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Abstract We show that in the background of a stationary and axisymmetric black
hole, there is a particular spinor field whose “conserved current” interpolates between
the null Killing vector on the horizon and the time Killing vector at the spatial infinity.
The spinor field only needs to satisfy a very general and simple constraint.
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1 Introduction

In [1] it was noticed that, for the Kerr black hole and the five dimensional Myers–Perry
black hole, there exists a particular vector field which interpolates between the time
Killing vector at the spatial infinity and the null Killing vector on the horizon. The
existence of such a vector field can be very interesting in that it may contain important
(possibly non-geometrical) information about the spacetime itself.

In this paper, we want to suggest that the existence of such a vector is a general fea-
ture of all stationary and axisymmetric black holes. In [1], the particular property of the
vector field is interpreted as describing a possible fluid flow underlying the spacetime.
Here, we want to leave the physical interpretation behind and merely demonstrate the
existence of the vector field.

We clarify our notations in the next section. Then we present and prove our main
result in Sect. 3. A short summary is at the end.
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2192 J. Mei

2 Notations

The vector field is constructed using a spinor field,

ξμ = −ψ̄γ μψ = −ηAB ğμν eB
ν ψ̄γ

Aψ, A, B = 0, 1, . . . , d − 1, (1)

where η = diag{− + · · · +}, ğ stands for the background metric, and the gamma
matrices γ A are in the vielbein basis, eA = eA

μdxμ. Note we will always use Capital
Latin letters (such as) as internal indices and Greek letters (such as) as indices for real
coordinates. Ifψ was to obey the Dirac equation, then (1) is nothing but the conserved
current of the spinor field. Here we do not require ψ to be a Dirac fermion, but we
will still refer to (1) as the “conserved current” for simplicity.

The background we consider is that of a stationary and axisymmetric black hole.
It is empirically known that one can always put the metric into one of the following
forms [2]

ds2
I = − ft�(dt + fadφa)2+ fr

�
dr2 + hi dθ

i2 + gab(dφ
a − wadt)(dφb − wbdt),

(2)

ds2
I I = − ft�( fadφa)2 + fr

�
dr2 + hi dθ

i2 + gab(dφ
a − wadt)(dφb − wbdt), (3)

where the coordinates are r the radial direction, t the asymptotic time, θ i (i =
1, . . . , [ d

2 ] − 1) the longitudinal angles and φa (a = 1, . . . , [ d+1
2 ] − 1) the azimuthal

angles. Note we will always use the beginning Latin letters (such as “a, b, . . .”) to
label the azimuthal angles (e.g. φa) and the middle Latin letters (such as “i, j, . . .”)
to label the longitudinal angles (e.g. θ i ). All the functions in (2) and (3) depend on
r and θ i , except for � which only depends on r . The (outer) horizon is located at
the (largest) root of �(r0) = 0. All other functions ft , fa, fr , hi , gab and wa are
non-divergent on the horizon. Usually the first law of black hole thermodynamics is
most conveniently studied in a coordinate system that is non-rotating at the spatial
infinity [4,5], otherwise additional boundary terms may have to be included into the
action [6]. In any case, 
a = wa(r0) is the angular velocity of the horizon in the φa

direction.
There is some ambiguity in the values of fa , which we fix by massaging both

metrics (2) and (3) into the ADM form [3],

ds2 = − f̃t�dt2 + fr
�

dr2 + hi dθ
i2 + g̃ab(dφ

a − w̃adt)(dφb − w̃bdt), (4)

g̃ab = gab − fa fb ft�, g̃ab = gab + f a f b ft�

1 − f 2 ft�
, f a = gab fb,

w̃a = wa + k f a ft�

1 − f 2 ft�
, f̃t = k2 ft

1 − f 2 ft�
, f 2 = fa f a, (5)
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Spinor fields and symmetries of the spacetime 2193

where k = 1 + faw
a for (2) and k = faw

a for (3). If we want the coordinate system
to be non-rotating (i.e., no cross terms like dφadt) at the spatial infinity, then

w̃a(r, θ i ) −→ 0, as r −→ +∞. (6)

Since g̃ab, w̃
a and f̃t differ from gab, w

a and ft only by a term proportional to
�, w̃a(r0) = wa(r0) = 
a is still the angular velocity of the horizon in the φa

direction. For later convenience, let’s use ğ to denote the full metric (4) and write
down all the non-vanishing (inverse) metric elements,

ğrr = fr

�
, ği j =hiδi j , ğab = g̃ab, ğat = −g̃abw̃

b, ğt t = − f̃t�+ g̃abw̃
aw̃b,

ğrr = �

fr
, ği j = δi j

hi
, ğab = g̃ab − w̃aw̃b

f̃t�
, ğat = − w̃a

f̃t�
, ğt t = − 1

f̃t�
. (7)

We have collected several examples in the “Appendix” to illustrate the general prop-
erties described here.

