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Summary




Summary

Flies heavily rely on optic-flow to maintain a stable course during flight. In the blowfly,
the lobula plate comprises about 60 motion-sensitive neurons that process optic-flow in-
formation. To characterize these so-called lobula plate tangential cells, I pursued a system
identification approach: I recorded the activity of single or pairs of neurons, while present-
ing optic-flow stimuli of varying complexity. By means of system identification methods,
I then estimated single cell or small circuit models describing the processing of optic-flow

by the tangential cells.

A standard approach to functionally characterize sensory neurons is the linear-nonlinear
(LN) model comprising a linear stage, followed by a nonlinear response function. To
estimate the components of an LN-model for optic-flow processing neurons, I presented
novel random motion stimuli with individually moving dots. The linear stage can be
represented as a time-varying vector field, referred to as dynamic receptive field. I found
that the dynamic receptive field can by fully described by a separate spatial and temporal
component. Next, I examined the dependence of the LN-model components on the stimulus
strength as controlled by the density of motion dots. I found that an increase of the
stimulus strength leaves the receptive field unchanged but strongly modulates the gain
and selectivity of the response nonlinearity. To correct for these systematic changes, I
developed an explicit biophysical model of the neuron’s input-output relation, which could

account for the neural responses under all stimulus conditions.

To probe how well the optic-flow is encoded by the tangential cells, I presented dynamic
rotational and translational self-motions within various environments differing in their
textures, while recording the cells’ responses. To quantify the encoding of rotational or
translational optic-flow, I tested how well the presented rotations or translations can be
reconstructed from the recorded spikes. I found that rotations are better encoded in the
neural responses than translations. Especially, when simultaneously presenting rotations
and translations, the representation of rotations is less affected than the representation of

translations.



X Summary

To understand how the lateral interactions between neurons influence the optic-flow pro-
cessing, I simultaneously recorded from a pair of tangential cells (left Vi and right H1 cell)
while presenting dynamic, rotational self-motion stimuli. To characterize the functional
connectivity between Vi and H1, I fitted a generalized linear model (GLM) to the recorded
responses. The GLM can be interpreted as an extension of the LN-model which accounts
for lateral interactions between the recorded neurons. The GLM revealed a uni-directional
coupling from H1 to Vi. Further analysis showed that the coupling improves the optic-flow
encoding in Vi by increasing the gain of its rotation tuning. Interestingly, the coupling
between Vi and H1 is adjusted to a value such that the information per spike is maximized
in Vi.

Hence, by the applied system identification approach, I characterized the dynamic receptive
fields of the tangential cells, tested the robustness of the optic-flow encoding, and studied

how the neural connectivity improves the optic-flow processing.



Chapter 1

Introduction

Animals move with ease through their surrounding three-dimensional environment. Pri-
mates including ourselves as well as flies thereby heavily rely on vision. First ideas on the
importance of vision for stable navigation through our world have been formulated by von
Helmholtz (1925). Gibson coined the term 'optic-flow’ for the motion pattern on the retina,
when we move relative to the world (Gibson} |1950). Figure illustrates the optic-flow
resulting from a forward translation. For stable navigation, the nervous system has to es-
timate from the retinal optic-flow pattern the self-motion. In an ideal world with constant
velocities and homogeneous distances between the animal and the surrounding objects, this
problem is well-posed: In this case, each optic-flow pattern corresponds unambiguously to
a combination of a specific rotation and translation (Koenderink and van Doorn, [1987).
The difficulty of self-motion perception arises from the inhomogeneous depth structure
of natural environments, their strongly differing textures and contrast distributions, all
disturbing the ideal optic-flow pattern (Franz et al., 2004)).

