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Abstract
We suggest a way to study possible conformal symmetries on black hole
horizons. We do this by carrying out a Kaluza–Klein-like reduction of the
Einstein–Hilbert action along the ignorable coordinates of stationary and
axisymmetric black holes. Rigid diffeomorphism invariance of the m-ignorable
coordinates then becomes a global SL(m, R) gauge symmetry of the reduced
action. Related to each non-vanishing angular velocity, there is a particular
SL(2, R) subgroup, which can be extended to the Witt algebra on the black hole
horizons. The classical Einstein–Hilbert action thus has k-copies of infinite-
dimensional conformal symmetries on a given black hole horizon, with k being
the number of non-vanishing angular velocities of the black hole.

PACS numbers: 04.50.Gh, 04.70.Dy, 11.25.Hf, 11.25.Tq

1. Introduction

Finding a statistical explanation of the black hole entropy is a long standing problem. One
intriguing possibility is that the black hole entropy may have a sort of ‘universal’ explanation,
which is largely determined by some 2D conformal filed theory but depends little on the detail
of the possible UV completion of quantum gravity. Discussions of such an idea can be found
in e.g. [1, 2].

There has been some evidence in support of this possibility. Soon after the original
calculation of the entropy for certain black holes in string theory [3], Strominger showed that
any black holes having an AdS3 factor in their near-horizon region can have their entropies
calculated in a common way [4], by using the fact that quantum gravity on AdS3 must be
described by a 2D conformal field theory (CFT) [5]. Loosely related to this, it has also been
suggested that, with appropriate boundary conditions imposed, quantum gravity on the horizon
of black holes may also be described by a 2D CFT [6–10]. This later argument, however, is
marred by the ambiguity on the possible boundary conditions that one can impose near the
black hole horizons.
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More recently, the development of the Kerr/CFT correspondence [11, 2] brings more
support to a possible ‘universal’ explanation of the black hole entropy. The near-horizon
limit of the extremal Kerr (NHEK) metric [12] at fixed polar angles are quotients of warped
AdS3. This indicates that one may use the same techniques of [5] to discuss the asymptotic
symmetry group, much like in the case of BTZ black holes [4], which are quotients of AdS3.
Indeed, for an extremal Kerr black hole with the angular momentum J, appropriate boundary
conditions can be found and a copy of the Virasoro algebra can be identified. The putative
CFT at the NHEK boundary was shown to have a central charge cL = 12J and temperature
TL = 1

2π
[11]. Cardy’s formula then reproduces exactly the Bekenstein–Hawking entropy.

Afterwards, the calculation was generalized to black holes in higher dimensions and also in
more complicated settings (for a sample of the early references, see [13–19]). Black holes in
more than four dimensions can have multiple rotations. It was found in [16] that corresponding
to each non-zero rotation, there is an independent copy of the Virasoro algebra, and each copy
of the Virasoro algebra appears to be equally good in reproducing the Bekenstein–Hawking
entropy. For general treatments, it has also been shown that the method works for all extremal
stationary and axisymmetric black holes, in the context of Einstein gravity [20].

As a drawback, the success of the Kerr/CFT correspondence is limited to extremal black
holes1. Although it is possible to discuss physics slightly away from the extremal limit (see
e.g. [23]), it will be more desirable to study the case of non-extremal black holes directly. The
investigation of the hidden conformal symmetry of Kerr black hole is one such attempt [24].
Instead of looking at the symmetry structure of gravitational fluctuations directly, the authors
of [24] studied the dynamics of a massless scalar field probing the background of a Kerr
black hole. They found that the wave equation in the so-called near region enjoys an enhanced
SL(2, R)L × SL(2, R)R symmetry. By assuming that there is a putative dual 2D CFT having a
ground state sharing this same SL(2, R)L × SL(2, R)R symmetry, the authors of [24] were able
to infer for the temperatures TL,R, which together with the central charges cL,R extrapolated
from the Kerr/CFT calculation reproduce the Bekenstein–Hawking entropy exactly. Further
evidence of the existence of a dual 2D CFT was also provided by matching the low-energy
scalar-Kerr scattering amplitude with correlators of a 2D CFT at the same temperatures. For
further works, one can consult [25] and references therein.

Still, the situation with non-extremal black holes is far from being satisfactory. In order to
achieve the same level of success as is in the case of Kerr/CFT correspondence for extremal
black holes, one will need a way to identify the full conformal symmetries of the putative dual
2D CFT. In this paper, we want to report some partial results that may finally help us achieve
this goal.

We will show that on the horizon of a stationary and axisymmetric black hole with k
non-vanishing angular velocities, the Einstein–Hilbert action itself enjoys k-copies of infinite-
dimensional conformal symmetries. Note the similarity between this result and that from [16]
mentioned above. Our result holds for any stationary and axisymmetric black holes in any
spacetime dimensions. For practical reasons, we have only carried out the explicit calculation
for pure Einstein gravity plus a (possibly zero) cosmological constant; so, the black holes
should also be solutions to such a system.

Our starting point is the simple fact that stationary and axisymmetric black holes all
have ignorable coordinates and that their metrics share a common structure [20]. It is then
natural to seek a Kaluza–Klein-like reduction of the action on the ignorable coordinates. The
usual experience with Kaluza–Klein reduction suggests that it may be easier to study some

1 There is potentially a more fundamental problem with the Kerr/CFT proposal, which is related to the fact that
gravitational backreactions tend to upset the NHEK boundary conditions [21, 22]. I will have nothing to contribute to
this issue here. But I thank one of the referees for bringing this point up.
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of the symmetries in the system (see e.g. [26, 27]). On the other hand, since we presume the
existence of the classical black hole solutions, what we do here is not much than explicitly
writing out the classical action in terms of functions that are known to be independent of the
ignorable coordinates. As such, we will not expect any inconsistency that may arise in the usual
Kaluza–Klein reduction of a dynamical system. Rather, the reduced action allows us to study
the classical equations of motion in a much greater detail. In the case of pure gravity plus a
cosmological constant, this allows us to re-derive the first law of black hole thermodynamics in
a straightforward manner. In fact, the derivation echoes with [28] and partially explains why it
is sensible to calculate the mass of a black hole by integrating the first law of thermodynamics.

