger than those used
in the original model, a scaling factor had to be applied to the
frictional velocity and fine-tuned in order to give a reasonable
global total emission. Recent model evaluation has revealed
that this modification leads to an overestimate of AOD over
North Africa, while the inclusion of soil moisture in frictional
velocity calculation does not lead to significant improvement
(not shown). Therefore in HAM2 only the modification of
East Asia soil properties is adopted from the work ofCheng
et al.(2008).

To demonstrate the effect of this update, the standard
HAM2 results are compared with a sensitivity simulation
HAM2 DU performed using the old soil property data. The
characteristic spatial pattern of dust emission is largely un-
changed, but the strength increases significantly over Mon-
golia, in the western part of Inner Mongolia, and near the
Balquash lake (Fig.6a). The simulated near surface dust con-
centration (Fig.6b) and AOD (Fig.6c) in the vicinity of the
source regions as well as in the downstream areas also in-
crease, which leads to better agreements between model and
observation (not shown).
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Table 7. Impact of cloud microphysics parameterization on aerosol
lifetime (unit: day). The sensitivity experiment HAM2CLD uses
the scheme ofLohmann and Roeckner(1996), while the standard
ECHAM-HAM2 model uses the two-moment scheme ofLohmann
et al.(2007). Further details can be found in Sect.4.1.6.

Aerosol lifetime

HAM2 CLD HAM2 Relative diff.

Sulfate 3.6 4.4 +22 %
SOA 5.5 11.4 +107 %
Sea salt 0.59 0.69 +17 %
Black carbon 5.2 5.9 +13 %
POA 5.9 6.4 +8.5 %
Dust 5.0 5.2 +4.0 %

4.1.6 Cloud microphysics and aerosol activation

In the earlier model ECHAM-HAM1 the stratiform cloud mi-
crophysics scheme (Lohmann and Roeckner, 1996) predicted
mass concentrations of water vapor, cloud water and cloud
ice by taking into account phase transitions, precipitation
processes (autoconversion, accretion, aggregation), evapora-
tion of rain and melting of snow, as well as sedimentation
of cloud ice. Regarding stratiform cloud formation, the cloud
droplet number concentrations (CDNC) were prescribed as
functions of pressure and surface type (land or ocean). The
conversion of aerosol particles into cloud droplets – often re-
ferred to as aerosol activation or cloud droplet nucleation –
was not considered. While clouds could directly affect the
aerosol population via wet scavenging (cf. Sects.2.5, 4.2.1,
and 4.2.2), aerosols could only affect clouds via the direct
and semi-direct aerosol effects on model meteorology.

In order to explicitly simulate the effects of aerosols on
stratiform cloud microphysics,Lohmann et al.(2007) in-
troduced a two-moment scheme, with further improvements
proposed byLohmann and Hoose(2009). The new scheme
includes prognostic equations for number concentrations of
cloud droplets and ice crystals, and is used as the default
stratiform cloud microphysics scheme for HAM2. Many de-
tails of the parameterized phase change and precipitation pro-
cesses (e.g. autoconversion and accretion) are different from
the the earlier scheme.

The impact of aerosols on cloud microphysics is imple-
mented as follows: Aerosol activation in warm clouds is de-
scribed by the semi-empirical scheme ofLin and Leaitch
(1997). Autoconversion of cloud droplets to rain is param-
eterized as inKhairoutdinov and Kogan(2000). Homoge-
neous ice nucleation in cirrus clouds is assumed to happen
at air temperatures below−38◦C when supercooled solu-
tion droplets freeze. The production rate of ice crystals is
computed followingKärcher and Lohmann(2003). Hetero-
geneous nucleation happens in the model when dust exists
and the air temperature lies between−38◦C and 0◦C. In-
ternally mixed dust and black carbon aerosols are assumed
to act as immersion nuclei while only externally mixed dust

particles act as contact nuclei. Contact freezing by black car-
bon is not considered as it is quite uncertain (Lohmann and
Hoose, 2009).

The replacement of cloud microphysics parameterization
has complex impacts on the hydrological cycle and aerosol
lifecycle in the model, a comprehensive analysis of which
falls out of the scope of this paper. For the aerosols, we
present in Table7 differences in the lifetime of various com-
positions between the standard ECHAM-HAM2 and a sen-
sitivity experiment HAM2CLD that uses the old stratiform
cloud microphysics scheme. Here we see a general increase
in aerosol lifetime when the two-moment cloud scheme is
used. Analysis shows that although there is only a marginal
change (<2 %) in global mean precipitation rate, the liquid
water path increases from about 50 g m−2 (HAM2 CLD) to
85 g m−2 (HAM2). It follows that the conversion efficiency
of cloud water to precipitation, defined as the net precipita-
tion production rate divided by liquid water path, decreases
when the two-moment cloud scheme is used, because the pre-
cipitation formation depends inversely on the cloud droplet
number concentration which in turn depends on the number
of aerosols (Lohmann and Feichter, 1997). Because in-cloud
scavenging is directly related to this conversion efficiency
in the model (cf. Sect.2.5), lower conversion efficiency re-
sults in weaker in-cloud scavenging, which partly explains
the longer aerosol lifetimes in Table7.

4.2 Alternative configurations of HAM2

In addition to the updates described in the previous subsec-
tion which have become the default in HAM2, a few mod-
ified or new parameterizations have been introduced to the
model to provide a more realistic representation of certain
processes, to incorporate additional processes that are of sci-
entific importance, and/or to reduce certain biases in the
model. These alternative schemes are available in the official
release of the ECHAM-HAM2 code, and all produce reason-
able results. They are not yet used as default because further
evaluations are planned by the model developers. These al-
ternatives are briefly described in this subsection.

4.2.1 Aerosol wet removal from mix-phase clouds

As already mentioned in Sect.2.5, in-cloud scavenging of
aerosols in the HAM model is calculated using a scaveng-
ing parameter (denoted byR following Stier et al., 2005). A
constant value is prescribed for each aerosol mode and cloud
type. The values are listed in Table 3 ofStier et al.(2005). For
mixed-phase clouds, the same value is used for the liquid and
ice portions of the cloud condensate. In reality, the partition-
ing of aerosols between cloud droplets and ice crystals de-
pends on details of the particle characteristics (e.g. chemical
composition) and environmental conditions (e.g. temperature
and updraft velocity). This can lead to different removal rates
associated to cloud water and ice. For mixed-phase clouds,
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Fig. 7. Changes in annual mean AOD caused by(a) modification in
the in-cloud scavenging of mixed-phase stratiform clouds;(b) mod-
ifications in the below-cloud (rain and snow) scavenging parameter-
ization (Croft et al., 2009); the global mean and root mean square
differences are noted above each panel. The standard configuration
of HAM2 has a global and annual mean AOD of 0.135. The three
experiments (HAM2, HAM2INCLD and HAM2 BLCLD, cf. Ta-
ble 4) are identical in all other aspects of model configuration. Fur-
ther details can be found in Sects.4.2.1and4.2.2.

