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develop an expansion of the solutions for large R up to order N = 29. Studying the

convergence of the fixed points of the truncated solutions with respect to N , we find a
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1 Introduction

The application of functional renormalization group techniques to gravity has generated

many appealing results in support of the asymptotic safety scenario [1–5]. The main tool

used in such investigations is the so-called Functional Renormalization Group Equation

(FRGE) for the effective average action Γk [6], which reads1

d

dt
Γk[Φ] =

1

2
STr

[(
δ2Γk

δΦAδΦB
+Rk

)−1
d

dt
Rk

]
. (1.1)

1Here Φ denotes the collection of all the fields in the theory under consideration, and STr a functional

supertrace over their spinorial indices and spacetime coordinates (collectively denoted by the A,B indices).

The running scale is t = ln k, and Rk is a cutoff function implementing the Wilsonian momentum-shell

integration. For further details we refer to the many general reviews [7–12].
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The FRGE is an exact equation whose solutions determine a flow of effective actions in

the theory space of all possible functionals Γk, interpolating between a bare action at some

initial UV scale k = Λ and the full effective action at k = 0. The primary goal of the asymp-

totic safety program is to show that there exists a non-trivial (i.e. non-free) gravitational

action Γ∗ which is a fixed point2 for such a flow, with finitely many relevant directions.

Due to the complexity of the question, the main line of progress in this topic has been

based on a sort of “mathematical experiments”: an equation, which is in principle exact,

is solved by truncating its infinite-dimensional functional domain to a finite-dimensional

subspace; such operation is repeated for various truncations, and stability and convergence

of the results are tested. In practice, exploring larger and larger truncations is a very tough

and tedious job, and the question is how confident can we be about our conclusions, based

on the results we have obtained so far.

Such a question is of course not specific to gravity, but common to any application of

exact renormalization group equations in which the approximation scheme does not rely

on a small parameter expansion, but rather on an apparently arbitrary truncation of the

space of action functionals. In simpler settings than gravity, as for scalar field theory, the

use of the FRGE has reached a sufficient level of confidence that allows us to make very

solid statements about the phase structure of the theory and even quantitative predictions

that can compete with other methods (see for example [13] and references therein). One

essential element for such achievement is the use of the RG equations as differential equa-

tions for unspecified functionals, rather than for the couplings of a usual field expansion.

For instance, rather than truncating the scalar potential Vk(φ) to a polynomial of order

N , looking at the RG flow of the coefficients of the various monomials and studying what

happens as N is increased, one can instead view the RG flow equation as a partial dif-

ferential equation for the unknown function Vk(φ). The lowest order of approximation in

such a scheme is called Local Potential Approximation (LPA) and consists in retaining

only the equation for Vk(φ). At next order one includes the equation for a “wave function

renormalization functional” Zk(φ), and so on. Explicitly, one writes a derivative expansion

of the type

Γk[φ] =

∫
ddx
[
Vk(φ) + Zk(φ)∂

µφ∂µφ

+W a
k (φ)(∂

2φ)2 +W b
k(φ)∂

µφ∂µφ(φ∂
2φ) +W c

k (φ)(∂
µφ∂µφ)

2 +O(∂6)
]
,

(1.2)

which plugged into (1.1) leads to partial differential equations for the unknown functions

Vk(φ), Zk(φ), etc. A comparative study between such scheme and the polynomial trunca-

tions was carried out by Morris in [14], highlighting the greater reliability of the former,

which leads to more accurate results, and to a better understanding of the convergence

properties of truncations. Of course polynomial truncations are still used because they are

easier to handle, and they can provide accurate results in many cases (e.g. [15]), however the

validity of such truncations is better assessed by a comparison to the derivative expansion.

2That is, ∂tΓ
∗ = 0. Here ∂t is a partial derivative, whereas in (1.1) d/dt is a total derivative, the

difference being that the latter acts also on the scaling dimension of the fields and of the Lagrangian itself.

This point will be made more explicit in (2.5).

– 2 –



J
H
E
P
0
6
(
2
0
1
2
)
0
1
7

In the case of pure gravity most of the truncations studied so far take the form3

Γk[gµν ] =

∫
ddx

√
g

N∑

i=0

ui(k)R
i , (1.3)

where R is the Ricci scalar, and the truncation order has been increased from the original

N = 1 [16–19], and N = 2 [20, 21], to N = 6 [22, 23], N = 8 [24] and N = 10 [25]. In [26]

an RµνρσR
µνρσ term was added also to the N = 2 truncation, and in [23] some non-analytic

terms like R−1 and lnR have been included.4

Organizing the truncations of the gravitational action in powers of curvature is a

natural starting point, and one familiar in effective field theory [33]. Such truncations do

not correspond of course to polynomial truncations in the fundamental field, which is the

metric, and which appears non-polynomially in the curvature, thus differing in this respect

from the polynomial truncations in the scalar field theory case. On the other hand, just as

in that case, polynomial truncations lead to ordinary differential equations for the flow of

a finite number of couplings, and to algebraic equations for the fixed points. Furthermore,

not all higher-order invariants in the curvature contribute with higher-order derivatives to

the two-point function, thus the expansion in powers of the curvature is in this sense also

not a derivative expansion.

In the present work we advocate the point of view that truncations of the type (1.3)

are akin to the polynomial truncations in scalar field theory, and we propose an analogy

between a generic f(R) approximation and the LPA. Of course, due to diffeomorphism

invariance, no potential can be written just for the metric fluctuations, and instead the

simplest Lagrangian that can be written without restricting to any specific function is that

of an f(R) theory. That is, we retain a generic dependence of the action on the scalar

curvature R, but discard any derivatives of R as well as any more complicated tensorial

structures like RµνρσR
µνρσ, etc. It is well known that such a theory has only one additional

(scalar) degree of freedom with respect to general relativity [34, 35], or in other words it

only adds fourth-order derivatives to the trace component of the metric fluctuations, which

in general relativity is not a dynamical degree of freedom. Fourth-order derivatives for the

transverse-traceless sector of the metric would be contained for example in terms like

f2(RµνρσR
µνρσ), while higher derivatives for both sectors would start for example with

terms like Z1(R)R∇2R or Z2(R)Rµν∇2Rµν . We will not attempt here to define a full

derivative expansion to higher orders, however it is clear that the f(R) functional is the

functional ansatz with the minimal number of derivatives (of course among those containing

an arbitray function, Einstein-Hilbert or Gauss-Bonnet being special cases), and hence it

can serve as the leading term in such an approximation scheme.

There is also another analogy that can be drawn between the LPA and the f(R)

ansatz. In the evaluation of (1.1) one first expands an action functional like (1.2) around

a background field φ̄, writing φ = φ̄+ ϕ and computing the second variation with respect

3Details of the contruction of truncations in the gravitational case will be reviewed in section 2.
4Matter has also been included [27, 28], as well as corrections to the ghost sector [29, 30] and bimetric

truncations [31, 32]. Here we will concentrate on single-metric pure gravity sector of the theory.
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to ϕ, then one plugs the result into (1.1) and projects it on the background, setting ϕ = 0.

In light of that, we can restate the LPA as being the approximation in which we take a

constant background φ̄: once we project the FRGE on such a background, clearly the only

functional we can discern is a potential. Analogously, in the gravitational case once we

choose a maximally symmetric background (typically of spherical topology), as it is usually

done in order to keep the calculations manageable, the only functional we can discern is

an f(R). Indeed for a spherical background the Weyl tensor is identically zero, and the

Riemann and Ricci tensors are both proportional to the Ricci scalar R, which is constant.

Note that given the approximation consisting in the choice of a spherical background, no

further approximations are needed. In particular no truncation is needed, as we can write

down a generic action which contains all possible terms that might ever be generated by

the functional traces of the FRGE on a spherical background: this is the f(R) action.