For a well defined black hole spacetime, the functions f̃t , fr , hi and the matrix
(g̃ab) should be positive definite outside the black hole horizon. So one can rewrite
the metric (4) in terms of the vielbeins,

ds2 = ğμνdxμdxν = ηABeAeB, A, B = 0, . . . , d − 1, (8)

e0 =
√

f̃t� dt, e1 =
√

fr

�
dr,

e1+i = √
hi dθ i (no summation over i) : i = 1, . . . ,

[
d

2

]
− 1,

e[ d
2 ]+a : a = 1, . . . ,

[
d + 1

2

]
− 1, (9)

where e[ d
2 ]+a’s are obtained by diagonalizing the last term in (4).

3 Key result and the proof

Our main result of the paper is the following:
Key result: Given the vielbeins (9) and the Hermitian gamma matrices,

(γ A)† = γ 0γ Aγ 0 = γA =
{
γ A : A = 1, . . . , d − 1;
−γ 0 : A = 0,

(10)
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and that the spinor field ψ obeys1

γ 0ψ = cγ dψ, (12)

with c �= 0 being some real constant, then (1) always reduces to

ξ = ξμ∂μ = ∂t + w̃a∂φa , (13)

with an appropriate normalization of ψ . As a result

ξ2 = −(ξ t )2 f̃t�+ g̃ab(ξ
a − w̃aξ t )(ξb − w̃bξ t ) = − f̃t�, (14)

which vanishes on the horizon. Since w̃a(r0) = 
a, ξ becomes nothing but the null
Killing vector on the horizon. One the other hand, because of (6), ξ also becomes the
time Killing vector at the spatial infinity.

Proof From (11), one can check that

(γ d)† = (−1)dγ d , (γ d)2 = (−1)d1d , �⇒ (γ d)†γ d = 1d ,

γ Aγ d = (−1)d−1γ dγ A, ∀ A = 0, 1, . . . , d − 1,
(15)

where 1d is the unit matrix in d dimensions. Using (10) and (12), one can also check
that

ψ̄γ Aψ = ψ†γ 0γ Aψ = −ψ†γ Aγ 0ψ = −cψ†γ Aγ dψ

= (−1)dcψ†γ dγ Aψ = cψ†(γ d)†γ Aψ = ψ†(γ 0)†γ Aψ

= −ψ̄γ Aψ = 0, ∀ A = 1, . . . , d − 1. (16)

So the only non-vanishing spinor bilinear is ψ̄γ 0ψ = −ψ†ψ . Plugging into (1), we
find

ξμ = −ηAB ğμν eB
ν ψ̄γ

Aψ = −η00 ğμν e0
ν ψ̄γ

0ψ

= −η00 ğμt e0
t ψ̄γ

0ψ = −(ψ†ψ)

√
f̃t� ğtμ, (17)

�⇒ ξ = ξμ∂μ = ψ†ψ√
f̃t�

(∂t + w̃a∂φa ), (18)

where we have used (7) in the second line. One obtains (13) by setting (ψ†ψ)2 = f̃t�.
�	

1 All the gamma matrices in (12) are in the vielbein basis, and we define

γ d = (−1)
d−2

4 γ 1 . . . γ d−1γ 0 : for d even,

γ d = (−1)
d−1

4 γ 1 . . . γ d−1γ 0 : for d odd. (11)
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A few comments are in order,

• Both conditions (10) and (12) are necessary in leading to the key result (18). The
real constant c in (12) only appears in the intermediate steps and it cancels out in
the end. So its true value is not essential for our discussion. However, by applying
another γ 0 to the left of both sides of (12), one can see that c = ±1. By using the
redefinition γ 0ψ → ψ when necessary, one can always choose to have c = +1.2