After the reduction, we find that the rigid diffeomorphism invariance of the ignorable
coordinates become a global SL(m, R) gauge symmetry of the reduced action, with m being
the number of the ignorable coordinates. As the key result of this paper, we will show
that corresponding to each non-vanishing angular momentum, there is a particular SL(2, R)

subgroup, which can be extended to the full Witt algebra on the black hole horizons. This
means that the classical Einstein–Hilbert action, when restricted to the horizons of stationary
and axisymmetric black holes, enjoys a copy of the infinite-dimensional conformal symmetry
for each non-vanishing angular velocity.

The plan of this paper is as follows. In section 2, we derive a scheme of Kaluza–Klein-like
reduction that will make it easier to deal with the special case of stationary and axisymmetric
black holes. In section 3, we write down the reduced action for stationary and axisymmetric
black holes. As an application, we re-derive the first law for black holes in terms of the new
language. In section 4, we prove the classical conformal invariance of the reduced action on
the black hole horizons. A short summary is in section 5.

2. A Kaluza–Klein reduction of the Einstein–Hilbert action

Consider the action in a D-dimensional spacetime � with a boundary ∂�,

S =
∫

�

dDx
√

|g| (R − 2�) +
∫

∂�

(dD−1x)μnμ
√

|g| K, (1)

where nμ is the unit normal vector of ∂� (suppose the boundary is defined with some function
� = 0, then nμ = ∂μ�/

√
g�σ ∂��∂σ� ), and K is the extrinsic curvature

K = gμνKμν, Kμν = ∇μnν + ∇νnμ. (2)

The inclusion of the Gibbons–Hawking–York boundary term is necessary for a well-defined
variation principle. When the metric is varied (note δgμν = 0 on ∂�),

δS =
∫

�

dDx
√

|g|
(

Rμν − R − 2�

2
gμν

)
δgμν, (3)

from which one can derive the equations of motion

Rμν = 2�

D − 2
gμν. (4)

Now consider the metric of a (D = m + n)-dimensional spacetime2,

ds2 = G̃μν dxμ dxν = HIJ dxI dxJ + GAB dyA dyB, (5)

where both HIJ and GAB depend only on the x-coordinates. We use capital letters from the
beginning of the alphabet (A, B,C, . . . ∈ {1, . . . , m}) to label the y-coordinates, and those from
the middle of the alphabet (I, J, K, . . . ∈ {1, . . . , n}) to label the x-coordinates. The reason for

2 Do not confuse the number n with the normal vector nμ of the boundary ∂�.
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considering such a metric will become clear in the next section. Now because both GAB and
HIJ depend only on the x-coordinates, one can formally treat GAB as some matter fields living
in the curved background HIJ . It is then interesting to look at the action for both GAB and HIJ

from this new perspective. For this purpose, let us write down the metric elements explicitly

G̃IJ = HIJ, G̃AB = GAB, G̃IA = 0,

�⇒ G̃IJ = HIJ, G̃AB = GAB, G̃IA = 0. (6)

From now on, indices A, B,C, . . . will be raised or lowered using the metric G, and indices
I, J, K, . . . will be raised or lowered using the metric H. We will always write out the indices
A, B,C, . . . explicitly, but will sometimes hide the I, J, K, . . . indices, in places where their
presence is obvious. The elements of the original affine connection are

�̃I
JK = �I

JK, �̃A
IJ = �̃I

AJ = �̃A
BC = 0,

�̃I
AB = − 1

2∂ IGAB, �̃A
IB = 1

2 GAC∂IGBC, (7)

the elements of the original Ricci tensor are

R̃IJ = RIJ − ∇I∇J ln
√

|G| + 1
4∂IGAB∂JGAB, R̃IA = 0,

R̃AB = − 1
2∇2GAB − 1

2∂ ln
√

|G|∂GAB + 1
2 GCD∂GAC∂GBD, (8)

and the original Ricci scalar is

R̃ = R − (∂ ln
√

|G|)2 − 2∇2 ln
√

|G| + 1

4
∂GAB∂GAB

= R + (∂ ln
√

|G|)2 + 1

4
∂GAB∂GAB − 2√|G|∇

2
√

|G|. (9)

We will only consider the case when the boundary ∂� is in the x-directions. Then ñA = 0,
ñI = nI and

K̃IJ = KIJ = ∇I nJ + ∇J nI, K̃AB = −2�̃I
ABnI = nI∂

IGAB,

�⇒ K̃ = H̃IJK̃IJ + G̃ABK̃AB = K + 2nI∂I ln
√

|G|. (10)

Using these results in the original action (1), we find

S =
∫

�

dnx
√

|H|
√

|G|
{

R − 2� + (∂ ln
√

|G|)2 + 1

4
∂GAB∂GAB − 2√|G|∇

2
√

|G|
}

+
∫

∂�

(dD−1x)I nI
√

|H|
√

|G|
{

K + 2nJ∂J ln
√

|G|
}
,

=
∫

�

dnx
√

|H|
√

|G|
{

R − 2� + (∂ ln
√

|G|)2 + 1

4
∂GAB∂GAB

}
+

∫
∂�

(dD−1x)I nI
√

|H|
√

|G| K, (11)

where we have divided out the volume of the y-coordinate space from the action, and �

is redefined as the space spanned by the x-coordinate. Equations of motion from (11) are
consistent with R̃μν = 2�

D−2 G̃μν . When varying HIJ , it is important to note that√
|G| δR =

√
|G|

(
RIJ − ∇I∇J + HIJ∇2

)
δHIJ

=
√

|G|
{

RIJ − ∇I∇J
√|G|√|G| + HIJ

∇2√|G|√|G|
}
δHIJ, (12)

+ boundary terms (to be cancelled by the boundary action).
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By tracing over R̃AB = 2�
D−2 G̃AB, we also find(

∂ ln
√

|G|
)2

+ ∇2 ln
√

|G| = ∇2√|G|√|G| = − 2m�

D − 2
. (13)

It is obvious that (11) has a rigid SL(m, R) symmetry: the action is invariant under the
transformation

GAB −→ (V · G · VT )AB, |V| = 1. (14)

This symmetry is due to the freedom in redefining the y-coordinates

dyA −→ (dy · V−1)A. (15)

As such, the same symmetry should continue to exist even when there are additional matter
fields. Of course, the matter fields should transform appropriately to keep the physical objects
invariant. For example, a vector field should transform as

AI −→ AI, AA = −→ (VA)A, (16)

which leaves A = dxIAI + dyAAA invariant.

3. First law for stationary and axisymmetric black holes

It is well known that any metric can be cast into the ADM form

ds2 = −N2 dt2 + gi j(dxi − Ni dt)(dx j − N j dt). (17)

For a stationary and axisymmetric black hole, the metric elements are further constrained, and
the metrics can always be put into the following form [20]:

ds2 = f

[
− �

v2
dt2 + dr2

�

]
+ hi j dθ i dθ j + gab(dφa − wadt)(dφb − wb dt), (18)

where � = �(r), and the functions f , v, hi j, gab and wa depend only on the r and θ -
coordinates. In principle, one can identify the coordinates as the asymptotic time t, the radial
coordinate r, the latitudinal angles θ i

(
i = 1, . . . ,

[
D
2

] − 1
)

and the azimuthal angles φa(
a = 1, . . . ,

[
D+1

2

] − 1
)
, where D is the total dimension of the spacetime. The black hole

horizon r0 is located at the (largest) root of �(r0) = 0. Near the black hole horizon, f , v2, (hi j)

and (gab) are all positive definite. The fact that black holes are intrinsically regular on the
horizon puts extra constraints on the functions

v(r, θ i) = v0(r) + v1(r, θ
i)� + O(�2),

wa(r, θ i) = wa
0(r) + wa

1(r, θ
i)� + O(�2), (19)

which means that any dependence of v and wa on θ i can only begin at the order �. What
is more, v0(r0) �= 0 and wa

0(r0) = �a is the angular velocity of the black hole in the φa

direction. One can also choose the coordinate system to be non-rotating at the spatial infinity
(r → +∞), which means that3

wa(r, θ i) −→ 0 as r → +∞. (20)

The inverse of (18) is

(∂S)
2 = �

f
∂2

r + hi j∂θ i∂θ j + gab∂φa∂φb − v2

f �
(∂t + wa∂φa )

(
∂t + wb∂φb

)
. (21)

3 As a side remark, note if we use (18) in the construction of [29], we will obtain a vector field that interpolates the
null Killing vector on the horizon and the time Killing vector at the spatial infinity.
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It is obvious that (18) is a special case of (5). Comparing (18) with (5), we see that r and θ i’s
belong to the x-coordinates and are labelled by the I, J, K indices, while t and φa’s belong to
the y-coordinates and are labelled by the A, B,C indices. Also n = [

D
2

]
and m = [

D+1
2

]
. The

non-vanishing elements of the metric are

Hrr = f

�
, Hi j = hi j, Gat = −wa, Gab = gab, Gtt = − 1

�
+ w2,

Hrr = �

f
, Hi j = hi j, Gat = −�wa, Gab = gab − �wawb, Gtt = −�, (22)

where � = v2

f� , wa = gabw
b and w2 = waw

a. For the determinants, we have
√

H = √
f h/�

and
√|G| = √

g/� , with h being the determinant of hi j and g the determinant of gab. Note
H > 0 outside the black hole horizon. In the following, we will still denote Hrr and Hi j

collectively as HIJ , I, J ∈ {r, i}. The action (11) can now be written as

S =
∫

�

(dn−1θ )drL +
∫

∂�

(dn−1θ dr)I nI
√

Hg/�K,

L =
√

Hg/�

{
R − 2� + (∂ ln

√
g/�)2 − (∂ ln

√
�)2

+ 1

4
∂gab∂gab + �

2
gab∂wa∂wb

}
. (23)

Note this action is completely regular on the black hole horizons (� → 0). This is reasonable
because black holes are intrinsically regular on the horizons. As mentioned before, one can
formally treat (23) as a field theory of gab, � and wa, defined in the curved background HIJ .
So correspondingly, one can derive a new set of equations of motion

−∇(
√

g/� ∂gab)

2
√

g/�
+ 1

2
gcd∂gac∂gbd − �

2
gacgbd∂wc∂wd = 2�

D − 2
gab, (24)

∇(
√

g/� ∂ ln
√

�)√
g/�

+ �

2
gab∂wa∂wb = 2�

D − 2
, (25)

∇(√
g/� �gab∂wb

) = 0, (26)

which are equivalent to R̃AB = 2�
D−2 G̃AB, A, B ∈ {t, a}. By tracing over (24) and then

using (25), we find (note δa
a = m − 1)

∇2√g/�√
g/�

= − 2m�

D − 2
, (27)

thus recovering (13). Also, we can vary HIJ to obtain
2�

D − 2
HIJ = RIJ − ∇I∇J ln

√
g/� − ∂I ln

√
� ∂J ln

√
�

+ 1

4
∂Igab∂Jgab + �

2
gab∂Iw

a∂Jw
b, (28)

which is equivalent to R̃IJ = 2�
D−2 G̃IJ , I, J ∈ {r, i}.