Verheggen et al.(2007) analyzed measurements obtained at
the high alpine research station Jungfraujoch (Switzerland),
and derived the following relationship between air temper-
ature (T , in Kelvin) and the fraction of aerosols (FN ) con-
tained in the cloud droplets or ice crystals:

FN (T ) = 0.031+ 0.93

[
1+ exp(−

T − 269.51

3.42
)

]−1

(1)

Using this formula, we have added in HAM2 a new option for
the scavenging parameter of mixed-phase stratiform clouds:

Rmix,i(T ) =
FN (T )

FN (T0)
R0,i , (2)

whereT0 = 273.15 K; R0,i is the scavenging parameter for
aerosol modei in mixed-phase clouds as prescribed by
Stier et al.(2005). The scaled scavenging parametersRmix,i

decrease with temperature, and are generally smaller than
the original values. Consequently wet deposition becomes
weaker and aerosol loading higher, especially in middle and
high latitude regions, as can been seen from the annual mean
AOD shown by Fig7a. In terms of global mean, the AOD
change is 0.0109, meaning a 8 % increase relative to the stan-
dard HAM2. The relative changes are much larger in the re-
gions from 45◦ N/45◦ S poleward (not shown) because the

total aerosol loading is considerably smaller in the high lati-
tudes than in the tropics (cf. Fig.A1b).

4.2.2 Below-cloud scavenging

Below-cloud scavenging by rain and snow are considered
separately in HAM. Mode-dependent impaction scavenging
coefficients were prescribed in HAM1 for rain. For the scav-
enging by snow, a fixed coefficient of 0.005 m2 kg−1 was
used for all modes (Stier et al., 2005). This simple treatment
has been updated byCroft et al.(2009) to take into account
aerosol and collector size distributions in the rain case, and
aerosol size in the snow case. These changes yield a reduc-
tion of AOD at most geographical locations (Fig.7b, corre-
sponding to a 8 % decrease in global mean), especially over
the storm tracks, and in mid-latitude continental areas that
are associated with high aerosol concentrations.

In the first and second rows of Fig.8, annual and regional
mean aerosol mass concentration profiles are shown for the
Southern Hemisphere storm track and for East Asia, where
the largest changes are seen in the AOD maps. Only sea salt
(sulfate) is shown in the storm track (East Asia) because it is
the dominating aerosol species in the region. In terms of the
magnitude of absolute change in aerosol concentration, mod-
ifications in the below-cloud removal parameterizations have
the greatest impact in the lowest model layers (Fig.8b and e,
dashed blue curves), while the changes due to in-cloud scav-
enging do not peak at surface (same figure, dashed orange
curves). In the lowest layers (0–2 km) where the aerosol con-
centration is considerably higher than above, the two modifi-
cations lead to similar magnitudes of change in aerosol mass
although the signs are opposite (Fig.8b and e). In relative
terms, changes in aerosol mass in the HAM2BLCLD sim-
ulation do not exceed−30 % in these regions, but those due
to the revised in-cloud parameterization can be as large as
200 % in the middle troposphere (Fig.8c, f).

In the bottom row of Fig.8 the response of BC mass
loading is shown for the Arctic region. Although BC in this
area has a minor contribution to the total AOD, its deposi-
tion at the surface can affect the surface albedo thus the po-
lar climate. Earlier studies (e.g.Koch et al., 2009) have re-
vealed a severe underestimation of Arctic BC concentration
in HAM1. The weaker in-cloud scavenging and considerably
higher BC loading in HAM2INCLD could potentially be
helpful. More efforts are still needed to further improve the
simulated vertical profiles of black carbon mass concentra-
tions in the Arctic.

4.2.3 Boundary layer nucleation

In the planetary boundary layer, the nucleation of H2SO4
and an organic compound can be considered using either
the cluster activation scheme ofKulmala et al.(2006) and
Riipinen et al.(2007), or the kinetic nucleation scheme of
Laakso et al.(2004) andKuang et al.(2008). In the currently
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Fig. 8. Annual mean vertical profiles of aerosol mass concentrations in various regions in the sensitivity simulations HAM2INCLD and
HAM2 BLCLD (left panels), the differences (middle column) and relative differences with respect to standard HAM2 (right panels). Further
details can be found in Sects.4.2.1and4.2.2.

implementation these processes (when switched on) are lim-
ited to forested areas. Sensitivity experiments are performed
with both schemes (HAM2cluster and HAM2kinetic in Ta-
ble 4). The simulated aerosol concentration and size distri-
bution are discussed in Sects.5.2 and5.3 in the context of
comparison with observations. These nucleation pathways
may be important for studies of aerosol-cloud interactions
because they may affect the number concentration of cloud
condensation nuclei, although the topic is not the focus of the
present paper.

5 Evaluation of HAM2 against HAM1 and observations

Having documented in the previous section the new features
in model formulation and their individual impacts on simula-
tion results, we now move on to their combined effects. This
section compares the overall behavior of HAM2 with that of

the earlier version HAM1, and, when possible, against obser-
vations.

5.1 Global mean aerosol mass budgets and
concentrations

We start the intercomparison with the annual mean global
mass budget of different aerosol types shown in Table8. Re-
sults from the AeroCom intercomparison project (Dentener
et al., 2006) are also included in the table so as to place our
results in perspective.

To the first order, HAM1 and HAM2 have very similar
mass budgets. The relative differences are, in most cases,
considerably smaller than the discrepancies among the Ae-
roCom models. On the other hand, differences can still be
clearly seen between the two HAM versions. For instance the
nucleation source of sulfate aerosol increases considerably in
the new version (Table8, first block), which is in agreement
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Table 8. Annual mean global mass budget of SU, BC, POM, SS and DU simulated by two version of the HAM model, and their relative
differences. To put the numbers in perspective, the multi-model mean and standard deviation of the AeroCom intercomparison project (from
Textor et al., 2006) are also listed. The standard deviations are given as percentages of the corresponding mean values. The AeroCom dry
deposition listed here is the sum of dry deposition and sedimentation. For sea salt there was an outlier model that featured very high emissions.
We therefore cite the multi-model median (indicated by asterisks) instead of mean for the sea salt budget.

HAM1 HAM2 HAM2 vs HAM1
Relative Diff.

AeroCom (Textor et al., 2006)

Mean Std. Dev.