The processing of optic-flow stimuli has been intensively studied in flies (for review see
(Borst et al., 2010)). The lobula plate in the visual system of the fly comprises neurons
which preferentially respond to specific optic-flow patterns Hausen| (1984)); |Krapp and
Hengstenberg| (1996). To characterize these so-called lobula plate tangential cells, motion
stimuli of varying complexity have been presented in the past, while recording the neural
responses (see e.g. (Krapp et al., [1998; Borst|, [2003; Haag and Borst| 2003; Wertz et al.,
2009; van Hateren et al.,|2005)). Various types of models have been formulated to describe
how the stimuli are processed by the tangential cells.

The general term system identification has been coined for approaches trying to unravel
how sensory stimuli are transformed to the recorded, neural response (Wu et al., 2006

Marmarelis and Marmarelis, [1978). All models falling under this term share one common
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Figure 1.1: Illustration of Optic-Flow. Self-motion causes a permanent shift of the images on the
retina. The resulting pattern of local velocities (represented by the arrows) is called optic-flow. The image

illustrates the optic-flow induced by a forward translation.

feature: They are all top-down models derived from the recorded responses. Hence, the
main focus is not a detailed physiological description of the recorded neurons, but rather
a phenomenological characterization how an input (stimulus) is mapped to the output
(response). The resulting input-output model characterizes the neural processing in func-
tional terms. By means of system identification, I characterized the lobula plate tangential
cells. Single cell as well as small circuit models were estimated to describe how dynamic
optic-flow stimuli are processed by these neurons. In the following, I will introduce basic
concepts of system identification and then review the visual system of the fly as well as

the Reichardt detector, a well-established model for local motion detection.

1.1 System Identification

To understand how sensory systems operate, neuroscientists have long sought to quantify
how single neurons or populations of neurons respond to sensory stimuli. Most models
in sensory neuroscience are based on experiments, where tightly controlled stimuli are
presented to the animal, while recording the responses of sensory neurons. Quantitative
analysis of the recorded data aims at characterizing the functional relationship between
stimuli and neural responses. This approach yielded are large variety of computational and
quantitative models describing all kinds of sensory systems in different animals including
insects and vertebrates (for review see (Dayan and Abbott], 2001} Rieke et al., [1999; Wu
, ) The large number of different studies makes it difficult to describe a gen-

eral methodology summarizing all previously developed models. Nevertheless, there were

different attempts to formulate a unifying framework applying to all kinds of models

et al., 2006; Rieke et al., [1999)). Typically, models in sensory neuroscience are derived from
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a classical input-output analysis: Giving the known input to the system and its recorded
output, the goal is to find a simple, general model transforming the input to the output. In
the engineering literature such a phenomenological characterization is called system iden-
tification, a term also used for input-output models in neuroscience by Wu et al.| (2006);
Marmarelis and Marmarelis (1978)). Other terms describing the same basic approach are
receptive field estimation (Aertsen and Johannesmal |1981; DeAngelis et al., [1995)), reverse
correlation (Ringach et al., |1997; Haag and Borst|, [1997)), spike-triggered neural character-
ization (Schwartz et al., 2006), or white-noise analysis (Chichilnisky, [2001)), each stressing
another aspect of the applied methodology. Here, I will not try to add another general
framework. Instead, I will introduce basic concepts and approaches which have been widely
and successfully applied as well as recent attempts to characterize the responses of neural

populations.

1.1.1 Tuning Curves

A standard tool to characterize the stimulus selectivity of single neurons is the neural
tuning curve (Butts and Goldman, [2006; [Dayan and Abbott, 2001), a plot of the average
firing rate of single neurons in dependence of one or two stimulus parameters. The stimuli
to determine tuning curves are typically very restricted. Tuning curves have long served
as an invaluable tool to characterize neurons in virtually every sensory system ranging
form the olfactory system (Wilson et al., 2004), visual system (Henry et al.;, |1974), motion-
sensitive neurons in monkeys (Albright, |1984) and flies (Haag and Borst, [2003)) to the
wind-detection system in crickets (Theunissen and Miller, |1991). As an example, Figure
shows the extracellular recording of a single neuron in the monkey visual cortex, while
presenting a light bar moving at different orientations. The number of action potentials
fired depends on the orientation of the bar. Figure [1.2B illustrates the same effect by a
tuning curve, showing the mean firing rate of a neuron in cat visual cortex in dependence

of the bar orientation.