In the present work we will study the gravitational FRGE in the f(R) approximation,

in the spirit of the LPA. We will derive the ordinary differential equation to be satisfied

by a fixed-point f(R) function, and we will study general properties of its solutions. As

pointed out in [36] for the LPA and emphasized in [14], most of the solutions to the fixed-

point equation end at a singularity, while a putative fixed point should be represented by

a non-singular solution.5 For our equation the identification of global solutions turns out

to be a very challenging task, and we report here the present status of our understanding,

postponing to future work a more comprehensive numerical study of the solutions. Here

we will examine in some detail the different type of singularities that plague our equation,

identify two analyticity conditions to be satisfied by the solutions, and develop a new

series expansion, for large R, which appears to be much more manageable than the usual

expansion at R = 0. The main practical outcomes of our work are an identification of

candidate fixed points from the expansion of the solutions at large R, and the observation

that if a non-trivial fixed point exists, it necessarily corresponds to an R2 theory.

In section 2 we present more precisely the f(R) ansatz, and discuss the main results

of the paper. The reader who is not interested in the technical details of the computation

can in principle skip directly to the conclusions after reading section 2. All the technical

details will be presented in the remaining sections: in section 3 we provide the functional

variations of the action functional, together with the ghost and auxiliary sectors; in section 4

we present the cutoff scheme employed in our computation; in section 5 we describe the

method used in evaluating the functional traces. Finally in section 6 we collect the results

into the final form of our FRGE, and in section 7 we detail the analysis of the fixed-point

equation. A summary of results and future prospects ends the paper in section 8.

2 The f(R) approximation: setup and outline of results

The flow equation (1.1) is adapted to the gravitational case along the lines of the stan-

dard field-theoretic quantization, as used also in one- and two-loop calculations [38, 39].

Differences only reside in the cutoff choice, and in the approximation being used.

5Besides being a reasonable physical requirement, it was also proved by Felder [37], within the LPA, that

any fixed point which is the limit for t → ∞ of an effective potential with non-singular initial condition at

t = 0 must be a global solution of the fixed-point equation.
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In the case of pure gravity, the fields comprise the metric, the ghosts and occasionally

some auxiliary fields implementing the functional Jacobians originated by field redefinitions.

We use the background field method to obtain a gauge-invariant average effective action,

and we define the decomposition of the metric by

g
µν

= gµν + hµν , (2.1)

with gµν denoting the background and hµν the fluctuations. As background metric we will

take a d-dimensional sphere, as explained in the introduction.6

Following [16], it is useful to cast a general truncation of the effective average action

in the following form:

Γk[Φ,Φ] = Γ̄k[g] + Γ̂k[h, g] + Γgf [h, g] + Γgh[h, g, ghosts] + Saux[g, aux.fields] . (2.2)

In this decomposition Γ̄k[g] depends only on the total metric, and it is the proper gravita-

tional action. Γgf and Γgh denote the gauge-fixing and ghost-terms respectively, for which

we will take the classical functionals but eventually allowing a running of the gravitational

couplings, while Saux is a coupling-independent quadratic action encoding the Jacobians.

Γ̂k[h, g] vanishes for h = 0, and it encodes the deviations from standard Ward identities

due to the use of a cutoff [16]. The role of such term has been investigated via bimetric

truncations in [31, 32]. In the present work we will make use of the common approximation

Γ̂k = 0; in such case, it suffices to study the FRGE at hµν = 0.

Our ansatz for the gravitational action is

Γ̄k = Zk

∫
ddx
√
gfk(R) , (2.3)

where Zk = (16πGk)
−1 and Gk is the (running) Newton’s constant. The running RG scale

is k, and we will introduce the dimensionless Ricci scalar R̃ ≡ R/k2, and Lagrangian

f̃k(R̃) =
k−d

16πGk
fk(k

2R̃) , (2.4)

whose shape we will try to fix by use of the FRGE.

When plugging our ansatz (2.2)–(2.3) into (1.1) we will obtain a partial differential

equation for f̃k(R̃). We can trivially write down the left-hand side of the FRGE:

d

dt
Γk
∣∣
hµν=ghosts=0

= kd
∫

ddx
√
g
{
∂tf̃k(R̃) + df̃k(R̃)− 2R̃f̃ ′

k(R̃)
}

. (2.5)

Note that ∂t here is a partial derivative acting only on the explicit k-dependence in the

function f̃k(R̃), while primes denote differentiation with respect to R̃. The right-hand side

of the equation is also a function of f̃(R̃) and its derivative with respect to both k and R̃.

Hence the FRGE is a partial differential equation (PDE) for the function f̃(R̃).

6For what follows, all one needs to know about the sphere is that the Ricci scalar is constant, Rµν =
1
d
gµνR, Rµνρσ = 1

d(d−1)
(gµρgνσ−gµσgνρ)R, and that the radius and the volume are given by ρ2 = d(d−1)/R

and V = (4πρ2)d/2Γ(d/2)/Γ(d), respectively. We will also need the eigenvalues of the Laplacian, reported

in table 1.
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Now remember that a step of the RG flow consists of two intermediate steps [8]:

integration over a momentum shell, which we take care of via the FRGE; and rescaling

of all dimensionful quantities to restore the original UV cutoff. As we have translated

everything into dimensionless quantities, the second step is trivially taken care of, and

hence a fixed point of the RG flow has to satisfy

∂tf̃k(R̃) = 0 . (2.6)

As a result, the PDE obtained from the FRGE will reduce to an ordinary differential

equation (ODE) at the fixed point. In contrast, in polynomial truncations one gets a

system of ordinary differential equations for the flow, and a system of algebraic equations

for the fixed point. As explained in the intro, the price we have to pay for going to a

higher level of equations should be compensated by the gain in confidence in the results

thus obtained.

We are now going to highlight the main results of our analysis, and anticipate some

conclusions. All the details will be given in the following sections.

The study of the FRGE in the described approximation presents two challenges: the

actual evaluation of the r.h.s. of the equation (1.1), and the numerical study of the PDE

obtained in this way. The first part will be described in sections 3, 4, 5 and 6. A similar

calculation has been done before [23, 24], but we will adopt here a different implementation

of the ghost sector, a different cutoff scheme and a different evaluation technique for the

traces, mostly following [40]. The main result of this part of our work is hence is the

derivation of the fixed-point equation in d = 4 dimensions, which takes the form7

f̃ ′′′(R̃) =
N (f̃ , f̃ ′, f̃ ′′; R̃)

R̃(R̃4 − 54R̃2 − 54)
(
(R̃− 2)f̃ ′(R̃)− 2f̃(R̃)

) , (2.7)

where N (f̃ , f̃ ′, f̃ ′′; R̃) is a polynomial in f̃(R̃) and its first two derivatives, with coefficients

polynomial in R̃. Its precise expression will be given later in (6.7).

For the second part (section 7), we will restrict to the question of existence of fixed

points, thus reducing the task to the study of the ordinary differential equation (2.7). We

will address in particular the following topics:

1. fixed singularities, initial conditions and analyticity conditions;

2. movable singularities;

3. large-R̃ expansion (boundary condition at infinity);

4. fixed points from truncations of the large-R̃ expansion;

5. generic form of a fixed-point effective action.

7We denote the function at the fixed point just by omitting the subscript k from f̃ .
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As the solution of a third-order ODE is specified by three initial conditions, it would

seem at first that one would obtain from (2.7) a continuous of solutions parametrized by

the initial conditions. In particular, denoting the initial conditions as8

f̃(0) = a0 ≡ Λ̃∗

8πG̃∗
, f̃ ′(0) = a1 ≡ − 1

16πG̃∗
, f̃ ′′(0) = a2 ≡

c∗

(16πG̃∗)2
, (2.8)

it would seem that the cosmological constant Λ̃, the Newton’s constant G̃ and the higher-

derivative coupling c∗ are completely free at the fixed point. However, an analysis similar

to [14] should lead to the conclusion that only a finite subset of solutions satisfy basic

regularity requirements, like not having singularities at finite R̃. Indeed we find that

for generic initial conditions the solution develops a logarithmic singularity (see (7.7)) at

a finite value of R̃. We distinguish two type of singularities, movable singularities and

fixed singularities. Singularities of the first kind appear because of the non-linear nature

of the ODE, and as it is suggested by the name, they occur at a location that varies

with the initial conditions. On the contrary, fixed singularities occur at those values of

R̃ where the equation is explicitly singular. In the specific case, the latter correspond

to the zeros of the denominator in (2.7), which has three real zeros, at R̃ = 0 and at

R̃ = ±
√
3(9 +

√
87) ≡ R̃±. The presence of such fixed singularities will play an important

role in our analysis.