SO2−

4 particle
Burden (Tg S) 0.78 0.85 +9 % 0.67 25 %
Sources (Tg S yr−1)

Total 77.6 70.9 −8.6 % 59.7 22 %
Primary emissions 2.3 2.3 0.0 %
Nucleation 0.11 0.21 +91 %
H2SO4 condensation 27.1 25.8 −4.8 %
Aqueous oxidation 48.0 42.5 −11 %

Sinks (Tg S yr−1)
Total 77.3 70.5 −8.8 %
Dry deposition 2.16 2.33 +7.9 %

} 6.9 55 %
Sedimentation 1.62 1.56 −3.7 %
Wet deposition 73.5 66.6 −9.4 % 52.8 22 %

Lifetime (days) 3.7 4.4 +16 % 4.12 18 %

Black carbon
Burden (Tg) 0.11 0.13 +18 % 0.24 42 %
Sources (Tg yr−1)

Emissions 7.7 7.7 0.0 % 11.9 23 %
Sinks (Tg yr−1)

Dry deposition 0.59 0.64 +8.5 %
} 2.55 55 %

Sedimentation 0.02 0.02 0.0 %
Wet deposition 7.19 7.14 −7.0 % 9.35 31 %

Lifetime (days) 5.3 5.9 +11 % 7.12 33 %
Aging time (days) 0.72 0.86 +19 %

POM POA + SOA POA, SOA
Burden (Tg) 0.99 0.83, 0.65 +49 % (POA+SOA) 1.70 27 %
Sources (Tg yr−1)

Total 66.1 68.4 +3.5 % (POA+SOA) 96.6 26 %
POA emissions 47.0 47.1, – +0.2 % (POA)
SOA from monoterpenes 19.1 − , 3.7
SOA from isoprene − − , 12.0
Anthropogenic SOA emissions − − , 5.6

Sinks (Tg yr−1)
Dry deposition 4.9 3.3, 1.2 −8.2 % (POA+SOA)

} 19.2 49 %
Sedimentation 0.19 0.13, 0.06 0.0 % (POA+SOA)
Wet deposition 61.4 43.9, 19.4 +3.1 % (POA+SOA) 76.7 32 %

Lifetime (days) 5.5 6.4 , 11.4 +16 % (POA), +107 % (SOA) 6.54 27 %
Aging time (days) 0.96 1.00,− +4.2 % (POA)

Sea salt
Burden (Tg) 10.3 11.6 +13 % 6.37∗ 54 %
Sources (Tg yr−1)

Emissions 5019 6110 +22 % 6280∗ 199 %
Sinks (Tg yr−1)

Dry deposition 948 1484 +57 %
} 4377∗ 219 %

Sedimentation 1376 2038 +48 %
Wet deposition 2721 2591 −4.8 % 1902∗ 77 %

Lifetime (days) 0.75 0.69 −8.0 % 0.41∗ 58 %

Dust
Burden (Tg) 10.3 11.6 +13 % 19.20 40 %
Sources (Tg yr−1)

Emissions 751 805 +7.2 % 1840 49 %
Sinks (Tg yr−1)

Dry deposition 44.8 56.1 +25 %
} 1235 84 %

Sedimentation 289 341 +18 %
Wet deposition 423 410 −3.1 % 607 54 %

Lifetime (days) 5.0 5.2 +4 % 4.1 43 %
Aging time (days) 4.8 5.4 +12 %
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Fig. 9. Annual and zonal mean cross-sections of aerosol mass concentrations simulated by HAM1 (left column, unit: µg m−3) and HAM2
(column 2, unit: µg m−3), their differences (column 3, unit: µg m−3), and the ratio (right column).

with earlier discussions in Sect.4.1.1. HAM2 also shows a
marked increase (+49 %) in POM burden, which is not sur-
prising considering the inclusion of the explicit SOA module.

Another point worth noting is the shorter lifetime of sea
salt in HAM2 (Table8, fourth block). In Sect.4.1.4we men-
tioned that the modified emission scheme produces stronger
numberfluxes in the accumulation mode and weaker in the
coarse mode, as well as an increase ofmassflux in both
modes compared to HAM1. Consequently, the coarse mode
particles become much larger than in HAM1, and are more
efficiently removed from the atmosphere through dry deposi-
tion and sedimentation. Because coarse mode particles con-
stitute more than 95 % of the total sea salt mass, they play
a determining role in the changes in sea salt sinks we see in
Table8.

The four aerosol species other than sea salt have longer
lifetimes in HAM2 compared to HAM1 (Table8). This is
mainly related to cloud microphysics and wet deposition as
discussed in Sect.4.1.6and Table7.

In Fig. 9 we present the annual and zonal mean mass
concentration of the five aerosol types. Consistent with Ta-
ble 8, an overall increase in aerosol burden can be seen
in HAM2. In terms of the absolute amount, changes in
dust and sea salt concentrations are largely confined to the
near surface levels and in the source regions (Fig.9o and
s), while sulfate and POM feature increased concentrations
also near the tropopause. This is particularly true for POM
which, as pointed out in the previous section, results from
the vertical transport of condensable gases by convection
and SOA formation in the upper troposphere. In relative
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terms, the increase of concentration is more evident in the
free troposphere. The near-surface layers feature marginal
changes within a factor of 1.5 except in the Polar Re-
gions (Fig.9, rightmost row). A comparison of the simu-
lated monthly mean surface mass concentrations against the
EMEP (European Monitoring and Evaluation Programme),
IMPROVE (Interagency Monitoring of Protected Visual En-
vironments) and the University of Miami networks further
confirms that the surface concentrations are similar to those
in HAM1 (not shown).

5.2 Condensation nuclei

This subsection evaluates the simulated number concentra-
tions of condensation nuclei (CN, i.e. aerosol particles of dry
diameter larger than 0.01 µm), using a collection of aircraft
measurements between the years 1991 and 2008, provided
by NASA LaRC2, NCAR EOL3 and BADC4. The geograph-
ical coverage is mainly the Pacific Ocean, with a few addi-
tional flights over the North Atlantic and the Indian Ocean,
and near the North Pole. The flight trajectories are illustrated
in Fig. 10. Further details of the measurement campaigns are
given in the Appendix (TableA1). For the model evaluation,
we present in Fig.11 zonal cross-sections of CN concentra-
tion in different latitude bands, and in Fig.12the vertical pro-
files averaged over the six regions denoted by hatched boxes
on the trajectory map. In order to prepare these plots, each
measured concentration is assigned to a model grid point ac-
cording to its location. Arithmetic averages are then com-
puted for all samples available in a 30◦ (latitude) by 1.875◦

(longitude) box, or in the hatched regions in Fig.10. As for
model simulations, we first vertically interpolate the daily
output to height levels, pick out the CN concentration occur-
ring at the same location and in the same month as a measure-
ment, then compute the arithmetic average for the longitude-
latitude bands and boxes. The CN concentration in the model
is calculated by integrating the simulated number size distri-
bution above the lower cut-off dry diameter (0.01 µm).

Figure11 reveals that both model versions can correctly
capture the basic features of CN distribution at different loca-
tions. In the low-latitude areas (Fig.11a–f, regions A, B, and
C in Fig.12) the concentrations are highest in the upper tro-
posphere (> 4000 cm−3 STP5) due to strong nucleation. The
concentrations decrease quickly towards the surface by about
an order of magnitude. In the Northern Hemisphere midlati-
tudes (Fig.11g–i), the maxima at 120–170◦ E (region D) and
120–60◦ W (region E) are caused by strong SO2 sources in

2Langley Research Center of the National Aeronautics and
Space Administration (http://www-air.larc.nasa.gov/data.htm)

3National Center for Atmospheric Research Earth Observing
Laboratory (http://data.eol.ucar.edu/)

4British Atmospheric Data Centre (http://badc.nerc.ac.uk)
5STP stands for standard temperature and pressure, i.e.

(1013.25 hPa, 273.15 K).

Asia and the USA. The air over Canada, Greenland and the
Northern Polar Region is much cleaner (Figs.10and11j–l).