• In going from (18) to (13), we have normalized ψ so that ξ t = 1. A different
normalization of ψ amounts to multiplying (14) by an extra function (say N ).
The vector field ξ is still null on the horizon as long as that N is nonsingular. On
the other hand, the normalization in (13) certainly makes it easier to see the key
properties of ξ , which approaches ∂t +
a∂φa on the horizon and ∂t at the spatial
infinity;

• The result (18) depends on the choice of the vielbeins (9). One can see this by
noting that (17) only depends on e0. So if one keeps the gamma matrices γ A (and
hence the spinor fieldψ) fixed, then any Lorentz transformation eA → A

BeB that
changes e0 can also lead to a different result for ξ .

As a side remark, note given (7) and (13),

∇̆μξμ = 0, �⇒ ∇̆ρ∇̆μξρ = R̆μρξ
ρ, (19)

where everything with a “ ˘ ” is defined with the full metric ğ in (7). This partially
justifies calling ξ the “conserved current”.

Also note that, although the dependance of (18) on the choice of vielbeins appears
as a limitation to our construction, it is so for a good reason. Technically, this is
related to the fact that the Hermitian condition (10) is not invariant under a Lorentz
transformation like γ A → Sγ A S−1, because S is not unitary (S† �= S−1) in general.
Physically, one of our motivation for the present construction is the emergent picture
of the spacetime. In particular, a possible interpretation for the vector field in (1) is to
relate it to some fluid flow coexisting with the black hole spacetime. In this case, not
only is it natural to use an asymptotically static coordinate system, but also that the
orientation of the vielbeins (9) could be related to structures of the underlying material
and thus may have distinguished physical meanings. As such, it is sensible to work
with a particular choice of the vielbeins.

As an interesting comparison, let’s see what happens if we repeat the calculation
for metrics (2) and (3). Because only e0 matters, we will only write e0 out explicitly
in the following. For (2), the natural choice is

e0 = √
ft� (dt + fadφa). (20)

2 I thank the referee for pointing out the definitive value of c.
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Then from (17) and (7),

ξμ = −(ψ†ψ)
√

ft� (ğtμ + fa ğaμ),

�⇒ ξμ∂μ = ψ†ψ

k
√

ft�
(∂t + wa∂φa ). (21)

Similarly for (3), the natural choice is

e0 = √
ft� fadφa . (22)

So from (17) and (7),

ξμ = −(ψ†ψ)
√

ft� fa ğaμ,

�⇒ ξμ∂μ = ψ†ψ

k
√

ft�
(∂t + wa∂φa ). (23)

In deriving these results, we note (2), (3) and (4) share the same form of the full metric
(7). Now if we set ψ†ψ = k

√
ft�, then both (21) and (23) lead to

ξ = ∂t + wa∂φa . (24)

Comparing with (13), we see that w̃a is replaced by wa .
Although both w̃a and wa approach the angular velocity 
a on the horizon, only

w̃a is guaranteed to vanish at the spatial infinity. This difference also makes it more
desirable to use (4) instead of (2) or (3) in the calculations.

4 Summary

To conclude, we have constructed a vector field (1) by using the “conserved current”
of a particular spinor field. We have shown that, in the background of a stationary and
axisymmetric black hole, the vector field always approaches the null Killing vector
on horizon and the time Killing vector at the spatial infinity. The required constraint
on the spinor field is simple and universal (valid for any spacetime dimensions).

It is still not clear as to the true physical nature of the vector field or the corre-
sponding spinor field. Our original motivation for studying the vector field was to
construct a possible fluid flow underlying the spacetime [1]. In fact, the behavior of
the vector field fits very well with our intuitive picture about the speculated fluid that
may coexist with our spacetime. It looks like that the fluid is dragged by the black
hole horizon (Hence the same angular velocity on the horizon), and then the angu-
lar velocity steadily decreases until it vanishes at the spatial infinity. However, such
a picture is still highly hypothetical, and one should be open minded towards other
possible explanations.

Regardless of what the physical interpretation of (1) may be, it is unexpected and
also quite amazing that a conspiracy like (10), (12) and (13) can exist. Given the
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remarkable features summarized in the Key result, it will be very interesting to see pos-
sible applications of the vector field (13) or the corresponding spinor field (12), or both.