A brief explanation is due also for the fact that the equation (2.7) is third-order,

given that in (1.1) only the second functional derivative of Γ appears. The reason is that,

following a standard procedure [23, 24], we adapt the cutoff Rk to the Hessian of the

action (see section 4), meaning that the cutoff contains the second derivative f̃ ′′
k (R̃). When

the total derivative d/dt acts on the cutoff in (1.1), we obtain a term −2R̃f̃ ′′′
k (R̃), among

others. This explains at the same time why the equation is third-order, and why it has

a singularity at R̃ = 0: that is a point at which the coefficient of f̃ ′′′(R̃) vanishes. The

appearance of such a fixed singularity is hence very generic, and it actually acts in favor

of a qualitative scheme-independence: it is well known that a quantitative analysis of the

FRGE depends on the cutoff choice, but one would expect that there would be even a

qualitative difference between a third order (in the present scheme) and a second order (in

an hypothetical scheme with no f̃ ′′
k (R̃) dependence in the cuttoff) equation, i.e. a different

number of initial conditions could lead to a continuos of fixed points or no fixed points in

one or the other case. However, in presence of a singularity for the third-order equation the

number of independent initial conditions at R̃ = 0 is reduced to two by the requirement

of regularity of the solution:9 upon substitution of a Taylor expansion f̃(R̃) =
∑

n≥0 anR̃
n

8Obviously the choice of parametrization of the initial conditions is driven by the identification of the

first two terms with the corresponding ones in the Einstein-Hilbert action, with Λ̃ and G̃ the dimensionless

cosmological and Newton’s constants. The star denotes the fixed-point values of such parameters.
9A similar situation occurs in scalar field theories [41] if as fundamental field one uses y = φ2 instead of

φ. In that case the regularity condition replaces the even potential condition V ′(φ = 0) = 0. We verified

that the same could be done here, defining U(x) = f̃(x2), and the regularity condition being traded for the

initial condition U ′(0) = 0. As nothing is gained in such scheme, while the gravitational interpretation gets

a bit obscured, we stick in the following to the variable R̃.
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we find that to lowest order in R̃ the equation (2.7) imposes a condition,

B−(a0, a1, a2) ≡ 24a20 + 17a1a0 + 216a2a0

+ 384π2 (a0 + a1) (2a0 + 3a1 + 18a2) a0 − 27a21 − 144a1a2 = 0 ,
(2.9)

which for example can be easily solved for a2.

The reason for the singularity at R̃± is quite technical and will be explained in some

detail in section 7.2. Roughly speaking it has to do with the constant scalar mode. We

found its nature to be also quite generic, and we could not devise any reasonable scheme

to make it disappear. On the contrary, by a clever choice of cutoff scheme we were able

to eliminate a number of other fixed singularities which appeared in previous versions of

the equation [23, 24]. Similarly to the singularity at the origin, we identify an analyticity

condition at R̃±, equation (7.4), relating the first three coefficients in a Taylor expansion

of the solution at the singular point.

Unlike for finite R̃, solutions are allowed to diverge at infinity. We find that a solution

for R̃ → ∞ must behave like f̃(R̃) ∼ AR̃2, with sub-leading corrections (detailed in sec-

tion 7.4) dependending on the single free parameter A. Such single parameter dependence

provides an easier setting for numerical investigations (as compared to R̃ = 0 where we

have two free parameters), which can been performed by shooting backward from given

initial conditions at large R̃.

A true fixed point should correspond to a global solution, meaning a solution satisfying

the analyticity conditions at the fixed singularities, presenting no other singularities at finite

R̃, and matching the large R̃ expansion at infinity. Due to the complexity of the equation,

the quest for such a global solution turns out to be quite challenging, however with the

help of preliminary results from numerical integrations we will show that these seemingly

too many conditions can in principle be satisfied.

Postponing a comprehensive numerical investigation to future work, here we will ex-

ploit further the new insights that can be derived from the large R̃ expansion. In particular

we find that treating such expansion as a standard truncation, we can identify an inter-

esting structure for the fixed-point solutions (figure 4), and we can single out one point

with surprising convergence properties. Unfortunately at such point the number of relevant

directions seems to be increasing with the order of the truncation.

Finally, from the same large-R asymptotic expansion, we conclude that if a global

solution to the fixed-point equation exists, it must necessarily correspond to a fixed-point

theory with effective action Γ∗ = A∗
∫
d4x

√
gR2, for some finite A∗. Such a result is also

compatible with recent works [42–44], in which the identification k2 ∼ R is assumed for

truncated versions of the average effective action. Of course an R2 action could also be

expected on simple dimensional grounds, as it is the only f(R) action possessing scale

invariance, however it had never been verified before that this is indeed the case, as it is

not obvious to see such scaling from truncated expansions, and it could in principle be

not the case if the Ricci scalar had to acquire an anomalous dimension at the fixed point.

Consistently with the LPA analogy we find here that the scaling is not anomalous.

The following sections will provide all the details for the interested reader.
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3 Hessian and gauge-fixing

In order to evaluate the r.h.s. of the FRGE, the first step is to compute the second variation

of the ansatz at hµν = 0, i.e. the Hessian on the background.

Although functional variations of the action functional for f(R) theories have appeared

before in the literature [23, 24], we report them here again for completeness, and because

of a slight difference in the choice of variables and notation.

We use the transverse-traceless decomposition of the metric fluctuations, given by

hµν = hTµν +∇µξν +∇νξµ +∇µ∇νσ +
1

d
gµν h̄ , (3.1)

with the component fields satisfying

gµν hTµν = 0 , ∇µhTµν = 0 , ∇µξµ = 0 , h̄ = h+∆σ , h = gµνh
µν , (3.2)

and ∆ = −∇2.

The Hessian for our ansatz comprises the following components:

Γ̄
(2)

hT
µνh

T
αβ

= −Zk

2

[
f ′
k

(
∆+

2

d(d− 1)
R

)
+

(
fk −

2

d
Rf ′

k

)]
δµν,αβ , (3.3)

Γ̄
(2)
ξµξν

=
Zk

α

(
∆− R

d

)[(
∆− R

d

)
+ α

(
2R

d
f ′
k − fk

)]
gµν , (3.4)

Γ̄
(2)

h̄h̄
= Zk

d−2

2d2

[
2(d−1)2

d−2
f ′′
k

(
∆− R

d−1

)2

+(d−1)f ′
k

(
∆− R

d−1

)
−
(
Rf ′

k−
d

2
fk

)]
,

(3.5)

Γ̄
(2)

h̄σ
= Zk

d− 2

2d2

(
Rf ′

k −
d

2
fk

)
∆ , (3.6)

Γ̄(2)
σσ = Zk

d− 2

2d2α

[
2(d− 1)2

d− 2

(
∆− R

d− 1

)
+ α

d

d− 2

(
Rf ′

k −
d

2
fk

)](
∆− R

d− 1

)
∆ .

(3.7)

We have already included in the Hessian the terms coming from the gauge-fixing action

Γgf [h, g] =
Zk

2α

∫
ddx

√
gFµF

µ , (3.8)

with

Fµ ≡ ∇νhµν −
1

d
∇µh = −

(
∆− R

d

)
ξµ −∇µ

(d− 1

d
∆− R

d

)
σ . (3.9)

In the gauge α → 0, that we will use in the following, neither Γ
(2)

h̄σ
nor the other terms

proportional to the equations of motion in Γ
(2)
σσ and Γ

(2)
ξξ contribute to the traces.

3.1 Ghosts and auxiliary fields

For the ghost action we follow [40] and write

Γgh =
Zk

α

∫
ddx

√
g
{
C̄Tµ

(
∆− R

d

)2
CT
µ + 4

(d− 1

d

)2
c̄
(
∆− R

d− 1

)2
∆c

+BT µ
(
∆− R

d

)2
BT

µ + 4
(d− 1

d

)2
b
(
∆− R

d− 1

)2
∆b
}
,

(3.10)
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where the CT
µ and c are complex Grassmann fields, while BT

µ and b are real fields, and the

index T denotes transverse vectors. As explained in [40], while being formally equivalent

to the standard implementation, this version of the ghost sector has the merit of realizing

an exact cancellation (generally on shell, but also off shell in the α = 0 gauge) between

ghosts and pure-gauge degrees of freedom, thus ensuring gauge-independence of the on-

shell effective action. We have explicitly verified that all the qualitative features emerging

in the following analysis are found also with a standard version of the ghost action.