1.1.2 Spike-Triggered Average

Due to time limitations during experiments, the number of different stimuli which can
be presented to reliably estimate tuning curves is restricted. The spike-triggered average
(STA), an approach to increase the number of presented stimuli, is complementary to the
tuning curve: Instead of averaging the neural responses for a given set of stimuli, the STA

represents the average of stimuli for a given response (Dayan and Abbott, 2001). A typical
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S (orientation angle in degrees)

Figure 1.2: Characterizing Neurons by their Stimulus Tuning (A) Extracellular recording of a
neuron in monkey visual cortex. A light bar was moved across the receptive field (dashed rectangle) of
a single neurons. The orientation of the light bar is indicated by the black bar. The traces on the right
show the extracellularly recorded activity. (B) Tuning curve of a neuron in cat visual cortex. Each dot
represents the average firing rate for the bar orientation indicated on the x-axis. The figure is taken from
Dayan and Abbott| (2001)). The data for (A) originally stems from Hubel and Wiesel (1968)). The data for
(B) was originally taken from Henry et al.| (1974).

choice for the response is the appearance of a spike. The spike-triggered average then
describes the average stimulus which makes the neuron most likely spike. At the expense
of reducing the range of responses to ’'spike’ or 'no spike’, this approach allows largely

enriching the set of presented stimuli.

Since tuning curves are calculated by averaging the neural response for given set of stimuli,
any dynamics present in the response is averaged out. Moreover, the chosen stimuli are
typically restricted in their dynamics. E.g. for the neural tuning depicted in Figure [1.2| a
light bar was moved at constant velocity across the receptive field. Contrarily, the STA
describes dynamic aspects of stimulus processing. It is typically computed for stimuli
that strongly vary over time. Hence, the STA describes the average stimulus waveform or

fluctuation preceding a spike.

The calculation of the STA is illustrated in Figure [[.3]A: At each time point the presented
stimulus consists of an array of randomly chosen pixel values. It is assumed that, for
each time point, the neural response is completely determined by the preceding stimulus.
The stimulus intervals preceding a spike are marked by red boxes. Averaging all stimuli

preceding a spike yields the STA. In the example, the STA represents a spatio-temporal
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Figure 1.3: Illustration of Spike-Triggered Average. The stimulus consists of an array of eight
pixels, randomly changes their values at each time point. The neural response is schematically represented
as a time axis (bottom). Each time point where a spike was fired is indicated by a black tick. Stimulus
intervals preceding a spike a marked by red boxes. The stimulus intervals extend over 6 time steps, and,

thus, comprise 48 spatio-temporal pixel values. Averaging all spike-triggered stimuli yields the spike-

triggered average. Figure taken from (Schwartz et al., 2006)).

matrix describing how, in average, the values of the pixel array evolve in time before a
spike is elicited.
Formally, if the recorded neuron fired n spikes at time points ¢;, ¢ = 1,...n, the STA C(7)

can be written as

n

C(T):l/ontS(t—T :%Zst—r (1.1)

n

with s(t) describing the time varying stimulus presented for 7" seconds. The function ()
represents the neural response function, which is 1, if the neuron fired a spike a time point
t, and 0 otherwise. The first Equality of equation[I.I]can be interpreted as cross-correlation
of the presented stimulus and the recorded response.

The STA allows predicting the response of the neuron given the stimulus s(¢): The more
similar a particular waveform to the STA, the more likely it is that the neuron will fire a

spike. The firing rate of the neuron at time ¢ can be estimated by convolving the stimulus
with the STA,

7(t) =10+ /000 drC(7)s(t — 1), (1.2)

where 7y accounts for the neuron’s background firing, when s = 0.
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So far, the STA has been intuitively introduced as the average stimulus waveform preceding
a spike. A more formal justification of Equation is to consider the STA as the linear
kernel in a Volterra expansion (Rieke et al.| [1999; Dayan and Abbott, [2001).