Comparing the two HAM versions, we see that the new
model produces better results in the northern high-latitude
clean regions (last row of Fig.11, region F in Fig.12). The
east-west gradient in the upper troposphere over the North-
west Pacific (region D in Fig.11h) is better represented.
The high concentrations in the upper tropical troposphere
are slightly closer to the observation in HAM2 (first row in
Fig. 11, region A), although positive biases are still evident
in the middle and lower troposphere over the tropical oceans
(Fig. 12, regions A and B).

Note that the observations suggest very high CN concen-
trations (> 4000 cm−3 STP) in the surface layers near the
SO2 source regions (Fig.11i and regions C, D, E in Fig.12).
This feature is missing in the standard HAM1 and HAM2
simulations, but can be better represented in HAM2 using
the kinetic nucleation scheme ofKuang et al.(2008), as can
be seen from the solid green profiles in Fig.12. Inclusion of
the cluster activation scheme (Kulmala et al., 2006; Riipinen
et al., 2007; Kazil et al., 2010) can also improve the results
(dashed green lines), but not as satisfactorily.

5.3 Aerosol size distribution in the boundary layer

In observational studies it is a common practice to fit the
measured aerosol number concentrations into log-normal
probability density functions and summarize their charac-
teristics by a few parameters. Such records are relatively
straightforward to use in our model evaluation since HAM
uses the same modal method to describe aerosol size distri-
bution.

Figures13–15 present aerosol number concentrations and
size distributions at six European surface sites in differ-
ent seasons. The measurements are fromPutaud(2003) and
Tunved et al.(2003), which contain data at Harwell, Hohen-
peissenberg, Aspvretren and Ispra from 1997 to 2001, and
at Pallas and Hyytiälä in 2000 and 2001. In addition to the
standard HAM1 and HAM2 simulations, the two sensitivity
experiments discussed in the previous subsection (cf. Fig.12)
are also shown.

The model is able to reproduce the correct magnitude of
aerosol number concentration at these locations except for
Ispra. At Ispra the geographic conditions that favor the stag-
nation of pollutants (from, e.g. Milan) can not be resolved
by the relatively coarse model grid, resulting in a consider-
able underestimate of the number concentration in both win-
ter and summer. At most of the other sites, results given by
the standard HAM2 agree with the observation within a fac-
tor of two.

The three-mode size distribution functions derived by
Putaud(2003) andTunved et al.(2003) are compared with
HAM simulations in Figs.14 and15. In terms of the char-
acteristic shapes, differences between HAM1 and HAM2 are
smaller than those between simulations and observations.
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Fig. 10. Aircraft trajectories of the condensation nuclei measurements used for model evaluation in Sect.5.2 and Figs.11–12. Hatched
boxes indicate regions in which the vertical profiles are compared in Fig.12. Further details of the campaigns can be found in the Appendix
(TableA1).

In winter, all HAM2 simulations are very similar. Com-
pared to HAM1 there is a slight shift of the distribution func-
tions towards larger sizes, possibly related to enhanced par-
ticle growth due to changes in the surface condensation of
H2SO4 gas (cf. Fig.2, bottom row). In summer, stronger so-
lar radiation enhances the oxidation of SO2, resulting in high
concentrations of sulfuric acid gas in the near surface layers.
Under such conditions, the model results become sensitive
to the nucleation scheme. Consistent with the earlier discus-
sion on CN concentration, Fig.15 reveals a clear increase
in the number concentration of small particles when kinetic
nucleation is included (solid green lines in the figure), and
a moderate increase when the cluster activation scheme is
used (dotted green lines). Such increases lead to positive bi-
ases at the sites shown in this figure, which (except for Ispra)
are background stations representing relatively clean situa-
tions. In contrast, in the previous subsection we noted that in
the polluted regions in the Northern Hemisphere, even with
boundary nucleation switched on, the model still severely
underestimate the particle number concentration in the near-
surface layers (Fig.12, regions D and E). This seems to sug-
gest the regional gradient in aerosol concentrations is under-
estimated, which is likely related to the fact that with the rel-

atively coarse (although typical for climate simulations) res-
olution used here, the model can not resolve the horizontal
scales of aerosol plumes. Other possible explanations include
inaccuracies in the emission of aerosols and their precursors,
and/or the model representation of aerosol microphysics pro-
cesses or meteorological conditions. So far we have not yet
been able to collect sufficiently detailed, consistent and ac-
curate observational data to help pinpoint the cause of these
biases. Further studies are needed to address this issue.

For the marine boundary layer there exists a 30-yr clima-
tology compiled byHeintzenberg et al.(2000) with relatively
large geographical coverage. Using measurements obtained
in a number of 15◦× 15◦ (latitude× logitude) regions, they
derived number concentration, geometric mean diameter and
standard deviation of the Aitken and accumulation modes for
10 latitude bands. These parameters are provided in Table
3 of their paper. In Fig.16 we compare this data set (black
curves) with the standard HAM1 and HAM2 simulations (red
and blue curves). In contrast to continental areas, the remote
oceans are characterized by well-defined and clearly sepa-
rated Aitken and accumulation modes. This feature is cor-
rectly captured in both model versions. In HAM1 the number
concentration of the Aitken mode is considerably higher than
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Fig. 11. Vertical distribution of simulated and observed condensation nuclei concentrations (unit: cm−3 STP) in different regions. The
observational data are compiled from campaign measurements shown in Fig.10 and TableA1. Model results are derived from daily mean
output of the months in which the measurements were obtained. The simulated CN concentrations are derived by integrating over the aerosol
size distributions. The lower cut-off value of particle dry diameter is 0.01 µm. Dashed boxes indicate regions in which the vertical profiles
are compared in Fig.12.

accumulation mode in all latitude bands. The contrast is less
pronounced in HAM2 because the modified sea salt emis-
sion scheme increases the emission flux of the accumulation
mode (cf. Sect.4.1.4), bringing the HAM2 results closer to
observation, especially in the middle and low latitudes. The

simulated distribution functions are generally broader than
theHeintzenberg et al.(2000) dataset, due to the fact that the
prescribed standard deviation (1.59 for both modes) is often
larger than the observed values (typically 1.4–1.5).
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Fig. 12. Observed (black) and simulated (colored) CN concentration profiles (unit: cm−3 STP) over the regions indicated in Figs.10–11.
Gray shading shows standard deviation of the measurements. Further details are given in Sect.5.2.

5.4 Radiative properties of aerosols

The ultimate goal of simulating aerosols in a climate model
is to understand their impact on climate. In this subsection
we look at aerosol radiative properties that determine the di-
rect and semi-direct aerosol effects in the model. In Fig.17
the simulated global and zonal mean AOD andÅngstr̈om pa-
rameter are compared with the MODIS satellite retrievals,
while the aerosol absorption optical depth (AAOD) is com-
pared with a climatology compiled by Kinne et al. (2012).
The Taylor diagrams in Fig.18 present a concise evaluation
of the simulated geographical distribution of these three pa-
rameters. The corresponding contour plots can be found in
the Appendix (Figs.A1 andA2). Here the AOD and AAOD
are presented at the mid-visible wavelength 0.55 µm. The
simulatedÅngstr̈om parameter is calculated using the two
wavelengths 0.55 µm and 0.825 µm.