The final ingredient of our truncation is the action for the auxiliary fields, introduced

to take into account the Jacobian arising in the TT decomposition (3.1). The Jacobian for

the gravitational sector leads to the auxiliary action

Saux−gr =

∫
ddx

√
g
{
2χ̄T µ

(
∆− R

d

)
χT
µ +

(d− 1

d

)
χ̄
(
∆− R

d− 1

)
∆χ

+ 2ζTµ
(
∆− R

d

)
ζTµ +

(d− 1

d

)
ζ
(
∆− R

d− 1

)
∆ζ
}
,

(3.11)

where the χT
µ and χ are complex Grassmann fields, while ζTµ and ζ are real fields. The

Jacobian for the transverse decomposition of the ghost action is given by

Saux−gh =

∫
ddx

√
g φ∆φ , (3.12)

with φ a real scalar field.

4 Cutoff scheme

We will use here a variation of the scheme introduced in [40], which we will call “on-shell”

Type II cutoff (in the spirit of the nomenclature of [24]).

Denoting with rk(z) some fixed cutoff profile function, we recall that the scheme intro-

duced in [40] amounts to choosing the cutoff Rk in such a way to implement in the on-shell

part of Hessian the rule

∆ → Pk

(∆
k2

)
≡ ∆+ k2rk

(∆
k2

)
. (4.1)

In the course of the present work we realized that certain unphysical singularities appear-

ing in the functional traces (see [40], but also [23] and [24]) actually appear from this

unfortunate choice. Consider for example the typical operators appearing in the scalar

part, ∆0 = ∆− R
d−1 . When using (4.1) in combination with the optimized cutoff (5.2), we

obtain for the modes below k2,

∆0 → k2 − R

d− 1
, (4.2)

which is of course zero, and hence not invertible, at R̃ = d − 1. In order to avoid such

singularities, we will adopt here the following set of replacement rules:

∆0 ≡ ∆− R

d− 1
→ P

(0)
k

(∆0

k2

)
≡ ∆0 + k2rk

(∆0

k2

)
, (4.3)

∆1 ≡ ∆− R

d
→ P

(1)
k

(∆1

k2

)
≡ ∆1 + k2rk

(∆1

k2

)
, (4.4)

∆2 ≡ ∆+
2R

d(d− 1)
→ P

(2)
k

(∆2

k2

)
≡ ∆2 + k2rk

(∆2

k2

)
, (4.5)

and the profile function rk(z) will be chosen later.
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Spin s Eigenvalue λn,s Multiplicity Dn,s

0 n(n+d−1)−d

d(d−1) R; n = 0, 1 . . . (n+d−2)! (2n+d−1)
n!(d−1)!

1 n(n+d−1)−d

d(d−1) R; n = 1, 2 . . . (n+d−3)!n(n+d−1)(2n+d−1)
(d−2)!(n+1)!

2 n(n+d−1)
d(d−1) R; n = 2, 3 . . . (n+d−3)! (d+1)(d−2)(n+d)(n−1)(2n+d−1)

2(d−1)!(n+1)!

Table 1. Eigenvalues of the Laplace-type operators (4.3)–(4.5) on the d-sphere and their multi-

plicities.

Note that as we will work in the gauge α = 0 the difference between on-shell and

off-shell scheme is not essential, and it is basically only used as a motivation for including

in the Γ
(2)

hT
µνh

T
αβ

and Γ
(2)

h̄h̄
operators certain potential terms and not others.10

In practice, we have the following cutoff functions

RhT
µνh

T
αβ

k = −Zk

2
f ′
k k

2rk

(
∆2

k2

)
δµν,αβ , (4.6)

Rξµξν
k =

Zk

α

[(
P

(1)
k

(∆1

k2

))2

−∆2
1

]
gµν , (4.7)

Rh̄h̄
k = Zk

d− 2

2d2

[
2(d− 1)2

d− 2
f ′′
k

((
P

(0)
k

(∆0

k2

))2

−∆2
0

)
+ (d− 1)f ′

kk
2rk

(∆0

k2

)]
, (4.8)

Rσσ
k = Zk

(d−1)2

d2α

((
P

(0)
k

(∆0

k2

))3

+
R

d−1

(
P

(0)
k

(∆0

k2

))2

−∆2
0(∆0+

R

d−1
)

)
, (4.9)

and so on for ghosts and auxiliary fields.

5 Spectral sums

We are going to evaluate the traces by a direct spectral sum rather than in a heat kernel

expansion. By spectral sum we mean that a generic trace will be evaluated as

TrsW (∆) =
∑

n

Dn,sW (λn,s) , (5.1)

where {λn,s} is the spectrum of eigenvalues of the Laplace-type operators (4.3)–(4.5) on

spin-s fields, with the relative multiplicities {Dn,s}. The spectra and multiplicities are re-

ported in table 1, and are obtained by appropriately shifting the standard one (for example

see [45]).

We have to be careful not to include fictitious modes in the sum. Remembering our

decomposition for the metric fluctuations (3.1), we see that we should exclude two sets

of modes that give no contribution to hµν . First, we should exclude the Killing vectors,

10We recall that the crucial aspect of the “on-shell type” cutoff introduced in [40] was to avoid introducing

a gauge-breaking cutoff term, that is a cutoff term for the gauge-variant field components ξµ and σ with

no ghost counterpart. In the gauge α = 0 the fields ξµ and σ only survive in the gauge-fixing part of

the Hessian, and the effect of the regulator on such terms is correctly taken into account by (3.10) in

combination with (4.3)–(4.4).
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satisfying ∇µξν +∇νξµ = 0. Second, we should leave out also the constant scalar modes

σ = constant. A similar set of modes should be excluded also from the ghosts and auxiliary

fields, as these are all fields introduced hand-in-hand with ξ and σ. The only fields for which

we retain all the modes are hTµν and h̄. Note that, differently from [23, 24], we do not exclude

the scalar modes corresponding to conformal Killing vectors Cµ = ∇µσ, i.e. those scalar

modes satisfying ∇µ∇νσ = 1
d
gµν∇2σ. It is indeed clear that in our decomposition (3.1)

such modes do contribute to hµν . This can be seen also from the point of view of the

ghosts: the ghost modes should be in one-to-one correspondence with the modes of the

gauge parameter (ǫTµ , ǫ), and from Lǫgµν = ∇µǫ
T
ν +∇νǫ

T
µ +2∇µ∇νǫ it is obvious that there

is no reason to exclude the scalar modes ǫ corresponding to conformal Killing vectors. As

a consequence the tensor and vector sums will start at n = 2, while all the scalars sums

will begin at n = 1, except for the h̄ mode starting at n = 0.

We choose to work with Litim’s optimized cutoff [46]

rk(z) = (1− z)θ(1− z) , (5.2)

for which

∂t(k
2rk(∆/k2)) = 2k2θ(k2 −∆) . (5.3)

Its great technical advantage is that with it all the functions appearing in the FRGE

have a numerator proportional to the step function, and hence the spectral sums are cut

off at Ns = max{n ∈ N : λn,s ≤ k2}. At the same time, for all λn,s ≤ k2, we have

Pk(λn,s/k
2) = k2.

We write the FRGE as

∂tΓ̄k =

N2(R̃)∑

n=2

W2(λn,2/k
2, R̃) +

N1(R̃)∑

n=2

W1(λn,1/k
2, R̃)

+

N0(R̃)∑

n=1

W np
0 (λn,0/k

2, R̃) +

N0(R̃)∑

n=0

W h̄
0 (λn,2/k

2, R̃)

≡ T2 + T1 + T np
0 + T h̄

0 .

(5.4)

where the functions Ws(∆/k2, R̃) are obtained by collecting the contributions to (1.1)

coming from all the fields of spin s, and we have separated the h̄ contribution from that of

the other scalars (dubbed “np”, for non-physical). Note that Ns is a function of R̃ as well

as of the spin s.

