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Abstract

We extend the discussion of Feng et al. (2011) [1] on massive Regge excitations on the first mass level
of four-dimensional superstring theory. For the lightest massive modes of the open string sector, universal
supermultiplets common to all four-dimensional compactifications with N = 1,2 and N = 4 spacetime su-
persymmetry are constructed respectively – both their vertex operators and their supersymmetry variations.
Massive spinor helicity methods shed light on the interplay between individual polarization states.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

String theory as seen from the point particle perspective contains an infinite number of mas-
sive, higher spin states. As known already from the early days of string theory, these massive
states lie on the so-called Regge trajectories that display the linear relation between the (mass)2

and the spin J of all states. The existence of the infinitely many higher spin states is essential for
the ultra-violet behavior of string scattering amplitudes. It unitarizes all string amplitudes among
the massless modes in the UV via the exchange of the infinite tower of massive states, as it was
first shown in the famous Veneziano amplitude that describes the scattering of four massless open
string states. In addition the consistency of quantum gravity in string theory completely relies on
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the massive higher spin states. Since the size of a string grows with its excitation energy, larger
and larger states are produced at higher and higher energies. Hence, the UV properties of string
scattering amplitudes are non-Wilsonian, which is also manifest in the UV–IR mixing in string
theory. As it was argued in [2] this might lead to a reformulation of the Heisenberg uncertainty
principle in string theory with the result that the string scale appears at the shortest possible
length scale, which can be dissolved in string scattering experiments.

The existence of massive higher spin states in string theory is not only crucial for the con-
sistency of the theory, but is possibly also interesting from the phenomenological point of view.
Since the masses of the higher spin states are all multiples of the string scale Ms = √

α′−1,
D-brane compactifications with a low string scale Ms in the TeV region and with large extra di-
mensions offer the exciting possibility that the lightest Regge excitations of massless open strings
can be directly produced and detected at the LHC. As it was shown in [3,4], four- and five-point
string scattering amplitudes among standard model gauge bosons (gluons, W-, Z-bosons, pho-
tons) and at most two external massless fermions (quarks or leptons) are completely independent
from any geometrical details of the underlying D-brane model in four dimensions. Hence, the
production of the first heavy colored string states (e.g. excited gluons with J = 0,2) from gluon
fusion and their subsequent decay into two or three hadronic jets leads to completely model inde-
pendent cross sections and decay rates at the LHC. Based on these calculations the recent LHC
searches for non-standard dijet events due to heavy new resonances can now exclude massive
string states with masses below about 4 TeV.

This paper is not so much concerned about the phenomenological implications of massive
higher spins states, but we rather like to exploit some of the basic supersymmetry properties of
higher spin states in four dimensions, originating from supersymmetric type II compactifications.
In [1] we already computed string scattering amplitudes not only with massless external string
states, but also three- and four-point amplitudes with one massive excited open string state as ex-
ternal field. For this purpose we constructed in [1] the corresponding covariant vertex operators
for the lowest massive open states in four dimensions,1 focusing in particular on those universal
open Regge states, which are present in any D-brane compactification to four dimensions (ex-
cited gluons and gluinos). Working within the world-sheet NS-R formalism, physical, massive
states belong to the cohomology of the BRST operator. In addition, besides world-sheet confor-
mal invariance, supersymmetry plays a key role for the consistency of string theory, both on the
world-sheet as well as in target space. In ten spacetime dimensions, the type IIB(A) superstring
exhibits extended (non-)chiral N = 2 spacetime supersymmetry with in total 32 supersymmetry
charges. It follows that all massless as well as all massive closed string states are organized in
supermultiplets of the ten-dimensional N = 2 supersymmetry algebra. This leads to a very subtle
interplay between massive string excitations with different higher spins that belong to common
supersymmetry multiplets. In fact, the covariant world-sheet vertex operators of the higher spin
states must transform into each other when acting on them with the supersymmetry charge op-
erators. Hence, spacetime supersymmetry must be reflected in the structure of the world-sheet
BRST cohomology on each mass level of the higher spin excitations.

Going from ten to lower dimensions, parts or all of spacetime supersymmetry can be pre-
served during the compactification process. As it is known already for several years [11–14],
there exists a deep relation between the number of spacetime supersymmetries, preserved by the
compactification, and the number of world-sheet supersymmetries of the corresponding inter-

1 Additional and previous work on vertex operators for massive higher spin excitations includes [5–10].
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nal superconformal field theory. Specifically, for type II compactifications on six-dimensional
Calabi–Yau spaces, which correspond to ĉ = 6 SCFT’s with (2,2) world sheet supersymmetry,
one obtains in the closed string sector four-dimensional N = 2 effective supergravity theories
with 8 preserved supercharges in the bulk. Second, type II compactification on K3 × T 2 with
four-dimensional N = 4 spacetime supersymmetry (16 bulk supercharges) can be described by
the direct product of two SCFT’s with central charges ĉ = 4 and ĉ = 2, where the ĉ = 4 part pos-
sesses (4,4) supersymmetry on the world-sheet. Finally, compactifications on a six-dimensional
torus leads to effective type II supergravity theories with maximal N = 8 supersymmetry (32
bulk supercharges).

However, when also including D-branes and open strings, the number of spacetime supersym-
metries is reduced by half compared to the closed string bulk sector, we just discussed above.
First, the effective, four-dimensional Yang–Mills theories of type IIB, Calabi–Yau orientifolds
with D3/D7-branes or with D5/D9-branes (or type IIA Calabi–Yau orientifolds with intersecting
D6-branes) possess just N = 1 supersymmetry. Next the IIB K3 × T 2 orientifolds with D5/D9-
branes lead to N = 2 supersymmetric Yang–Mills theories in four dimensions.2 And finally,
toroidal compactifications of type II superstrings lead to Yang–Mills open string sectors with
N = 4 supersymmetry in D = 4.

It is the aim of this paper to extend the work of [1] in order to systematically construct the
covariant vertex operators of the lowest massive open string supermultiplets for all three cases of
N = 4,2,1 spacetime supersymmetry on the corresponding D-branes. We will focus in particular
on those massive supermultiplets and their SUSY transformations in the universal sector, which
are always present in any four-dimensional orientifold models:

• For N = 4 super Yang–Mills, there is a single massive, spin two supermultiplet with 128
bosonic as well as 128 fermionic degrees of freedom.

• The supermultiplets of the universal N = 1 sector contains one spin two supermultiplet and
two spin 1/2 representations with in total 12 + 12 bosonic and fermion degrees of freedom.

• Finally, for N = 2 super Yang–Mills we are dealing with 40 + 40 massive open string states,
being organized in one spin two plus two spin one massive supermultiplets.

In this way we extend the analysis of [14] about the relation between world-sheet and spacetime
supersymmetries and their closed string (massless) supermultiplet structure to the case of the
massive, open string supermultiplets. At the same time we are giving here a massive version
of the SUSY multiplet analysis in [15], where it was shown that SUSY Ward identities among
scattering amplitudes are valid to all orders in α′, and where the spinor helicity methods were
applied to make efficient use of these Ward identities.

The paper is organized as follows. As a warm-up case, in Section 2 we first construct the
covariant NS and R vertex operators of the ten-dimensional type I open string states at the first
mass level. They comprise in total 128 + 128 bosonic as well as fermionic states. We verify
that these states form a massive representation of the ten-dimensional (type I) N = 1 SUSY
algebra. Next, in Section 3 we consider the SCFT’s of string vacua in four dimensions, and
discuss the relation between the extended world-sheet superconformal algebras and the spacetime
N = 4,1,2 SUSY algebras and the covariant vertex operators for the corresponding supercharge

2 These theories originate upon compactification on T 2 from D = 6, IIB theories on K3 with (1,1) spacetime super-
symmetry.
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operators. Sections 4, 5 and 6 are devoted to construct the massive open string supermultiplets,
their vertex operators and their supersymmetry transformations for the three cases of N = 4,
N = 1 and N = 2 supersymmetry in four dimensions respectively. Finally, in Section 7 we
study in more detail in helicity structure of the various on-shell supermultiplets.

2. The first mass level in D = 10

The lightest Regge excitations of open superstring theory in ten-dimensional Minkowski
spacetime were firstly constructed in 1987 [5]. Let us briefly review the general method to con-
struct heavy string excitations as well as the explicit results of [5] and then offer a covariant
approach to the excited Ramond sector states.

2.1. The general method

Physical states belong to the cohomology of the BRST operator QBRST. In the world-sheet
variables of the RNS formalism, it splits into three pieces of different superghost charge:

QBRST = Q0 + Q1 + Q2, (2.1)

Q0 =
∮

dz

2πi

(
c(T + Tβ,γ ) + bc∂c

)
, (2.2)

Q1 = −
∮

dz

2πi
γG = −

∮
dz

2πi
eφηG, (2.3)

Q2 = −1

4

∮
dz

2πi
bγ 2 = −1

4

∮
dz

2πi
be2φη∂η. (2.4)

We denote the c = 15 stress tensor and supercurrent of the matter fields3 i∂Xm,ψn by T and G,
respectively, whereas Tβ,γ captures the β,γ superghost system of c = 11. The latter is partially
bosonized in terms of exponentials eqφ (with φ denoting a free chiral boson) and completed by
a pair of h = 1,0 fermions η, ξ . The Grassmann odd ghost system (b, c) is well-known from the
bosonic string.

States of uniform superghost charge are BRST closed only if they are annihilated by Q0,Q1
and Q2 separately. Closure under Q0 forces vertex operators to be a Virasoro primary of unit
weight, while Q2 does not contribute in the ghost pictures considered in this paper. Hence, given
a vertex operator ansatz of suitable conformal weight, only the Q1 constraint involving the su-
percurrent

G(z) = 1

2
√

2α′ i∂Xm(z)ψm(z) (2.6)

has to be evaluated separately.

3 Our normalization conventions for the world-sheet matter fields are fixed by

i∂Xm(z)i∂Xn(w) ∼ 2α′ηmn

(z − w)2
+ · · · , ψm(z)ψn(w) ∼ ηmn

z − w
+ · · · . (2.5)
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2.2. The NS sector

The lowest mass m2 = −k2 = 1/α′ for Regge excitations assigns conformal weight h = −1
to the plane wave eik·X which introduces spacetime momentum into vertex operators. In the NS
sector of canonical superghost charge −1, it can combine with the h = 1

2 field e−φ and an h = 3
2

combination of i∂Xm,ψn oscillators to form a Virasoro primary of unit conformal weight in
total. (Hence, neglecting the plane wave eik·X contribution, the massive states at first mass level
always correspond to vertex operators with conformal dimension h = 2.)

The most general h = 1 ansatz for the first massive NS sector states involves three4 h = 3
2

operators i∂Xmψn,ψmψnψp and ∂ψm along with polarization wave functions Bmn, Emnp , Hm:

V (−1)(B,E,H,k, z) = (
Bmni∂Xmψn + Emnpψmψnψp + Hm∂ψm

)
e−φeik·X. (2.7)

The BRST constraints arising from Q1 admit two physical solutions,5 namely a (traceless and
symmetric) spin two tensor Bmn and a three-form Emnp:

V (−1)(B, k, z) = 1√
2α′ Bmni∂Xmψne−φeik·X, kmBmn = Bm

m = B[mn] = 0, (2.8)

V (−1)(E, k, z) = 1

6
Emnpψmψnψpe−φeik·X, kmEmnp = 0. (2.9)

Both polarizations are transverse and therefore naturally fall into representations of the stabilizer
group SO(9) of massive momenta. The number of degrees of freedom is 9·10

2 − 1 = 44 for Bmn

and 9·8·7
1·2·3 = 84 for Emnp , i.e. we have 44 + 84 = 128 bosonic states in total.

Some of the solutions to the BRST constraint turn out to be QBRST exact:
[
QBRST, e−2φΣ[mn]ψmψn∂ξeik·X] ∼ (

2Σ[mn]i∂Xmψn + Σ[mnkp]ψmψnψp
)
e−φeik·X,[

QBRST, e−2φπmi∂Xm∂ξeik·X] ∼ (
πm∂ψm + πmkni∂Xmψn

)
e−φeik·X,

[
QBRST, ∂e−2φ∂ξeik·X] ∼

([
ηmn

2α′ + 2kmkn

]
i∂Xmψn + 3km∂ψm

)
e−φeik·X. (2.10)

These spurious states parametrized by a two-form Σ[mn], a vector πm and a scalar of SO(9) (i.e.
subject to kmΣmn = kmπm = 0) decouple from physical states.

2.3. Excited spin fields

In the R sector, the canonical superghost vacuum is created by the h = 3
8 field e−φ/2. Masses

m2 = 1/α′ allow for an h = 13
8 operator to complete fermionic vertex operators for the first mass

level. The matter sector of the R ground states corresponds to h = 5
8 spin fields Sα transforming

as left-handed spinors of the Lorentz group [16,17]. The right-handed chirality is forbidden by
GSO projection. The role of Sα to open or close branch cuts for the ψm is reflected in the OPE

ψm(z)Sα(w) ∼
γ m

αβ̇√
2(z − w)1/2

Sβ̇(w) + · · · . (2.11)

4 The addition of ξmψm∂φe−φ is neglected because it can be absorbed into a total derivative.
5 Throughout this paper, we are setting the vertex operator normalization factor gA = √

2α′gYM from [3,4] to unity.
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The nontrivial three-point interactions between ψm and Sα render their covariant correlation
functions inaccessible to the Wick theorem, one has to use techniques of [18–20] instead to
compute higher order correlators. Only by breaking SO(1,9) to its SU(5) subgroup, one can
relate the ψm and Sα to a free field system of chiral bosons H1,2,...,5:

i∂Hk(z)i∂Hl(w) ∼ δkl

(z − w)2
+ i∂Hk(w)i∂Hl(w) + · · · . (2.12)

This technique is known as bosonization6 [17]:

ψm ↔ e±iHm, Sα ↔ e±iH1/2e±iH2/2e±iH3/2e±iH4/2e±iH5/2. (2.13)

It is clear from this bosonized representation that the subleading term ∼ (z − w)1/2 of the OPE
(2.11) involves e±3iHk/2 primary operators, in addition to the derivatives ∂e±iHk/2. The covariant
description of these new excited primary fields requires an irreducible vector spinor

Sβ̇
m ↔ e±i3H1/2e±iH2/2e±iH3/2e±iH4/2e±iH5/2, γ m

αβ̇
Sβ̇

m = 0 (2.14)

of weight h = 13
8 , where the gamma tracelessness condition subtracts the descendant compo-

nents ∂Sα ↔ ∂(e±iH1/2e±iH2/2e±iH3/2e±iH4/2e±iH5/2). The introduction of S
β̇
m and ∂Sα is the

covariant way to disentangle the primary field- and descendant components within the operator

ψmψnSαγ
αβ̇
n used in [5]. The completion of the OPE (2.11) to the subleading level reads

ψm(z)Sα(w) ∼
γ m

αβ̇
Sβ̇(w)

√
2(z − w)1/2

+ (z − w)1/2
[
Sm

α (w) + 2√
25

γ m

αβ̇
∂Sβ̇(w)

]
+ · · · (2.15)

in D = 10. A more exhaustive list of OPEs involving ψm,Sα and S
β̇
m (and their counterparts

of opposite SO(1,9) chirality) can be found in Appendix B.1. A covariant treatment of generic
higher spin primary fields will be given in [21].

2.4. The operator content of the R sector

After the GSO projection, the most general vertex operator for spacetime fermions at the first

mass level involves the h = 13
8 operators i∂XmSα , S

β̇
m and ∂Sα and therefore two vector spinor

wave functions vα
m, ρ̄m

β̇
as well as spinor wave function uα :

V (−1/2)(v, ρ̄, u, k, z) = (
vα
mi∂XmSα + ρ̄m

β̇
Sβ̇

m + uα∂Sα

)
e−φ/2eik·X. (2.16)

Since ρ̄ is contracted with the excited spin field S
β̇
m, we can regard it as γ traceless, i.e. ρ̄m

β̇
γ̄

β̇α
m =

0. The independent Q1 BRST constraints for (2.16) can be summarized as

6 We should admit that our discussion neglects Jordan–Wigner cocycle factors [17]. These are additional algebraic

objects accompanying the exponentials to ensure that e±iHk and e±iHl associated with different bosons k �= l anticom-
mute. We drop cocycle factors to simplify the notation, it suffices to remember that they are implicitly present and that
the bosonized representation of ψμ still obeys Fermi statistics. The instance where they contribute a phase is commented
on above (6.39).



W.-Z. Feng et al. / Nuclear Physics B 861 (2012) 175–235 181
0 = 2α′vα
m/kαβ̇ + √

2ρ̄m,β̇ + 1

2
uαγmαβ̇ , (2.17)

0 = 2
√

2kμρ̄
μ

β̇
− 3

2
uα/kαβ̇ . (2.18)

Disentangling the SO(1,9) irreducibles of the former allows to express uα and ρ̄m

β̇
in terms of vα

m,

ρ̄m

β̇
= −√

2α′
(

vmα/kαβ̇ + 1

10
vα
p

(
/kγ̄ pγ m

)
αβ̇

)
, (2.19)

uα = 2α′

5
vβ
m

(
/kγ m

)
β

α, (2.20)

whereas (2.18) yields an extra constraint on the only independent polarization vα
m:

vα
mγ m

αβ̇
= 2α′kmvα

m/kαβ̇ . (2.21)

As recognized in [5], there is a physical solution vα
m ≡ χα

m of spin 3/2

V (−1/2)(χ, k) = 1√
2α′1/4

(
χα

mi∂XmSα − √
2α′χmα/kαβ̇Sβ̇

m

)
e−φ/2eik·X,

0 = kmχα
m = χα

mγ m

αβ̇
(2.22)

and one spurious state associated with the gamma trace choice vα
m = kmΘα + 1

4Θβ(/kγm)β
α

[
QBRST, e−3φ/2∂ξΘα/kαβ̇Sβ̇eik·X]

∼
([

kmΘα + 1

4
Θβ(/kγm)β

α

]
i∂XmSα

− 1√
2

[
α′kmΘα/kαβ̇ + 1

10
Θαγ m

αβ̇

]
Sβ̇

m + 6

5
Θα∂Sα

)
e−φ/2eik·X (2.23)

which allows to gauge away the uα wave function.

2.5. Ten-dimensional SUSY transformations

The SUSY charge in open superstring theory is given by the massless gaugino vertex at zero
momentum [11]:

Q(−1/2)
α = 1

α′1/4

∮
dz

2πi
Sαe−φ/2. (2.24)

It transforms R sector states in their canonical −1/2 superghost picture into canonical NS vertex
operators ∼ e−φ . The contour integral is evaluated by performing OPEs between the Sα and
e−φ/2 fields from the supercharge at point z and the vertex operator V (−1/2)(w) of the fermion
in question. Appendix B.1 gathers the required OPEs for the D = 10 case.