The Volterra expansion is the functional equivalent of the Taylor series. It allows expressing

the neural response, 7(t), in powers of the stimulus s(t),

r(t) =ro / drC(7)s(t — 1) + /dTldTQCQ(Tl, 72)s(t — 71)s(t — 12)
(1.3)
+ / drdrodr3C3(T1, o, T3)8(t — 1) s(t — 12)s(t — 73) + . ..

Comparison with Equation shows that the STA corresponds to the first linear filter in
the Volterra expansion. C(7) is also called the first Wiener kernel or the linear receptive
field. It can be shown that, if s(¢) is a white-noise stimulus, the STA equals C(7) (Dayan
and Abbott], 2001)).

Note that the estimate of the firing rate by Equation is a linear function of the stimulus.
This linear estimate suffers from two obvious problems: The predicted firing rate can
become negative and does not saturate for large stimulus values. One way to overcome
these problems is to include higher-order kernels in the prediction. However, to reliably
estimate higher order kernels, increasing amounts of data are needed. Practically, only

estimates up to the second-order kernel are feasible (Dayan and Abbott|, 2001).

1.1.3 Linear-Nonlinear Model

A simpler approach to account for basic nonlinearities as spike-rate saturation or non-

negative firing rates is to include a static nonlinearity f into Equation

() = f (m + /OOO dTo(T)s(t—T)) (1.4)

The resulting model consists of a cascade of the linear filter C'(7) and the nonlinearity f,
and is therefore referred to as linear-nonlinear (LN) model illustrated in Figure [1.4 To
simulate a spike train, the estimated firing rate can be used to drive a Poisson generator
whose rate is determined by the output of the nonlinearity. Using a Poisson distribution
to generate spikes, it is implicitly assumed that the appearance of a spike only depends on
the recent stimulus and not on the history of previous spikes (Schwartz et al. |2006; Dayan
and Abbott], 2001)).

LN-models have been successfully applied to describe the stimulus processing in a variety

of sensory areas as the retina (Berry and Meister}, [1998)), lateral geniculate nucleus (LGN)
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LN model
< AV
— s |/~ g —
<
Linear filter Nonlinearity Poisson

spiking

Figure 1.4: Linear-Nonlinear Model. In the LN-model the stimulus is first convolved with a linear
filter (receptive field). The output of the linear filter is then fed through a nonlinearity yielding the time-
variable firing rate. To generate spikes, the firing rate can be used to drive a Poisson generator. Figure
taken from (Schwartz et al., 2006).

(DeAngelis et al., 1995; Lesica et al,, 2007), visual cortex (Ringach et al, [1997), the
auditory system (Aertsen and Johannesma, |1981; Linden et al.| 2003), the olfactory system

in crickets (Geffen et al., 2009)), or the visual motion system in flies (Haag and Borst],

1997). However, especially at more central cortical stages, these models often show a poor

performance in predicting the neural responses (Machens et al., |2004; Linden et al., [2003;

David et al 2004). A reason for this might be that central neurons are more nonlinear than

peripheral ones (Carandini et al.,|2005) and that their responses often strongly depend on
the behavioral state of the animal (Reynolds and Chelazzi, 2004; Atiani et al., 2009). A
further problem might be that, in the LN-model, the response depends only on the stimulus.

Hence, recurrent interactions between sensory neurons are not explicitly accounted for.
Instead, the LN-model describes the receptive field of a single neuron as arising from its

feedforward inputs from the sensory organ and recurrent inputs from other neurons.