As an application of the new formalism, let us re-derive the first law of black hole
thermodynamics in terms of the new language. To facilitate our discussion, we firstly recall
some basic formulae of the covariant phase space method, for which we follow [30, 31].

Consider the general action

S =
∫
M

L, L = L(�a, ∂μ�a, ∂μ∂ν�
a, . . .) ∗ 1, (29)

6
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where � denotes all possible fields collectively. Throughout this paper, we will use a bold-
faced letter (e.g. L) to denote a differential form4. For an arbitrary variation of the fields,

δL = (δ�a)Ea ∗ 1 + d�δ, (33)

where all the terms involving a derivative on δ�a have been moved into d�δ . The Euler–
Lagrange equations are just Ea = 0. For the special case of a general diffeomorphism
(δ = £ξ = d · iξ + iξ · d),

£ξ L = d(iξ L) = (£ξ�
a)Ea ∗ 1 + d�ξ , Jξ = �ξ − iξ L,

�⇒ dJξ = −(£ξ�
a)Ea ∗ 1 ≈ 0, �⇒ Jξ ≈ dQξ , (34)

where ‘≈’ means equal after using the equations of motion Ea = 0. Now let us evolve a
classical solution to a nearby one. (We will focus on the particular operation δ̄ that only
changes free parameters, such as mass and angular momenta, in the solution.)

δ̄Jξ = δ̄�ξ − δ̄(iξ L) = δ̄�ξ − iξ · d�δ̄ = w(δ̄, £ξ ) + d(iξ�δ̄ ), w(δ, £ξ ) ≡ δQξ − £ξ Qδ.

(35)

Since δ̄ only goes through classical solutions, one has Jξ = dQξ all the time. Hence

δ̄Jξ = dδ̄Qξ , �⇒ w(δ̄, £ξ ) = dk(δ̄, £ξ ), k(δ̄, £ξ ) ≡ δ̄Qξ − iξ�δ̄ . (36)

In the case when ξ is a Killing vector of some classical solution,

£ξ = 0 �⇒ w(δ̄, £ξ ) = 0, �⇒ 0 =
∫

V
w(δ̄, £ξ ) =

∮
∂V

k(δ̄, £ξ ), (37)

where V is a cauchy surface. Since in this paper we are mainly interested in stationary and
axisymmetric black holes (18), we can take V to be the space outside the horizon(s). As a
result, ∂V has two disconnect pieces: one at the spatial infinity and one at the (outer) horizon∮

∂V
=

∫
+∞

−
∫

Horizon
. (38)

Usually one defines the charge corresponding to £ξ through an integral at the spatial infinity

δ̄Hξ =
∫

+∞
k(δ̄, £ξ ) =

∫
+∞

(δ̄Qξ − iξ�δ̄ ). (39)

But because of (37) and (38), this is equivalent to defining

δ̄Hξ =
∫

horizon
k(δ̄, £ξ ) =

∫
horizon

(δ̄Qξ − iξ�δ̄ ). (40)

It is this second definition that we want to use in the following.

4 We will use the notation

(dD−px)μ1 ...μp ≡ 1

p!(D − p)!
εμ1 ...μpν1 ...νD−p

dxν1 ∧ · · · ∧ dxνD−p , |ε...| = 1, (30)

with which the Hodge-∗ dual of a p-form wp = 1
p! wμ1 ...μp dxμ1 ∧ · · · ∧ dxμp can be written as

∗ wp =
√

|g| (dD−px)μ1 ...μpw
μ1 ...μp , �⇒ ∗1 =

√
|g| dDx. (31)

For the exterior and interior products, one obtains

d ∗ wp =
√

|g| (dD−p+1x)μ1 ...μp−1 ∇μpw
μ1 ...μp ,

iξ (dD−px)μ1 ...μp = (dD−p−1x)μ1 ...μpμ(p + 1)ξμ. (32)

7
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Now consider Einstein gravity plus a cosmological constant

L =
(

R̃ − 2�

16π

)
∗ 1, (41)

where we use G̃μν to denote the full metric (5), with (18) being a special case. Note we have
introduced the factor 1

16π
into the Lagrangian density, just to be consistent with the usual

convention of defining charges in general relativity. We will keep this factor only until the end
of this section, and starting from the next section we will go back and use (1) again. For an
arbitrary variation of the fields

δL = 1

16π

{
h̃

2
(R̃ − 2�) + (−R̃μν + ∇̃μ∇̃ν − ∇̃2G̃μν )h̃μν

}
∗ 1,

�⇒ Eμν = 1

16π

[
1

2
G̃μν (R̃ − 2�) − R̃μν

]
,

�δ =
√

−G̃ (dD−1x)μ

(
∇̃ν h̃μν − ∇̃μh̃

16π

)
, (42)

where h̃μν ≡ δG̃μν . (Do not confuse it with the metric elements hi j in (18).) For a
diffeomorphism, one obtains from (34)

Jξ = �ξ − iξ L =
√

−G̃ (dD−1x)μ

{
−∇̃νξ

μν + 2R̃μνξν

16π
−

(
R̃ − 2�

16π

)
ξμ

}

=
√

−G̃ (dD−1x)μ

(
−∇̃νξ

μν

16π

)
= dQξ ,

�⇒ Qξ =
√

−G̃ (dD−2x)μν

(−ξμν

16π

)
, ξμν = ∇̃μξν − ∇̃νξμ. (43)