The observed meridional variation of AOD in Fig.17a fea-
tures a primary peak around 20◦ N mainly related to dust,
and a secondary peak over the Southern Hemisphere storm
tracks associated with sea salt. This is reproduced by both
HAM1 and HAM2, although with significant positive biases
over the Southern Oceans. From HAM1 to HAM2, the de-
crease of AOD over the tropical oceans (cf. global distri-
butions displayed in Fig.A1c–d) can be attributed to the
new water uptake scheme. The correlation between simu-
lated and observed global distributions is improved over both

land and ocean (Fig.18a). For theÅngstr̈om parameter there
is a systematic increase in the new version in most latitudes
(Fig. 17b, with global maps shown in Fig.A1g–h), resulting
from the shift of size distribution of the sea salt emission and
reduced aerosol water uptake. The Taylor diagram in Fig.18b
suggests the particle size distributions over land need to be
improved.

In Fig. 19 the global mean AOD in HAM1 and HAM2
are further decomposed into contributions from aerosol water
and dry mass. The contributions of different chemical species
are presented in the Appendix (TableA2). Note that because
our model assumes internal mixing between different chem-
ical species within a log-normal mode, the component AOD
is diagnosed by calculating the volume-weighted attribution
of AOD per mode followed by summation over all modes.
Unlike in models that assume pure external mixing, the com-
ponent AOD in HAM is a proxy diagnosed for illustrative
purposes.

In both model versions, water makes up more than two
thirds of the total AOD. From HAM1 to the standard version
of HAM2 there is a moderate increase in the dry AOD which
is overcompensated by the decrease in aerosol water. For
HAM2 the whiskers in the figure indicate the spread among
sensitivity experiments discussed in Sect.4, giving a sense
of uncertainties in this quantity. The lowest values (of total,
water and dry AOD) are all associated with theLohmann
and Roeckner(1996) cloud microphysics parameterization
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Fig. 13. Simulated and measured aerosol number concentration
(cm−3) in the planetary boundary layer at various continental sites.
The observational data are fromPutaud(2003) andTunved et al.
(2003). The corresponding particle size distributions are shown in
Figs.14and15.

(stronger wet deposition), while the highest values of the to-
tal and water AOD are from the simulation using the old wa-
ter uptake scheme (using 100 % RH ceiling). Global mean
values of AOD in the sensitivity simulations are listed in Ta-
bleA3.

The magnitude and distribution of AAOD are key for at-
mospheric absorption, direct and semi-direct aerosol radia-
tive effects. The reference AAOD climatology used in this
study is compiled byKinne et al.(2012) using the multi-
model median from AeroCom combined with measurements
from the NASA AERONET program (http://aeronet.gsfc.
nasa.gov). The main contributors of AAOD are black car-
bon and dust, rendering high values over the middle- and
low-latitude continents (Figs.17c andA2). The Taylor dia-
gram in Fig.18c suggests that the spatial distribution is well
reproduced by both HAM1 and HAM2 (correlation coeffi-
cient ca. 0.9), but with significant systematic underestima-
tion of the magnitude. The negative bias has been reduced
in HAM2 partly because the refractive index of black carbon

(BC) was updated according to the medium-absorbing values
from Bond and Bergstrom(2006). The other major contrib-
utor is the weaker wet scavenging in the two-moment cloud
microphysics scheme which increases the lifetime of BC, and
consequently the overall BC burden.

To have a closer look at the model results beyond an-
nual mean, we use daily mean data of the year 2000 from
AERONET. A map of the site locations is presented in
Fig. 20. Daily mean model output is interpolated to the sites
and sampled on the same days to derive the probability den-
sity functions (PDFs) shown in Fig.21. For AOD, the joint
PDF of HAM2 vs HAM1 (panel c) features an elongated
shape located near the diagonal of the diagram, indicating
that results from the two versions are by and large simi-
lar. On the other hand, there is a clear increase of AOD in
HAM2 in the clean regions as indicated by the upward bend-
ing of the “cloud” near the bottom left corner of the diagram
in Fig. 21c. Although AERONET rarely observed AOD be-
low 2× 10−2, HAM1 tends to produce very small values
(Fig. 21a) in the high latitudes. Such underestimates have
been reduced in HAM2, making the joint PDF in Fig.21b
better centered along the diagonal. As for theÅngstr̈om
parameter, the modified sea salt emission has reduced the
number of cases of too large particles (small values of the
Ångstr̈om parameter, Fig.21d–e), while there is still a sub-
stantial number of cases of overestimatedÅngstr̈om parame-
ter that need to be improved in the future. The different sym-
bols in Fig.20provide a summary of the model performance
at individual sites.

5.5 Direct radiative effect of aerosols

For the simulations listed in Table4 performed with HAM2
and its variants, various components of the aerosol radiative
effect are diagnosed. Figure22 illustrates the direct radia-
tive effect of all (i.e. natural and anthropogenic) aerosols in
the model atmosphere. On the global scale the scattering of
shortwave radiation (cooling) overwhelms the absorption of
longwave radiation (warming), rendering a net direct effect
of −1.76 W m−2 at the top of the atmosphere (TOA) in the
standard HAM2. The various parameterization schemes dis-
cussed in this study exhibit considerable variation in the ra-
diative effects, as can be seen from the whiskers. The num-
bers behind the bar chart are given in the Appendix (Ta-
bleA3). Again we see a strong sensitivity of the model result
to the water uptake scheme (experiment HAM2WAT) and
cloud microphysics (experiment HAM2CLD), both at TOA
and at the Earth’s surface.

To estimate the radiative forcing of anthropogenic
aerosols, we performed simulations with present-day (PD)
and pre-industrial (PI) emissions of aerosols and their precur-
sors. The PD emissions are the same as described in Sect.3
(year 2000). The PI emissions are that of year 1750 as in
Schulz et al.(2006). According toSchulz et al.(2006) and
Myhre et al.(2012), the anthropogenic forcing is defined as
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Fig. 14. Comparison of the simulated and measured aerosol size distributions in the planetary boundary layer over land in boreal winter
(December-January-February). The thick black curves are the observed median size distributions fromPutaud(2003) and Tunved et al.
(2003). Model results (the colored curves) are plotted only for the diameter range between 0.01 and 0.8 µm because this is the range measured
in the references. Note that most parts of the dotted lines underlie solid color lines.