Explicitly, the functions Ws(z, R̃) in d = 4 are given by

W2(z, R̃) =
(z − 1)

(
∂tf̃

′(R̃)− 2R̃f̃ ′′(R̃) + 2f̃ ′(R̃)
)
− 2f̃ ′(R̃)

(R̃− 2)f̃ ′(R̃)− 2f̃(R̃)
, (5.5)

W1(z, R̃) = W np
0 (z, R̃) = −1 , (5.6)

W h̄
0 (z, R̃) =

3(1− z2)
(
3∂tf̃

′′(R̃)− 6R̃f̃ (3)(R̃)
)

18f̃ ′′(R̃)− 2(R̃− 3)f̃ ′(R̃) + 4f̃(R̃)

+
3(1− z)

(
∂tf̃

′(R̃)− 2R̃f̃ ′′(R̃) + 2f̃ ′(R̃)
)

18f̃ ′′(R̃)− 2(R̃− 3)f̃ ′(R̃) + 4f̃(R̃)
. (5.7)
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Note the simple form of W1(z, R̃) and W np
0 (z, R̃), which is due to the ghost choice (3.10).

With a standard ghost action we find slightly more complicated expressions, in particular

with a dependence on η = −∂t logZ, and for the fixed-point equation we have to require

also η = −2, beside ∂tf̃(R̃) = 0. Once that is done, all the qualitative features of our

analysis are left invariant.

5.1 Approximating the sums

Thanks to the cutoff choice (5.2), all the sums appearing in the FRGE can be performed

analyti-cally. Indeed they all involve simple sums of the following type

Sm,s(R̃) =

Ns(R̃)∑

n=ns

Dn,s

(
λn,s

k2

)m

, (5.8)

for m ∈ {0, 1, 2}.
Unfortunately, the use of (5.2) is not safe from pitfalls. The main drawback is that

since the upper bound on the summation, Ns(R̃), is a staircase-function of the curvature R̃,

also the resulting sum Sm,s(R̃) is a staircase-function. Dealing with differential equations

containing staircase-functions is quite unpleasant, and for this reason we will adopt some

smoothing strategy. Of course such smoothing constitutes an approximation and it intro-

duces an additional scheme dependence. We have explicitly verified that all the qualitative

conclusions of our work are left unaltered by use of different smoothing choices.

We now illustrate some possible smoothing choices, by means of the simplest example,

that is, the function S0,0(R̃) with n0 = 0, also known as the spectral counting function.

Specializing to d = 4 dimensions, we easily find

S0,0(R̃) = P(⌊N0(R̃)⌋) (5.9)

where

P(N) =
N∑

n=0

Dn,0 =
1

12
(1 +N)(2 +N)2(3 +N) , (5.10)

and

N0(R̃) =
−3R̃+

√
R̃(48 + 25R̃)

2R̃
, (5.11)

and where ⌊.⌋ denotes the floor function, which is what gives rise to the staircase nature

of the function.

In [40] the simplest approximation was made, replacing ⌊x⌋ → x, that is, defining

S(+)
0,0 (R̃) = P(N0(R̃)) . (5.12)

This is the smoothing which we will call “upper-edge”, as it touches the original staircase

function on all the upper edges of its steps. Analogously, we can define

S(−)
0,0 (R̃) = P(N0(R̃)− 1) , (5.13)

which we will call “lower-edge”, as it touches the lower edges of the steps (see figure 1).
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Figure 1. A plot of the staircase function S0,0(R̃), together with four possible smoothing-curves,

from top to bottom: the upper-edge, the asymptotic, the mean and the lower-edge interpolations.

Such smoothing interpolations have the obvious disadvantage of containing square

roots, which also are not particularly welcome in the differential equation. Rational inter-

polating functions can be obtained in several ways. One, is to consider the average of the

upper- and lower-edge interpolations, which we will call “mean” interpolation:

S(mean)
0,0 (R̃) =

1

2

(
S(+)
0,0 (R̃) + S(−)

0,0 (R̃)
)
. (5.14)

We can also introduce an interpolation just by requiring that it matches the asymptotic

leading behavior of the original function at R̃ → 0 and at R̃ → +∞ (a similar choice was

used in [47]). We call such function the “asymptotic” interpolation, and in the specific

example it reads

S(asymp)
0,0 (R̃) =

12

R̃2
+ 1 . (5.15)

Finally, one could use the heat kernel interpolation, as tacitly done in [23, 24]. On the

relation between counting functions and heat kernel there is abundant literature (see for

example [48] and references therein), and we will not indulge on that here.

We found no evident qualitative difference between the mean, the asymptotic and the

heat kernel interpolations, and we will report in the following only the results obtained

within the asymptotic interpolation.

6 The fixed-point differential equation

The full FRGE in d = 4 dimensions takes the form

384π2

R̃2

(
∂tf̃k(R̃) + 4f̃k(R̃)− 2R̃f̃ ′

k(R̃)
)
= T2 + T1 + T np

0 + T h̄
0 , (6.1)

where we used (2.5) and the explicit formula for the volume of S4, and where we have

subdivided the r.h.s. into the contributions of the TT-tensor modes

T2 = −
20
(
∂tf̃

′(R̃)− 2R̃f̃ ′′(R̃) + 8f̃ ′(R̃)
)

R̃2
(
(R̃− 2)f̃ ′(R̃)− 2f̃(R̃)

) , (6.2)
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the vector modes

T1 = − 36

R̃2
, (6.3)

the non-physical scalar modes (by which we mean all the scalars but the trace h̄)

T np
0 = −12 + 5R̃2

R̃2
, (6.4)

and finally the contribution of the trace mode h̄

T h̄
0 =

1

2R̃2
(
−9f̃ ′′(R̃) + (R̃− 3)f̃ ′(R̃)− 2f̃(R̃)

)×

{(
R̃4 − 54R̃2 − 54

)(
∂tf̃

′′(R̃)− 2R̃f̃ (3)(R̃)
)

−
(
R̃3 + 18R̃2 + 12

)(
∂tf̃

′(R̃)− 2R̃f̃ ′′(R̃) + 2f̃ ′(R̃)
)}

.

(6.5)

An analysis of such a partial differential equation seems a formidable task, and we will

limit ourselves just to the associated fixed-point ordinary differential equation.

At the fixed point ∂tf̃(R̃) = 0, and we can express the ODE in canonical form, by

solving for f̃ (3)(R̃), resulting in

f̃ (3)(R̃) =
N (f̃ , f̃ ′, f̃ ′′; R̃)

R̃(R̃4 − 54R̃2 − 54)
(
(R̃− 2)f̃ ′(R̃)− 2f̃(R̃)

) , (6.6)

where

N (f̃ , f̃ ′, f̃ ′′; R̃) =− 360R̃f̃ ′′(R̃)2 + 768π2R̃
(
R̃2 − 5R̃+ 6

)
f̃ ′(R̃)3

+ f̃(R̃)2
(
−27648π2f̃ ′′(R̃) + 3072π2(3R̃− 5)f̃ ′(R̃)− 20R̃2 − 192

)

+ f̃(R̃)
(
−2
(
R̃4 + 18R̃3 + 45R̃2 + 52R̃+ 432

)
f̃ ′′(R̃)

− 1536π2
(
3R̃2 − 10R̃+ 6

)
f̃ ′(R̃)2

+f̃ ′(R̃)
(
27648π2(R̃− 1)f̃ ′′(R̃) + 22R̃3 − 14R̃2 + 192R̃− 136

))

+ f̃ ′(R̃)2
(
−6912π2(R̃− 2)R̃f̃ ′′(R̃)− 6R̃4 + 9R̃3 − 42R̃2 + 68R̃+ 216

)

+
(
R̃5+16R̃4 + 9R̃3 − 38R̃2 + 288R̃+ 576

)
f̃ ′(R̃)f̃ ′′(R̃)− 6144π2f̃(R̃)3.

(6.7)

6.1 Gaussian fixed point

The Gaussian fixed-point solution is easily recovered as in [23]. We rescale f̃(R̃) → 1
β
f̃(R̃)

and look for a solution in the limit β → 0. The r.h.s. of (6.1) is homogeneous of degree

zero in f̃ and its derivatives, while the l.h.s. is of degree one, hence in the limit of vanishing

coupling we get the fixed-point equation

2f̃(R̃)− R̃f̃ ′(R̃) = 0 , (6.8)
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whose unique solution is f̃(R̃) = aR̃2, for some constant of integration a. Of course the

“Gaussian” interpretation is as usual: expanding the metric as gµν = ḡµν +
√
βHµν , where

the background ḡµν is a solution of the equations of motion, the only part surviving in the

β → 0 limit is the one quadratic in Hµν .