The metric (18) has the Killing vectors k̂ = ∂t and k̂a = ∂φa . The elements relevant for the
integral (40) are

k̂tr = G̃tμG̃rr(∂μk̂r − ∂rk̂μ) = −G̃tμG̃rr∂rG̃tμ = −�

f
�

[
∂r

(
1

�
− w2

)
+ wa∂rwa

]
= v2

f 2

(
1

�
∂r ln � + wa∂rw

a

)
= v2

f 2

(
wa∂rw

a − f �′

v2
+ f �

v2
∂r ln

v2

f

)
,

−→ v2

f 2

(
wa∂rw

a − f �′

v2

)
, (44)

k̂tr
a = G̃tμG̃rr[∂μ(k̂a)r − ∂r(k̂a)μ] = −G̃tμG̃rr∂rG̃aμ

= −�

f
�[∂rwa − wb∂rgab] = −v2

f 2
gab∂rw

b, (45)

where ‘−→’ means equal in the limit � → 0. Similarly using (42), one has for iξ�δ̄ =√
−G̃(dD−2x)μν (iξ�δ̄ )

μν ,

(iξ�δ̄ )
μν = ξν

( ∇̃ρ h̄μρ − ∇̃μh̄

16π

)
− ξμ

( ∇̃ρ h̄νρ − ∇̃ν h̄

16π

)
,

(ik̂�δ̄ )
tr = − 1

16π

(
∇̃μh̄rμ − ∇̃rh̄

)
8
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= − 1

16π

(
∂rh̄

rr + �̃r
μν h̄μν + �̃μ

μrh̄
rr − G̃rr∂rh̄

)
= − 1

16π

(
∂rh̄

rr + G̃rr∂rG̃rrh̄
rr − 1

2
G̃rr∂rG̃μν h̄μν + h̄rr∂r ln

√
−G̃

− 2G̃rr∂r δ̄ ln
√

−G̃

)
−→ − 1

16π

(
∂rh̄

rr + G̃rr∂rG̃rrh̄
rr + 1

2
G̃rr∂rG̃

μν h̄μν + h̄rr∂r ln
√

−G̃

)
−→ − 1

16π

{
∂r

(
�2

f 2
δ̄

f

�

)
+ �2

f 2
δ̄

f

�
∂r ln

f

�
+ �

2 f

[
∂r

�

f
δ̄

f

�
+ ∂r�δ̄

(
1

�
− w2

)
+ 2∂r(�wa)δ̄wa + ∂r(g

ab − �wawb)δ̄gab

]}
−→ − 1

16π

[
v2

f 2
gab∂rw

aδ̄wb − v

f
δ̄

(
�′

v

)]
, (46)

where h̄μν ≡ δ̄G̃μν . (Do not confuse it with the metric elements hi j in (18).) Note although we
have kept � explicit (at where it is necessary) to show that none of the expressions diverge in
the limit � → 0, it should be understood that the operation δ̄ always comes after taking the
limit r → r0. For this reason, δ̄� = 0 holds all the time. Plugging the results back into (40),
we find

δ̄E = δ̄Hk̂ =
∫

r=r0

(dD−2x)μν

{
δ̄

(√
−G̃

−k̂μν

16π

)
−

√
−G̃ (ik̂�δ̄ )

μν

}
=

∫
r=r0

(dD−2x)tr2

{
δ̄

(
−

√
hg

16π

v

f
wa∂rw

a +
√

hg

16π

�′

v

)
+

√
hg

16π

v

f
gab∂rw

aδ̄wb −
√

hg

16π
δ̄

(
�′

v

)}
=

∫
r=r0

(dD−2x)tr2

{
waδ̄

(
−

√
hg

16π

v

f
gab∂rw

b

)
+ �′

16πv
δ̄
√

hg

}
= T δ̄S + �aδ̄Ja, (47)

where we have used
√

−G̃ = √
hg

f

v
and in the last step the definitions

T = κ

2π
= �′

4πv

∣∣∣∣
r=r0

, �a = wa(r0),

Ja = − Hk̂a
=

∫
r=r0

√
−G̃ (dD−2x)μν

(
k̂μν

a

16π

)
=

∫
r=r0

(dD−2x)tr2

(
−

√
hg

16π

v

f
gab∂rw

b

)
,

S = 1

4

∫
r=r0

(dD−2x)tr2
√

hg = Area

4
, (48)

where κ is the surface gravity on the horizon.
Note the above calculation is not a true ‘derivation’ of the first law because the δ̄-

integrability of (40) is not a priori obvious. As such, the above calculation, together with the
observation that one can integrate the first law to recover the black hole masses [28], can be
better interpreted as showing that (40) is δ̄-integrable for stationary and axisymmetric black
holes, in the context of Einstein gravity plus a cosmological constant.

9
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As a side remark, note that Wald [30] and Iyer and Wald [31] already involved deriving the
first law of thermodynamics from the general calculus of the covariant phase space method.
What is new here is that (i) we are using an operation δ̄ that is directly related to the usual test
of the first law of black hole thermodynamics, and (ii) all the quantities are now defined at the
black hole horizon, without any reference to the spatial infinity. (But because of (37) and (38),
the results must be the same.)

We want to emphasize that the above calculation becomes possible only because our
formalism has made the dependence on the function �(r) explicit, which holds key information
of the metric (18) as it approaches the black hole horizon.

4. The conformal symmetries on the horizon

As was mentioned before, the action (11) has a rigid SL(m, R) symmetry, which should be
inherited by the particular case (23). In this section, we want to focus on the particular SL(2, R)

generators like the following5,

L0 = 1

2

⎛⎜⎝−1 · · · 0
...

. . .
...

0 · · · 1

⎞⎟⎠ , L+ =

⎛⎜⎝0 · · · 1
...

. . .
...

0 · · · 0

⎞⎟⎠ , L− =

⎛⎜⎝ 0 · · · 0
...

. . .
...