1.1.4 Generalized Linear Model

In principle, a whole population of neurons could be modeled by a population of LN-models
fitted independently to each of the recorded neurons. However, simultaneous recordings
of pairs of neurons revealed that the responses of sensory neurons are typically correlated
(Zohary et all (1994} [Pillow et al., 2008; Bair and Movshon, 2004; Kazama and Wilson,
2009; |Cafaro and Rieke], 2010; [Kohn and Smithl 2005; [Smith and Kohn| 2008} [Schneidman|
et al) 2006; Schulz and Carandini, 2010; Trong and Rieke, 2008)). Such correlations in

the spike trains of simultaneously recorded neurons cannot be reproduced by a population

of LN-models, since in each LN-model spikes are generated independently by a Poisson

generator. A model accounting for dependencies between neurons, the so-called generalized
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linear model (GLM), was developed by (Paninski et al., 2007} Pillow et al., |2008; Okatan|
et al., 2005; |Gerwinn et al., [2010).

Generalized Linear Model (GLM)

. ; probabilistic
linear filter nonlinearity  spiking

— QG [~ fif

post-spike filter

V

|

Cell 1 parameters

coupling filters

A
e

Cell 2 parameters I/

ol
NER
Y

Figure 1.5: Generalized Linear Model. The scheme illustrates a generalized linear model (GLM)
to simulate a two-neuron circuit. The stimulus dependency of each neuron is modeled by a linear filter.
The impact of each neuron’s own spiking history is modeled by the post-spike filter. Interactions between
the neurons are captured by the coupling filters. The outputs of the three linear filters are summed and
transformed by a static nonlinearity to the firing rate, which drives a Poisson generator to simulate spike
trains. Figure taken and modified from |Paninski et al.[ (2007).

In Figure [I.5 the GLM is illustrated for a two-neuron circuit. As in the LN-model, the
stimulus dependency of each neuron’s firing rate is modeled by a linear filter. Spike trains
generated by a LN-model with a Poisson generator do not account for the refractory period
or further history dependent effects as bursting (Pillow et al., [2005; Paninski et al., |2007)).

To account for the impact of previous spikes on the neuron’s firing rate, the preceding

spike train is convolved with the post-spike filter (see Figure . Interactions between
the neurons are captured by two further linear filters, the coupling filters. For each neuron,
the outputs of the three linear filters are summed and then fed through a static nonlinearity
yielding an estimate of the firing rate. To generate spikes, the firing rate is used to drive

a Poisson generator. The GLM has been successfully applied to reproduce correlations

between retinal ganglion cells (Pillow et al. 2008), to model neural interactions in the
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monkey and human sensorimotor cortex (Truccolo et al., |2010) and to elucidate the role
of feedback in the thalamus (Babadi et al., [2010)).

1.2 The Visual System of the Fly

Visual processing in the fly starts with the photoreceptors in the retina (see Figure |1.6)).
The photo-receptors send axons into the first neuropile, the lamina. From there, motion
information is transmitted through the outer optic chiasm to the second visual neuropile,
the medulla. The axons of the medullar neurons finally project through inner chiasm to the
second neuropile, the lobula complex, consisting of the lobula and the lobula plate. The
lobula plate comprises about 60 motion-sensitive neurons known as lobula plate tangential
cells. Lamina, medulla, and the lobula complex are all organized into retinotopically
arranged columns. Due to this retinotopic organization, the neighborhood relationships of
points in visual space are preserved throughout the visual system. Thus, each neuropile
represents a retinotopic map, where light emitted from two neighboring spots induces

activity in neurons within two neighboring columns.