The inverse transformation from the NS sector to the R sector requires the +1/2 picture
representative of the SUSY generator

Q(+1/2)
α = 1

2α′3/4

∮
dz

2πi
i∂Xmγ m

αβ̇
Sβ̇e+φ/2. (2.25)

The latter allows to write down the ghost neutral N = 1 SUSY algebra in ten dimensions,
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{
Q(+1/2)

α ,Q(−1/2)
β

} = (
γ mC

)
αβ

Pm, Pm = 1

2α′

∮
dz

2πi
i∂Xm. (2.26)

Let us list the SUSY variations of the physical D = 10 vertex operators. The NS sector states
(2.8) and (2.9) have already been discussed in [5]

[
ηαQ(+1/2)

α ,V (−1)(B, k)
] = V (−1/2)

(
χα

m = 1√
2
Bmn

(
η/kγ n

)α
)

, (2.27)

[
ηαQ(+1/2)

α ,V (−1)(E, k)
] = V (−1/2)

(
χα

m = 1

12
√

α′

[
Emnp

(
ηγ np

)α

− 1

3
Enpq

(
ηγmγ npq

)α − α′

3
kmEnpq

(
η/kγ npq

)α
])

. (2.28)

In addition, we use the covariant OPEs from Appendix B.1 to compute the SUSY variation of
the massive gravitino (2.22):

[
ηαQ(−1/2)

α ,V (−1/2)(χ, k)
]

= V (−1)

(
Bmn = α′

√
2
(η/kχ(m)kn) + 1√

2
(ηγ(mχn))

)

+ V (−1)

(
Emnp = 3α′1/2(ηγ[mχn)kp] − 3

2
α′1/2(ηγ[np/kχm])

)
. (2.29)

3. CFTs of supersymmetric string vacua in four dimensions

In this section we will first review some basic facts about extended supersymmetry algebras in
four spacetime dimensions and about the general relation between extended spacetime supersym-
metries and world-sheet supersymmetries. In part, we are following the work in Refs. [12–14].
Our conventions for indices w.r.t. Lorentz symmetry SO(1,3) and R-symmetries SO(6) or SU(2)

are gathered in Appendix A.

3.1. The D = 4 spacetime supersymmetry algebra

The N supercharges QI
a as well as the complex conjugate operators Q̄ȧ

Ī
satisfy the N -

extended supersymmetry algebra (I, Ī = 1, . . . ,N )

{
QI

a, Q̄ḃ

J̄

} = CI

J̄

(
σμε

)
a
ḃPμ,{

QI
a,QJ

b

} = εabZIJ . (3.1)

P μ is the momentum operator and the ZIJ are central charges, which are antisymmetric in I, J

and can therefore appear in the N � 2 supersymmetry algebra only.
Next let us discuss the representations of the extended supersymmetry algebras, namely how

the supercharges in general act on massless and on massive states. Let us first recall the case
of massless states. Here we can choose a frame where the momenta are kμ = (E,0,0,E), the
supercharges are

QI
1 ≡QI , Q̄1̇

Ī
≡ Q̄I , whereas 0 =Q2

1 = Q̄2̇
Ī
. (3.2)

In terms of QI and Q̄I the supersymmetry algebra takes the form
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{
QI , Q̄J

} = δI
J ,{

QI ,QJ
} = {Q̄I , Q̄J } = 0, (3.3)

where we have rescaled the supersymmetry charges by
√

E. The 2N supercharges QI and Q̄I

build an SO(2N ) Clifford algebra

Γ2I−1 =QI + Q̄Ī , Γ2I = i
(
QI − Q̄Ī

)
,

{Γi,Γj } = 2δij , i, j = 1, . . . ,2N (3.4)

whose representations have dimension 2N . The generators for SO(2N ) rotations are

Λij = 1

4i
[Γi,Γj ]. (3.5)

This group contains an SU(N ) × U(1) subgroup specified by the following generators

ΛI
J = 1

2

[
QI , Q̄J̄

] − 1

2N δI
J

[
QK, Q̄K̄

]
for SU(N ),

Λ = 1

4

[
QI , Q̄I

]
for U(1). (3.6)

For massless states, this SU(N ) commutes with the SO(2) helicity group. Hence this group clas-
sifies massless states. The eigenvalue of the supercharge under the U(1), which is called intrinsic
helicity, is the same as under spacetime helicity. Therefore one can define a new generator Λ′
through a shift by the z component j3 of the spin, called superhelicity,

Λ′ = j3 − Λ, (3.7)

which commutes with QI .
Next let us consider massive states rotated into their rest frame kμ = (m,0,0,0). Now also the

second helicity components of the supercharge spinors become active, i.e. give rise to nonzero
supersymmetry transformations on massive states. We will denote them as follows:

QI
2 ≡ Q̃I , Q̄2̇

Ī
≡ ¯̃QĪ . (3.8)

The supersymmetry algebra between the Q̃ looks like

{
Q̃I ,

¯̃QJ̄

} = mCI

J̄
,

{
Q̃I , Q̃J

} = { ¯̃QI ,
¯̃QJ } = 0. (3.9)

Now the (QI , Q̄Ī ) and (Q̃I ,
¯̃QĪ ) build an SO(4N ) Clifford algebra on the states without central

charges. Consequently, the dimension of massive representations is a multiple of 22N . The max-
imal subalgebra that commutes with the SO(3) little group of the massive states is USp(2N ).
Therefore massive states without central charges build representations of USp(2N ). As for the
massless states one can consider an SU(N ) × U(1) subgroup with generators Λtot = Λ + Λ̃

where the Λ̃ are defined from the Q̃ as in Eq. (3.6). In Section 7 we will introduce an organi-
zation scheme for massive SUSY representations based on spinor helicity methods which keeps
track of the spin quantum numbers along a reference axis of choice.

However, in the presence of central charges ZIJ , the operators QI and Q̃I generate a smaller
SO(2N ) Clifford algebra, whose maximal subalgebra is SO(3) × Sp(N ). Therefore states with
central charges only build representations of Sp(N ).
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3.2. CFT realization of extended D = 4 SUSY

As it is well known, there is a beautiful relation between the N -extended spacetime super-
symmetry algebras and the n-extended internal superconformal algebras with corresponding
Kac–Moody symmetry g. We will assume in the following that we are dealing with holomor-
phic spacetime supercharges that all originate from the right-moving sector of the compactified
string theory, as it is always the case for heterotic string compactifications. As we will discuss,
for purely holomorphic supercharges, the massive BPS states with non-vanishing central charges
are of perturbative nature. However in type II compactifications, the supercharges can originate
from the left-moving as well as the right-moving sector of the string theory. In this case, some
of the massive BPS states with central charges are non-perturbative, as they are given in terms of
wrapped type II D-branes. These non-perturbative states will not be discussed in this paper.

In SCFT, the holomorphic supercharges QI and Q̄Ī can be always realized by the world-sheet
fields of the uncompactified four-dimensional Minkowski spacetime together with those of the in-
ternal Kac–Moody symmetries. This fact allows for a completely model-independent realization
of the spacetime supersymmetry algebra without any reference to “geometrical” details of the
internal SCFT. To be more specific, compactifications to four-dimensional Minkowski spacetime
which allow for a CFT description, still have SO(1,3) vectors i∂Xμ and ψμ in their world-sheet
theory, the first four components of the ten-dimensional ancestors i∂Xm and ψm. Similarly, the
ten-dimensional SO(1,9) spin field Sα factorizes into separate h = 1

4 and h = 3
8 primaries Sa

and Σ , the former being a Weyl spinor of SO(1,3) and the latter falling into representations of
the R-symmetry. In fact, both SO(1,3) chiralities can occur, i.e.

Sα ≡ SaΣ
I ⊕ SḃΣ̄I . (3.10)

The number of (ΣI , Σ̄I ) species coincides with the number of spacetime supersymmetries, we
will discuss the N = 4,1,2 cases below. In each case, the (left- and right-handed) supercharges
in their canonical ghost picture are given by

Q(−1/2)I
a = 1

α′1/4

∮
dz

2πi
SaΣ

I e−φ/2, Q̄(−1/2),ḃ

J̄
= 1

α′1/4

∮
dz

2πi
SḃΣ̄J̄ e−φ/2. (3.11)

Independent on the fate of the internal spin fields ΣI , Σ̄I , the interactions of the h = 1
4 spacetime

spin fields Sa,S
ḃ with the NS fermions is governed by

ψμ(z)Sa(w) ∼ σ
μ

aḃ
Sḃ(w)√

2(z − w)1/2
+ (z − w)1/2

[
Sμ

a (w) + 1√
2
σ

μ

aḃ
∂Sḃ(w)

]
+ · · · . (3.12)

In lines with the discussion of Section 2.3, one can bosonize the left- and right-handed spin fields
as e±i(H1+H2)/2 and e±i(H1−H2)/2, respectively. In order to reconcile bosonization techniques
with SO(1,3) symmetry, we align e±3iHj /2 components showing up in the subleading term of
the OPE (3.12) into covariant excited spin fields Sḃ

μ, S
μ
a of weight h = 5

4 :

Sμ
a ↔ e±3iH1/2e±iH2/2, Sḃ

μ ↔ e±3iH1/2e∓iH2/2, σ̄ ḃa
μ Sμ

a = σ
μ

aḃ
Sḃ

μ = 0. (3.13)

A large list of OPEs between (ψμ,Sa, S
ḃ, Sḃ

μ, S
μ
a ) including subleading singularities can be

found in Appendix B.2.
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3.3. CFT operators in N = 4 compactifications

The internal SCFT in maximally supersymmetric N = 4 compactifications to D = 4 dimen-
sions can be understood in terms of free fields i∂Zm,Ψ m with m = 4,5, . . . ,9 which represent
the internal components of the ten-dimensional i∂Xm=0,1,...,9, ψm=0,1,...,9 and transform as vec-
tors of the internal rotation group SO(6). The corresponding h = 3

8 spin fields ΣI and Σ̄J̄ ,
responsible for branch cuts of Ψ m, transform as spinors of the SO(6) ≡ SU(4) with left-handed
(right-handed) index I (J̄ ). They enter the dimensional reduction SO(1,9) → SO(1,3) × SO(6)

of the D = 10 SUSY charges

Q(−1/2)I
a = 1

α′1/4

∮
dz

2πi
SaΣ

I e−φ/2, Q̄(−1/2),ḃ

J̄
= 1

α′1/4

∮
dz

2πi
SḃΣ̄J̄ e−φ/2 (3.14)

where the internal SO(6) ≡ SU(4) is interpreted as the R-symmetry group. The ten-dimensional
bosonization prescription can be straightforwardly applied to Ψ m, ΣI , Σ̄J̄ (e.g. ΣI ↔
e±i(H3+H4+H5)/2), and excited spin fields ΣI

m and Σ̄m

J̄
of weight h = 11

8 are constructed in
close analogy to their ten- and four-dimensional counterparts (2.14) and (3.13):

ΣI
m ↔ e±3iH3/2e±iH4/2e±iH5/2, γ m

J̄ I
ΣI

m = γ̄ I J̄
m Σ̄m

J̄
= 0. (3.15)

The internal supercurrent is built from the m = 4,5, . . . ,9 components of its ten-dimensional
ancestor (2.6)

Gint = 1

2
√

2α′ i∂ZmΨ m (3.16)

and gives rise to internal central charge7 c = 9. OPEs among the Ψ k,ΣI , Σ̄J̄ and ΣI
m, Σ̄m

J̄
are

gathered in Appendix B.3. Identities between six-dimensional gamma and charge conjugation
matrices can for instance be found in the appendix of [19]. The following Fig. 1 aims to give an
overview of the conformal fields in the spacetime and N = 4 internal CFTs.8

The higher ghost picture version of the SUSY generators (3.14) is given by

Q(+1/2),I
a = 1

2α′3/4

∮
dz

2πi

[
i∂Xμσ

μ

aḃ
SḃΣI + Sai∂Zmγ IJ̄

m Σ̄J̄

]
e+φ/2, (3.18)

Q̄(+1/2),ḃ

J̄
= 1

2α′3/4

∮
dz

2πi

[
i∂Xμσ ḃa

μ SaΣ̄J̄ + Sḃi∂Zmγ̄ m

J̄ I
ΣI

]
e+φ/2, (3.19)

their anticommutator with the (−1/2) picture analogues (3.14) yields the following ghost-neutral
SUSY algebra with nontrivial central charges ZIJ and Z̄Ī J̄ :

{
Q(+1/2),I

a , Q̄(−1/2),ḃ

J̄

} = CI
J̄

(
σμε

)
a
ḃPμ, Pμ = 1

2α′

∮
dz

2πi
i∂Xμ, (3.20)

7 The underlying OPEs are

i∂Zm(z)i∂Zn(w) ∼ 2α′δ(6)
mn

(z − w)2
+ · · · , Ψm(z)Ψn(w) ∼ δ

(6)
mn

z − w
+ · · · . (3.17)

8 The fermionic bilinear states ψνψλ and Ψ nΨ p at weight h = 1 by themselves should be eliminated by the GSO

projection, but trilinear combinations Ψ mψνψλ and ψμΨ nΨ p which mix between spacetime components and internal
fields would survive after the GSO projection. That is why we include the bilinears into the bookkeeping.
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Fig. 1. Conformal fields in the spacetime CFT and the internal CFT of N = 4 supersymmetric compactifications.

{
Q(+1/2),I

a ,Q(−1/2),J
b

} = εabZIJ , ZIJ = 1

2α′

∮
dz

2πi
i∂Zm(γmC)IJ , (3.21)

{
Q̄(+1/2),ȧ

Ī
, Q̄(−1/2),ḃ

J̄

} = εȧḃZ̄Ī J̄ , Z̄Ī J̄ = 1

2α′

∮
dz

2πi
i∂Zm

(
γ̄ mC

)
Ī J̄

. (3.22)

The central charges arise due to poles in the operator product expansion of Q(+1/2),I
a and

Q(−1/2),J
b caused by internal free fermions and bosons Ψ m and ∂Zm. The latter appear in the

internal supercurrent Gint ∼ i∂ZmΨ m and generate an internal Kac–Moody algebra

g = SO(6) × [
U(1)

]6 (3.23)

with dimension one currents

jmn
SO(6)(z) = Ψ mΨ n(z), jm

U(1)6(z) = i∂Zm(z). (3.24)

The fields Zm(z) can be viewed as the coordinates of a (holomorphic) torus compactification
on a six-dimensional torus T 6. Their world-sheet superpartners Ψ m generate a U(1)6 spacetime
gauge symmetry, and the six spacetime gauge bosons are the six graviphotons, which arise in any
compactification on a (holomorphic) six-torus. States that carry non-vanishing internal momenta
pm on the (holomorphic) six-torus always have the following field as part of their vertex operator:∣∣pm

〉 ∼ eipmZm(z). (3.25)

Switching to the more convenient bispinor basis, the six central charge operators (in the zero
ghost picture) of the N = 4 supersymmetry algebra are nothing else than the free bosons Zm:

ZIJ (z) = 1

2α′ (γmC)IJ i∂Zm(z). (3.26)

It follows that the internal momentum states |pm〉 are precisely those states that carry non-
vanishing N = 4 central charges. They break the internal world-sheet SO(6) symmetry to SO(5).
At the same time, states with non-vanishing momenta pm build representations of the spacetime
automorphism group for massive states with central charges, which is Sp(4) ∼= SO(5). On the
other hand, states with vanishing internal momenta, |pm = 0〉, build internal SO(6) representa-
tions, respectively at the same time representations of the group USp(8), which classifies massive
states without central charges. The subsequent discussions only take into account the states at
zero internal momentum (pm = 0).
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3.4. CFT operators in N = 1 compactifications

In this subsection, we summarize universal aspects of internal c = 9 SCFTs describing D = 4
superstring compactifications which preserve N = 1 SUSY in spacetime [12–14]. The existence
of one supercharge species

Q(−1/2)
a = 1

α′1/4

∮
dz

2πi
SaΣ

+e−φ/2, Q̄(−1/2)ḃ = 1

α′1/4

∮
dz

2πi
SḃΣ−e−φ/2 (3.27)

with h = 3
8 spin fields Σ± implies that the world-sheet supersymmetry is enhanced to N = 2.

This can be traced back to the existence of a U(1) Kac–Moody current J of h = 1 which emerges
from the mutual OPEs of spin fields with opposite charge:

Σ±(z)Σ∓(w) ∼ 1

(z − w)3/4
±

√
3

2
(z − w)1/4J (w) + · · · . (3.28)

The internal supercurrents G±
int can be split into two components of opposite U(1) charge,

Gint = 1√
2

(
G+

int + G−
int

)
, (3.29)

subject to the superconformal N = 2 algebra9

J (z)J (w) ∼ 1

(z − w)2
+J (w)J (w) + · · · , (3.30)

J (z)G±
int(w) ∼ ± G±

int(w)√
3(z − w)

+J (w)G±
int(w) + · · · , (3.31)

G±
int(z)G

±
int(w) ∼ G±

int(w)G±
int(w) + · · · , (3.32)

G±
int(z)G

∓
int(w) ∼ 3/2

(z − w)3
±

√
3J (w)

2(z − w)2
+ 2Tint(w) ± √

3∂J (w)

4(z − w)
+ · · · (3.33)

with internal c = 9 energy momentum tensor Tint. The OPE of alike spin fields gives rise to new
h = 3

2 Virasoro primary operators

Σ±(z)Σ±(w) ∼ (z − w)3/4O±(w) + · · · (3.34)

with twice the U(1) charge of the spin fields, and iterated OPEs with Σ± create an infinite tower
of further conformal primaries with higher weights and charges.

A large sector of the internal CFT can be captured by bosonization. Let H(z) denote a canon-
ically normalized free & chiral boson, then we have the following representation for some for
the aforementioned operators:

J ≡ i∂H, Σ± ≡ e±i
√

3H/2, O± ≡ e±i
√

3H . (3.35)

However, the internal supercurrent (or energy momentum tensor) cannot be fully bosonized.
Instead, we can represent G±

int as

9 In contrast to [12–14], we normalize J such that it has canonical two-point functions 〈J (z)J (w)〉 = 1 · (z − w)−2.
This simplifies (subleading) OPE coefficients and normalization factors in vertex operators.
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Fig. 2. Conformal fields in the N = 1 internal CFT, together with their weight h and U(1) charge q .

G±
int =

√
3

2
e
± i√

3
H

g±, (3.36)

where the h = 4
3 operators g± are local with respect to H and satisfy

g±(z)g∓(w) ∼ 1

(z − w)8/3
+ 0

(z − w)5/3
+ · · · , (3.37)

g±(z)g±(w) ∼ g±(w)g±(w)

(z − w)1/3
+ · · · . (3.38)

On these grounds, we can understand the OPE of the supercurrent with internal spin fields,

G±
int(z)Σ

∓(w) ∼
√

3

2

Σ̃∓(w)

(z − w)1/2
+ · · · , (3.39)

G±
int(z)Σ

±(w) ∼ (z − w)1/2g±e
± 5i

2
√

3 (w) + · · · (3.40)

which introduces excited spin fields Σ̃± of h = 11
8 in case of opposite U(1) charges G±

int ↔ Σ∓,

Σ̃± ≡ g∓e
± i

2
√

3
H

. (3.41)

Fig. 2 gives an overview of the universal Virasoro primaries in the internal c = 9 SCFT. More
detailed OPEs including subleading singularities can be found in Appendix B.4.