−1 · · · 0

⎞⎟⎠ , (49)

where all the matrices are m-dimensional, and all the implicit elements are zero. The
transformation of the metric elements GAB will be given by

δ̂G ≡ −(L · G + G · LT ). (50)

In order to see the results explicitly, let us distinguish the coordinate φ1 from the rest of the
azimuthal angles. We will simply denote φ1 as φ, and will also use φ as the corresponding
super/subscript e.g. w1 = wφ and g11 = gφφ . We will label all other azimuthal angles using
indices with a tilde, φã (ã = 2, . . . , m − 1). Accordingly,

(GAB) =
⎛⎝ gφφ gãφ −wφ

gb̃φ gãb̃ −wb̃

−wφ −wã − 1
�

+ w2

⎞⎠ ,

(GAB) =
⎛⎝gφφ − �wφwφ gãφ − �wãwφ −�wφ

gb̃φ − �wb̃wφ gãb̃ − �wãwb̃ −�wb̃

−�wφ −�wã −�

⎞⎠ . (51)

Note both the indices {φ, ã} are still raised and lowered using the matrix

(gab) =
(

gφφ gãφ

gb̃φ gãb̃

)
, (gab) =

(
gφφ gãφ

gb̃φ gãb̃

)
. (52)

As such, we will try to convert our results back to using the untilded indices (which take values
form {φ, 2, . . . , m − 1}) whenever it is possible.

Our following construction will also rely on the assumption that wφ = w1 �= 0. But the
choice on φ1 is only a matter of convenience. One can do the same for any other azimuthal
angles, as long as the corresponding angular velocity is non-zero. Of course, one should
accordingly relocate the non-vanishing matrix elements in (49).

5 Note when the metric (5) is specialized to (18), the m y-coordinates in (5) are partitioned into the (m−1) azimuthal
angles φ’s and the time t in (18). Accordingly, we take the last row and column in all the matrices in (49) and (51) to
correspond to the t-direction, while all others correspond to the φ-directions.

10
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Now using (50), we find for the symmetric transformations

δ̂0gφφ = gφφ, δ̂0gφφ = −gφφ,

δ̂0gãφ = 1
2 gãφ, δ̂0gãφ = − 1

2 gãφ,

δ̂0gãb̃ = 0, δ̂0gãb̃ = 0,

δ̂0w
φ = −wφ, δ̂0wφ = 0,

δ̂0w
ã = − 1

2wã, δ̂0wã = − 1
2wã, δ̂0� = �,

− − − − − − − − − − − − − − − − (53)

δ̂+gφφ = 2wφ, δ̂+gφφ = −2gφφwφ,

δ̂+gãφ = wã, δ̂+gãφ = −(gãφwφ + gφφwã),

δ̂+gãb̃ = 0, δ̂+gãb̃ = −(gãφwb̃ + gb̃φwã),

δ̂+wφ = −(wφwφ + gφφ/�), δ̂+wφ = − 1

�
+ w2,

δ̂+wã = −(wãwφ + gãφ/�), δ̂+wã = 0, δ̂+� = 2�wφ, (54)

− − − − − − − − − − − − − − − −
δ̂−gφφ = 0, δ̂−gφφ = 0,

δ̂−gãφ = 0, δ̂−gãφ = 0,

δ̂−gãb̃ = 0, δ̂−gãb̃ = 0,

δ̂−wφ = −1, δ̂−wφ = −gφφ,

δ̂−wã = 0, δ̂−wã = −gãφ, δ̂−� = 0. (55)

It is easy to check that

[δ̂±, δ̂0] = ±δ̂±, [δ̂+, δ̂−] = 2δ̂0. (56)

For later convenience, let us define

π Iab = δS

δ(∂Igab)
=

√
Hg/�

(
gab∂ I ln

√
g/� + 1

2
∂ Igab

)
,

π I
a = δS

δ(∂Iwa)
=

√
Hg/� (�gab∂

Iwb),

π I
� = δS

δ(∂I�)
=

√
Hg/�

(
− 1

�
∂ I ln

√
g

)
. (57)

The Noether currents corresponding to (53)–(55) are

JI
0 = π Iabδ̂0gab + π I

a δ̂0w
a + π I

�δ̂0�

=
√

Hg/�

(
1

2
gφa∂

Igaφ − ∂ I ln
√

� − �

2
wagab∂

Iwb − �

2
wφgφa∂

Iwa

)
,

JI
+ = π Iabδ̂+gab + π I

a δ̂+wa + π I
�δ̂+�

=
√

Hg/�(−2wφ∂ I ln
√

� + wa∂
Igaφ − ∂ Iwφ − �wφwa∂

Iwa),

JI
− = π Iabδ̂−gab + π I

a δ̂−wa + π I
�δ̂−� =

√
Hg/�(−�gφa∂

Iwa). (58)

By using the equations of motion (24)–(26), one can check that all these currents are exactly
conserved.

11
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There is an interesting connection between these currents and the charges defined
in (47) and (48). Using the detail of the metric elements (22) and the relations � = v2

f�

and
√

Hg/� = √
hg f

v
, one can find that

Jr
− =

√
hg

v

f
(−gφa∂rw

a). (59)

It is obvious that Jr
− is just the integrand of the angular momentum Jφ in (48).6 For the energy

E, it is easier to look at the asymptotically flat case (� = 0). In this case, it is possible to
define the energy as a Komar integral

E ∼ −
∫

+∞
∗ dk̂ = −

∫
Horizon

∗ dk̂ =
∫

Horizon
(dD−2x)tr

√
hg

f

v
2(−k̂tr), (60)

where k̂tr has been given in (44), and in the second step we have used R̃μν ∼ �G̃μν = 0 and
the relation ∇̃ν∇̃μξν = R̃μ

ν ξν which is valid for any Killing vector ξ . Now note that for each
azimuthal angle φa, it is possible to construct a copy of the currents (58). Using (27), we see
that the following current (from summing over the JI

0 corresponding to each azimuthal angles
and then subtract out a trivial piece) is also conserved when � = 0,

JI = 2

m

m−1∑
φ=1

JI
0 + 2

m

√
Hg/�∂ I ln

√
g/�

= −
√

hg
f

v

(
�wa∂

Iwa + 2∂ I ln
√

�
)
,

�⇒ Jr −→ −
√

hg
f

v

(
v2

f 2
wa∂rw

a − 2�′

f

)
, (61)

where ‘−→’ means equal in the limit � → 0. By comparing with (44), we see that Jr is just
the integrand of (60), up to a normalization constant. Despite the fact that the connections
found in this paragraph is very interesting, they will have nothing to do with our following
discussions.