N Retina

~N

! -
) Lamina

Lobula plate
L J
I
Visual ganglia

Figure 1.6: Anatomy of the Fly Visual System. Scheme illustrating the anatomy of the fly visual
system. The visual system is retinotopically arranged. From the retina axons project to the lamina.
Neurons of the next neuropile, the medulla, synapse to the lobula and the lobula plate forming the lobula
complex. Within the lobula plate the synaptic output of pre-synapic elements are integrated by the
motion-sensitve tangential cells. The colored neurons represent detailed anatomical reconstructions from

2-photon image stacks of the ten VS-cells. The dendrites of the tangential cells run perpendicular to the

columns. Figure taken from Borst et al.| (2010).
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1.2.1 Retina and Photoreceptors

The compound eye of the blowfly comprises about 5000 hexagonal ommatidia (Strausfeld,
1984). The angular separation between the optical axes of two neighboring ommatidia is
inhomogeneously distributed across the visual field (Petrowitz et al., [2000): The interom-
matidial angle is smallest at the equator in the frontal visual field (about 1°). The spatial
resolution is about two times lower in the caudal part and up to three times lower in the
dorsal part of the visual field. In the frontal visual space the optical axes of both eyes
overlap, i.e. the most frontal ommatidia of the left eye sample regions on the right side of
visual space and vice verse. In the blowfly, this binocular overlap region extends up to 15°
on the contralateral side (Beersma et al., [1977)).

Each ommatidium comprises one lens and eight photoreceptors. The lens consists of a
cornea and a cone. Light is guided through these structures before hitting the light-
absorbing pigments in the photoreceptors. Rhodopsin 1 serves as light-absorbing photo-
pigment in R1-R6 with greatest sensitivity in the UV and green range (O’Tousa et al.,
1985). Contrarily, the rhodopsins in R7 and R8 exhibit different absorption spectra in-
dicating a role in color vision (Cook and Desplan) 2001). The photoreceptors R1-R6 are
arranged as a outer ring with R7 and R8 in the center. Consequently, each of the pho-
toreceptors R1-R6 has a different optical axis (Land, [1997). The six photoreceptors of six
neighboring ommatidia looking at the same spot in visual space send their axons to the
same post-synaptic target in the lamina (Braitenberg, [1967). This arrangement, called
neural superposition, increases light sensitivity without affecting the eye’s spatial resolu-
tion (Kirschfeld, 1972). It has been shown that the photoreceptors R1-R6 are involved in
motion processing (Heisenberg and Buchner| [1977; [Yamaguchi et al., [2008), while R7 and
R8 mediate color vision (Gao et al., 2008; Yamaguchi et al., [2010). In contrast to R1-R6,

the axons of R7-8 do not project to the lamina, but directly target neurons in the medulla.

1.2.2 Lamina

The lamina represents the first neuropile of the visual system. It exhibits a highly regular
structure arising from the assembly of identical, columnar units, the so-called cartrides.
The columnar structure of the lamina preserves retinotopy, i.e. two neighboring cartrides
correspond to two neighboring points in visual space. The so-called monopolar cells L.1-L.3
and an amacrine cell are directly innervated by the photoreceptors R1-R6 (Meinertzhagen
and O’Neil, [1991). Contrarily, the monopolar cells L4 and L5 receive indirect input via L2
and the amacrine cell (Meinertzhagen and O’Neil, [1991; Braitenberg, (1970)). The axons of
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the monopolar cells project to the medulla. L1 innervates the layers M1 and M5 of the
medulla, whereas L2 synapses to the medullar layer M2 (Bausenwein and Fischbach (1992).
By measuring calcium signals in the terminals of L2, it could be shown that L2 is not sen-
sitive to motion direction (Reiff et al. |2010)). Calcium signals showed a strong response to
brightness decrements (off-signals), but not to increments (on-signals). Hence, 1.2 rectifies
the input from the photoreceptors, thereby only providing information about decrements
in the brightness signal to its post-synaptic targets in the medulla. By specifically blocking
the synaptic output of L1 or L2, a recent study found that these monopolar cells constitute
two functionally different pathways (Joesch et al., 2010): Blocking L1, lobula plate tan-
gential cells show no response to moving on-edges (on-signals). Contrarily, if the output of
L2 is blocked, tangential cells mainly only respond to moving off-edges (off-signals). These
experiments demonstrate that L1 feeds into an on-channel, whereas L2 provides input to

a separate off-channel.