From these OPEs, we obtain the following +1/2 ghost picture version for the SUSY charge

Q(+1/2)
a =

∮
dz

2πi

[ √
3

α′1/4
SaΣ̃

+ + 1

2α′3/4
i∂Xμσ

μ

aḃ
SḃΣ+

]
e+φ/2, (3.42)

Q̄(+1/2)ḃ =
∮

dz

2πi

[ √
3

α′1/4
SḃΣ̃− + 1

2α′3/4
i∂Xμσ̄ ḃa

μ SaΣ
−
]

e+φ/2, (3.43)

which yield the N = 1 SUSY algebra

{
Q(+1/2)

a , Q̄(−1/2),ḃ
} = (

σμε
)
a
ḃPμ, Pμ = 1

2α′

∮
dz

2πi
i∂Xμ. (3.44)
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3.5. CFT operators in N = 2 compactifications

In superstring compactifications which preserve N = 2 spacetime SUSY, it can be shown
along the lines of [13,14] that the internal CFT splits into two decoupled sectors with central
charges c = 6 and c = 3, respectively. Starting point are the two supercharges

Q(−1/2),i
a = 1

α′1/4

∮
dz

2πi
SaΣ

ie−φ/2, Q̄(−1/2),ḃi = 1

α′1/4

∮
dz

2πi
SḃΣ̄ ie−φ/2, (3.45)

containing two species of spin fields Σi=1,2 and Σ̄i=1,2. The latter turn out to factorize into
decoupled primaries λi and e±iH/2 from the c = 6 and c = 3 sector, respectively:

Σi = λie+iH/2, Σ̄ i = λie−iH/2. (3.46)

The c = 3 part can be represented in terms of a single free chiral boson H subject to (2.12).
Its contribution 1

2 (i∂H)2 to the c = 3 energy momentum tensor assigns conformal weight
h(e±iH/2) = 1/8 (or more generally, h(eiqH ) = q2/2). Moreover, OPEs of the partial spin fields
e±iH/2 introduce h = 1

2 fermions e±iH and excited spin fields e±3iH/2 of weight h = 9
8 .

On the other hand, the λi fields from the c = 6 sector have weight h(λi) = 1/4 and form an
SU(2) doublet. Their operator algebra10 gives rise to an SU(2) triplet of h = 1 currents J A=1,2,3:

λi(z)λj (w) ∼ εij

(z − w)1/2
+ 1√

2
(z − w)1/2(τAε)ijJ A(w) + · · · . (3.48)

The τA denote the standard (traceless) SU(2) Pauli matrices
{(

0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

)}
subject

to the multiplication rule τAτB = δAB + iεABCτC .
The currents obey the SU(2) current algebra at level k = 1, we use normalization conventions

J A(z)J B(w) ∼ δAB

(z − w)2
+ i

√
2εABCJC(w)

z − w
+ · · · (3.49)

in which their interaction with the spin fields is governed by

J A(z)λi(w) ∼ (τA)ij λ
j (w)√

2(z − w)
+ √

2
(
τA

)i
j ∂λj (w) + · · · , (3.50)

λi(z)J A(w) ∼ (τA)ij λ
j (w)√

2(z − w)
− 1√

2

(
τA

)i
j ∂λj (w) + · · · . (3.51)

Note that also the λi and J A fit into a bosonization scheme according to

J A=3 ≡ i∂H3, J A=1 ± iJ A=2 ≡ √
2e±i

√
2H3, λi=1,2 = e±iH3/

√
2 (3.52)

with H3 being nonsingular with respect to the c = 3 boson H . This fixes the choice of the SU(2)

Cartan subalgebra.

10 The contraction rules for the antisymmetric εij , εij tensors introduce signs in some of the OPEs:

λi(z)λ
j (w) ∼ +δ

j
i

(z − w)1/2
, λi (z)λj (w) ∼ −εij

(z − w)1/2
, λi (z)λj (w) ∼

−δi
j

(z − w)1/2
. (3.47)
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The world-sheet supercurrents associated with the two decoupled CFTs,

Gint ≡ Gc=3 + Gc=6, (3.53)

can be split according to their charges under the h = 1 currents. In the c = 3 sector, we find a
free field representation in terms of internal h = 1 coordinates11 i∂Z±,

Gc=3 = 1

2
√

2α′
(
i∂Z+e−iH + i∂Z−eiH

)
. (3.55)

The fermions Ψ ±(z) = e±iH(z) together with the free bosons Z± generate an internal Kac–
Moody algebra

g = SO(2) × [
U(1)

]2 (3.56)

with dimension one currents

jSO(2)(z) = Ψ +Ψ −(z) = i∂H(z), j±
U(1)(z) = i∂Z±(z). (3.57)

As for the N = 4 case, the fields Z±(z) can be viewed as the coordinates of a (holomorphic)
torus compactification on a two-dimensional torus T 2.

Also the supercurrent of the c = 6 sector cannot be fully built from the bosonization pre-
scription (3.52), it additionally requires the introduction of an SU(2) doublet of h = 5/4
fields gi :

Gc=6 = 1√
2

(
eiH3/

√
2g1 + e−iH3/

√
2g2

) = 1√
2
λigi . (3.58)

The gi decouple from the λi and J A, and their OPE12

gi(z)gj (w) ∼ εij

(z − w)5/2
+ 0

(z − w)3/2
+ · · · (3.60)

makes sure that the supercurrents satisfy the required N = 4 superconformal algebra at c = 6.
A summary of operators in the internal SCFTs common to N = 2 compactifications are presented
in Fig. 3.

The internal supercurrent yields the following higher ghost picture SUSY charges:

Q(+1/2),i
a = 1√

2α′3/4

∮
dz

2πi

[
1√
2
i∂Xμσ

μ

aḃ
SḃλieiH/2 + i∂Z+Saλ

ie−iH/2

− 2
√

α′giSaeiH/2
]

eφ/2, (3.61)

11 As usual, the OPEs between i∂Z± are normalized as

i∂Z±(z)i∂Z∓(w) ∼ 2α′
(z − w)2

+ · · · , i∂Z±(z)i∂Z±(w) ∼ i∂Z±(w)i∂Z±(w) + · · · . (3.54)

12 ε contractions yield signs opposite to the λiλj case:

gi(z)gj (w) ∼
+δi

j

(z − w)5/2
, gi (z)gj (w) ∼ −εij

(z − w)5/2
, gi (z)g

j (w) ∼ −δ
j
i

(z − w)5/2
. (3.59)
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Fig. 3. Universal operator content of the internal CFT associated with N = 2 spacetime SUSY, including weight h and
charges q3, q under i∂H3 and i∂H , respectively.

Q̄(+1/2),ḃi = 1√
2α′3/4

∮
dz

2πi

[
1√
2
i∂Xμσ̄ ḃa

μ Saλ
ie−iH/2 + i∂Z−SḃλieiH/2

− 2
√

α′giSḃe−iH/2
]

eφ/2. (3.62)

The anticommutator of equal chirality generators gives rise to a complex central charge operator,
which can be written in terms of the free bosons Z±:

{
Q(+1/2),i

a ,Q(−1/2),j
b

} = εabZ ij , Z ij = εij

√
2α′

∮
dz

2πi
i∂Z+, (3.63)

{
Q̄(+1/2),ȧi , Q̄(−1/2),ḃj

} = εȧḃZ̄ ij , Z̄ ij = εij

√
2α′

∮
dz

2πi
i∂Z−. (3.64)

It again follows that the internal momentum states |p±〉 of the two-torus are precisely those states
that carry non-vanishing N = 2 central charges. They completely break the internal world-sheet
SO(2) symmetry. On the other hand, states with vanishing internal momenta, |p± = 0〉, build
internal SO(2) representations, resp. representations of the group USp(4), which classifies the
N = 2 massive states without central charges.

3.6. Summary of CFT operators

To conclude this section on the internal SCFTs associated with D = 4 compactifications of
different supercharges, Fig. 4 summarizes the field content of the different sectors. This is a good
reference to build the most general ansatz for physical vertex operators.

4. Massive supermultiplets for N = 4 SUSY

Having introduced the CFT setup for the construction of massive string state, let us now turn to
explicit vertex operators on the first mass level. We will first of all examine the four-dimensional
field content of maximally supersymmetric superstring compactifications to D = 4 with N = 4
SUSY. This is the dimensional reduction of the ten-dimensional multiplet, so we will again find
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Fig. 4. Conformal fields together with their weight in various decoupling CFT sectors.

all the 256 states which have been discussed from the D = 10 viewpoint in Section 2. They
form a massive N = 4 multiplet in four dimensions for which we will work out the spin and
R-symmetry content as well as the SUSY transformations.

4.1. NS sector

With the internal CFT operators from Fig. 1 at hand, the following h = 3/2 combinations
must be considered in the most general NS vertex operator at first mass level:

V (−1) = (
αμνi∂Xμψν + eμνλψ

μψνψλ + hμ∂ψμ + βm
μ i∂XμΨm

+ γ m
μ ψμi∂Zm + dmn

μ ψμΨmΨn + Ym∂Ψm + ωm
μνψ

μψνΨm

+ ζmni∂ZmΨn + ΩmnpΨmΨnΨp

)
e−φeik·X. (4.1)

Requiring vanishing Q1 variation for (4.1) implies the following on-shell constraints for the ten
wave functions above:

0 = αμ
μ + kμhμ + ζm

m, 0 = 2α′Ym + kμγ m
μ ,

0 = α[μν] + 3kλeλμν, 0 = βm
μ − γ m

μ + 2kλωm
λμ,

0 = 2α′αμνk
ν + hμ, 0 = kμdmn

μ + ζ [mn]. (4.2)

This leaves the following 128 physical solutions

• one transverse and traceless spin two tensor

V (−1)
α = 1√

2α′ αμνi∂Xμψνe−φeik·X, kμαμν = α[μν] = αμ
μ = 0. (4.3)

• 27 transverse vectors (in the vector and two-form representations of the R-symmetry SO(6))

V
(−1)
d = 1

2
dmn
μ ψμΨmΨne−φeik·X, kμdmn

μ = 0, (4.4)

V
(−1)

β± = 1

2
√

2α′ β
±,m
μ

(
i∂XμΨm + i∂Zmψμ ± iα′εμνλρkνψλψρΨm

)
e−φeik·X,

kμβ±,m
μ = 0. (4.5)
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• 42 scalar degrees of freedom (scalars, spin two and three-form with respect to SO(6))

V
(−1)

Φ± = 1

2
√

2α′ Φ
±
[(

ημν + 2α′kμkν

)
i∂Xμψν + 2α′kμ∂ψμ

± iα′

3
εμνλρψμψνψλkρ

]
e−φeik·X, (4.6)

V
(−1)
ζ = 1√

2α′ ζ
mni∂ZmΨne−φeik·X, ζ [mn] = ζm

m = 0, (4.7)

V
(−1)
Ω = ΩmnpΨmΨnΨpe−φeik·X. (4.8)

The 46 spurious NS sector states from ten dimensions are aligned into six representations of
SO(1,3) × SO(6). They can be constructively obtained as BRST variations of ghost charge −2
objects, see (2.10):

V
(−1)
π(sp) ∼ [

(πμkν + kμπν)i∂Xμψν + 2πμ∂ψμ
]
e−φeik·X, kμπμ = 0, (4.9)

V
(−1)
Σ(sp) ∼ [

2Σ[μν]i∂Xμψν + 2α′Σ[μνkλ]ψμψνψλ
]
e−φeik·X, kμΣμν = 0, (4.10)

V
(−1)
Λ1(sp)

∼ Λ1
[(

ημν + 4α′kμkν

)
i∂Xμψν + 6α′kμ∂ψμ + i∂ZmΨ m

]
e−φeik·X, (4.11)

V
(−1)
Λ2(sp) ∼ Λm

2

(
kμ

[
i∂XμΨm + i∂Zmψμ

] + 2∂Ψm

)
e−φeik·X, (4.12)

V
(−1)
Λ3(sp) ∼ Λ

[mn]
3

[
i∂ZmΨn + α′kμψμΨmΨn

]
e−φeik·X, (4.13)

V
(−1)
Λ4(sp) ∼ Λm

4μ

(
i∂XμΨm − i∂Zmψμ − 2α′kνψ

μψνΨm

)
e−φeik·X,

kμΛm
4μ = 0. (4.14)

Each spurious state corresponds to a gauge freedom. The first one (4.9) admits to gauge away the
longitudinal component of the rank two tensor αμν whereas the second one (4.10) identifies the
antisymmetric part α[μν] together with the longitudinal three-form eμνλ ∼ k[μΣνλ] as unphysical.
Similarly, (4.12), (4.13) and (4.14) eliminate the longitudinal components of (βm

μ +γ m
μ ), dmn

μ and
ωm

μν as well as the antisymmetric parts βm
μ − γ m

μ and ζ[mn]. The trace of αμν can be gauged away
using (4.11).

Once the three- and two-forms eμνλ and ωk
μν are reduced to there transverse part, contraction

with εμνλρkρ dualizes them to a scalar and a vector, respectively. As we will see below, super-
symmetry suggests to include these dualized states into the complex combinations (4.5) and (4.6).

4.2. R sector

In the R sector, the SCFT operators of appropriate weight give rise to a vertex operator ansatz
with six wave functions:

V (− 1
2 ) = (

va
μ,I i∂XμSaΣ

I + ρ̄
μ

ḃ,I
Sḃ

μΣI + ua
I ∂SaΣ

I

+ ya
I Sa∂ΣI + r̄ J̄

m,ḃ
i∂ZmSḃΣ̄J̄ + sa,J̄

m SaΣ̄
m

J̄

)
e−φ/2eik·X. (4.15)

The same set of states also exists with opposite chiralities with respect to both SO(1,3) and SO(6)

(e.g. va
μ,I SaΣ

I ↔ v̄J̄

μ,ḃ
SḃΣ̄J̄ ). However, the BRST constraints for the polarizations in (4.15)

decouple from those of the other chirality sector which we did not display, so the discussion will
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be limited to the six wave functions shown in (4.15) for the moment. The full list of physical
and spurious states follows from doubling the solutions of the on-shell constraints. Imposing
invariance under Q1 yields the following three independent constraints:

0 = 2α′vμ,a
I /kaḃ + √

2ρ̄
μ

ḃ,I
+ 1

2
ua

I σ
μ

aḃ
,

0 = 2α′r̄ J̄

m,ḃ
/kḃa + √

2sa,J̄
m − 1

2
ya
I γ I J̄

m ,

0 = kμρ̄
μ

ḃ,I
+ 1

2
√

2
r̄ J̄

m,ḃ
γ̄ m

J̄ I
. (4.16)

The first two equations can be further disentangled into a trace and a traceless part with respect
to the σμ and γm matrices. Since excited spin fields are σ and γ traceless, the associated wave

functions satisfy ρ̄
μ

ḃ,I
σ̄ ḃa

μ = s
a,J̄
m γ̄ m

J̄ I
= 0 by construction. Hence, the aforementioned projections

simplify the BRST constraints to

ua
I = α′vb

μ,I

(
/kσ̄μ

)
b
a,

ρ̄
μ

ḃ,I
= −√

2α′
(

v
μ,a
I /kaḃ + 1

4
va
λ,I

(
/kσ̄ λσμ

)
aḃ

)
,

ya
I = −2α′

3
r̄ J̄

m,ḃ
γ̄ m

J̄ I
/kḃasa,J̄

m = −√
2α′

(
r̄ J̄

m,ḃ
/kḃa + 1

6
r̄ Ī

n,ḃ

(
γ̄ nγm

)
Ī
J̄ /kḃa

)
,

r̄ J̄

m,ḃ
γ̄ m

J̄ I
= 2α′kμv

μ,a
I /kaḃ − va

μ,I σ
μ

aḃ
(4.17)

where ρ̄, u, y and s are expressed in terms of v and r̄ . It turns out that both spin 3/2 and spin
1/2 components of the vector spinors vI as well as the γ traceless components of r̄ give rise
to an independent physical solution. The former is the D = 4 analogue of the ten-dimensional
spin 3/2 state (2.22). But additionally, we find spin 1/2 Dirac fermions (ab, r̄ Ī

m,a) – both in the
fundamental spinor- and in the spin 3/2 representations of the R-symmetry SO(6). To summarize
the physical states built from (4.15) and its opposite chirality counterpart:

• eight transverse and σ traceless spin 3/2 vector spinors

V
(− 1

2 )
χ = 1√

2α′1/4
χa

μ,I

(
i∂XμSa − √

2α′/kaḃS
μḃ

)
ΣI e−φ/2eik·X, (4.18)

V
(− 1

2 )

χ̄ = 1√
2α′1/4

χ̄ Ī
μ,ȧ

(
i∂XμSȧ − √

2α′/kȧbS
μ
b

)
Σ̄Ī e−φ/2eik·X, (4.19)

0 = kμχa
μ,I = χa

μ,I σ
μ

aḃ
= kμχ̄

μ,J̄

ḃ
= χ̄

μ,J̄

ḃ
σ̄ ḃa

μ . (4.20)

• 48 spin 1/2 fermions (eight in the fundamental and 40 in spin 3/2 representations of SO(6))

V
(− 1

2 )
a = α′1/4

2
ab
I

(
(σμ/k)b

aSai∂Xμ − 4∂Sb

)
ΣI e−φ/2eik·X, (4.21)

V
(− 1

2 )

ā = α′1/4

2
āĪ

ḃ

(
(σ̄μ/k)ḃȧS

ȧi∂Xμ − 4∂Sḃ
)
Σ̄Ī e−φ/2eik·X, (4.22)

V
(− 1

2 )
r = 1√

2α′1/4
ra
m,I

(
i∂ZmΣISa − √

2α′/kaḃS
ḃΣm,I

)
e−φ/2eik·X, (4.23)

V
(− 1

2 )

r̄ = 1√ ′1/4
r̄ Ī
m,ȧ

(
i∂ZmΣ̄Ī S

ȧ − √
2α′/kȧbSbΣ̄

m

Ī

)
e−φ/2eik·X. (4.24)
2α
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The following spurious solutions have been subtracted to remove internal derivatives ∂ΣI from
the vertex operators:

V
(− 1

2 )

Θ(sp)
∼ Θa

I

[(
/kaḃσ̄

ḃb
μ + 4kμδb

a

)
i∂XμSbΣ

I − 2
√

2

(
α′kμ/kaḃ + 1

4
σ

μ

aḃ

)
Sḃ

μΣI

+ 6∂SaΣ
I + 4Sa∂ΣI + /kaḃγ

I J̄
m i∂ZmSḃΣ̄Ī

]
e−φ/2eik·X, (4.25)

V
(− 1

2 )

Θ̄(sp)
∼ Θ̄Ī

ḃ

[(
/kḃaσ

μ
aȧ + 4kμδḃ

ȧ

)
i∂XμSȧΣ̄Ī − 2

√
2

(
α′kμ/kḃa + 1

4
σ̄ ḃa

μ

)
Sμ

a Σ̄Ī

+ 6∂SḃΣ̄Ī + 4Sḃ∂Σ̄Ī + /kḃaγ m

ĪJ
i∂ZmSaΣ

J

]
e−φ/2eik·X. (4.26)

They are the dimensional reduction of the ten-dimensional spurious state (2.23).