Fig. 15. As in Fig.14but for boreal summer (June-July-August).
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Fig. 16. Comparison of the measured (black curves) and simulated (colored curves) size distribution functions of the Aitken and accumulation
modes (soluble and insoluble) in the marine boundary layer. The observations are a 30-yr climatology covering the brown boxes shown in
(k), compiled byHeintzenberg et al.(2000). The simulations shown in red and blue correspond to the HAM1 and HAM2 simulations,
respectively.σ1 andσ2 in each panel are the observed standard deviation of the Aitken and accumulation mode. In the HAM model a fixed
value of 1.59 is prescribed for both modes.

the difference in TOA (top-of-atmosphere) shortwave flux
between the PD and PI simulations under the same cloud dis-
tribution and properties. To strictly follow this definition, we
use the HAM2CLD configuration to exclude the aerosol in-
direct effects. Within a pair of PD and PI simulations, the
model meteorology is kept exactly the same by using the
Tanre et al.(1984) aerosol climatology when calculating the
radiative heating/cooling that affects the atmospheric circu-

lation. In each simulation, two additional radiative transfer
calculations are performed, one with no aerosols, the other
with the interactively predicted aerosol concentrations. The
differences in radiative fluxes from these two diagnostic cal-
culations are referred to as the direct radiative effect. The
PD and PI simulations are then compared to derive the effect
of anthropogenic aerosols, referred to as the anthropogenic
aerosol direct forcing.
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Fig. 17. Comparison of the simulated annual and zonal mean
aerosol radiative properties with (a) MODIS aerosol optical depth
(AOD), (b) MODIS Ångström parameter (ANG), and (c) aerosol
absorption optical depth (AAOD) from Kinne et al. (2012). Num-
bers given in legends are the global mean values and relative differ-
ences. Polar Regions (75◦N/S poleward) are excluded for AOD and
ANG because of the limited number of satellite retrievals.

Fig. 18. Taylor diagrams comparing the simulated annual mean
aerosol radiative properties with (a) MODIS aerosol optical depth
(AOD), (b) MODIS Ångström parameter (ANG), and (c) aerosol
absorption optical depth (AAOD) from Kinne et al. (2012). The
corresponding zonal mean plots and global mean values are shown
in Fig. 17.

Fig. 17. Comparison of the simulated annual and zonal mean
aerosol radiative properties with(a) MODIS aerosol optical depth
(AOD), (b) MODIS Ångstr̈om parameter (ANG), and(c) aerosol
absorption optical depth (AAOD) from Kinne et al. (2012). Num-
bers given in legends are the global mean values and relative differ-
ences. Polar Regions (75◦ N/S poleward) are excluded for AOD and
ANG because of the limited number of satellite retrievals.

Table9 presents the results in the style of Table 5 inSchulz
et al.(2006). The simulated anthropogenic AOD (0.028) and
its contribution to the present day total AOD (25.2 %) are
close to the AeroCom Phase I multi-model averages. The
clear-sky and all-sky TOA forcings are smaller than the Ae-
roCom average. The radiative properties and forcing of dif-
ferent anthropogenic aerosol species are shown in Table10.
The results are obtained by perturbing emissions of individ-
ual species separately. A sensitivity experiment using the old

Fig. 18. Taylor diagrams comparing the simulated annual mean
aerosol radiative properties with(a) MODIS aerosol optical depth
(AOD), (b) MODIS Ångstr̈om parameter (ANG), and(c) aerosol
absorption optical depth (AAOD) from Kinne et al. (2012). The cor-
responding zonal mean plots and global mean values are shown in
Fig. 17.
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Fig. 19.Global and annual mean aerosol optical depth simulated by
HAM1 and HAM2, the corresponding contributions from aerosol
water and dry mass, as well as the absorption AOD. Whiskers as-
sociated with the HAM2 results indicate the ranges given by the
sensitivity experiments listed in Table4. Note that the absorption
AOD is displayed with a different scale.

water uptake scheme (HAM2CLD WAT) reveals a close re-
lation between the aerosol water content and radiative forc-
ing (the RF and NRFM values).

Tables9 and10only provide a first view of the PD-PI sim-
ulations described here. Further analyses are planned. Within
the framework of the AeroCom Phase II intercomparison
(Myhre et al., 2012), it will be interesting to investigate issues
like the regional responses to anthropogenic aerosol forcing,
and modeling uncertainties in the distribution and absorption
properties of black carbon (Zarzycki and Bond, 2011; Sam-
set and Myhre, 2011; Stier et al., 2007).

6 Conclusions

This paper introduces improved aerosol representations in
the second version of the ECHAM-HAM model and quan-
tifies their impact on the simulated aerosol properties, global
distribution, and direct radiative effects. Some of the model
updates, for example in the sea salt and dust emissions, were
directly motivated by previously noticed model biases. The
others aimed at having a physically more realistic representa-
tion of the aerosol lifecycle, and extending the model’s capa-
bility in consistently simulating the interactions between var-
ious aerosol-related micro- and macro-scale processes. The
new H2SO4/H2O aerosol nucleation scheme considers both
neutral and charged nucleation, which can be used to in-
vestigate the impact of nucleation from ions caused by cos-
mic rays (Kazil et al., 2010) and by radioactive species ef-
fusing from the Earth’s surface (Zhang et al., 2011). The
explicit treatment of SOA introduced byO’Donnell et al.
(2011) can be used to investigate, for instance, the impact

of vegetation change on aerosol formation and the conse-
quent changes in cloud radiative forcing. The incorpora-
tion of a two-moment stratiform cloud microphysics scheme
(Lohmann et al., 2007) allows aerosols to directly affect
cloud microphysics through cloud droplet activation and ice
nucleation.

The impacts of these updates on the simulation of aerosol
distribution and property are analysed in Sects.4 and5. The
new parameterizations that have largest impact on the global
mean AOD and aerosol radiative effects are the water uptake
scheme and the new stratiform cloud microphysics. The wa-
ter uptake scheme implemented byO’Donnell et al.(2011)
considerably reduces the aerosol water content in the lower
troposphere due to the use of a lower RH ceiling. The re-
sulting (global) total mass of aerosol water is in closer agree-
ment with the AeroCom multi-model average. In comparison
to the cloud microphysics scheme ofLohmann and Roeck-
ner (1996), the new two-moment scheme features weaker
conversion efficiency of cloud condensate to precipitation,
which contributes to changes to aerosol lifetime and wet
deposition. Compared to HAM1, aerosol lifetimes are in-
creased in HAM2 for all aerosol species except sea salt. The
percentages are between 10 % and 20 % for sulfate, black
carbon, and POA, 107 % for SOA, and 4 % for dust. Wet de-
position decreased for all aerosol species except particulate
organic matter.

The modified sea salt emission calculation significantly
changes the partitioning of particle number fluxes between
accumulation mode and coarse mode, resulting in a shift of
the size distribution to smaller particles.

The nucleation parameterization ofKazil et al. (2010)
leads to an upward shift of the strongest nucleation to the
tropical tropopause. Resulting changes in the direct aerosol
effect are relatively small because of the small sizes of the
nucleation mode particles.

By including all these updates in the model, we are able
to obtain improved results compared to HAM1. As shown
in Sects.5.2–5.4, the aerosol size distribution and spatial-
temporal variability simulated by HAM2 show better agree-
ment with the observations. The systematic negative bias in
AAOD has been reduced. The remaining major model de-
ficiencies include (i) positive bias of AOD over the ocean,
(ii) negative bias of AOD and aerosol mass concentration in
high-latitude regions, and (iii) negative bias of particle num-
ber concentration, especially that of the Aitken mode, in the
lower troposphere over the heavily polluted regions.