Given the above SL(2, R) symmetry (56), it is natural to ask if one can extend it to the
infinite-dimensional Witt algebra

[δ̂m, δ̂n] = (m − n)δ̂m+n, m, n = 0,±1,±2, . . . . (62)

In particular, we want to see if we can construct operators that satisfy (62) approximately
near the black hole horizons, where � → 0 (i.e. ρ → +∞). Technically, given δ̂0,±, one
only needs to figure out δ̂2 and δ̂−2 to obtain the full algebra: all other operators can then be
constructed by iterating the following relations:

δ̂m+1 = 1

m − 1
[δ̂m, δ̂+], δ̂−m−1 = 1

−m + 1
[δ̂−m, δ̂−], m � 2. (63)

We will want all the new transformations δ̂m (m = ±2,±3, . . .) to be regular and non-trivial
on the horizon, just as δ̂0 and δ̂± in (53)–(55).

To generalize (53)–(55) to infinite dimensions, let us start with

[δ̂2, δ̂0] = 2δ̂2, [δ̂−2, δ̂0] = −2δ̂−2. (64)

6 The extra factor 1
16π

comes from the difference between (1) and (41).
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In combination with (53), we find

δ̂0δ̂2gφφ = −δ̂2gφφ, δ̂0δ̂−2gφφ = 3δ̂−2gφφ,

δ̂0δ̂2gãφ = − 3
2 δ̂2gãφ, δ̂0δ̂−2gãφ = 5

2 δ̂−2gãφ,

δ̂0δ̂2gãb̃ = −2δ̂2gãb̃, δ̂0δ̂−2gãb̃ = 2δ̂−2gãb̃,

δ̂0δ̂2w
φ = −3δ̂2w

φ, δ̂0δ̂−2w
φ = δ̂−2w

φ,

δ̂0δ̂2w
ã = − 5

2 δ̂2w
ã, δ̂0δ̂−2w

ã = 3
2 δ̂−2w

ã,

δ̂0δ̂2� = −δ̂2�, δ̂0δ̂−2� = 3δ̂−2�. (65)

Keeping in mind that δ̂±2 should be regular and non-trivial on the horizon, and also guided by
(65), we try the following ansatz:

δ̂2gφφ = u1gãb̃w
ãwb̃ + u2gãφwãwφ + u3gφφwφwφ,

δ̂2gãφ = u4gãb̃w
b̃wφ + u5gãφwφwφ, δ̂2gãb̃ = 0,

δ̂2w
φ = u6w

φwφwφ, δ̂2w
ã = u7w

ãwφwφ, (66)

δ̂−2gφφ = v1gãb̃w
ãwb̃ + v2gãφwãwφ + v3gφφwφwφ

wφwφwφwφ
,

δ̂−2gãφ = v4gãb̃w
b̃ + v5gãφwφ

wφwφwφ
, δ̂−2gãb̃ = 0,

δ̂−2w
φ = v6/w

φ, δ̂−2w
ã = v7w

ã/(wφwφ), (67)

where u1 , . . . , u7 and v1 , . . . , v7 are constants. Note g/� is invariant under (53)–(55). Here
we further assume that g/� is neutral under all the transformations. This requirement fully
determines the structure of δ̂m� :

δm� = �gabδmgab, ∀ m = 0,±1,±2, . . . . (68)

Now since (Here ‘≈’ means equal at the leading order in � → +∞)

[δ̂2, δ̂−] ≈ 3δ̂+, [δ̂−2, δ̂+] ≈ −3δ̂−, [δ̂2, δ̂−2] ≈ 4δ̂0, (69)

we find v1 = −u1, and

u2 = 6, u3 = 3, u4 = 3, u5 = 3
2 , u6 = −1, u7 = − 3

2 ,

v2 = 2, v3 = −1, v4 = 1, v5 = − 1
2 , v6 = −1, v7 = 1

2 . (70)

The currents corresponding to (66) and (67) are

JI
2 = π Iabδ̂2gab + π I

a δ̂2w
a + π I

�δ̂2�,

=
√

Hg/�

{
u1gãb̃w

ãwb̃

(
1

2
∂ Igφφ − gφφ∂ I ln

√
�

)
− 3∂ I ln

√
� wφwφ

− 3∂ Igabgaφwbwφ + 3

2
∂ Igaφgaφwφwφ

− 3

2
�gabw

awφwφ∂ Iwb + 1

2
�gaφwφwφwφ∂ Iwa

}
, (71)
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JI
−2 = π Iabδ̂−2gab + π I

a δ̂−2w
a + π I

�δ̂−2�,

=
√

Hg/�

wφwφwφwφ

{
− u1gãb̃w

ãwb̃

(
1

2
∂ Igφφ − gφφ∂ I ln

√
�

)
+ ∂ I ln

√
� wφwφ

− ∂ Igabgaφwbwφ + 3

2
∂ Igaφgaφwφwφ

+ 1

2
�gabw

awφwφ∂ Iwb − 3

2
�gaφwφwφwφ∂ Iwa

}
. (72)

With the help of the equations of motion (24)–(26), and also the properties (19) and (22), the
total divergence of the currents can be found as

∂IJ
I
2 =

√
Hg/�

(
− 6∂ ln

√
� wφ∂wφ

)
+ O

(
1

�

)
+ u1 term

=
√

hg

(
3
�′

v
wφ∂rw

φ

)
+ O(�) + u1 term,

∂IJ
I
−2 =

√
Hg/�

(
−2

∂ ln
√

� ∂wφ

wφwφwφ

)
+ O

(
1

�

)
+ u1 term

=
√

hg

(
�′

v
· ∂rw

φ

wφwφwφ

)
+ O(�) + u1 term, (73)

where all the u1 terms have components sharing the following factor:

∂ ln
√

� ∂(gãb̃gφφ ) = −�′

2 f
∂r(gãb̃gφφ ) + hi j∂i ln

√
� ∂ j(gãb̃gφφ ) + O(�). (74)

It is obvious that δ̂±2 are exact symmetries of the action (23) only when both �′ and u1 are zero.
We are free to take u1 = 0 because it is just an undetermined parameter. On the other hand,
�′ is related to the black hole temperature (48), and so it is non-zero in general. So it appears
that the extended symmetries δ̂±2 are explicitly broken by the finite black hole temperature.