4.3. SUSY transformations

Now with all the higher order OPEs and physical spectrum in hands, we are able to compute
the SUSY transformations by acting with the supercharge operators on the physical states and
evaluating the corresponding contour integral.

In N = 4 SUSY, the SUSY parameters ηa
I , η̄Ī

ȧ are chiral spinors of both the SO(1,3) Lorentz
group and the internal SO(6) R-symmetry group. For our convenience, we choose these SUSY

parameters to have mass dimension [M− 1
2 ]. As we verify case by case, action of the supercharges

QI
a and Q̄ḃ

J̄
given by (3.14) and (3.18), (3.19) takes bosonic (fermionic) vertex operators exactly

into fermionic (bosonic) vertex operators, including their couplings. The polarization wave func-
tion of the Q image state is expressed in terms of ηa

I , η̄Ī
ȧ and the pre-image wave function.13

Once we perform the SUSY variations, besides physical fields in the spectrum, we will also
get certain spurious states. As an example, let us consider the anti-supercharge acting on the
spin- 3

2 fermionic state χa
μ,I . Evaluating the contour integral yields

[
η̄Ī

ȧQ̄
(− 1

2 ),ȧ

Ī
, V

(− 1
2 )

χ

] = V (−1)
α

(
αμν = 1√

2
η̄Ī

ȧ

(
σ̄ ȧa

(μ χν),a,I + α′/kȧak(μχν),a,I

)
CI

Ī

)

+ V
(−1)
d

(
d [mn]
μ = −

√
α′
4

η̄Ī
ȧ/k

ȧaχμ,a,J

(
γ [mγ n]C

)J

Ī

)

+ V
(−1)
π(sp)

(
πμ = −

√
α′
4

η̄Ī
ȧ/k

ȧaχμ,a,IC
I

Ī

)

+ V
(−1)
Σ(sp)

(
Σ[μν] = − 1√

2
η̄Ī

ȧ

(
σ̄ ȧa[μ χν],a,I − α′/kȧak[μχν],a,I

)
CI

Ī

)
.

As we can see, we obtain two physical states – a spin two boson αμν and a vector d
[mn]
μ from

(4.3) and (4.4), plus two spurious states – πμ and Σ[μν], see (4.9) and (4.10) for their full vertex
operators. We will drop out all these spurious states in our final results for simplicity.

13 In our settings, all the wave functions of bosonic fields have mass dimension 0, and all the wave function of fermionic

fields have mass dimension 1
2 , see Appendix C for their explicit construction in terms of (massive) spinor helicity

variables.
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Φ+ ↔ āJ̄
ḃ

↔
β

−,m
μ

�
mnp
−

↔
χa

μ,I

r̄ J̄
ḃ,m

↔
αμν

dmn
μ

ζmn

↔ χ̄
μ,J̄

ḃ

r
a,m
I

↔
β

+,m
μ

�
mnp
+

↔ ab
I

↔ Φ−

Fig. 5. N = 4 SUSY multiplet: action of the left-handed SUSY charge QI
a transforms a state into (a combination of) its

left neighbors, whereas Q̄ḃ
J̄

action maps states into right neighbors.

All the physical states form one big supermultiplet of N = 4. The structure of the explicit
SUSY variations listed in this section is summarized in Fig. 5. This diagram will be refined in
Section 7 to take helicity quantum numbers into account.

The pattern of SUSY variations depicted in Fig. 5 justifies the complex combinations (4.5) of
vectors and (4.9) of scalars: The complex conjugates appear on widely separated positions of the
multiplet (i.e. the β+ and β− are separated by four Q actions whereas Φ+ ↔ Φ− requires eight
supercharge applications). Also, the internal scalar Ωmnp splits into self-dual and anti-self-dual
components Ω

mnp
± which sit at different points of the multiplet.

There are group theoretic selection rules for the possible outcome of a physical state’s SUSY
variations, based on the SO(1,3) × SO(6) symmetry. Firstly, according to its eigenvalue under
diagonal Lorentz currents, Q can only change the spin by ± 1

2 . Secondly, transformations have
to compatible with the SO(6) quantum numbers involved. Representation of the SO(6) ≡ SU(4)

R-symmetry group are referred to using their Dynkin Labels [k,p, q].14 The SUSY variation of
a state ∈ [k,p, q] aligns into the tensor product with [0,1,0] � QI or [0,0,1] � Q̄J̄ of the SUSY
charge. Table 1 gives an overview of the R-symmetry representations involved (see the following
subsection for the Ω± splitting).

4.3.1. SUSY transformation of bosonic states
In this subsection, we will analyze supercharge acting on the bosonic states. The spin two

field αμν transforms into left- and right-handed spin- 3
2 fermions Qα → χ and Q̄α → χ̄ in lines

with [0,0,0] ⊗ [0,1,0] → [0,1,0] for the R-symmetry scalar αμν . The SUSY variations of this
field are parallel to (2.27) in ten dimensions:

[
ηa

IQ
(+ 1

2 ),I
a ,V (−1)

α

] = V
(− 1

2 )
χ

(
χb

μ,I = 1√
2
ηa

I αμν

(
/kσ̄ ν

)
a
b

)
, (4.31)

[
η̄Ī

ȧQ̄
(+ 1

2 ),ȧ

Ī
, V (−1)

α

] = V
(− 1

2 )

χ̄

(
χ̄ Ī

μ,ȧ = 1√
2
η̄Ī

ȧαμν

(
/kσ ν

)ȧ

ḃ

)
. (4.32)

14 Our conventions for the Dynkin labels [k,p, q] are such that [1,0,0] labels the vector representation, and [0,1,0]
and [0,0,1] are left- and right-handed spinor. A generic representation with labels [k,p, q] has dimension

D[k,p,q] = 1

12
(k + p + q + 3)(k + p + 2)(k + q + 2)(k + 1)(p + 1)(q + 1), (4.27)

and tensor products act as follows on Dynkin labels:

[k,p, q] ⊗ [0,1,0] = [k,p, q − 1] ⊕ [k,p + 1, q] ⊕ [k + 1,p − 1, q] ⊕ [k − 1,p, q + 1], (4.28)

[k,p, q] ⊗ [0,0,1] = [k,p, q + 1] ⊕ [k,p − 1, q] ⊕ [k + 1,p, q − 1] ⊕ [k − 1,p + 1, q], (4.29)

[k,p, q] ⊗ [1,0,0] = [k,p + 1, q − 1] ⊕ [k,p − 1, q + 1] ⊕ [k + 1,p, q]
⊕ [k + 1,p − 1, q − 1] ⊕ [k − 1,p, q] ⊕ [k − 1,p + 1, q + 1]. (4.30)
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Table 1
R-symmetry content of the massive N = 4 multiplet in SO(6) Dynkin label notation.

Spin Wave functions SO(6) rep. Spin Wave functions SO(6) rep.

2 αμν [0,0,0] 3/2 χa
μ,I

[0,1,0]
1 β

±,m
μ [1,0,0] 3/2 χ̄

μ,J̄

ḃ
[0,0,1]

1 d
[mn]
μ [0,1,1] 1/2 ra

m,I
[1,1,0]

0 ζ (mn) [2,0,0] 1/2 r̄
m,J̄

ḃ
[1,0,1]

0 Ω+
mnl

[0,2,0] 1/2 ab
I

[0,1,0]
0 Ω−

mnl
[0,0,2] 1/2 āJ̄

ḃ
[0,0,1]

0 Φ± [0,0,0]

The spin one fields fall into vector and two-form representations [1,0,0] and [0,1,1] of the
R-symmetry, so their SUSY image belongs to [0,1,0] ⊗ [1,0,0] → [1,1,0] ⊕ [0,0,1] and
[0,1,0] ⊗ [0,1,1] → [0,1,0] ⊕ [0,2,1] ⊕ [1,0,1], respectively (note that [0,2,1] does not
occur in our multiplet). This implies that β±,m

μ can transform into an internal left-handed

fermion ra
m,I ∈ [1,1,0], and right-handed spin- 3

2 fermions χ̄ Ī
μȧ or a spin- 1

2 fermions āĪ

ḃ
, in short:

Qβ± → χ̄ + ā + r . For the SO(6) two-form d[mn], we will get the opposite chirality configura-
tion, Qd → χ + a + r̄ . The explicit results for the left-handed QI

a are given as follows,15

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)

β+
]

= V
(− 1

2 )

χ̄

(
χ̄ Ī

μ,ḃ
= 1

3
√

2
ηb

I

[
3β+,m

μ /kbḃ − kμ/β
+,m

bḃ
− (

/β+,m/kσμ

)
bḃ

]
γ I Ī
m

)

+ V
(− 1

2 )
r

(
rc
n,J = − 1

6
√

2
ηb

I

(
/β+,m/k

)
b
c
[
6δ(6)

mnδ
I
J + (γmγ̄n)

I
J

])
, (4.33)

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)

β−
] = V

(− 1
2 )

ā

(
āĪ

ḃ
= − 1

2
√

α′ η
b
I /β

−,m

bḃ
γ I Ī
m

)
, (4.34)

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)
d

]

= V
(− 1

2 )
χ

(
χc

μ,J = 1

6
√

α′ η
b
I

[
3dmn

μ δb
c + (

/dmnσ̄μ + α′kμ/dmn/k
)
b
c
]
(γmγ̄n)

I
J

)

+ V
(− 1

2 )

r̄

(
r̄ Ī

l,ḃ
= 1

6
√

α′ η
b
I /d

mn

bḃ
γ I Ī
n

[
6δ

(6)
ml δĪ

J̄ + (γ̄mγl)Ī
J̄
])

, (4.35)

whereas the action of right-handed Q̄ḃ

J̄
yields

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)

β+
] = V

(− 1
2 )

a

(
ab
I = − 1

2
√

α′ η̄
Ī

ḃ
/β+,m,ḃbγ̄m,Ī I

)
, (4.36)

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)

β−
]

= V
(− 1

2 )
χ

(
χb

μ,I = 1

3
√

2
η̄Ī

ḃ

[
3β−,m

μ /kḃb − kμ/β−,m,ḃb − (
/β−,m/kσ̄μ

)ḃb]
γ̄m,Ī I

)

15 There is a subtlety in these computations (and also for some later ones) related to the fact that gamma matrices
associated with spacetime and internal dimensions are anticommuting.
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+ V
(− 1

2 )

r̄

(
r̄ J̄
n,ċ = − 1

6
√

2
η̄Ī

ḃ

(
/β−,m/k

)ḃ
ċ

[
6δ(6)

mnδĪ
J̄ + (γ̄mγn)Ī

J̄
])

, (4.37)

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
d

]

= V
(− 1

2 )

χ̄

(
χ̄ J̄

μ,ċ = 1

6
√

α′ η̄
Ī

ḃ

[
3dmn

μ δḃ
ċ + (

/dmnσμ + α′kμ/d/k
)ḃ

ċ

]
(γ̄mγn)Ī

I J̄

)

+ V
(− 1

2 )
r

(
rb
J,p = 1

6
√

α′ η̄
Ī

ḃ
/dmn,ḃbγ̄n,Ī I

[
6δ(6)

mpδI
J + (γmγ̄p)I J

])
. (4.38)

Then we are left with the SO(1,3) scalar fields Φ±, ζ (mn) and Ωmnl . The internal states Ωmnl

represent both self-dual and anti-self-dual three-forms of SO(6). We will denote their irreducible
components as Ω+

mnl ∈ [0,2,0] and Ω−
mnl ∈ [0,0,2], for the self-dual and anti-self-dual part,

respectively. Their defining irreducibility constraint is

Ω−
mnl

(
γ mnl

)
I Ī

= Ω+
mnl

(
γ̄ mnl

)Ī I = 0. (4.39)

The SO(6) selection rules constrain QI ζ (mn) ∈ [0,1,0] ⊗ [2,0,0] → [2,1,0] ⊕ [1,0,1] as well
as QIΩ+

mnl ∈ [0,1,0] ⊗ [0,2,0] → [0,3,0] ⊕ [1,1,0] and QIΩ−
mnl ∈ [0,1,0] ⊗ [0,0,2] →

[0,1,2] ⊕ [0,0,1]. Thus, we expect the internal spin- 1
2 fermion r̄ or r by performing the SUSY

transformation Qζ → r̄ , and Q̄ζ → r . Three-forms, on the other hand, are mapped to either r or
ā, depending on the self-duality property QΩ+ → r or QΩ− → ā. The supercharges acting on
Φ± and ζ (mn) yield

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)

Φ+
] = 0,

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)

Φ−
] = 0, (4.40)

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)

Φ+
] = V

(− 1
2 )

ā

(
āĪ

ḃ
= −α′− 1

2 Φ+η̄Ī

ḃ

)
, (4.41)

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)

Φ−
] = V

(− 1
2 )

a

(
ab
I = −α′− 1

2 Φ−ηb
I

)
, (4.42)

and

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)
ζ

] = V
(− 1

2 )

r̄

(
r̄
m,Ī

ḃ
= 1√

2
ηb

I ζ
(mn)/kbḃγ

I Ī
n

)
, (4.43)

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)
ζ

] = V
(− 1

2 )
r

(
r
m,b
I = 1√

2
η̄Ī

ḃ
ζ (mn)/kḃbγ̄n,Ī I

)
. (4.44)

On the three-forms Ω±
mnl , we obtain

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)

Ω+
] = V

(− 1
2 )

r

(
rb
k,J = − 1

4
√

α′ η
b
I Ω

+
mnl

(
γkγ̄

mnl
)I

J

)
, (4.45)

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)

Ω+
] = V

(− 1
2 )

a

(
ab
I = 1

2
√

2
η̄Ī

ḃ
Ω+

mnl/k
ḃb

(
γ̄ mnl

)
Ī I

)
, (4.46)

and

[
ηb

IQ
(+ 1

2 ),I

b ,V
(−1)

Ω−
] = V

(− 1
2 )

ā

(
āĪ

ḃ
= 1

2
√

2
ηb

I Ω
−
mnl/kbḃ

(
γ mnl

)I Ī
)

, (4.47)

[
η̄Ī

ḃ
Q̄(+ 1

2 ),ḃ

Ī
, V

(−1)

Ω−
] = V

(− 1
2 )

r̄

(
r̄ J̄

k,ḃ
= − 1

4
√

α′ η̄
Ī

ḃ
Ω−

mnl

(
γ̄kγ

mnl
)
Ī
J̄

)
. (4.48)
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4.3.2. SUSY transformation of fermionic states
In this subsection, we investigate the (anti-)supercharge acting on the fermionic states. Fol-

lowing the strategy outlined before, we first derive a selection rule from group theory and then
perform SUSY variations to get the expression of the bosonic wave functions explicitly. All the
transformations are symmetric under simultaneous exchange of chiralities on the supercharges
and the states (where Φ+, β+,Ω+ ↔ Φ−, β−,Ω−). We will only comment on one out of two
inequivalent cases in the text but also give the formulae for the images under chirality rever-
sal.

Since both the spin- 3
2 fermions (χ, χ̄) and the spin- 1

2 states (a, ā) fall into (anti-)fundamental
R-symmetry representations, the SO(6) content of their SUSY variation is [0,1,0] ⊗ [0,1,0] →
[0,2,0] ⊕ [1,0,0] and [0,0,1] ⊗ [0,1,0] → [0,0,0] ⊕ [0,1,1]. The (anti-)supercharge acting
on χa

μ,I (χ̄
Ī
μ,ȧ) will give us vectors β±,m

μ . In the cases QI χ̄ Ī
μ,ȧ and Q̄J̄ χa

μ,I of opposite chirality,

the spin two field αμν and the vector d
[mn]
μ can emerge. Indeed,

[
ηa

IQ
(− 1

2 ),I
a ,V

(− 1
2 )

χ

] = V
(−1)

β−

(
β−,m

μ = 1√
2
ηa

I χμ,a,J

(
γ mC

)IJ
)

, (4.49)

[
η̄Ī

ȧQ̄
(− 1

2 ),ȧ

Ī
, V

(− 1
2 )

χ

] = V (−1)
α

(
αμν = 1√

2
η̄Ī

ȧ

(
σ̄ ȧa

(μ χν),a,I + α′/kȧak(μχν),a,I

)
CI

Ī

)

+ V
(−1)
d

(
d [mn]
μ = −

√
α′
4

η̄Ī
ȧ/k

ȧaχμ,a,I

(
γ̄ mnC

)
Ī
I

)
, (4.50)

and16

[
ηa

IQ
(− 1

2 ),I
a ,V

(− 1
2 )

χ̄

] = V (−1)
α

(
αμν = 1√

2
ηa

I

(
σ(μ|aȧ|χ̄ ȧ,Ī

ν) + α′/kaȧk(μχ̄
ȧ,Ī
ν)

)
CI

Ī

)

+ V
(−1)
d

(
d [mn]
μ = −

√
α′
4

ηa
I /kaȧχ̄

ȧ,Ī
μ

(
γ mnC

)I

Ī

)
, (4.51)

[
η̄Ī

ȧQ̄
(− 1

2 ),ȧ

Ī
, V

(− 1
2 )

χ̄

] = V
(−1)

β+

(
β+,m

μ = 1√
2
η̄Ī

ȧ χ̄
ȧ,J̄
μ

(
γ̄ mC

)
Ī J̄

)
. (4.52)

The supercharge action on ab
I and āĪ

ḃ
follows the same selection rules with respect to SO(6) but

different ones with respect to spacetime spin. The corresponding SUSY transformations read

[
ηb

IQ
(− 1

2 ),I

b ,V
(− 1

2 )
a

] = V
(−1)

β+

(
β+,m

μ =
√

α′
2

ηb
I

[
kμδb

c + (/kσ̄μ)b
c
]
ac,J

(
γ mC

)IJ
)

+ V
(−1)

Ω+

(
Ω+

mnl = 1

12
√

2
ηb

I ab,J (γmnlC)IJ

)
, (4.53)

[
η̄Ī

ḃ
Q̄(− 1

2 ),ḃ

Ī
, V

(− 1
2 )

a

] = V
(−1)

Φ−
(
Φ− = √

α′η̄Ī

ḃ
/kḃbab,IC

I

Ī

)
, (4.54)

and

[
ηb

IQ
(− 1

2 ),I

b ,V
(− 1

2 )

ā

] = V
(−1)