In the following section we will investigate the possible existence of a non-Gaussian

fixed-point solution of (6.6).

7 Analysis of the fixed-point equation

We are now going to discuss the following properties of the equation (6.6): fixed singularities

at R̃ = 0 and R̃ = R̃+; movable singularities; asymptotic behavior at infinity. Performing

numerical integrations and putting things together, we will draw some conclusions about

the existence of non-trivial global solutions.

7.1 Singularity at R̃ = 0, and polynomial truncations

As anticipated in section 2, the fixed singularity at the origin is there for the same rea-

son why the equation is of third order, i.e. because because f ′′(R) appears in the cutoff

function (4.8) and because of the dimensional nature of R.

The presence of such a singularity acts in a way to reduce the number of independent

initial conditions. This can be easily understood: a regular solution of an equation of the

canonical type f̃ ′′′(R̃) = F (f̃ , f̃ ′, f̃ ′′; R̃) can be constructed in the neighborhood of any

regular point R̃0, substituting a series expansion f̃(R̃) =
∑

n≥0 an(R̃− R̃0)
n, expanding in

series the resulting F , and then imposing the equation order by order. The first of such

equations will fix a3 as a function of a0, a1 and a2, the next will fix a4, and so on, leaving

the first three series coefficients free. However if F has a pole of order n at R̃0, the r.h.s.

will produce a Laurent series with n singular terms not matched on the l.h.s. (analytic

by construction), and which have to be equated to zero; the first of such equations will

only contain the lowest order expansions for f̃ , f̃ ′ and f̃ ′′, hence it will only depend on

a0, a1 and a2, thus providing a constraint on the initial conditions. This is precisely what

happens at R̃0 = 0, where we have a simple pole in (6.6),

0 =
2B−(a0, a1, a2)

27(a0 + a1)R̃
+
∑

n≥0

Bn(a0, . . . , an+3)R̃
n , (7.1)

leading to the constraint (2.9). At higher orders, an+3 enters linearly in Bn, hence the tower

of equations obtained from (7.1) can be solved iteratively, providing a series expansion of

the solution, as function of the two initial data a0 and a1.

The usefulness of the series solutions for the search of a global solution ends here, as in

general it will only be valid at small R̃. In particular the convergence radius of the solution

is generically limited by the presence of singularities in the complex plane, rendering it

difficult to search for initial conditions leading to a regular solution on the whole real axis.

We do not report here results obtained using either ratio or root test, as they performed

very poorly. A more sophisticated analysis using Padé approximants was also attempted,
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but the presence of two initial conditions variables rather than one makes a systematic

study a bit clumsy, and we gained from it no useful insights to report here.

The polynomial truncations studied so far in the literature can be understood as an

approximate way to reduce the ∞2 set of solutions to a finite subset by discarding the

contribution of all the terms in the series expansion beyond a certain order N . In other

words, one makes the ansatz

f̃(R̃) =

N∑

n=0

anR̃
n , (7.2)

and then imposes the first N + 1 equations coming from (7.1), that is, two more than we

would impose to solve at order N the Cauchy problem for (6.6) with initial conditions

f̃(0) = a0 and f̃ ′(0) = a1. Yet another way to say it is that we solve (7.1) up to aN+2 (that

is, up to BN−1 = 0), and then impose aN+1 = aN+2 = 0. From the point of view of the

differential equation, the imposition of such condition can be understood as an heuristic

way to push farther away singularities [14].

Proceeding on such a route we find similar results to previous analyses. For example,

truncating atN = 1 we recover the Einstein-Hilbert truncation, and we find a non-Gaussian

fixed point at a0 = 0.005984, a1 = −0.01497, corresponding to Λ̃∗ = 0.1998 and G̃∗ = 1.329,

with critical exponents θ± = 1.62425±i3.42642. Actually one finds a number of fixed-point

solutions which increase with N , but most of them are there for one truncation and not for

another, or they are at unacceptable values (complex couplings, or negative Newton’s con-

stant). These are generally considered spurious fixed points and hence discarded, however

a precise and reliable method to select which fixed points to keep and which to discard in

this scheme is missing. In particular a systematic expansion and analysis of the conver-

gence with N is very demanding from the computational point of view, essentially due the

fact that the series solution of (7.1) leads to high-order polynomials of two variables for

the coefficients aN+1(a0, a1) and aN+2(a0, a1).

7.2 Singularity at R̃ = R̃+

At R̃ = R̃+ ≡
√
3(9 +

√
87) ≃ 7.415 the equation has another fixed singularity in the form

of a simple pole. The origin of such a singularity has to be looked for in the h̄h̄ sector of

the theory. With the operator choice in (4.3) we have eliminated any singularity in the

equation (6.1), but we have shifted the eigenvalue of the constant h̄ mode to a negative

value: from table 1 we have λ0,0 = −R/3. Being negative, such mode is never excluded

from the sum (the step function in the optimized cutoff only kills modes larger than k2,

which of course is positive). The f̃ ′′′(R̃) term in (5.7) is multiplied by a factor proportional

to
∑

n≥0(1 − λ2
n,0/k

4), and due to the lowest mode this can become zero at some large

value of R, where thus the equation develops a singularity. This is precisely what happens

at R̃+.

As a result of the pole, if we Taylor expand the solution around R̃+ we find again a

condition that reduces the number of independent initial conditions to two. We write the
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expansion as

f̃(R̃) = b0 + b1(R̃− R̃+) +
b2
2
(R̃− R̃+)

2 +
∑

n≥3

bn(R̃− R̃+)
n , (7.3)

To leading order the equation (6.6) reduces to

0 =
B̃+(b0, b1, b2)

R̃− R̃+

+O
(
(R̃− R̃+)

0
)
, (7.4)

where

B̃+(b0, b1, b2) =
B+(b0, b1, b2)

12
√
87R̃2

+(b1(R̃+ − 2)− 2b0)
, (7.5)

and

B+(b0, b1, b2) =− 768π2b31R̃+

(
R̃2

+ − 5R̃+ + 6
)
+ b21

(
−9R̃3

+ + 366R̃2
+ − 68R̃+ + 108

)

+ 768π2b21

(
(9b2 + 6b0)R̃

2
+ − 2(9b2 + 10b0)R̃+ + 12b0

)

− b1b2

(
27648π2b0(R̃+ − 1) + 63R̃3

+ + 826R̃2
+ + 342R̃+ + 1440

)

− 2b0b1

(
1536π2b0(3R̃+ − 5) + 11R̃3

+ − 7R̃2
+ + 96R̃+ − 68

)

+ 2b0b2

(
13824π2b0 + 18R̃3

+ + 99R̃2
+ + 52R̃+ + 486

)

+ b20

(
6144π2b0 + 20R̃2

+ + 192
)
+ 360b22R̃+ . (7.6)

In this case we find that the regularity condition is B̃+(b0, b1, b2) = 0.

7.3 Movable singularities

It is well known that nonlinear ODEs can have also movable singularities beside the

fixed ones.