Acknowledgments This work was supported by the Alexander von Humboldt-Foundation.

Appendix A: Some examples

In this section, we use some explicit examples to illustrate our Key result given in
the main context. Our main purpose here is to show two things: (i) one can always
put a black hole metric into the form of (4),3 and (ii) the functions w̃a do behave as
described around (6). Our strategy is to explicitly do the calculation for the general
metric (4) in a given dimension, and then to apply the result to a particular black hole
solution. Whenever possible, we will use examples from the complicated solutions in
supergravity theories (e.g. [9–18]). These solutions are given in particular spacetime
dimensions. For an example in arbitrary spacetime dimensions, one can use the general
Kerr-AdS solution [19].

We will only carry out the calculation in three through five dimensions. For more
examples, one is referred to [2]. To simplify our notations, we will drop the “tilde”
from all the functions in (4) from now on.

A.1 d = 3

In three dimensions, (4) becomes

ds2 = − ft�dt2 + fr

�
dr2 + g11(dφ

1 − w1dt)2. (25)

The corresponding dreibeins are

e0 = √
ft�dt, e1 =

√
fr
�

dr, e2 = √
g11(dφ

1 − w1dt). (26)

The gamma matrices in the dreibein basis are chosen as4

γ 0 = iσ 3, γ 1 = σ 1, γ 2 = σ 2, (27)

where σ 1,2,3 are the usual Pauli matrices. The spinor field is

ψ =
(
ψ1a + iψ1b

ψ2a + iψ2b

)
, (28)

3 It is trivial that one can cast a metric into the ADM form, but it is non-trivial that for the first two terms
in (4), dt2 always comes with a factor � and dr2 always comes with a factor �−1.
4 Note one can use any set of Hermitian gamma matrices.
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2198 J. Mei

where all the functions are real. From (12),

ψ2a = ψ2b = 0. (29)

Plugging (29) into (1) and normalizing ψ appropriately, we find

ξ = ∂t + w1∂φ1 , (30)

just as given in (13).
For a concrete example, let’s look at the BTZ black hole [7,8]. It has the exceptional

feature that, even without counterterms to the action, its first law of thermodynamics
works not only in an asymptotically static coordinate system, but also in one that is
rotating at the spatial infinity. For this reason, we will discuss it in more detail. The
metric is

ds2 = −�dt̂ 2 + dr̂2

�
+ r̂2(dφ̂ − wdt̂ )2,

� = −8M + r̂2

�2 + 16a2

r̂2 , w = 4a

r̂2 .

(31)

It solves the equations of motion Rμν = − 2
�2 gμν . The horizon is located at r̂0 with

�(r̂0) = 0. The mass, temperature, entropy, angular velocity and the angular momen-
tum are

E = M, T = �′(r̂0)

4π
, S = π r̂0

2
, 
 = w(r̂0), J = a, (32)

respectively. One can check that the first law of thermodynamics is satisfied,

d E = T d S +
d J. (33)

The coordinate system of (31) is rotating at the spatial infinity. One can switch to an
asymptotically static coordinate system by a coordinate transformation,

t̂ = t + M̃�2

J
φ, φ̂ = φ + M̃

J
t, r̂ = 2J r

r0

√
M̃
,

M̃ = M − r2
0

8�2 , r0 = 2
√

2�
(

M2 − J 2

�2

)1/4
.

(34)

The metric becomes

ds2 = −�dt2 + dr2

� f p
+ r2 f p dφ2, � = r2 − r2

0

�2 , f p = 1 − M̃2�2r2
0

J 2r2 . (35)
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In the new coordinate system, the horizon is located at r0. The mass, temperature,
entropy, angular velocity and the angular momentum are

E = r4
0 M̃

32J 2�2 , T = r2
0

√
M̃

4π J�2 , S = πr2
0

√
M̃

4J
, 
 = J = 0, (36)

respectively. Again, the first law of thermodynamics (33) is satisfied.
Both (31) and (35) are of the form (25). Using (30), we find for (31),

ξ = ∂t̂ + 4a

r̂2 ∂φ̂, (37)

and for (35),

ξ = ∂t . (38)

Our Key result at (13) only covers the case (38), where the coordinate system is non-
rotating at the spatial infinity. But it is interesting to note that that (37) also fits the
descriptions in our Key result.