Φ+
(
Φ+ = √

α′ηb
I /kbḃā

ḃ,Ī CI

Ī

)
, (4.55)

16 The notation Mμ1μ2···(μi ···μj−1|μj ···μk |μk+1···μl)···μn
indicates we symmetrize over the indices μi, . . . ,

μj−1, allowbreakμk+1, . . . ,μl , but not over the indices μj , . . . ,μk enclosed between the bars.
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[
η̄Ī

ḃ
Q̄(− 1

2 ),ḃ

Ī
, V

(− 1
2 )

ā

] = V
(−1)

β−

(
β−,m

μ =
√

α′
2

η̄Ī

ḃ

[
kμδḃ

ċ + (/kσμ)ḃċ

]
āċ,J̄

(
γ̄ mC

)
Ī J̄

)

+ V
(−1)

Ω−

(
Ω−

mnl = 1

12
√

2
η̄Ī

ḃ
āḃ,J̄ (γ̄mnlC)Ī J̄

)
. (4.56)

Notice we do not get a vector d
[mn]
μ in the SUSY transformations, although it is allowed by

SO(1,3) × SO(6).
Now we are left with the internal spin- 1

2 fermions r and r̄ . Group theory admits SUSY
variations in [0,1,0] ⊗ [1,1,0] → [1,2,0] ⊕ [2,0,0] ⊕ [0,1,1] and [0,0,1] ⊗ [1,1,0] →
[1,1,1] ⊕ [1,0,0] ⊕ [0,2,0] corresponding to vectors d

[mn]
μ and internal scalars ζ (mn) in the

former case and Q̄r → β± + Ω+ in the latter. The left-handed supercharge yields

[
ηa

IQ
(− 1

2 ),I
a ,V

(− 1
2 )

r

] = V
(−1)
d

(
d [mn]
μ =

√
α′
2

ηa
I

[
kμδa

b + (σμ/k)a
b
]
r
[m
b,J

(
γ n]C

)IJ
)

+ V
(−1)
ζ

(
ζ (mn) = 1√

2
ηa

I r
(m
a,J

(
γ n)C

)IJ
)

, (4.57)

[
η̄Ī

ȧQ̄
(− 1

2 ),ȧ

Ī
, V

(− 1
2 )

r

] = V
(−1)

β+

(
β+,m

μ = 1√
2
η̄Ī

ȧ

(
σ̄ ȧa

μ + α′kμ/kȧa
)
rm
a,IC

I

Ī

)

+ V
(−1)
Ω+

(
Ωmnl+ = −

√
α′
4

η̄Ī
ȧ/k

ȧar
[m
a,I

(
γ̄ nl]C

)
Ī
I

)
, (4.58)

and the right-handed counterpart reads

[
ηa

IQ
(− 1

2 ),I
a ,V

(− 1
2 )

r̄

] = V
(−1)

β−

(
β−,m

μ = 1√
2
ηa

I

(
σμaȧ + α′kμ/kaȧ

)
r̄
m,ȧ

Ī
CĪ

I

)

+ V
(−1)
Ω−

(
Ωmnl− = −

√
α′
4

ηa
I /kaȧ r̄

[m|,ȧ,Ī |(γ nl]C
)I

Ī

)
, (4.59)

[
η̄Ī

ȧQ̄
(− 1

2 ),ȧ

Ī
, V

(− 1
2 )

r̄

] = V
(−1)
d

(
d [mn]
μ =

√
α′
2

η̄Ī
ȧ

[
kμδȧ

ḃ + (σ̄μ/k)ȧ ḃ

]
r̄ [m|,ḃ,J̄ |(γ̄ n]C

)
Ī J̄

)

+ V
(−1)
ζ

(
ζ (mn) = 1√

2
η̄Ī

ȧ r̄
(m|,ȧ,J̄ |(γ̄ n)C

)
Ī J̄

)
. (4.60)

This completes the list of SUSY transformations within the N = 4 multiplet. We will revisit
these results from the spinor helicity viewpoint in Section 7.

5. Massive supermultiplets for N = 1 SUSY

This section is devoted to the universal SUSY multiplets common to all D = 4 superstring
compactifications which preserve N = 1 spacetime SUSY. It was already observed in [1] that 24
universal states exist, and the reference also investigates their three- and four-point couplings to
massless states. We will show that they gather in three multiplets: one spin two representation of
8 + 8 states and two spin 1/2 representations of 2 + 2 states each. The first subsections review
the construction of these states and the third one contains their SUSY variations.
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5.1. NS sector

By assembling h = 3/2 combinations of the conformal fields of Fig. 2, one arrives at the
following general form of an NS state at mass m2 = 1/α′:

V (−1) = (
αμνi∂Xμψν + eμνλψ

μψνψλ + hμ∂ψμ + ξμψμJ

+ Ω+O+ + Ω−O− + c+G+
int + c−G−

int

)
e−φeik·X. (5.1)

This is BRST invariant if the polarization tensors satisfy

0 = αμ
μ + kμhμ + 3

2
√

α′ (c+ + c−), 0 = α[μν] + 3eμνλk
λ,

0 = kμξμ +
√

3

2
√

α′ (c− − c+), 0 = 2α′αμνk
ν + hμ. (5.2)

Twelve physical states solve this system of equations:

• one transverse and traceless spin two tensor

V (−1)
α = 1√

2α′ αμνi∂Xμψνe−φeik·X, kμαμν = α[μν] = αμ
μ = 0. (5.3)

• one transverse vector

V
(−1)
d = dμψμJ e−φeik·X, kμdμ = 0. (5.4)

• two complex scalars

V
(−1)

Φ± = Φ±

2
√

2α′

[(
ημν + 2α′kμkν

)
i∂Xμψν + 2α′kμ∂ψμ

± iα′

3
εμνλρψμψνψλkρ

]
e−φeik·X, (5.5)

V
(−1)

Ω± = Ω±O±e−φeik·X. (5.6)

In addition, we have spurious solutions to the BRST constraints:

V
(−1)
π(sp) ∼ [

(πμkν + kμπν)i∂Xμψν + 2πμ∂ψμ
]
e−φeik·X, kμπμ = 0, (5.7)

V
(−1)
Σ(sp) ∼ [

2Σ[μν]i∂Xμψν + 2α′Σ[μνkλ]ψμψνψλ
]
e−φeik·X, kμΣμν = 0, (5.8)

V
(−1)
Λ0(sp) ∼ Λ0

[(
G+

int − G−
int

) − √
3α′kμψμJ

]
e−φeik·X, (5.9)

V
(−1)
Λ1(sp)

∼ Λ1
[(

ημν + 4α′kμkν

)
i∂Xμψν + 6α′kμ∂ψμ,+2

√
α′(G+

int + G−
int

)]
e−φeik·X.

(5.10)

The last two spurious states allow to gauge away both the c± scalars and the longitudinal com-
ponent of the massive vector ξμ ∼ kμ.
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5.2. R sector

For D = 4 fermions at mass m2 = 1/α′, the most general vertex operators built from N = 1
internal SCFT fields reads

V (− 1
2 ) = (

va
μi∂XμSaΣ

+ + ρ̄
μ

ḃ
Sḃ

μΣ+ + ua∂SaΣ
+

+ yaSa∂Σ+ + ω̄ḃS
ḃΣ̃+)

e−φ/2eik·X, (5.11)

see Fig. 2. Invariance under Q1 yields three independent BRST constraints:

0 = 2α′vμ,a/kaḃ + √
2ρ̄

μ

ḃ
+ 1

2
uaσ

μ

aḃ
,

0 = kμρ̄
μ

ḃ
+ 1

2

√
3

2α′ ω̄ḃ,

0 = ya + 2

√
α′
3

ω̄ḃ/k
ḃa. (5.12)

They allow to express any wave function in terms of va
μ

ua = α′vb
μ

(
/kσ̄μ

)
b
a,

ρ̄μḃ = −√
2α′

(
va
μ/kaḃ + 1

4
va
λ

(
/kσ̄ λσμ

)
aḃ

)
,

ω̄ḃ =
√

α′
3

(
2α′kμva

μ/kaḃ − va
μσ

μ

aḃ

)
,

ya = 2α′

3

(
vb
μ

(
σμ/k

)
b
a − 2kμva

μ

)
. (5.13)

The same set of states exists with opposite SO(1,3) chirality and internal U(1) charge. Including
them, we have four physical solutions to (5.13) and four solutions to the conjugate system of
equations:

• two transverse and σ traceless spin 3/2 vector spinors

V
(− 1

2 )
χ = 1√

2α′1/4
χa

μ

(
i∂XμSa − √

2α′/kaḃS
μḃ

)
Σ+e−φ/2eik·X, (5.14)

V
(− 1

2 )

χ̄ = 1√
2α′1/4

χ̄
μ
ȧ

(
i∂XμSȧ − √

2α′/kȧbSμb

)
Σ−e−φ/2eik·X, (5.15)

0 = kμχa
μ = χa

μσ
μ

aḃ
= kμχ̄

μ
ȧ = χ̄

μ
ȧ σ̄ ȧb

μ , (5.16)

• two spin 1/2 fermions

V
(− 1

2 )
a = α′1/4

2
ab

(
(σμ/k)b

aSai∂Xμ − 4∂Sb

)
Σ+e−φ/2eik·X, (5.17)

V
(− 1

2 )

ā = α′1/4

2
āḃ

(
(σ̄μ/k)ḃȧS

ȧi∂Xμ − 4∂Sḃ
)
Σ−e−φ/2eik·X. (5.18)

Spurious solutions can gauge away the internal excitations with wave functions ya and ω̄ ˙ :
b
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Ω+ ←→ ab ←→ Φ−

χa
μ ←→ αμν ⊕ dμ ←→ χ̄

μ

ḃ

Φ+ ←→ āḃ ←→ Ω−

Fig. 6. The three disconnected N = 1 SUSY multiplets at the first mass level: As before, Qa (Q̄ḃ) action takes states
along a left (right) arrow.

V
(− 1

2 )

Θ(sp) ∼ Θa

[(
/kaȧσ̄

ȧb
μ + 4kμδb

a

)
i∂XμSbΣ

+ − 2
√

2

(
α′kμ/kaḃ + 1

4
σ

μ

aḃ

)
Sḃ

μΣ+

+ 6∂SaΣ
+ + 4Sa∂Σ+ − 2

√
3α′/kaḃS

ḃΣ̃+
]

e−φ/2eik·X, (5.19)

V
(− 1

2 )

Θ̄(sp)
∼ Θ̄ḃ

[(
/kḃaσ

μ
aȧ + 4kμδḃ

ȧ

)
i∂XμSȧΣ− − 2

√
2

(
α′kμ/kḃa + 1

4
σ̄ ḃa

μ

)
Sμ

a Σ−

+ 6∂SḃΣ− + 4Sḃ∂Σ− − 2
√

3α′/kḃaSaΣ̃
−
]

e−φ/2eik·X. (5.20)

5.3. SUSY transformations

The notation for the N = 1 multiplets can be kept lighter because of the abelian R-symmetry
group U(1). The supercharge operators do not carry any R-symmetry indices, only an abelian
charge of ±√

3/2. After performing SUSY variation on all the bosonic and fermionic states in
N = 1 SUSY, we find that these states split into three separate massive supermultiplets – a spin
two multiplet {α,χ, χ̄, d}, two spin- 1

2 multiplets {Φ+, ā,Ω−} and {Ω+, a,Φ−}, see Fig. 6. We
will show our results of the SUSY transformations in order.

5.3.1. SUSY variation of the spin two supermultiplet
The spin two multiplet includes a spin two boson αμν , a vector dμ, and two spin- 3

2 fermions
χa

μ, χ̄μ,ȧ with opposite chirality. The SUSY transformation of the bosonic states are:

[
ηaQ(+ 1

2 )
a ,V (−1)

α

] = V
(− 1

2 )
χ

(
χb

μ = 1√
2
ηaαμν

(
/kσ̄ ν

)
a
b

)
, (5.21)

[
η̄ȧQ̄(+ 1

2 ),ȧ , V (−1)
α

] = V
(− 1

2 )

χ̄

(
χ̄μ,ḃ = 1√

2
η̄ȧαμν

(
/kσ ν

)ȧ

ḃ

)
, (5.22)

[
ηaQ(+ 1

2 )
a ,V

(−1)
d

] = V
(− 1

2 )
χ

(
χb

μ = −1

2
√

3α′ η
a
[
3dμδa

b + (
/dσ̄μ + α′kμ/d/k

)
a
b
])

, (5.23)

[
η̄ȧQ̄(+ 1

2 ),ȧ , V
(−1)
d

] = V
(− 1

2 )

χ̄

(
χ̄μ,ḃ = 1

2
√

3α′ η̄ȧ

[
3dμδȧ

ḃ + (
/dσμ + α′kμ/d/k

)ȧ

ḃ

])
. (5.24)

The SUSY transformation of the fermionic states are:
[
ηaQ(− 1

2 )
a ,V

(− 1
2 )

χ

] = 0, (5.25)

[
η̄ȧQ̄(− 1

2 ),ȧ , V
(− 1

2 )
χ

] = V (−1)
α

(
αμν = 1√

2
η̄ȧ

(
σ̄ ȧa

(μ χν)a + α′/kȧak(μχν),a

))

+ V
(−1)
d

(
dμ =

√
3α′

η̄ȧ/k
ȧaχμ,a

)
, (5.26)
2
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[
ηaQ(− 1

2 )
a ,V

(− 1
2 )

χ̄

] = V (−1)
α

(
αμν = 1√

2
ηa

(
σ(μ|aȧ|χ̄ ȧ

ν) + α′/kaȧk(μχ̄ ȧ
ν)

))

+ V
(−1)
d

(
dμ = −

√
3α′
2

ηa/kaȧχ̄
ȧ
μ

)
, (5.27)

[
η̄ȧQ̄(− 1

2 ),ȧ , V
(− 1

2 )

χ̄

] = 0. (5.28)

Note that the signs of the SUSY transformations between spin- 3
2 and spin one are sensitive to

the chirality, see the relative signs between (5.23) and (5.24) as well as (5.26) and (5.27). This is
necessary for consistent closure of the SUSY algebra and can be neatly represented by a chirality
matrix γ 5 when passing to Dirac spinor notation.

5.3.2. SUSY variation of the spin 1/2 supermultiplets
The first spin- 1

2 multiplet {Φ+, ā,Ω−} includes a right-handed spin- 1
2 fermion ā and two

scalars Φ+,Ω−. It is governed by the following SUSY transformations:

[
ηbQ(+ 1

2 )

b ,V
(−1)

Φ+
] = 0, (5.29)

[
η̄ḃQ̄(+ 1

2 ),ḃ, V
(−1)

Φ+
] = V

(− 1
2 )

ā

(
āḃ = −α′− 1

2 Φ+η̄ḃ

)
, (5.30)

[
ηbQ(+ 1

2 )

b ,V
(−1)

Ω−
] = V

(− 1
2 )

ā

(
āḃ = Ω−ηb/kbḃ

)
, (5.31)[

η̄ḃQ̄(+ 1
2 ),ḃ, V

(−1)

Ω−
] = 0, (5.32)

and
[
ηbQ(− 1

2 )

b ,V
(− 1

2 )

ā

] = V
(−1)

Φ+
(
Φ+ = √

α′ηb/kbḃā
ḃ
)
, (5.33)

[
η̄ḃQ̄(− 1

2 ),ḃ, V
(− 1

2 )

ā

] = V
(−1)

Ω−
(
Ω− = η̄ḃā

ḃ
)
. (5.34)

For {Ω+, a,Φ−} multiplet of opposite R-symmetry charges and fermion chirality, we obtain

[
ηbQ(+ 1

2 )

b ,V
(−1)

Φ−
] = V

(− 1
2 )

a

(
ab = −α′− 1

2 Φ−ηb
)
, (5.35)[

η̄ḃQ̄(+ 1
2 ),ḃ, V

(−1)

Φ−
] = 0, (5.36)

[
ηbQ(+ 1

2 )

b ,V
(−1)

Ω+
] = 0, (5.37)

[
η̄ḃQ̄(+ 1

2 ),ḃ, V
(−1)

Ω+
] = V

(− 1
2 )

a

(
ab = Ω+η̄ḃ/k

ḃb
)
, (5.38)

and
[
ηbQ(− 1

2 )

b ,V
(− 1

2 )
a

] = V
(−1)

Ω+
(
Ω+ = ηbab

)
, (5.39)

[
η̄ḃQ̄(− 1

2 ),ḃ, V
(− 1

2 )
a

] = V
(−1)

Φ−
(
Φ− = √

α′η̄ḃ/k
ḃbab

)
. (5.40)

We will explore the helicity structure of these results in Section 7.