For our equation, we found that for generic initial conditions the solution ends at some

R̃ = R̃c where the solution becomes singular. More precisely singular solutions can be

constructed at any point R̃ = R̃c 6= 2, of the form

f̃(R̃) ∼ log |R̃− R̃c|
(
m0+m1(R̃− R̃c)+O

(
(R̃−R̃c)

2
))

+c0+c1(R̃− R̃c)+O
(
(R̃−R̃c)

2
)
,

(7.7)

where the only free parameters are c0 and R̃c, all the others being determined as function

of those. For example,

m0 =
R̃5

c − 2R̃4
c − 54R̃3

c + 108R̃2
c − 54R̃c + 288

3456π2(R̃c − 2)
. (7.8)

7.4 Expansion at R̃ → ∞
The solution can also be worked out in the limit of R̃ → ∞. This actually turns out to be

the limit in which the series expansion is most under control.
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We found that the asymptotic solution has an expansion of the following form:

f̃(R̃) ∼ AR̃2


1 +

∑

n≥1

dnR̃
−n


 . (7.9)

All the coefficients dn can be fully determined iteratively as function of only A, which

is another crucial point for our results. The presence of only one free parameter in the

asymptotic expansion is a very general property of the equation, deriving from the higher

order nature of the pole at infinity (as perhaps more easily seen after mapping the point

at infinity to a finite value, and studying the balance of terms in (6.6)). We report here

the expression for the first three terms of the asymptotic solution:

d1 = −15

2
, d2 = −9

4
(5+ 384Aπ2) , d3 = −3

7
(−17+ 17640Aπ2 +1161216A2π4) . (7.10)

We have computed coefficients up to d30, and we found that in general the coefficient dn is

a polynomial of order n−1 in A, with the coefficient of the highest power a number of order

103n−3, suggesting that, at least for large enough A, the series should be convergent for

R̃ ≥ R̃< ∼ 103A. We have verified this conclusion by the root test (or Cauchy-Hadamard

theorem), i.e. by a linear fit11 of rn = n
√
dn as function of 1/n to estimate R̃< = limn→∞ rn.

A plot of R̃< as function of A is reported in figure 2. As expected, for sufficiently large values

of A, R< grows linearly with A. At small A some spikes are observed in correspondence of

the zeros of the coefficients dn(A). However, precisely at such values, rn deviates sensibly

from a linear dependence on 1/n, and the result from the root test are not reliable.12 In

any case we expect that in general the radius of convergence of the series will not extend

beyond the fixed singularity at R̃+, with possibly the exception of accumulation point of

the zeros of dn(A).

An approach equivalent to the standard truncations can be applied also to the asymp-

totic series (7.9). That is, a truncated fixed-point solution of order N is obtained by solving

the differential equation up to dN+1 and subsequently imposing dN+1 = 0. Of course we

find in this way exactly N complex solutions for A. It turns out that there is a sequence

A1(N) of zeros which converges very quickly to A∗ = −0.001663801, as shown in figure 3,

while the others move in the complex plane in a characteristic pattern, figure 4.

Around a fixed point, we can evaluate the stability exponents θi of the beta functions

for the coupling of the asymptotic expansion.13 We have computed them for the fixed

11We have checked that in the explored range of values for A the dependence of rn on 1/n is quite close

to linear, only with a slight convexity at certain small values of A. For comparison a ratio method was

attempted too, i.e. taking rn = |dn+1/dn|, but the resulting behavior seemed far from linear, and for this

reason we stick here to the root test results.
12Note that at small values of A the sequence rn splits in two subsequences r2j and r2j+1, which differ

significantly from each other at small j. However we can easily deal with such behavior by fitting appropriate

subsequences of rn. On the contrary, in correspondence of the real part of the zeros of a coefficient dm(A),

the corresponding element rm will deviate from its neighbors, giving rise to an erratic behavior of the

sequence rn(A) which is not easy to take care of.
13Defining d0 = A, and ∂tdi = βi({dn}), the stability matrix is defined as Bij = ∂jβi|A∗ . The stability

exponents {θi} are defined as minus the eigenvalues of Bij .
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Figure 2. A plot of the (inverse) radius of convergence R̃< for the series in (7.9) as a function of

A (the series converges for R̃ > R̃<). The horizontal line is R̃ = R̃+.
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Figure 3. A plot of the most rapidly converging solution to dN+1 = 0, as a function of N ∈
{1, . . . , 29}.

points of figure 3 up to order N = 8, and we report them in table 2. It turns out that the

number of relevant directions (corresponding to Re(θi) > 0) seems to grow with N .

We also computed the stability exponents for the other fixed points at A < 0, which

form another sequence A2(N) slowly drifting towards the first, and we report them in

table 3. Also in this case the number of relevant directions seems to grow with N , with

only one more irrelevant direction compared to A1(N), probably corresponding to the

trajectory connecting the two fixed points.

It should be mentioned that truncations with single R−n terms added to the Einstein-

Hilbert actions were considered in [23], where it was observed that such new terms corre-

spond to new relevant directions. Our results are hence compatible with that of [23].
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Figure 4. A table of plots of the structure of the fixed points for the large-R̃ truncations. The

plots are ordered increasingly from top left to bottom right. For N < 16, a positive real fixed point

appears at odd values of the truncation order, and it is converted into couples of complex fixed

points at even values of N . At N = 16 the real fixed point splits into a couple of real fixed point,

one of which drifts towards the negative axis, and the other follows the previous patter, with odd

and even orders inverted, until it undergoes a new splitting at N = 29.
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N 103A1 θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

1 -1.319 -4.26 0.65

2 -1.631 29.2 9.19 -1.64

3 -1.660 29.6 7.47 -1.80 20.39

4 -1.663 29.4 7.25 -1.82 17.3-4.38i 17.3+4.38i

5 -1.663 29.7 7.27 -1.81 14.6-4.24i 14.6+4.24i 20.9

6 -1.663 29.5 7.26 -1.82 14.0-3.19i 14.0+3.19i 19.4-4.20i 19.4+4.20i

7 -1.663 29.8 7.26 -1.82 14.4-2.50i 14.4+2.50i 16.7-4.72i 16.7+4.72i 22.5

8 -1.663 29.5 7.26 -1.82 14.8-3.55i 14.8+3.55i 15.8-2.32i 15.8+2.32i 21.6+3.83i 21.6-3.83i

Table 2. The critical exponents for the sequence A1(N) of figure 3, at the orders N = 1, · · · , 8.

N 103A2 θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

3 -0.225 -19.1 9.78 - 5.68i 9.78 + 5.68i

4 -0.522 -27.3 8.08 - 5.60i 8.08 + 5.60i -0.51 13.0

5 -0.727 -29.1 7.68 - 5.96i 7.68 + 5.96i -0.51 13.1 14.9

6 -0.910 -34.8 8.55 - 6.05i 8.55 + 6.05i -0.56 13.4 15.0 + 1.75i 15.0 - 1.75i

7 -1.05 -47.8 9.28 - 6.94i 9.28 + 6.94i -0.61 14.2 13.8 + 1.41i 13.8 - 1.41i 17.6

8 -1.17 -78.1 9.43 - 7.66i 9.43 + 7.66i -0.67 13.5 17.5 + 1.09i 17.5 - 1.09i 14.5 15.3

Table 3. The critical exponents for the sequence A2(N).

N 104A3 θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7

3 2.54 -0.55 6.60 4.03 - 10.8i 4.03 + 10.8i

5 4.65 -0.52 9.73 2.12 - 18.4i 2.12 + 18.4i 8.55 - 2.71i 8.55 + 2.71i

7 5.72 -0.54 8.74 9.54 - 4.15i 9.54 + 4.15i 12.7 13.5 -4.30 - 23.7i -4.30 + 23.7i

Table 4. The critical exponents for the sequence of real fixed point at A > 0, appearing at odd

values of N .

Finally, it should also be noted that negative values of A correspond to an unbounded

fixed-point action (see section 7.6), and might be not very appealing for this reason. Po-

tentially interesting candidates for a fixed point could maybe be found also at positive A,

slightly relaxing the type of convergence one is looking for. One way to visualize other

interesting points is to show all the solutions for different values of N in the same plot, as

in figure 5. In this way we can see that there are some accumulation points for the zeros of

dN+1(A), and these are potential candidates for global solutions of the differential equation.

Of course if a sequence of zeros converges to a point A∗, like in figure 3, this will be an

accumulation point. On the other hand, accumulation points appear also whenever a fixed

point which appears at odd orders, splits into a couple of nearby complex ones at even or-

ders (or vice versa). One such sequence of points is present in our solutions, and in table 4

we list the relative stability exponents. However, due to the fact that only odd orders

appear, and that higher orders are very demanding from a computational point of view,

the available data are not enough to establish any convergence of its critical exponents.