A.2 d = 4

In four dimensions, (4) becomes

ds2 = − ft�dt2 + fr

�
r2 + h1(dθ

1)2 + g11(dφ
1 − w1dt)2. (39)

The corresponding vierbeins are

e0 = √
ft� dt, e1 =

√
fr
�

dr, e2 = √
h1 dθ, e3 = √

g11(dφ
1 − w1dt). (40)

The gamma matrices in the vierbein basis are chose as

γ 0 = iσ 3 ⊗ 12, γ j = −σ 2 ⊗ σ j , j = 1, 2, 3. (41)

The spinor field is

ψ =

⎛
⎜⎜⎝

ψ1a + iψ1b

ψ2a + iψ2b

ψ3a + iψ3b

ψ4a + iψ4b

⎞
⎟⎟⎠ , (42)

where all the functions are real. From (12), we find

ψ1a = ψ3b, ψ1b = −ψ3a, ψ2a = ψ4b, ψ2b = −ψ4a . (43)
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Plugging (43) into (1) and normalizing ψ appropriately, we find

ξ = ∂t + w1∂φ1 , (44)

just as given in (13).
For a concrete example, we consider the rotating solution in U(1)4 gauged super-

gravity with four charges pairwise equal [11],

ds2 = −�

W
(dt̂ − a sin2 θdφ̂)2 + W

(dr2

�
+ dθ2

�θ

)

+ �θ sin2 θ

W

[
adt̂ − (r1r2 + a2)dφ̂

]2
, (45)

where r1 = r + 2ms2
1 , r2 = r + 2ms2

2 and

� = r2 + a2 − 2mr + g2r1r2[r1r2 + a2],
�θ = 1 − g2a2 cos2 θ, W = r1r2 + a2 cos2 θ.

(46)

More details can be found in the original paper. The coordinates in (45) are not asymp-
totically static. They are related to the static ones by

dt̂ = dt, dφ̂ = dφ − g2adt

1 − g2a2 . (47)

Now the metric (45) becomes

ds2 = −W�θ�

Y
dt2 + W

(dr2

�
+ dθ2

�θ

)
+ Y sin2 θ

(1 − g2a2)2W
(dφ − wdt)2,

w = a�θ
2m(1 + s2

1 + s2
2 )r + 4m2s2

1 s2
2

Y
, Y = (r1r2 + a2)2�θ − a2 sin2 θ�.

(48)

The horizon is located at �(r0) = 0, and the angular velocity is


 = w(r0) = a
1 + g2r10r20

r10r20 + a2 , (49)

where r10 = r1(r0) and r20 = r2(r0). At the spatial infinity, we have

w ∼ 1

r3 −→ 0 as r −→ +∞, (50)

just as asserted in (6). The metric (48) is of the form (39), and so one can use (44) to
find ξ = ∂t + w∂φ . Using the properties of w as described above, we note ξ behaves
exactly as described in our Key result.
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A.3 d = 5

In five dimensions, (2) becomes

ds2 = − ft�(dt + f1dφ1 + f2dφ2)2 + fr

�
r2 + h1(dθ

1)2

+g11

[
dφ1 − w1dt + g12(dφ

2 − w2dt)
]2 + g22(dφ

2 − w2dt)2. (51)

The corresponding fuenfbeins are

e0 = √
ft� (dt + f1dφ1 + f2dφ2), e1 =

√
fr

�
dr, e2 = √

h1 dθ,

e3 = √
g11

[
dφ1 − w1dt + g12(dφ

2 − w2dt)
]
, e4 = √

g22(dφ
2 − w2dt). (52)

The gamma matrices in the fuenfbein basis are taken to be

γ 0 = iσ 1 ⊗ 12, γ 4 = σ 3 ⊗ 12, γ j = −σ 2 ⊗ σ j , j = 1, 2, 3. (53)

The spinor field is

ψ =

⎛
⎜⎜⎝

ψ1a + iψ1b

ψ2a + iψ2b

ψ3a + iψ3b

ψ4a + iψ4b

⎞
⎟⎟⎠ , (54)

where all the functions are real. From the first equation in (12), we find

ψ1a = ψ3a, ψ1b = ψ3b, ψ2a = ψ4a, ψ2b = ψ4b. (55)