There are a few other modifications that have already been
implemented in the model but not switched on in the stan-
dard HAM2. Taking into account the aerosol formation by
cluster activation (Kulmala et al., 2006; Riipinen et al., 2007)
or by kinetic nucleation (Laakso et al., 2004; Kuang et al.,
2008) can help improve near-surface aerosol number con-
centrations in polluted regions, but meanwhile lead to over-
estimation in cleaner continental regions. The temperature-
dependent in-cloud scavenging coefficient for mixed-phase
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Fig. 20. Map showing the AERONET sites at which the daily mean aerosol optical depth (AOD) andÅngstr̈om parameter (ANG) of the
year 2000 are used for the comparison in Fig.21. At each site the root mean square error (RMSE, of daily mean AOD or ANG) against
measurements is computed for both the HAM1 and HAM2 simulations. Green dots indicate improved results in HAM2 (reduced RMSE) for
both AOD and ANG; Orange dots indicate degraded results for both parameters; empty triangles and rectangles mark the locations where
mixed results are obtained. AOD is calculated/retrieved at the mid-visible wavelength 0.55 µm. The AERONETÅngstr̈om parameter is
retrieved using the wavelengths 0.44 µm and 0.87 µm. The model-simulated ANG is calculated using the wavelengths 0.55 µm and 0.825 µm.

Fig. 21. Comparison of the AERONET-retrieved and model-simulated aerosol optical depth (upper row) andÅngstr̈om parameter (lower
row). The color shading shows the joint probability density distribution (unit: %) as a function of, for example in(a), the AERONET-
retrieved and HAM1 simulated AOD, computed from the daily mean measurement retrieved from AERONET for the year 2000 at all
locations indicated in Fig.20and model output (also daily means) sampled at the same time instances and locations. The R- and RMS-values
noted in each panel are the correlation coefficient and root mean square difference of the two data series. Further details can be found in
Sect.5.4.
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Table 9. Radiative properties and direct shortwave forcing of anthropogenic aerosols in HAM2, followingSchulz et al.(2006). AODant and
AODant/AODPD are the anthropogenic AOD and its contribution to the present-day total AOD. RF stands for radiative forcing. NRF is the
normalized radiative forcing per unit AOD. TOA stands for top-of-atmosphere. The AeroCom I multi-model mean and standard deviation
are fromSchulz et al.(2006). Further details can be found in Sect.5.5.

Model AODant AODant/ Cloud NRF RF TOA RF TOA RF TOA Surface Atmos.
AODPD Cover clear-sky all-sky/ clear-sky all-sky forcing forcing

(W m−2) clear-sky (W m−2) (W m−2) all-sky (W m−2) all-sky (W m−2)

HAM2 CLD 0.028 25.2 % 63 % −15.7 0.22 −0.44 −0.10 −1.12 1.02
AeroCom I 0.029±0.010 25±11 % 63±5 % −23±7 0.33±0.21 −0.68±0.24 −0.22±0.16 −1.02±0.23 0.82±0.17

Table 10. Radiative properties and anthropogenic (direct) shortwave forcing of individual aerosol species. AODant, AAODant andωant
are the optical depth, absorption optical depth and single scattering albedo of anthropogenic aerosols. MEC stands for dry mass extinction
coefficient, RF for radiative forcing. NRF is the normalized RF per unit AOD. NRFM is the raditive forcing efficiency per unit aerosol load.
The AeroCom I multi-model mean and standard deviation are fromSchulz et al.(2006). Further details can be found in Sect.5.5.

Model Load AODant AAODant ωant MEC RF NRF NRFM
(mg m−2) *1000 (m2 g−1) (W m−2) (W m−2) (W g−1)

Sulfate HAM2CLD 2.12 0.019 0.202 1.00 9.1 −0.26 −13.2 −119
HAM2 CLD WAT 2.11 0.026 0.252 1.00 8.1 −0.32 −12.3 −150
AeroCom I 2.12±0.82 0.019±0.009 – – 9.1±2.7 −0.35±0.15 −19.0±7.0 −161±41

BC HAM2 CLD 0.093 0.0011 1.001 0.92 11.6 0.13 123 1421
AeroCom I – – – – 0.12±0.04 – –

POA HAM2 CLD 0.24 0.0008 0.046 0.96 3.4 −0.015 -18.1 −61.1

SOA HAM2 CLD 0.15 0.0016 0.035 0.98 10.9 −0.02 −12.9 -141

Fig. 22.Global and annual mean aerosol direct radiative effect sim-
ulated by HAM2 at top of the atmosphere (TOA) and at the Earth’s
surface. Whiskers indicate the spread among the HAM2 sensitivity
experiments listed in Table4.

clouds and the below-cloud scavenging scheme ofCroft et al.
(2009) that takes into account aerosol and collector sizes ap-
pear to have some positive impacts on model results, but
more extensive evaluations are still needed.

In this study the evaluation was concentrated on the global
distribution and radiative properties of aerosols. With the
new two-moment cloud microphysics, it is possible to inves-
tigate the aerosol effect on cloud via the first indirect effect
and/or the second indirect effect. It will be useful to study
the indirect effects of anthropogenic aerosols on climate in
our model and their sensitivity to model configuration and
resolution, not only in nudged integrations, but in “free” cli-
mate simulations. These will be presented in separate pa-
pers. Furthermore, the aerosol activation scheme ofLin and
Leaitch (1997), currently used in HAM2, is highly simpli-
fied in terms of particle size and composition effects. Re-
cently Stier et al. have implemented the Köhler theory based
scheme ofAbdul-Razzak and Ghan(2000). The evaluation
will be presented in a separate paper.Croft et al.(2010) de-
veloped a new in-cloud aerosol scavenging scheme which
may help achieve consistency with the cloud microphysics
parameterization and reduce model biases.
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Appendix A

Table A1. List of observational data used in Sect.5.2 for evaluating the simulated concentration of condensation nuclei. The measure-
ment campaigns include: ACE-1 (Southern Hemisphere Marine Aerosol Characterization Experiment), ACE-ASIA (Asian Pacific Regional
Aerosol Characterization Experiment), ARCTAS (Research of the Composition of the Troposphere from Aircraft and Satellites), INDOEX
(Indian Ocean Experiment), INTEX-A (Intercontinental Chemical Transport Experiment – Phase A), INTEX-B (Intercontinental Chemical
Transport Experiment – Phase B), ITOP (International Transport of Ozone and Precursors), PACDEX (PACific Dust EXperiment), RICO
(Rain in Cumulus Over the Ocean), VOCALS (VAMOS Ocean Cloud Atmosphere Land Study), PASE (Pacific Atmospheric Sulfur Ex-
periment), PEM-Tropics A (Pacific Exploratory Missions Tropics A), PEM-Tropics B (Pacific Exploratory Missions Tropics B), TRACE-P
(TRAnsport and Chemical Evolution over the Pacific). The data are provided by the NASA LaRC Airborne Science Data for Atmospheric
Composition program (NASA LaRC), National Center for Atmospheric Research Earth Observing Laboratory (NCAR EOL), and the British
Atmospheric Data Centre (BADC). The aircraft trajectories are shown in Fig.10.