6. Massive supermultiplets for N = 2 SUSY

In this section, we will show that the first mass level in compactifications with N = 2 space-
time SUSY is populated by 80 universal states which are aligned into one 24 + 24 state multiplet
of highest spin two and two 8 + 8 state multiplets of maximum spin one.
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6.1. NS sector

According to the CFT operator content shown in Fig. 3, we make the following general ansatz
for an NS state at the first mass level17:

V (−1) = (
αμνi∂Xμψν + eμνλψ

μψνψλ + hμ∂ψμ + Y+∂eiH + Y−∂e−iH

+ β+
μ i∂XμeiH + β−

μ i∂Xμe−iH + γ +
μ ψμi∂Z+ + γ −

μ ψμi∂Z−

+ ξμψμi∂H + dA
μJAψμ + ΩA+JAeiH + ΩA−JAe−iH

+ ζ++i∂Z+eiH + ζ−−i∂Z−e−iH + ζ−+i∂Z−eiH + ζ+−i∂Z+e−iH

+ ω+
μνψ

μψνeiH + ω−
μνψ

μψνe−iH + ci
j λigj

)
e−φeik·X. (6.1)

Requiring BRST invariance under Q1 yields the following on-shell conditions:

0 = αμ
μ + kμhμ + ζ+− + ζ−+ − α′−1/2ci

i ,

0 = 2α′αμνk
ν + hμ, 0 = kμdA

μ + 1√
2α′

(
τA

)i
j ci

j ,

0 = α[μν] + 3eμνλk
λ, 0 = Y± + 2α′γ ±

μ kμ,

0 = β±
μ − γ ±

μ + 2kνω±
νμ, 0 = kμξμ + ζ−+ − ζ+−. (6.2)

These BRST constraints admit 40 physical solutions:

• one transverse and traceless spin two tensor

V (−1)
α = 1√

2α′ αμνi∂Xμψνe−φeik·X, kμαμν = α[μν] = αμ
μ = 0, (6.3)

• eight transverse vectors three of which form an R-symmetry triplet (note the sign difference
in the pseudovector parts of β± and ω±)

V
(−1)
ξ = ξμψμi∂He−φeik·X, kμξμ = 0, (6.4)

V
(−1)
d = dA

μ ψμJAe−φeik·X, kμdA
μ = 0, (6.5)

V
(−1)

β± = 1

2
√

2α′ β
±
μ

(
i∂Xμe±iH + i∂Z±ψμ ± iα′εμνλρkνψλψρe±iH

)
e−φeik·X,

kμβ±
μ = 0, (6.6)

V
(−1)

ω± = 1

2
√

2α′ ω
±
μ

(
i∂Xμe±iH + i∂Z±ψμ ∓ iα′εμνλρkνψλψρe±iH

)
e−φeik·X,

kμω±
μ = 0, (6.7)

• eleven real scalar degrees of freedom

V
(−1)

Φ± = Φ±

2
√

2α′

[(
ημν + 2α′kμkν

)
i∂Xμψν + 2α′kμ∂ψμ

± iα′

3
εμνλρψμψνψλkρ

]
e−φeik·X, (6.8)

17 Recall that we have nonabelian R-symmetry SU(2) in this setting, and i, j = 1,2 denote its spinor indices whereas
A = 1,2,3 are adjoint indices.
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V
(−1)
φ = 1√

6α′ φ
[
i∂Z+e−iH + i∂Z−eiH + √

α′Gi
i

]
e−φeik·X, (6.9)

V
(−1)

Ω± = Ω±
A e±iHJ Ae−φeik·X, (6.10)

V
(−1)

ζ± = 1√
2α′ ζ

±i∂Z±e±iH e−φeik·X. (6.11)

In addition, we have numerous spurious states:

V
(−1)
π(sp) ∼ [

(πμkν + kμπν)i∂Xμψν + 2πμ∂ψμ
]
e−φeik·X, kμπμ = 0, (6.12)

V
(−1)
Σ(sp) ∼ [

2Σ[μν]i∂Xμψν + 2α′Σ[μνkλ]ψμψνψλ
]
e−φeik·X, kμΣμν = 0, (6.13)

V
(−1)
Λ0(sp)

∼ ΛA
0

[
kμψμJA + 1√

2α′ (τA)j iG
i
j

]
e−φeik·X, (6.14)

V
(−1)
Λ1(sp) ∼ Λ1

[(
ημν + 4α′kμkν

)
i∂Xμψν + 6α′kμ∂ψμ

+ i∂Z+e−iH + i∂Z−eiH − 2
√

α′Gi
i

]
e−φeik·X, (6.15)

V
(−1)

Λ±
2 (sp)

∼ Λ±
2

[
kμ

(
i∂Z±ψμ + i∂Xμe±iH

) + 2∂e±iH
]
e−φeik·X, (6.16)

V
(−1)
Λ3(sp) ∼ Λ3

[
2α′kμψμi∂H + i∂Z−eiH − i∂Z+e−iH

]
e−φeik·X, (6.17)

V
(−1)

Λ±
4 (sp)

∼ Λ±
4μ

[
2α′kνψ

νψμe±iH + i∂Xμe±iH − i∂Z±ψμ
]
e−φeik·X,

kμΛ±
4μ = 0. (6.18)

They allow to eliminate the longitudinal components of six vectors and of the two-forms ω±
μν .

The latter therefore dualize to transverse pseudovectors entering the β±
μ and ω±

μ states. By com-
bining with the Λ1 spurious state, one can transform the φ solution into a form without internal
c = 6 supercurrents:

V
(−1)
φ = 1√

6α′ φ
[(

ημν + 4α′kμkν

)
i∂Xμψν + 6α′kμ∂ψμ

+ 3
(
i∂Z+e−iH + i∂Z−eiH

)]
e−φeik·X. (6.19)

6.2. R sector

In the R sector of the first mass level in N = 2 scenarios, the vertex operator ansatz in one
chirality sector includes nine SCFT operators:

V (− 1
2 ) = {

va
μii∂XμSaλ

ieiH/2 + ρ̄
μ

ḃi
Sḃ

μλieiH/2 + ua
i ∂Saλ

ieiH/2 + r̄+ḃi i∂Z+Sḃλie−iH/2

+ r̄−ḃi i∂Z−Sḃλie−iH/2 + ωa
i Saλ

i∂eiH/2 + ya
i Sa∂λieiH/2

+ �̄ḃiS
ḃgieiH/2 + ψa

i Saλ
ie−3iH/2}e−φ/2eik·X. (6.20)

The system of BRST constraints can be reduced to the following independent set:

0 = 2kμρ̄
μ

ḃi
+ r̄+ḃi −

√
1

α′ �̄ḃi , 0 = ωa
i + 2

√
2α′r̄+ḃi/k

ḃa,

0 = 2α′vμ,a
i /kaḃ + √

2ρ̄
μ

ḃi
+ 1

2
ua

i σ
μ

aḃ
, 0 = ψa

i + √
2α′r̄−ḃi/k

ḃa,

0 = ya − √
2α′�̄ ˙ /kḃa. (6.21)
i bi



W.-Z. Feng et al. / Nuclear Physics B 861 (2012) 175–235 207
Adding a sector of opposite chirality and internal charge gives rise to 40 physical solutions. All
of them transform in the fundamental representation of the SU(2) R-symmetry:

• four transverse and σ traceless spin 3/2 vector spinors

V
(− 1

2 )
χ = 1√

2α′1/4
χa

μ,i

(
i∂XμSa − √

2α′/kaḃS
μḃ

)
λieiH/2e−φ/2eik·X, (6.22)

V
(− 1

2 )

χ̄ = 1√
2α′1/4

χ̄
μ

ḃ,i

(
i∂XμSḃ − √

2α′/kḃaSμa

)
λie−iH/2e−φ/2eik·X, (6.23)

0 = kμχa
μi = χa

μiσ
μ

aḃ
= kμχ̄

μ

ḃi
= χ̄

μ

ḃi
σ̄ ḃa

μ , (6.24)

• six spin 1/2 fermions:

V
(− 1

2 )
a = α′1/4

2
ab
i

(
(σμ/k)b

aSai∂Xμ − 4∂Sb

)
λieiH/2e−φ/2eik·X, (6.25)

V
(− 1

2 )

ā = α′1/4

2
āȧ,i

(
(σ̄μ/k)ȧ ḃS

ḃi∂Xμ − 4∂Sȧ
)
λie−iH/2e−φ/2eik·X, (6.26)

V
(− 1

2 )
r = 1√

2α′1/4
ra
i

(
i∂Z+SaeiH/2 − √

2α′/kaḃS
ḃe3iH/2)λie−φ/2eik·X, (6.27)

V
(− 1

2 )

r̄ = 1√
2α′1/4

r̄ḃ,i

(
i∂Z−Sḃe−iH/2 − √

2α′/kḃaSae−3iH/2)λie−φ/2eik·X, (6.28)

V
(− 1

2 )
s = 1√

3α′1/4
sa
i

(
i∂Z−Saλ

ieiH/2 + √
α′Sag

ie−iH/2

+ √
2α′/kaḃ

(
Sḃ∂λie−iH/2 − 2Sḃλi∂e−iH/2))e−φ/2eik·X, (6.29)

V
(− 1

2 )

s̄ = 1√
3α′1/4

s̄ḃ,i

(
i∂Z+Sḃλie−iH/2 + √

α′SḃgieiH/2

+ √
2α′/kḃa

(
Sa∂λieiH/2 − 2Saλ

i∂eiH/2))e−φ/2eik·X. (6.30)

Again, there is a spurious fermion which can be used to remove some internal SCFT fields from
the vertex operators:

V
(− 1

2 )

Θ(sp)
∼ Θa

i

[(
/kaḃσ̄

ḃb
μ + 4kμδb

a

)
i∂XμSbλ

ieiH/2

− 2
√

2

(
α′kμ/kaḃ + 1

4
σ

μ

aḃ

)
Sḃ

μλieiH/2 + 6∂Saλ
ieiH/2 + 4Sa∂λieiH/2

+ 4Saλ
i∂eiH/2 + 2

√
2α′/kaḃS

ḃgieiH/2 − √
2/kaḃi∂Z+Sḃλie−iH/2

]
e−φ/2eik·X,

(6.31)

V
(− 1

2 )

Θ̄(sp)
∼ Θ̄ḃ,i

[(
/kḃaσ

μ
aȧ + 4kμδḃ

ȧ

)
i∂XμSȧλie−iH/2

− 2
√

2

(
α′kμ/kḃa + 1

4
σ̄ ḃa

μ

)
Sμ

a λie−iH/2 + 6∂Sḃλie−iH/2 + 4Sḃ∂λie−iH/2

+ 4Sḃλi∂e−iH/2 + 2
√

2α′/kḃaSag
ie−iH/2 − √

2/kḃai∂Z−Saλ
ieiH/2

]
e−φ/2eik·X.

(6.32)



208 W.-Z. Feng et al. / Nuclear Physics B 861 (2012) 175–235
ζ+ ←→ rb
i

←→ ω+
μ ⊕ Ω+

A
←→ ab

i
←→ Φ−

β+
μ ←→ χa

μ,i
⊕ s̄ḃ,i ←→ αμν ⊕ dA

μ⊕ξμ ⊕ φ
←→ χ̄

μ

ḃ,i
⊕ sa

i ←→ β−
μ

Φ+ ←→ āḃ,i ←→ ω−
μ ⊕ Ω−

A
←→ r̄ḃ,i ←→ ζ−

Fig. 7. Three disconnected N = 2 SUSY multiplets.

6.3. SUSY transformations

The charges of N = 2 SUSY are spinors of the internal SU(2) R-symmetry and therefore
carry an extra index i. In this sector, universal states at the first mass level split into three separate
massive supermultiplets – a spin two multiplet {α,χ, χ̄, d, ξ,β±, s, s̄, φ} as well as two spin one
multiplets {ω−, ā, r̄,Φ+, ζ−,Ω−

A } and {ω+, a, r,Φ−, ζ+,Ω+
A }, see Fig. 7 for their structure.

6.3.1. SUSY variation of the spin two supermultiplet
The spin two multiplet includes a spin two boson αμν , six vectors ξμ, dA=1,2,3

μ ,β±
μ , one scalar

φ, two spin- 3
2 fermions χa

μ, χ̄μ,ȧ and two spin- 1
2 fermions sa , s̄ȧ . Their SUSY transformations

are:

[
ηa

i Q
(+ 1

2 ),i
a ,V (−1)

α

] = V
(− 1

2 )
χ

(
χb

μ,i = 1√
2
ηa

i αμν

(
/kσ̄ ν

)
a
b

)
, (6.33)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V (−1)
α

] = V
(− 1

2 )

χ̄

(
χ̄μ,ȧ,i = 1√

2
η̄ȧ,iαμν

(
/kσ ν

)ȧ

ḃ

)
. (6.34)

For the four spin one fields, we have the following results – the SUSY variations of ξμ field read,

[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)
ξ

] = V
(− 1

2 )
χ

(
χb

μ,i = − 1

6
√

α′ η
a
i

[
3ξμδa

b + (
/ξ σ̄μ + α′/ξ/kkμ

)
a
b
])

+ V
(− 1

2 )

s̄

(
s̄ȧ,i = − 1√

3α′ η
a
i /ξaȧ

)
, (6.35)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)
ξ

] = V
(− 1

2 )

χ̄

(
χ̄μ,ḃ,i = 1

6
√

α′ η̄ȧ,i

[
3ξμδȧ

ḃ + (
/ξ σ̄μ + α′/ξ/kkμ

)ȧ

ḃ

])

+ V
(− 1

2 )
s

(
sa
i = 1√

3α′ η̄ȧ,i/ξ
ȧa

)
, (6.36)

the SU(2) triplet dA
μ transforms to,

[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)
d

]

= V
(− 1

2 )
χ

(
χb

μ,j = − 1

3
√

2α′ η
a
i

[
3dA

μ δa
b + (

/dAσ̄μ + α′kμ/dA/k
)
a
b
]
(τA)ij

)

+ V
(− 1

2 )

s̄

(
s̄ȧ,j = 1√

6α′ η
a
i /dA

aȧ(τA)ij

)
, (6.37)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)
d

]

= V
(− 1

2 )

χ̄

(
χ̄μ,ḃ,i = − 1√ ′ η̄ȧ,i

[
3dA

μ δȧ
ḃ + (

/dAσ̄μ + α′kμ/dA/k
)ȧ

ḃ

]
(τA)ij

)

3 2α
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+ V
(− 1

2 )
s

(
sa
j = 1√

6α′ η̄ȧ,i/d
A,ȧa(τA)ij

)
, (6.38)

and the complex vectors β±
μ are varied to,18

[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)

β+
] = 0, (6.39)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i , V
(−1)

β+
] = V

(− 1
2 )

χ

(
χb

μ,i = 1

3
η̄ḃ,i

[
3β+

μ /kḃb − (
kμ/β+ + /β+/kσ̄μ

)ḃb])

+ V
(− 1

2 )

s̄

(
s̄ċ,i = 1√

3
η̄ḃ,i

(
/β+/k

)ḃ
ċ

)
, (6.40)

[
ηb

i Q
(+ 1

2 ),i

b ,V
(−1)

β−
] = V

(− 1
2 )

χ̄

(
χ̄μ,ḃ,i = 1

3
ηb

i

[
3β−

μ /kbḃ − (
kμ/β− + /β−/kσμ

)
bḃ

])

+ V
(− 1

2 )
s

(
sc
i = 1√

3
ηb

i

(
/β−/k

)
b
c

)
, (6.41)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)

β−
] = 0. (6.42)

The SUSY action on the unique scalar field φ is given by

[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)
φ

] = V
(− 1

2 )

s̄

(
s̄ȧ,i = 1√

2
φηa

i /kaȧ

)
, (6.43)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)
φ

] = V
(− 1

2 )
s

(
sa
i = 1√

2
φη̄ȧ,i/k

ȧa

)
. (6.44)

Now we turn to analyze the fermionic states. For χ and χ̄ at spin- 3
2 , we have SUSY relations,

[
ηa

i Q
(− 1

2 ),i
a ,V

(− 1
2 )

χ

] = V
(−1)

β+
(
β+

μ = ηa
i χμ,a,i

)
, (6.45)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i , V
(− 1

2 )
χ

] = V (−1)
α

(
αμν = 1√

2
η̄ȧ,i

(
σ̄ ȧa

(μ χi
ν),a + α′/kȧaχi

(μ|,a|kν)

))

+ V
(−1)
ξ

(
ξμ = −

√
α′
2

η̄ȧ,i/k
ȧaχi

μ,a

)

+ V
(−1)
d

(
dA
μ =

√
α′
2

η̄ȧ,i/k
ȧaχμ,a,j

(
τAε

)ij
)

, (6.46)

and
[
ηa

i Q
(− 1

2 ),i
a ,V

(− 1
2 )

χ̄

] = V (−1)
α

(
αμν = 1√

2
ηa

i

(
σ(μ|aȧ|χ̄ ȧ,i

ν)
+ α′/kaȧχ̄

ȧ,i
(μ

kν)

))

+ V
(−1)
ξ

(
ξμ =

√
α′
2

ηa
i /kaȧχ̄

ȧ,i
μ

)

+ V
(−1)
d

(
dA
μ =

√
α′
2

ηa
i /kaȧχ̄

ȧ
μ,j

(
τAε

)ij
)

, (6.47)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i , V
(− 1

2 )

χ̄

] = V
(−1)

β−
(
β−

μ = η̄ȧ,i χ̄
ȧ,i
μ

)
. (6.48)

18 Cocycles would introduce additional minus signs in the computations (and several analogous ones at later points).
However, we are able to eliminate these extra minus signs in a consistent way.
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The spin- 1
2 states s and s̄, on the other hand, transform to

[
ηa

i Q
(− 1

2 ),i
a ,V

(− 1
2 )

s

] = V
(−1)
ξ

(
ξμ =

√
α′
3

ηa
i

[
kμδa

b + (σμ/k)a
b
]
si
b

)

+ V
(−1)
d

(
dA
μ =

√
α′
6

ηa
i

[
kμδa

b + (σμ/k)a
b
]
sb,j

(
τAε

)ij
)

+ V
(−1)
φ

(
φ = 1√

2
ηa

i si
a

)
, (6.49)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i , V
(− 1

2 )
s

] = V
(−1)

β−

(
β−

μ = − 1√
3
η̄ȧ,i

(
σ̄ ȧa

μ + α′kμ/kȧa
)
si
a

)
, (6.50)

and

[
ηa

i Q
(− 1

2 ),i
a ,V

(− 1
2 )

s̄

] = V
(−1)

β+

(
β+

μ = − 1√
3
ηa

i

(
σμaȧ + α′kμ/kaȧ

)
s̄ ȧ,i

)
, (6.51)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i , V
(− 1

2 )

s̄

] = V
(−1)
ξ

(
ξμ =

√
α′
3

η̄ȧ,i

[
kμδȧ

ḃ + (σ̄μ/k)ȧ ḃ

]
s̄ ḃ,i

)

+ V
(−1)
d

(
dA
μ =

√
α′
6

η̄ȧ,i

[
kμδȧ

ḃ + (σ̄μ/k)ȧ ḃ

]
s̄ ḃ,i

(
τAε

)ij
)

+ V
(−1)
φ

(
φ = 1√

2
η̄ȧ,i r̄

ȧ,i
+

)
. (6.52)

6.3.2. SUSY variation of the spin one supermultiplets
The first spin one multiplet {ω−, ā, r̄,Φ+, ζ−,Ω−

A } contains one vector ω−
μ , two right-handed

fermions āḃ and r̄ḃ of spin 1/2 each, and three scalars Φ+, ζ− and Ω−
A . The SUSY relations for

the spin one ω−
μ read,

[
ηb

i Q
(+ 1

2 ),i

b ,V
(−1)

ω−
] = V

(−1)
ā

(
āḃ,i = − 1√

2α′ η
b
i /ω

−
bḃ

)
, (6.53)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)

ω−
] = V

(+ 1
2 )

r̄

(
r̄ḃ,i = − 1√

2
η̄ȧ,i

(
/ω−/k

)ȧ

ḃ

)
. (6.54)

For the fermions āḃ and r̄ḃ , we have,

[
ηb

i Q
(− 1

2 ),i

b ,V
(− 1

2 )

ā

] = V
(−1)

Φ+
(
Φ+ = √

α′ηb
i /kbḃā

ḃ,i
)
, (6.55)

[
η̄ḃ,iQ̄(− 1

2 ),ḃ,i , V
(− 1

2 )

ā

] = V
(−1)

ω−

(
ω−

μ =
√

α′
2

η̄ḃ,i

[
kμδḃ

ċ + (/kσμ)ḃċ

]
āċ,i

)

+ V
(−1)

Ω−

(
Ω−

A = − 1√
2
η̄ḃ,i (τAε)ij āḃ

j

)
, (6.56)

and

[
ηa

i Q
(− 1

2 ),i
a ,V

(− 1
2 )

r̄

] = V
(−1)

ω−

(
ω−

μ = 1√
2
ηa

i

(
σμaȧ + α′kμ/kaȧ

)
r̄ ȧ,i

)

+ V
(−1)