Plugging (55) into (1) and normalizing ψ appropriately, we find

ξ = ∂t + w1∂φ1 + w2∂φ2 , (56)

just as given in (13).
For a concrete example, we consider the rotating solution in U (1)3 gauged super-

gravity with two of the charges equal [13],

ds2 = H2/3
1 H1/3

3

⎧
⎨
⎩(x

2 − y2)

(
dx2

X
− dy2

Y

)
− x2 X (dτ + y2dσ)2

(x2 − y2) f H2
1

+ y2Y
[
dτ + (x2 + 2ms2

1 )dσ
]2

(x2 − y2)(γ + y2)H2
1
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−U

(
dτ + y2dσ + (x2 − y2) f H1

[
abdσ + (γ + y2)dχ

]

ab(x2 − y2)H3 − 2ms3c3(γ + y2)

)2
⎫
⎬
⎭ , (57)

where more detail can be found in the original paper. The coordinates in (57) are not
asymptotically static, and they are related to the non-rotating ones by

x2 = r2 − 2m

3
(2s2

1 + s2
3 )− γ, y2 = −a2 cos2 θ − b2 sin2 θ − γ,

τ = (1 + g2γ )t

�a�b
− ã2a φ1

�a(a2 − b2)
+ b̃2b φ2

�b(a2 − b2)
,

σ = g2t

�a�b
− a φ1

�a(a2 − b2)
+ b φ2

�b(a2 − b2)
,

χ = g4ab t

�a�b
− b φ1

�a(a2 − b2)
+ a φ2

�b(a2 − b2)
.

(58)

Now the metric is rather messy and it is unenlightening to write it out explicitly. We
only need to know that the metric can be cast into the form of (51). So the vector field
(1) now takes the form of (56). What’s important for us are the details of the functions
w1 and w2, which we find to be

w1 = w1
(0) + g2r2�a V1�

(1 − g2 ỹ2)V
, w1

(0) = b(ab + 2mc3s3)+ a(1 + g2(r22 + b2))r44

ab(ab + 2mc3s3)+ (r22 + a2 + b2)r44
,

w2 = w2
(0) + g2r2�bV2�

(1 − g2 ỹ2)V
, w2

(0) = a(ab + 2mc3s3)+ b(1 + g2(r22 + b2))r44

ab(ab + 2mc3s3)+ (r22 + a2 + b2)r44
,

V1 = a�b(r22 + b2)(r44 + ỹ2)+ 2m(a2 − b2)(bc3s3 − a(s2
1 − s2

3 )) cos2 θ,

V2 = b�a(r22 + a2)(r44 + ỹ2)− 2m(a2 − b2)(ac3s3 − b(s2
1 − s2

3 )) sin2 θ,

V =
[
(r44 + a2)(r44 + b2)+ 2mr44(s

2
1 − s2

3 )+ 2mabc3s3

]

×
[
(�a(r22 + a2)− 2ms2

1 )(�b(r22 + b2)− 2ms2
1 )

−2m(r22 − γ )(1 + g2γ )− 2mg2ã2b̃2 + 4m2s2
1 − r2�a�b�

1 − g2 ỹ2

]
,

� = (r42 + a2)(r42 + b2)+ g2(r22 + a2)(r22 + b2)r44 − 2m(r42 − γ )

r2 ,

r22 = r2 + 2m(s2
1 − s2

3 )

3
, r42 = r22 − 2ms2

1 , r44 = r42 + 2ms2
3 ,

ỹ2 = a2 cos2 θ + b2 sin2 θ, �a = 1 − g2a2, �b = 1 − g2b2,

γ = 2abc3s3 + (a2 + b2)s2
3 , ã2 = a2 + γ, b̃2 = b2 + γ 2.

(59)

The horizon is located at �(r0) = 0, and so the angular velocities are


1 = w1(r0) = w1
(0)(r0), 
2 = w2(r0) = w2

(0)(r0), (60)
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which agree with that found in [13]. At the spatial infinity (r → +∞), we find

w1
(0) → g2a,

g2r2�a V1�

(1 − g2 ỹ2)V
→ −g2a �⇒ w1 → 0,

w2
(0) → g2b,

g2r2�bV2�

(1 − g2 ỹ2)V
→ −g2b �⇒ w2 → 0,

(61)

just as asserted in (6). Using these properties, we note that (56) behaves just as described
in our Key result.
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