Field Platform Latitude Lontitude Temporal Source
Campaign1 Range Range coverage

ACE-1 C-130 70–30◦ S 100–180◦ E 31 Oct–23 Dec 1991 NCAR EOL
ACE-ASIA C-130 10–50◦ N 100–170◦ E 31 Mar–5 May 2001 NCAR EOL
ARCTAS DC-8 32–90◦ N 169–37◦ W 3 Apr–22 Apr 2008 NASA LaRC

20 Jun–15 Jul 2008
ARCTAS P3-B 32–81◦ N 164–69◦ W 1 Apr–21 Apr 2008 NASA LaRC

23 Jun–13 Jul 2008
INDOEX C-130 10◦ S–17.5◦ N 65–85◦ E 16 Feb–24 Mar 1999 NCAR EOL
INTEX-A DC-8 27–53◦ N 140–36◦ W 5 Aug–7 Sept 2007 NASA LaRC
INTEX-B C-130 16–53◦ N 141◦ W–89◦ W 4 Mar–15 May 2006 NASA LaRC

DC-8 16–53◦ N 175◦ E–86◦ W 5 Mar–16 May 2006
ITOP BAE-146 33–52◦ N 40◦ W–0◦ E 13 Jul–14 Aug 2004 BADC
MILAGRO C-130 16–40◦ N 106–88◦ W 28 Feb–29 Mar 2006 NCAR EOL
PACDEX HIAPER 20–60◦ N 136◦ E–105◦ W 29 Apr–25 May 2007 NCAR EOL
PASE C-130 1–3◦ N 160–153◦ W 8 Aug–7 Sep 2007 NCAR EOL
PEM-Tropics A DC-8 72◦ S–45◦ N 152◦ E–109◦ W 31 Aug–7 Oct 1996 NASA LaRC

P3-B 35◦ S–39◦ N 165–77◦ W 16 Aug–27 Sep 1996
PEM-Tropics B DC-8 36◦ S–35◦ N 148◦ E–85◦ W 7 Mar–19 Apr 1999 NASA LaRC

P3-B 21◦ S–40◦ N 166–76◦ W 12 Mar–12 Apr 1999
RICO C-130 15–21◦ N 72–57◦ W 24 Dec 2004–24 Jan 2005 NCAR EOL
TRACE-P DC-8 13–46◦ N 113◦ E–118◦ W 27 Feb–10 Apr 2001 NASA LaRC

P3-B 6–41◦ N 111◦ E–75◦ W 25 Feb–11 Apr 2001
VOCALS C-130 30–15◦ S 90–70◦ W 15 Oct–15 Nov 2008 NCAR EOL

Table A2. Globally (90◦ S–90◦ N) and regionally (land, ocean) averaged annual mean single scattering albedo (ω), absorption aerosol
optical depth (AAOD) and total aerosol optical depth (AOD) in HAM1 and HAM2, and the contribution to AOD from different chemical
compositions.

HAM1 HAM2
Global Land Ocean Global Land Ocean

ω 0.987 0.972 0.993 0.974 0.951 0.983
AAOD 0.0021 0.0042 0.0012 0.0039 0.0073 0.0026
AOD 0.140 0.130 0.144 0.135 0.135 0.134
AODwater 0.105 0.073 0.118 0.094 0.073 0.102
AODSU 0.0107 0.0165 0.0083 0.0136 0.0205 0.0109
AODBC 0.0006 0.0012 0.0003 0.0007 0.0015 0.0004
AODOA 0.0051 0.0105 0.0029 0.0049 0.0096 0.0030
AODSS 0.0066 0.0024 0.0083 0.0084 0.0030 0.0105
AODDU 0.0124 0.0267 0.0067 0.0129 0.0273 0.0072
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Fig. A1. Geographical distribution of the annual mean aerosol optical depth (AOD, left column) andÅngstr̈om parameter (ANG, right
column) from the MODIS retrieval (top row), simulated by HAM2 (second row), and the differences between HAM2 and HAM1 results
(third and bottom rows). The displayed satellite retrievals are multi-year mean fields. The AOD fields are calculated/retrieved at the mid-
visible wavelength 0.55 µm. The MODIS̊Angstr̈om parameter is retrieved using the wavelengths 0.55 µm and 0.865 µm over the ocean, and
0.47 µm and 0.66 µm over land. The model-simulated ANG is calculated using the wavelengths 0.55 µm and 0.825 µm at all grid points.
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Fig. A2. Geographical distribution of the annual mean aerosol absorption optical depth (AAOD) simulated by HAM1 and HAM2 (top
row), their differences (bottom left panel), and the reference result (bottom right panel) compiled byKinne et al.(2012) using the AeroCom
multi-model median adjusted with AERONET measurements.

Table A3. Aerosol optical depth (AOD, unitless) and direct radiative effect (unit: W m−2) in simulations discussed in this paper. AODw
and AODd stand for the optical depth associated with aerosol water and dry mass, respectively. The radiative effect is presented in the
following components: (i) top-of-atmosphere clear-sky and all-sky shortwave forcing FSWTOA

clear and FSWTOA
all ; (ii) surface clear-sky and all-

sky shortwave forcing FSWSFC
clear and FSWSFC

all ; (iii) top-of-atmosphere clear-sky and all-sky longwave forcing FLWTOA
clear and FLWTOA

all ; (iv)

surface clear-sky and all-sky longwave forcing FLWSFC
clearand FLWSFC

all . Numbers given in bold are the largest and smallest values among the
sensitivity experiments carried out with HAM2.

AOD AODw AODd FSWTOA
clear FSWTOA

all FSWSFC
clear FSWSFC

all FLWTOA
clear FLWTOA

all FLWSFC
clear FLWSFC

all

HAM2 0.135 0.094 0.041 −3.79 −1.96 −5.76 −3.81 0.32 0.20 1.32 0.78
HAM2 H2SO4 0.130 0.089 0.041 −3.69 −1.94 −5.71 −3.86 0.31 0.20 1.21 0.76
HAM2 NUL 0.137 0.096 0.041 −3.86 −1.98 −5.83 −3.83 0.33 0.20 1.32 0.78
HAM2 cluster 0.135 0.094 0.041 −3.80 −1.95 −5.76 −3.80 0.32 0.20 1.32 0.78
HAM2 kinetic 0.135 0.095 0.040 −3.81 −1.94 −5.77 −3.79 0.32 0.20 1.32 0.78
HAM2 WAT 0.163 0.123 0.041 −4.33 −2.03 −6.31 −3.89 0.45 0.24 1.94 0.91
HAM2 OA 0.131 0.089 0.042 −3.54 −1.85 −5.40 −3.59 0.30 0.19 1.31 0.78
HAM2 DU 0.134 0.094 0.040 −3.78 −1.95 −5.74 −3.80 0.32 0.20 1.31 0.78
HAM2 SS 0.139 0.098 0.041 −4.06 −2.12 −6.03 −3.97 0.34 0.21 1.45 0.85
HAM2 BLCLD 0.124 0.085 0.039 −3.52 −1.86 −5.42 −3.66 0.29 0.19 1.17 0.74
HAM2 INCLD 0.145 0.101 0.044 −4.08 −2.07 −6.20 −4.09 0.37 0.23 1.40 0.83
HAM2 CLD 0.109 0.074 0.034 −3.06 −1.59 −4.72 −3.14 0.24 0.15 1.11 0.70
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