Ω−

(
Ω−

A =
√

α′
ηa

i /kaȧ r̄
ȧ
j (τAε)ij

)
, (6.57)
2
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[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i , V
(− 1

2 )

r̄

] = V
(−1)

ζ−
(
ζ− = η̄ȧ,i r̄

ȧ,i
)
. (6.58)

The results for the scalar fields are:

[
ηb

i Q
(+ 1

2 ),i

b ,V
(−1)

Φ+
] = 0, (6.59)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i , V
(−1)

Φ+
] = V

(− 1
2 )

ā

(
āḃ,i = −α′− 1

2 Φ+η̄ḃ,i

)
, (6.60)

and

[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)

ζ−
] = V

(− 1
2 )

r̄

(
r̄ȧ,i = ζ−ηa

i /kaȧ

)
, (6.61)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)

ζ−
] = 0, (6.62)

and

[
ηb

i Q
(+ 1

2 ),i

b ,V
(−1)

Ω−
] = V

(− 1
2 )

ā

(
āḃ,j = − 1√

2
ηb

i /kbḃΩ
−
A

(
τA

)i
j

)
, (6.63)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)

Ω−
] = V

(− 1
2 )

r̄

(
r̄ȧ,j = 1√

2α′ η̄ȧ,iΩ
−
A

(
τA

)i
j

)
. (6.64)

The second spin one multiplet {ω+, a, r,Φ−, ζ+,Ω+
A } is just the complex conjugate of the for-

mer, so let us simply list the analogous SUSY transformations:

[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)

ω+
] = V

(+ 1
2 )

r

(
rb
i = − 1√

2
ηa

i

(
/ω+/k

)
a
b

)
, (6.65)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i , V
(−1)

ω+
] = V (−1)

a

(
ab
i = − 1√

2α′ η̄ḃ,i/ω
+,ḃb

)
, (6.66)

[
ηb

i Q
(− 1

2 ),i

b ,V
(− 1

2 )
a

] = V
(−1)

ω+

(
ω+

μ =
√

α′
2

ηb
i

[
kμδb

c + (/kσ̄μ)b
c
]
ai
c

)

+ V
(−1)

Ω+

(
Ω+

A = − 1√
2
ηb

i (τAε)ij ab,j

)
, (6.67)

[
η̄ḃ,iQ̄(− 1

2 ),ḃ,i , V
(− 1

2 )
a

] = V
(−1)

Φ−
(
Φ− = √

α′η̄ḃ,i/k
ḃbai

b

)
, (6.68)

[
ηa

i Q
(− 1

2 ),i
a ,V

(− 1
2 )

r

] = V
(−1)

ζ+
(
ζ+ = ηa

i ri
a

)
, (6.69)

[
η̄ȧ,iQ̄(− 1

2 ),ȧ,i , V
(− 1

2 )
r

] = V
(−1)

ω+

(
ω+

μ = 1√
2
η̄ȧ,i

(
σ̄ ȧa

μ + α′kμ/kȧa
)
ri
a

)

+ V
(−1)

Ω+

(
Ω+

A =
√

α′
2

η̄ȧ,i/k
ȧara,j (τAε)ij

)
, (6.70)

[
ηb

i Q
(+ 1

2 ),i

b ,V
(−1)

Φ−
] = V

(− 1
2 )

a

(
ab
i = −α′− 1

2 Φ−ηb
i

)
, (6.71)[

η̄ḃ,iQ̄(+ 1
2 ),ḃ,i , V

(−1)

Φ−
] = 0, (6.72)

[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)

ζ+
] = 0, (6.73)

[
η̄ȧ,iQ̄(+ 1

2 ),ȧ,i , V
(−1)
+

] = V
(− 1

2 )
r

(
ra = ζ+η̄ȧ,i/k

ȧa
)
, (6.74)
ζ i
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[
ηa

i Q
(+ 1

2 ),i
a ,V

(−1)

Ω+
] = V

(− 1
2 )

r

(
ra
j = 1√

2α′ η
a
i Ω+

A

(
τA

)i
j

)
, (6.75)

[
η̄ḃ,iQ̄(+ 1

2 ),ḃ,i , V
(−1)

Ω+
] = V

(− 1
2 )

a

(
ab
j = − 1√

2
η̄ḃ,i/k

ḃbΩ+
A

(
τA

)i
j

)
. (6.76)

7. Helicity structure of massive on-shell multiplets

In this section, we apply the massive version of the spinor helicity formalism [22,23] to obtain
a refined understanding of the structure of the previously constructed SUSY multiplets. A brief
summary of the spinor techniques is collected in Appendix C, including the explicit form of
massive wave functions associated with different spin components. The spin quantization axis
is chosen covariantly by decomposing the time-like momentum k into two arbitrary light-like
reference momenta p and q:

kμ = pμ + qμ, k2 = −m2 = 2pq, p2 = q2 = 0. (7.1)

As was explained in detail in [24], the supercharges can be expanded in the basis of the momen-
tum spinors pa,p

∗ȧ and qa, q
∗ȧ defined by pμσ

μ
aȧ = −pap

∗̇
a and qμσ

μ
aȧ = −qaq

∗̇
a :

Qa = [qQ]
[qp] pa + [pQ]

[pq] qa =Q+pa +Q−qa, (7.2)

Q̄ȧ = 〈pQ̄〉
〈pq〉 q∗ȧ + 〈qQ̄〉

〈qp〉 p∗ȧ = Q̄+q∗ȧ + Q̄−p∗ȧ . (7.3)

This defines the supercharge components Q± and Q̄± to be

Q+ ≡ [qQ]
[qp] , Q− ≡ [pQ]

[pq] , (7.4)

Q̄+ ≡ 〈pQ̄〉
〈pq〉 , Q̄− ≡ 〈qQ̄〉

〈qp〉 . (7.5)

The Q+ and Q̄+ raise the spin quantum jz number along the quantization axis by 1/2, while
Q− and Q̄− lower it by 1/2. The corresponding Lorentz generator which is diagonalized with
eigenvalues jz reads

Jz = 1

m2
εμνλρPμqνMλρ, (7.6)

where Pμ denotes the translation operator and Mλρ an SO(1,3) rotation.
A convenient way of organizing representations of the super Poincaré group is to pick a high-

est weight state which is annihilated by half the supercharges – either the left-handed Qa or the
right-handed Q̄ḃ . States with this property are referred to as (anti-)Clifford vacua, and we shall
use the vacuum eliminated by the left-handed Qa by convention. The rest of the supermultiplet is
then constructed by applying the nontrivially acting Q̄+ and Q̄−, see the figures in this section.
In our notation, each diamond shaped diagram represents one supermultiplet. The dashed lines
connecting bosonic and fermionic states indicate Q± and Q̄± applications, and we assign the
following directions:

↗ ≡ Q̄+, ↘ ≡ Q̄− and ↖ ≡Q+, ↙ ≡Q−. (7.7)
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The Clifford vacuum state being annihilated by the left-handed Q± is located on the far left of
the diamond, and we can construct the full supermultiplet by repeated action of Q̄±.19 In this
section, we will show how Q̄± transform all the states in the multiplet from the left side of the
diamond all the way to the right. The SUSY algebras {Q±, Q̄∓} = 1 and {Q±, Q̄±} = 0 20 imply
that Q± undoes Q̄± applications and transforms states from right to left in the diamond.

This section starts with the N = 1 situation to illustrate the methods, and the additional fea-
tures of extended SUSY are explained in the later subsections on N = 2,4 supermultiplets. To
make everything simple and clear, instead of using our old notation of vertex operators in the
previous sections, we will use the “ket” notation to express the states inside the diamonds. For
example, the spin two boson with jz = +2 is expressed by

|α,+2〉 ≡ V (−1)
α

(
αμν = 1

2m2
σ̄ μȧaσ̄ νḃbp∗̇

aqap
∗̇
b
qb

)
, (7.8)

and a combined state {α,d} with jz = +1 is expressed by |α ⊕ d,+1〉. The commutators of Qa

and Q̄ḃ with vertex operators are replaced by SUSY transformations acting directly on the states.

7.1. N = 1 supermultiplets

According to the strategy outlined above, it suffices to evaluate the anti-supercharge com-
ponents Q̄± on the helicity states in the N = 1 supermultiplets. The decomposition Q̄ȧ =
Q̄+qȧ∗ + Q̄−pȧ∗ corresponds to the mass dimension [M− 1

2 ] choices for η̄:

Q̄± = η̄±
ā Q

ā ←→ η̄+
ȧ = p∗̇

a

〈pq〉 , η̄
−
ȧ = q ∗̇

a

〈qp〉 . (7.9)

7.1.1. Spin one half supermultiplets
We firstly consider the {Φ+, ā,Ω−} multiplet of highest spin 1/2 whose scalar Clifford vac-

uum |Φ+〉 is eliminated by the supercharge Qa . By repeated actions of the anti-supercharge Q̄±
on Φ+, we can construct the remainder of the multiplet, see Fig. 8.

The spin- 1
2 multiplet is the minimal massive representation of the N = 1 SUSY algebra, since

it only contains four states. Very straightly, we obtain, up to a phase,

Q̄±|Φ+,0〉 =
∣∣∣∣ā,±1

2

〉
, (7.10)

and

19 Alternatively, we can also construct this supermultiplet starting from the anti-Clifford vacuum state on the right side
of this diamond, which is eliminated by the anti-supercharge Q̄± , and the remaining states follow by acting Q± on it.
20 To show this, we simply plug the supercharge decompositions (7.2) and (7.3) into the N = 1 SUSY algebra (3.44),
and obtain,

{
Q(+ 1

2 )
a , Q̄(− 1

2 ),ȧ} = pap∗ȧ{Q+, Q̄−} + paq∗ȧ{Q+, Q̄+} + qaq∗ȧ{Q−, Q̄+} + qap∗ȧ{Q−, Q̄−}
= (

σμε
)
a
ȧPμ ∼ (

σμε
)
a
ȧkμ = pap∗ȧ + qaq∗ȧ .

Thus we arrive at,( {Q+, Q̄−} {Q+, Q̄+}
{Q−, Q̄−} {Q−, Q̄+}

)
=

(
1 0
0 1

)
.
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Fig. 8. N = 1 SUSY multiplets with scalar Clifford vacuum: In N = 1 scenarios, the U(1) charge q with respect to
the internal current J is plotted along the horizontal axis. The SUSY charges have eigenvalue ±√

3/2 under J and
therefore change q by a fixed offset.

Q̄±
∣∣∣∣ā,∓1

2

〉
= |Ω−,0〉, Q̄±

∣∣∣∣ā,±1

2

〉
= 0. (7.11)

The anti-Clifford vacuum |Ω−〉 is then annihilated by Q̄± action,

Q̄±|Ω−,0〉 = 0. (7.12)

Secondly, we consider the mirror multiplet {Ω+, a,Φ−} which is also summarized in Fig. 8.
Starting from the Clifford vacuum |Ω+〉, cf. (5.37), we obtain,

Q̄±|Ω+,0〉 =
∣∣∣∣a,±1

2

〉
, (7.13)

and

Q̄±
∣∣∣∣a,∓1

2

〉
= |Φ−,0〉, Q̄±

∣∣∣∣a,±1

2

〉
= 0. (7.14)

7.1.2. Spin two supermultiplet
In addition to the two minimal spin 1/2 multiplets, there is a larger multiplet {α,χ, χ̄, d}

with spins up to jz = 2 in each N = 1 scenario. All the left-handed spin 3/2 states |χ, jz〉 with
−3/2 � jz � +3/2 are annihilated by Qa , cf. (5.25). Hence, the Clifford vacuum transforms in
a nontrivial SO(1,3) representation. Starting from the four states |χ, jz〉, we build the full spin
two multiplet by Q̄± application, see Fig. 9. The spin- 3

2 states with wave function χ̄
μ
ȧ of opposite

chirality are obtained by |χ̄ , jz〉 = Q̄+Q̄−|χ, jz〉, so they form the anti-Clifford vacua.
The helicity SUSY transformations are such that normalized states are either mapped to

equally normalized states or annihilated. This becomes particularly interesting at the intersec-
tion points Q̄−|χ, jz〉 ↔ Q̄+|χ, jz − 1〉 within the diamond where combination states of type
|α ⊕ d〉 arise. From the jz = ± 3

2 components, we obtain

Q̄±
∣∣∣∣χ,±3

2

〉
= |α,±2〉, (7.15)

Q̄∓
∣∣∣∣χ,±3

2

〉
= 1

2
|α,±1〉 ±

√
3

2
|d,±1〉 ≡ |α ± d,±1〉, (7.16)

whereas Q̄± action on jz = ± 1 components yields
2
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Fig. 9. N = 1 SUSY multiplets with spin 3/2 Clifford vacuum.

Q̄±
∣∣∣∣χ,±1

2

〉
=

√
3

2
|α,±1〉 ∓ 1

2
|d,±1〉 ≡ |α ∓ d,±1〉, (7.17)

Q̄∓
∣∣∣∣χ,±1

2

〉
= 1√

2
|α,0〉 ± 1√

2
|d,0〉 ≡ |α ± d,0〉. (7.18)

We use canonical normalization conventions for vertex operators as well as helicity wave func-
tions: Let |ψ,jz〉 denote some physical state with polarization tensor ψ and spin component jz

along the quantization axis. Then, |ψ,+jz〉 has unit scalar product with |ψ,−jz〉 and is orthog-
onal to all states whose wave function belongs to a different SO(3) representation. We can see
from above results that all the states on the right-hand sides of (7.15)–(7.18) have unit norm. Fur-
thermore, we find that the combined states |α ±d,±1〉 obtained from Q̄∓|χ,± 3

2 〉 are orthogonal
to |α ∓ d,±1〉 from distinct Clifford vacuum components Q̄±|χ,± 1

2 〉, as expected.
To complete the other half of the diamond, we have,

Q̄±|α,+2〉 = 0, Q̄∓|α,+2〉 =
∣∣∣∣χ̄ ,±3

2

〉
, (7.19)

and

Q̄±|α ± d,±1〉 =
∣∣∣∣χ̄ ,±3

2

〉
, Q̄∓|α ± d,±1〉 = 0, (7.20)

Q̄∓|α ∓ d,±1〉 =
∣∣∣∣χ̄ ,±1

2

〉
, Q̄±|α ∓ d,±1〉 = 0, (7.21)

and

Q̄±|α ± d,0〉 =
∣∣∣∣χ̄ ,±1

2

〉
, Q̄±|α ∓ d,0〉 = 0. (7.22)

The diamond is symmetric about the jz = 0 line. In other words, once we obtained all the
transformations for the states in its upper half, the lower half can be filled up by interchanging
momentum spinors p ↔ q . This holds by the construction of the massive helicity wave functions
in Appendix C, see also [1] and [10].
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Fig. 10. N = 2 SUSY multiplet with scalar Clifford vacuum: In N = 2 scenarios, the U(1) charge q with respect to the
internal toroidal directions is plotted along the horizontal axis. Since the world-sheet fields i∂Z± and eiqH have charge
±1 and q , respectively, the SUSY generators built from e±iH/2 and i∂Z±e∓iH/2 change q by the fixed offset ±1/2.

7.2. N = 2 supermultiplets

The new feature of extended N = 2 SUSY is the nonabelian SU(2) R-symmetry group. The
supercharges are spinors with respect to this SU(2) and therefore carry fundamental indices i.
That is why we have to introduce a bookkeeping Grassmann variable ηi which decouples from
the spacetime spinor index structure. In other words, this ηi is a spinor of the R-symmetry but a
scalar with respect to the spacetime SO(1,3). We define supercharge components Q̄±(η) which
are associated with the choices η̄+

ȧ,i = ηip
∗̇
a/〈pq〉 and η̄−

ȧ,i = ηiq
∗̇
a /〈qp〉:

Q̄+(η) = ηi

p∗̇
a

〈pq〉Q̄
ȧ,i , (7.23)

Q̄−(η) = ηi

q ∗̇
a

〈qp〉Q̄
ȧ,i . (7.24)

In the construction of N = 2 supermultiplets from their Clifford vacua, we obtain states in
nontrivial representations of the SU(2) R-symmetry.21 Their SU(2) tensor structures will be
displayed inside the ket vectors, right after the Jz eigenvalue, separated by a semicolon.22

7.2.1. Spin one supermultiplets
Again, we start our presentation with the smaller multiplets of lower spin. The universal sector

due to N = 2 SUSY encompasses two spin one multiplets with scalar Clifford vacua, see Figs. 10
and 11.

The first multiplet {ω+, a, r,Φ−, ζ+,Ω+
A } is constructed from a scalar Clifford vacuum ζ+,

cf. (6.73). Omitting all the vanishing results, we obtain

Q̄±(ηi)|Φ+,0;1〉 =
∣∣∣∣ā,±1

2
;ηi

〉
, (7.25)

and

21 In fact, it is a peculiar feature of the first mass level that its Clifford vacua are R-symmetry scalars.
22 In the literature, on-shell supersymmetry is usually described by the notion of supercharge eigenstates – Grassmann
coherent states, firstly in [25], and recently in [24] and also [26]. Our presentation of SUSY transformations including in-
ternal wave functions (carrying the R-symmetry quantum numbers) are an equivalent way of expressing their information
content.
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Fig. 11. Conjugate N = 2 SUSY multiplet with scalar Clifford vacuum.

Q̄±(εj )

∣∣∣∣ā,±1

2
, ηi

〉
= ∣∣ω−,±1; (εη)

〉
, (7.26)

Q̄∓(εj )

∣∣∣∣ā,±1

2
, ηi

〉
= 1√

2

∣∣ω−,0; (εη)
〉 ± 1√

2

∣∣Ω−,0; εj (τAε)jiηi

〉 ≡ |ω− ± Ω−
A ,0〉,

(7.27)

where (εη) = εj ε
jiηi . The ω− and Ω− states in the center of the diamond transform to

Q̄∓(ηi)
∣∣ω−,±1; (εη)

〉 = Q̄±(ηi)
∣∣ω− ± Ω−

A ,0
〉 =

∣∣∣∣r̄ ,±1

2
; (εη)ηi

〉
, (7.28)

Q̄∓(ηi)
∣∣ω− ± Ω−

A ,0
〉 = 0, (7.29)

and

Q̄∓(εj )

∣∣∣∣r̄ ,±1

2
; (εη)ηi

〉
= ∣∣ζ−,0; (εη)2〉. (7.30)

Similar results are obtained for the mirror spin one multiplet {ω−, ā, r̄,Φ+, ζ−,Ω−
A }, which is

constructed from the scalar Clifford vacuum. The helicity SUSY transformations are

Q̄±(ηi)
∣∣ζ+,0;1

〉 =
∣∣∣∣r,±1

2
;ηi

〉
, (7.31)

and

Q̄±(εj )

∣∣∣∣r,±1

2
;ηi

〉
= ∣∣ω+,±1; (εη)

〉
, (7.32)

Q̄∓(εj )

∣∣∣∣r,±1

2
;ηi

〉
= 1√

2

∣∣ω+,0; (εη)
〉 ± 1√

2

∣∣Ω+,0; εj (τAε)jiηi

〉 ≡ |ω+ ± Ω+,0〉,
(7.33)

and

Q̄∓(ηi)
∣∣ω+,±1; (εη)

〉 = Q̄±(ηi)|ω+ ± Ω+,0〉 =
∣∣∣∣a,±1

2
; (εη)ηi

〉
, (7.34)

Q̄∓(ηi)|ω+ ± Ω+,0〉 = 0, (7.35)

and

Q̄∓(εj )

∣∣∣∣a,±1

2
; (εη)ηi

〉
= ∣∣Φ−,0; (εη)2〉. (7.36)
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Fig. 12. N = 2 SUSY multiplet with vector Clifford vacuum.