This problem can be fixed by introducing sub-leading terms into (66) and (67)

δ̂2gφφ = 6gãφwãwφ + 3gφφwφwφ + 6

�

(
gφφgφφ − 1

)
,

δ̂2gãφ = 3gãb̃w
b̃wφ + 3

2
gãφwφwφ + 3gãφgφφ/�, δ̂2gãb̃ = 0,

δ̂2w
φ = −wφwφwφ − 3gφφwφ/�, δ̂2w

ã = −3

2
wãwφwφ − 3gãφwφ/�, (75)

δ̂−2gφφ = 2gãφwãwφ − gφφwφwφ − 6(gφφgφφ − 1)/�

wφwφwφwφ
,

δ̂−2gãφ = gãb̃w
b̃wφ − 1

2 gãφwφwφ − 3gãφgφφ/�

wφwφwφwφ
, δ̂−2gãb̃ = 0,

δ̂−2w
φ = −wφwφ − gφφ/�

wφwφwφ
, δ̂−2w

ã =
1
2wãwφ − gãφ/�

wφwφwφ
, (76)

where the terms containing 1/� ∝ � are of the sub-leading order. The coefficients for each sub-
leading term are determined by requiring that (75) and (76) satisfy (69) up to the sub-leading
order O( 1

�
), and also that the currents are conserved up to O(1),

JI
2 =

√
Hg/�

{
JI
� − 3wφ∂ Iwφ − 3∂ I ln

√
� wφwφ

− 3∂ Igabgaφwbwφ + 3

2
∂ Igaφgaφwφwφ

− 3

2
�gabw

awφwφ∂ Iwb + 1

2
�gaφwφwφwφ∂ Iwa

}
, (77)
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JI
−2 =

√
Hg/�

wφwφwφwφ

{
− JI

� − wφ∂ Iwφ + ∂ I ln
√

� wφwφ

− ∂ Igabgaφwbwφ + 3

2
∂ Igaφgaφwφwφ

+ 1

2
�gabw

awφwφ∂ Iwb − 3

2
�gaφwφwφwφ∂ Iwa

}
, (78)

JI
� = 3

�
(gφφgaφ∂ Igaφ − ∂ Igφφ ). (79)

The first two terms in both (77) and (78) are of the sub-leading order and vanish on the black
hole horizons, but the contributions from the wφ∂ Iwφ terms cancel the �′ terms in (73) exactly,
while the contribution from JI

� is still negligible at the leading order.
So with (75) and (76), we have δ̂±2 acting as exact symmetries of the action (23) on the

black hole horizons. By using (63), we can obtain an infinite-dimensional conformal symmetry
obeying the Witt algebra (62). For each azimuthal angle φa with a non-vanishing angular
velocity, we will have an independent copy of the Witt algebra. So classically, the action (23)
has k-copies of infinite-dimensional conformal symmetries on the black hole horizon, with
k being the number of non-vanishing angular velocities. Since for a given classical solution
there is no essential difference between the reduced action (23) and the original action (1), the
same conclusion holds for the original action (1).

Note the conformal symmetries are fully determined by the structure of the action (23)
and the properties of the background HIJ , but are independent of the values of gab, wa and
�. (For � = v2

f 2 · f
�

, it is the factor v2

f 2 that should be treated as independent degrees of

freedom, because the factor f
�

is fixed in the background.) One may entertain with the idea of
treating (23) as a field theory of gab, wa and � living in the fixed background HIJ , with the
black hole being the classical solution. Furthermore, one can ask if the fluctuations of the
fields gab, wa and � can fully describe the microstates of the black hole. We shall leave these
to future works.

5. Summary

In this paper, we have carried out a Kaluza–Klein-like reduction of the Einstein–Hilbert action
along the ignorable coordinates of stationary and axisymmetric black holes. The reduced
action enables us to study the classical equations of motion in a much greater detail. In the
case of pure gravity plus a cosmological constant, this allows us to re-derive the first law of
black hole thermodynamics in a straightforward manner.

The reduced action has a global SL(m, R) gauge symmetry, with m being the number
of ignorable coordinates. Related to each angular momentum there is a particular SL(2, R)

subgroup. We show that this SL(2, R) can be extended to the full Witt algebra on the black
hole horizons. The extended transformations are exact symmetries of the actions (23) on the
horizon. For a black hole with k non-vanishing angular velocities, the action (23) then has
k-copies of infinite-dimensional conformal symmetries on the horizon.

Our key motivation of this work was to search a way that can help us identify the conformal
symmetries of the putative 2D CFT dual to a non-extremal black hole, as suggested by the
studies of hidden conformal symmetries of black holes [24]. However, so far we have not
been able to abstract any physical information from the conformal symmetries found in this
work. One may try to reinterpret the extended symmetries (66), (67) and (63) as approximate
diffeomorphisms of the original action (1) near the horizons, and then use the usual covariant

15



Class. Quantum Grav. 29 (2012) 095020 J Mei

phase space method (see e.g. [10]) to see if the Witt algebra (62) can be promoted to a Virasoro
algebra at the quantum level. This procedure is still under investigation.
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