1.2.3 Medulla

The next neuropile is the medulla, where the important computations involved in motion-
processing are thought to take place. The medulla is built of retinotopically arranged
columns, which are divided into ten layers. The number of medullar columns matches
the number of cartridges in the lamina. Each column is innervated by the axons of the
photoreceptors R7 and R8 and by the laminar monopolar cells L1-L3. In total, each column
comprises more than 60 medullar or trans-medullar cells which inter-connect the medullar
layers or project to downstream structures (Strausfeld) [1976; Fischbach and Dittrich, [1989).
The medulla is the first stage in the visual system where the computation of motion could
be experimentally demonstrated: Using the activity-dependent 2-deoxyglucose staining
technique, it could be shown that motion stimulation lead to a layer-specific staining of
the medulla (Bausenwein and Fischbach, 1992; |Bausenwein et al. |1992). During whole-
field stimulation layers M1, M2, M9, and M10 were labeled, while stimulation by a single
bar resulted in the staining of layers M1, M5, and M7. This finding suggests the presence
of various parallel motion pathways specialized for different motion types.

The separation in on- and off-channels at the level of the lamina anatomically persists in
the medulla. The laminar monopolar cell L1 (on-channel) innervates the medullar layers
M1 and M5, where it connects to the dendrites of the medullar Mil-cell (Bausenwein and
Fischbach, (1992). This cell, in turn, synapses onto T4-cells projecting to the lobula plate.
L2, the laminar input to the off-channel, connects in the medullar layer M2 to the Tml-

cells. These neurons synapse in the lobula onto the TH-cells, which send their axons into
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the lobula plate.

1.2.4 The Lobula Complex

The axons of medullar neurons target the lobula complex, which comprises two structures:
the lobula and the lobula complex. As the pre-synaptic neuropiles, the lobula exhibits a
retinotopic columnar organization. However, compared to the medulla, it comprises less
columns reducing the visual resolution (Strausfeld, |1989)) and consists of only six different
layers. By means of the 2-deoxyglucose technique, it could be shown that three layers of
the lobula are sensitive to motion stimuli (Buchner et al., [1984). The most posterior layer
of the lobula is part of the presumable off-channel: The axons of the medullar Tm1 cells,
which are connected to L2, synapse within this layer onto the dendrites of the T5 cells.
As the lobula, the lobula plate is organized into retinotopic columns, but comprises only
four layers. Activity dependent labeling by the 2-deoxyglucose technique demonstrated
that the four layers are responsive to four different motion-directions (Buchner et al.| [1984;
Bausenwein and Fischbach, 1992} |Bausenwein et al., [1992): Neurons in the two anterior
layers respond to horizontal motion (front-to-back, back-to-front), whereas the activity in
the two posterior layers represents vertical motion (up and down).

The synaptic outputs of the columnar elements are integrated by the motion-sensitive
lobula plate tangential cells (Hausen) [1984; Hengstenberg et all |[1982)). The dendrites of
the tangential cells run orthogonal to the columns and cover several hundred columns.
The layer where the dendrite of a specific tangential cells ramifies determines the neu-
ron’s preferred motion-direction. The motion-sensitivity of the tangential cells arises from
the integration of pre-synaptic motion-sensitive elements. Possible candidates are the T4
and TH cells, since both cells exhibit directionally selective responses to moving gratings
(Douglass and Strausfeld, |1995] 1996). Moreover, in Strausfeld and Lee (1991) a chemical

synapse between a tangential cell and T4 could be identified.