7.5 Numerical integration

One advantage of having a differential equation for the fixed-point effective action is the

possibility of going beyond the series expansions discussed so far, and to study its solutions
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Figure 5. A simultaneous plot of all the fixed points for the large-R̃ truncations, at various N .

via numerical integration methods. In principle we would like to employ such methods in

order to look as in [14] for the initial conditions leading to global solutions.14 Unfortunately,

the presence of two free initial conditions at the origin, combined with complicated structure

of the equation, and the presence of a fixed singularity at R̃±, renders such an analysis

much more involved than in the scalar case. We report here on some preliminary results

in this direction.

The most efficient approach to the numerical investigations is to start integration at

large R̃, where the series expansion presents only one free parameter.15 Imposing initial

conditions matching (7.9), and integrating backward towards small R̃, we can monitor the

appearance of singularities as we vary the parameter A. Naively we would like to vary

A in order to find those values for which we can integrate all the way to R̃ = 0 without

running into a singularity of the type (7.7). However, because of the singularity at R̃+ we

expect that to be impossible, as indeed confirmed by explicit numerical integration. The

plot figure 6 shows that the numerical integration breaks down once the fixed singularity

at R̃+ is reached. As we already know from section 7.2, in order to have a regular solution

at R̃+ the condition B̃+(b0, b1, b2) = 0 must be satisfied, which hence we would like to

impose as a condition on A. However the numerical integration can only be carried out

until an ǫ away from R̃+. We have thus evaluated and plotted B̃+(b0, b1, b2) at R̃+ + ǫ as

a function of ǫ for various values of A, in order to extrapolate the result to ǫ = 0. It turns

out that B̃+(b0, b1, b2) scales to zero with ǫ in the range −0.0035 . A . 0.0005, while it

diverges outside of that (if it reaches R̃+ at all). As an example of scaling we report a plot

14At least solutions defined on the whole positive axis plus the origin. As the equation (6.6) was derived

assuming a spherical background, we might not trust it at negative R̃.
15The starting value of R̃ has to be chosen within the convergence radius of the series in (7.9), and also

for this reason we have detailed the convergence analysis in the previous section.

– 23 –



J
H
E
P
0
6
(
2
0
1
2
)
0
1
7

-0.004 -0.002 0.000 0.002
A

5

10

15

R<

Figure 6. A plot of the final integration point R̃< reached numerically (starting at R̃ = 60), i.e.

of the location of the movable singularity, as a function of A. The horizontal line is R̃ = R̃+.
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Figure 7. On the left we show a plot of B̃+(b0, b1, b2)/ǫ as a function of ǫ at A = .00015 (similar

plots are obtained in the whole range −0.0035 . A . 0.0005). As trivial as it might look like, the

plot carries an important message: B̃+(b0, b1, b2) ∼ ǫ at these values of A. The plot on the right

shows instead B̃+(b0, b1, b2)/ǫ as a function of A: various plots for different values of ǫ are shown

simultaneously, and the superposition is perfect.

of B̃+(b0, b1, b2)/ǫ as a function of ǫ and A in figure 7. As a result, the regularity condition

at R̃+ does not fix A to a discrete set but just to a continuous interval.

Within such interval, numerical integration could be continued beyond R̃+ by matching

the numerical solution at R̃++ ǫ with the series solution (7.3), and use the latter to impose

initial conditions at R̃+ − ǫ for a new numerical integration towards R̃ = 0. We would

have to look for the range of A which allows integration down to R̃ = ǫ and here impose

the analyticity constraint (2.9), again in the limit ǫ → 0. A number of technical difficulties

appear along this path, in particular due to a very slow convergence of the series (7.3), and

a detailed implementation of this program is left for future work.

However we have achieved an important result: the mismatch between number of

conditions and number of parameters (two analyticity conditions for one free parameter)

does not seem to provide an obstruction for the existence of global solutions. The condition

at R̃ = R̃+ leaves us still with a continuous degree of freedom, hence anything could happen

when imposing the condition at R̃ = 0: we could find a discrete set (eventually empty) of

solutions, as well as another continuous interval.
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7.6 Fixed point action

One very general conclusion can be easily derived from the large R̃ series expansion studied

in section 7.4: if (6.6) admits a global fixed-point solution f̃∗(R̃), then necessarily

Γ∗ = Γ∗
k=0 = A∗

∫
d4x

√
g R2 , (7.11)

for some finite A∗. That is, the fixed-point effective action corresponds to an interacting

R2 theory.

Here the effective action is the standard one, obtained from the average effective action

in the limit k → 0, i.e. it is the effective action obtained by a path integral with no infrared

cutoff. Obtaining the effective action is generally a difficult task, which would require

integrating the FRGE down to k = 0, starting from some initial condition at some k0 > 0

(e.g. at the UV cutoff, ideally with an initial condition on a trajectory emanating from the

UV fixed point, to ensure independence from the UV cutoff). However, at the fixed point

such integration is trivial, as the k-dependence of Γ∗
k is contained in a trivial scaling. We

can easily prove (7.11) by noticing that

Γ∗
k = k4

∫
d4x

√
g f̃∗(R/k2) , (7.12)

and hence the limit k → 0 corresponds to the limit R̃ → ∞ in f̃(R̃). Inserting (7.9), with

A at the fixed-point value A∗, into (7.12), and taking the limit k → 0, we find (7.11). Note

that we had already met an R2 action in the case of the Gaussian fixed point. However,

in that case A∗ → ∞, requiring a rescaling of the fluctuation field, and a reduction to a

free theory.

The result (7.11) could be expected on dimensional grounds, from the simple fact that

the fixed-point action should be scale invariant. However, naive scaling of a term of the

Lagrangian is only valid if it has no anomalous dimension. For example, in d = 3 the scalar

potential at the Wilson-Fisher fixed point is V (φ) = A∗φ
6

1+η , and η = 0 in the LPA, but

η ∼ 0.03 at higher orders of the derivative expansion [13]. What we found here is one more

analogy between the f(R) approximation and the LPA: within the f(R) approximation the

anomaouls dimension of R is zero and hence the fixed-point effective action is an R2 action.

Furthermore, such result was impossible to see in the polynomial truncations studied

in previous works: the results from such truncations [22–25] indicate that every coupling

in the expansion is non-zero at the NGFP, and no hint on how the series would sum up

was available.

8 Conclusions

In this article we have derived and studied a differential equation for the renormalization

group fixed points of gravity in the f(R) approximation. We have argued that such approx-

imation plays a role analogous to the one played by the local potential approximation in

scalar field theories, and taking seriously such perspective we have examined various prop-

erties of the solutions to our differential equation. In particular we have studied regularity
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conditions and large-R̃ expansion. Within the latter we have checked the convergence of

fixed-point solutions obtained by truncations of the series expansion.

The main results of our analysis are the following:

• the fixed-point structure of large-R̃ truncations is much clearer than the one from

small R̃ truncations, and in particular we found striking convergence of a fixed-point

solution (figure 3 and 4), which however turns out to have a growing number of

relevant directions;

• the analyticity condition at R̃ = R̃+ is satisfied on a continuous interval of the

parameter A, hence the presence of two fixed singularities in our equation is not an

obstruction to the existence of global solutions;

• if global solutions exist, they necessarily correspond to the effective action of an

R2 theory.

The main motivation for our investigations was the asymptotic safety scenario conjec-

tured by Weinberg, and our hope is that the approach we have presented here will help

understanding further the status of such conjecture. It should be pointed out however that

our methods and results are quite generic and could also be useful for the investigation of

other aspects of gravity, such as infrared modifications, stability of the de Sitter solution,

and nucleation of black holes (see [49] for a one-loop analysis of such questions within an

f(R) setting).

What we presented here was just a first step in the direction of exploiting the f(R)

approximation in the spirit of the local potential approximation, and many more develop-

ments of this approach are possible and needed. For example, on a technical side, the use

of a different cutoff would be desirable, possibly avoiding the staircase nature of the traces.

Pushing the table 4 to higher orders would be important for testing the existence of a fixed

point with A∗ > 0 and with a finite number of relevant directions. And of course, a more

comprehensive exploration of the numerical solutions is being performed, and it will be the

subject of a future publication.

Finally, the result of section 7.6 suggests that in a more generic approximation (i.e.

not relying on a maximally symmetric background) the fixed-point action would probably

contain a Weyl-squared term. As a consequence, we feel that the issue of unitarity of the

resulting theory will need to be discussed further, for example sharpening the argument

presented in [26].
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