1.2.5 Circuitry of the Lobula Pate Tangential Cells

The lobula plate comprises about 60 interneurons, which integrate on their dendrites the
synaptic outputs of several hundred columns. These lobula plate tangential cells are ideally
suited for electrophysiological experiments, since they are large and identified, i.e. the
same cell can be found in every fly. Especially, the area within the lobula plate covered
by the dendrite of a specific cell is stereotyped across flies, while the detailed branching

pattern of the dendrites is less conserved (Cuntz et al., [2008). By ablation experiments it
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could be shown that the tangential cells are involved in the optomotor response of the fly
(Heisenberg et al., (1978 |Geiger and Naessl, [1981; [Hausen and Wehrhahn|, [1983)). Many of
the tangential cells synapse onto descending neurons, which directly connect to and control
muscles or provide optic-flow information to the thoracic ganglion involved in motor control
(Strausfeld and Seyan, [1985; |Strausfeld et al., [1987; Huston and Krapp|, 2008).
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Figure 1.7: Intracellular Recording of an HSE-cell. Back-to-front motion hyperpolarizes the cell,
whereas front-to-back motion leads to a graded shift of the membrane potential overlaid with spikes of
irregular amplitude. The gray bars indicates the time interval where the motion stimulus was presented.
The motion direction is schematically shown the by the black arrows. Figure taken from [Borst and Haag
(2002).

The most characteristic feature of the lobula plate tangential cells is their directionally
selective response to visual motion. Figure shows an example recording of a tangential
cell (HSE cell). This neuron responds to back-to-front motion (null direction) with a
hyperpolarization of its membrane potential. Contrarily, motion in the opposite direction
(preferred direction) leads to a depolarization overlaid with spikes of irregular amplitude.
The lobula plate tangential cells can be grouped according to their different response
characteristics (Borst and Haagl 2002): (1) They can be categorized according to their
overall preferred direction: whether they respond mainly to horizontal or vertical motion.
(2) Another distinguishing feature is the response mode: One group of tangential cells
responds to motion in their preferred direction by a graded shift of the membrane potential,
while others respond with an increase of their frequency of action potentials, and a third
group with a mixture of both modes (see Figure . (3) Finally the tangential cells can
be classified according to their projection area: A first group of tangential cells projects

with their axon to the contralateral brain hemisphere (heterolateral tangential cells), while
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Figure 1.8: Response Modes of the Tangential Cells. The lobula plate tangential cells can be
grouped according to their response modes to visual motion. One group of tangential cells responds to
motion in their preferred direction by a graded shift of the membrane potential. An example is the CH cell
(left). The HS cell (middle) is a representative of the second group which responds to a preferred stimulus
with a depolarization of the membrane potential overlaid with action potentials of variable amplitude. The
V1 cell (right) is an example of a tangential cell firing full-blown action potentials. A preferred stimulus

increases the frequency of action potentials. Figure taken from |Borst and Haag (2002).

the axons of others remain on the ipsilateral side (ipsilateral tangential cells). The lobula
plate tangential cells exhibit a complex recurrent connectivity (Borst and Haag, 2002;
Borst et al., [2010; Borst and Weber, 2011). All well characterized tangential cells and
their known connectivity are schematically depicted in Figure [1.9]

When categorizing the tangential cells according to their preferred direction, they fall into
two groups: Horizontal (H) and vertical (V) cells. The dendrites of the horizontal cells
lie within the anterior layer of the lobula plate. Among those are the three horizontal
system (HS) cells, which are sensitive to motion in the upper, equatorial, and lower part
of the visual space (Hausen, [1982a)b)). They are accordingly named the northern (HSN),
equatorial (HSE), and southern horizontal (HSS) cell. The HS cells respond to front-to-
back motion in their receptive field with a depolarization of their membrane potential
overlaid by action potentials of variable amplitude (see Figure and are hyperpolarized
by motion in the opposite direction.

The three HS cells form electrical synapses with the two centrifugal horizontal (CH) cells
(Eckert and Dvorak, 1983)). HSN and HSE are indirectly coupled to each other via the
dCH cell, whereas vCH connects to HSE and HSN. As the HS cells, the CH cells are also
mainly sensitive to front-to-back motion. Both neurons are an example for tangential cells
encoding motion in their preferred direction by a graded shift of the membrane potential
(Figure [L.g).
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