7.2.2. Spin two supermultiplet
The highest spin state of the first mass level populate a spin two multiplet {α,χ, χ̄, d, ξ,β±,

s, s̄, φ} (see Fig. 12), which is built from a vector Clifford vacuum β+
μ state, cf. (6.39).

The supermultiplet structure is more complicated here due to intersection points in the di-
amond like Q̄−(ηi)|β+,+1;1〉 ↔ Q̄+(ηi)|β+,0;1〉. Since jz �→ −jz reflection can be imple-
mented by p ↔ q exchange, we will only show the transformations for the upper half of the
diamond. Omitting all the trivial relations, we obtain

Q̄+(ηi)
∣∣β+,+1;1

〉 =
∣∣∣∣χ,+3

2
;ηi

〉
, (7.37)

Q̄−(ηi)
∣∣β+,+1;1

〉 = 1√
3

∣∣∣∣χ,+1

2
;ηi

〉
+

√
2√
3

∣∣∣∣s̄,+1

2
;ηi

〉
≡

∣∣∣∣χ ⊕ s̄,+1

2

〉
1
, (7.38)

Q̄+(ηi)
∣∣β+,0;1

〉 =
√

2√
3

∣∣∣∣χ,+1

2
;ηi

〉
− 1√

3

∣∣∣∣s̄,+1

2
;ηi

〉
≡

∣∣∣∣χ ⊕ s̄,+1

2

〉
2
, (7.39)

where |χ ⊕ s̄,+ 1
2 〉1 is orthogonal to |χ ⊕ s̄,+ 1

2 〉2. For the helicity SUSY transformation of the
second column of Fig. 12, we have

Q̄+(εj )

∣∣∣∣χ,+3

2
;ηi

〉
= ∣∣α,+2; (εη)

〉
, (7.40)

Q̄−(εj )

∣∣∣∣χ,+3

2
;ηi

〉
= −1

2

∣∣α,+1; (εη)
〉 + 1

2

∣∣ξ,+1; (εη)
〉 − 1√

2

∣∣d,+1; (εη)
〉

≡ |α ⊕ ξ ⊕ d,+1〉1, (7.41)

Q̄+(εj )

∣∣∣∣χ ⊕ s̄,+1

2

〉
1
= −1

2

∣∣α,+1; (εη)
〉 + 1

2

∣∣ξ,+1; (εη)
〉 + 1√

2

∣∣d,+1; (εη)
〉

≡ |α ⊕ ξ ⊕ d,+1〉2, (7.42)

Q̄+(εj )

∣∣∣∣χ ⊕ s̄,+1

2

〉
2
= − 1√

2

∣∣α,+1; (εη)
〉 − 1√

2

∣∣ξ,+1; (εη)
〉

≡ |α ⊕ ξ ⊕ d,+1〉3. (7.43)

One can easily check that the three states |α ⊕ ξ ⊕ d,+1〉1,2,3 are orthonormal. Moreover,
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Q̄−(εj )

∣∣∣∣χ ⊕ s̄,+1

2

〉
1
= − 1√

6

∣∣α,0; (εη)
〉 + 1√

2

∣∣ξ,0; (εη)
〉 + 1√

3

∣∣φ,0; (εη)
〉

≡ |α ⊕ ξ ⊕ d ⊕ φ〉1, (7.44)

Q̄−(εj )

∣∣∣∣χ ⊕ s̄,+1

2

〉
2
= − 1√

3

∣∣α,0; (εη)
〉 − 1√

2

∣∣d,0; (εη)
〉 − 1√

6

∣∣φ,0; (εη)
〉

≡ |α ⊕ ξ ⊕ d ⊕ φ〉2. (7.45)

By interchanging p ↔ q we get the states

|α ⊕ ξ ⊕ d ⊕ φ〉′1 = |α ⊕ ξ ⊕ d ⊕ φ〉1(p ↔ q)

= − 1√
6

∣∣α,0; (εη)
〉 − 1√

2

∣∣ξ,0; (εη)
〉 + 1√

3

∣∣φ,0; (εη)
〉
, (7.46)

|α ⊕ ξ ⊕ d ⊕ φ〉′2 = |α ⊕ ξ ⊕ d ⊕ φ〉2(p ↔ q)

= − 1√
3

∣∣α,0; (εη)
〉 + 1√

2

∣∣d,0; (εη)
〉 − 1√

6

∣∣φ,0; (εη)
〉
, (7.47)

which are the results obtained from Q̄+(ηj )|χ ⊕ s̄,− 1
2 〉. Clearly, |α⊕ξ ⊕d ⊕φ〉1(2) is orthogonal

to |α ⊕ ξ ⊕ d ⊕ φ〉′1(2). The helicity SUSY transformations of this column are

Q̄−(ηi)
∣∣α,+2; (εη)

〉 = Q̄+(ηi)|α ⊕ ξ ⊕ d,+1〉1 =
∣∣∣∣χ̄ ,+3

2
; (εη)ηi

〉
, (7.48)

Q̄+(ηi)|α ⊕ ξ ⊕ d,+1〉2 = Q̄+(ηi)|α ⊕ ξ ⊕ d,+1〉3 = 0, (7.49)

and

Q̄−(ηi)|α ⊕ ξ ⊕ d,+1〉1 = 0, (7.50)

Q̄−(ηi)|α ⊕ ξ ⊕ d,+1〉2 = 1√
3

∣∣∣∣χ̄ ,+1

2
; (εη)ηi

〉
−

√
2√
3

∣∣∣∣s,+1

2
; (εη)ηi

〉
≡

∣∣∣∣χ̄ ⊕ s,+1

2

〉
1
,

(7.51)

Q̄−(ηi)|α ⊕ ξ ⊕ d,+1〉3 =
√

2√
3

∣∣∣∣χ̄ ,+1

2
; (εη)ηi

〉
+ 1√

3

∣∣∣∣s,+1

2
; (εη)ηi

〉
≡

∣∣∣∣χ̄ ⊕ s,+1

2

〉
2
.

(7.52)

States in the center of the diamond transform as

Q̄+(ηi)|α ⊕ ξ ⊕ d ⊕ φ〉′1 = Q̄+(ηi)|α ⊕ ξ ⊕ d ⊕ φ〉′2 = 0, (7.53)

Q̄+(ηi)|α ⊕ ξ ⊕ d ⊕ φ〉1 =
∣∣∣∣χ̄ ⊕ s,+1

2

〉
1
, (7.54)

Q̄+(ηi)|α ⊕ ξ ⊕ d ⊕ φ〉2 =
∣∣∣∣χ̄ ⊕ s,+1

2

〉
2
, (7.55)

where |χ̄ ⊕ s,+ 1
2 〉1 and |χ̄ ⊕ s,+ 1

2 〉2 are orthogonal to each other. Now we are left with the
transformations to the anti-Clifford vacuum states |β−〉 in last column of the diamond:

Q̄−(εj )

∣∣∣∣χ̄ ,+3

2
; (εη)ηi

〉
= Q̄+(εj )

∣∣∣∣χ̄ ⊕ s,+1

2

〉
1
= ∣∣β−,+1; (εη)2〉, (7.56)

Q̄+(εj )

∣∣∣∣χ̄ ⊕ s,+1
〉

= Q̄−(εj )

∣∣∣∣χ̄ ⊕ s,+1
〉

= 0, (7.57)

2 2 2 1
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Q̄−(εj )

∣∣∣∣χ̄ ⊕ s,+1

2

〉
2
= ∣∣β−,0; (εη)2〉. (7.58)

This completes the helicity SUSY transformations for the upper half of the diamond representing
the spin two supermultiplet of N = 2.

7.3. N = 4 supermultiplet

In N = 4 SUSY, the supercharges carry internal SO(6) ≡ SU(4) spinor indices I or Ī . Similar
to N = 2 case, we introduce the internal spinors ηI and η̄Ī . Then the components of the (right-
handed) anti-supercharge can be written as

Q̄+ = η̄Ī p∗̇
a

〈pq〉Q̄
ȧ

Ī
, Q̄− = η̄Ī q ∗̇

a

〈qp〉Q̄
ȧ

Ī
. (7.59)

We only have one big spin two supermultiplet in N = 4, see Fig. 13. Starting from the Clifford
vacuum Φ+, cf. (4.40), the remainder of the multiplet is filled by Q̄± application. Following the
symmetry argument of the last subsections, we will only show the helicity SUSY transformation
of the states in the upper half jz � 0 of the diamond. And again, the internal wave functions of
the physical states are displayed right behind the semicolon in the ket.

We start from Clifford vacuum state |Φ+,0;1〉 located at the far left of the diamond. The
helicity SUSY transformations read

Q̄+
(
η̄Ī

)|Φ+,0;1〉 =
∣∣∣∣ā,+1

2
; η̄Ī

〉
, (7.60)

and

Q̄+
(
ε̄J̄

)∣∣∣∣ā,+1

2
; η̄Ī

〉
=

∣∣∣∣β−,+1; 1√
2
ε̄J̄ (γ̄mC)J̄ Ī η̄

Ī

〉
, (7.61)

Q̄−
(
ε̄J̄

)∣∣∣∣ā,+1

2
; η̄Ī

〉
= − 1√

2

∣∣∣∣β−,0; 1√
2
ε̄J̄ (γ̄mC)J̄ Ī η̄

Ī

〉

+ 1√
2

∣∣∣∣Ω−,0; 1

12
ε̄J̄ (γ̄mnlC)J̄ Ī η̄

Ī

〉

≡ |β− ⊕ Ω−,0〉, (7.62)

and

Q̄+
(
ξ̄ K̄

)∣∣∣∣β−,+1; 1√
2
ε̄J̄ (γ̄mC)J̄ Ī η̄

Ī

〉
=

∣∣∣∣χ,+3

2
; εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄CL̄

L

〉
, (7.63)

Q̄−
(
ξ̄ K̄

)∣∣∣∣β−,+1; 1√
2
ε̄J̄ (γ̄mC)J̄ Ī η̄

Ī

〉

= − 1√
3

∣∣∣∣χ,+1

2
; εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄CL̄

L

〉
+

√
2√
3

∣∣∣∣r̄ ,+1

2
; r̄β

〉

≡
∣∣∣∣χ ⊕ r̄ ,+1

2

〉
1
, (7.64)
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Q̄+
(
ξ̄ K̄

)|β− ⊕ Ω−,0〉 = 1√
3

∣∣∣∣χ,+1

2
; εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄CL̄

L

〉

+ 1√
6

∣∣∣∣r̄ ,+1

2
; r̄β〉 + 1√

2
|r̄ ,+1

2
; r̄Ω

〉

≡
∣∣∣∣χ ⊕ r̄ ,+1

2

〉
2
, (7.65)

where

r̄β =
√

3

2
ε̄J̄

(
γ̄ mC

)
J̄ Ī

η̄Ī ξ̄ K̄

(
δ(6)
mnδK̄

L̄ + 1

6
(γ̄mγn)K̄

L̄

)
, (7.66)

r̄Ω = 1

48
ε̄J̄ (γ̄mnlC)J̄ Ī η̄

Ī ξ̄ K̄
(
γ̄kγ

mnl
)
K̄

L̄. (7.67)

Note that r̄β and r̄Ω represent different and mutually orthogonal internal wave functions of r̄ .
The left-handed spin 3/2 states in the third column of the N = 4 diamond transform to

Q̄+
(
θ̄ M̄

)∣∣∣∣χ,+3

2
; εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄CL̄

L

〉
= ∣∣α,+2; ε(η̄ε̄ξ̄ θ̄ )

〉
, (7.68)

Q̄−
(
θ̄ M̄

)∣∣∣∣χ,+1

2
; εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄CL̄

L

〉

= −1

2

∣∣α,+1; ε(η̄ε̄ξ̄ θ̄ )
〉 +

√
3

2
|d,+1;dχ 〉 ≡ |α ⊕ d,+1〉1, (7.69)

Q̄+
(
θ̄ M̄

)∣∣∣∣χ ⊕ r̄ ,+1

2

〉
1
= −1

2

∣∣α,+1; ε(η̄ε̄ξ̄ θ̄ )
〉 − 1

2
√

3
|d,+1;dχ 〉 +

√
2√
3
|d,+1;dr̄β 〉

≡ |α ⊕ d,+1〉2, (7.70)

Q̄+
(
θ̄ M̄

)∣∣∣∣χ ⊕ r̄ ,+1

2

〉
2

= 1

2

∣∣α,+1; ε(η̄ε̄ξ̄ θ̄ )
〉 + 1

2
√

3
|d,+1;dχ 〉 + 1√

6
|d,+1;dr̄β 〉 + 1√

2
|d,+1;dr̄Ω 〉

≡ |α ⊕ d,+1〉3, (7.71)

Q̄−
(
θ̄ M̄

)∣∣∣∣χ ⊕ r̄ ,+1

2

〉
1
= 1√

6

∣∣α,0; ε(η̄ε̄ξ̄ θ̄ )
〉

− 1√
6
|d,0;dχ 〉 + 1√

3
|d,0;dr̄β 〉 + 1√

3
|ζ,0; ζr̄β 〉

≡ |α ⊕ d ⊕ ζ,0〉1, (7.72)

Q̄−
(
θ̄ M̄

)∣∣∣∣χ ⊕ r̄ ,+1

2

〉
2
= − 1√

6

∣∣α,0; ε(η̄ε̄ξ̄ θ̄ )
〉 + 1√

6
|d,0;dχ 〉 + 1

2
√

3
|d,0;dr̄β 〉

+ 1

2
|d,0;dr̄Ω 〉 + 1

2
√

3
|ζ,0; ζr̄β 〉 + 1

2
|ζ,0; ζr̄Ω 〉

≡ |α ⊕ d ⊕ ζ,0〉2, (7.73)

where we have used the following abbreviations:
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ε(η̄ε̄ξ̄ θ̄ ) = εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄ θ̄ L̄, (7.74)

dχ = 1

2
√

3
θ̄ M̄

(
γ̄ [mγ n])

M̄
L̄εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄ , (7.75)

dr̄β = 1√
2
θ̄ M̄ r̄

[m|,L̄|
β

(
γ̄ n]C

)
M̄L̄

, dr̄Ω = 1√
2
θ̄ M̄ r̄

[m|,L̄|
Ω

(
γ̄ n]C

)
M̄L̄

, (7.76)

ζr̄β = 1√
2
θ̄ M̄ r̄

(m|,L̄|
β

(
γ̄ n)C

)
M̄L̄

, ζr̄Ω = 1√
2
θ̄ M̄ r̄

(m|,L̄|
Ω

(
γ̄ n)C

)
M̄L̄

. (7.77)

Similarly, dχ , dr̄β , dr̄Ω and ζr̄β , ζr̄Ω are two pairs of orthogonal states with respect to the internal
R-symmetry. Thus, the explicit computation confirms that different states located at the same
point inside the diamond (with the same jz) are orthogonal to each other.

Now we are left with the helicity SUSY transformations for the right half of the diamond.
After some manipulations, we obtain

Q̄−
(
η̄Ī

)∣∣α,+2; ε(η̄ε̄ξ̄ θ̄ )
〉 = Q̄+

(
η̄Ī

)|α ⊕ d,+1〉1 =
∣∣∣∣χ̄ ,+3

2
; ε(η̄ε̄ξ̄ θ̄ )η̄Ī

〉
, (7.78)

Q̄−
(
η̄Ī

)|α ⊕ d,+1〉2 = Q̄+
(
η̄Ī

)|α ⊕ d ⊕ ζ,0〉1

= 1√
3

∣∣∣∣χ̄ ,+1

2
; ε(η̄ε̄ξ̄ θ̄ )η̄Ī

〉

−
√

2√
3

∣∣∣∣r,+1

2
; ε(η̄ε̄ξ̄ θ̄ )η̄Ī γ̄ m

ĪI

(
δ(6)
mnδ

I
J + (γmγ̄n)

I
J

)〉

≡
∣∣∣∣χ̄ ⊕ r,+1

2

〉
1
, (7.79)

Q̄−
(
η̄Ī

)|α ⊕ d,+1〉3 = Q̄+
(
η̄Ī

)|α ⊕ d ⊕ ζ,0〉2

= 1√
3

∣∣∣∣χ̄ ,+1

2
; ε(η̄ε̄ξ̄ θ̄ )η̄Ī

〉

+ 1√
6

∣∣∣∣r,+1

2
; ε(η̄ε̄ξ̄ θ̄ )η̄Ī γ̄ m

ĪI

(
δ(6)
mnδ

I
J + (γmγ̄n)

I
J

)〉

+ 1√
2

∣∣∣∣r,+1

2
; ε(η̄ε̄ξ̄ θ̄ )η̄Ī γ̄ mnl

Ī I
(γkγ̄mnl)

I
J

〉

≡
∣∣∣∣χ̄ ⊕ r,+1

2

〉
2
, (7.80)

and

Q̄−
(
ε̄J̄

)∣∣∣∣χ̄ ,+3

2
; ε(η̄ε̄ξ̄ θ̄ )η̄Ī

〉

= Q̄+
(
ε̄J̄

)∣∣∣∣χ̄ ⊕ r,+1

2

〉
1
=

∣∣∣∣β+,+1; 1√
2
ε(η̄ε̄ξ̄ θ̄ )ε̄J̄ (γ̄mC)J̄ Ī η̄

Ī

〉
, (7.81)

Q̄−
(
ε̄J̄

)∣∣∣∣χ̄ ⊕ r,+1

2

〉
2
= − 1√

2

∣∣∣∣β+,0; 1√
2
ε(η̄ε̄ξ̄ θ̄ )ε̄J̄ (γ̄mC)J̄ Ī η̄

Ī

〉

+ 1√
2

∣∣∣∣Ω+,0; 1

12
ε(η̄ε̄ξ̄ θ̄ )ε̄J̄ (Cγmnl)J̄ Ī η̄

Ī

〉

≡ |β+ ⊕ Ω+,0〉, (7.82)
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and

Q̄−
(
ξ̄ K̄

)∣∣∣∣β+,+1; 1√
2
ε(η̄ε̄ξ̄ θ̄ )ε̄J̄ (γ̄mC)J̄ Ī η̄

Ī

〉

= Q̄+
(
ξ̄ K̄

)|β+ ⊕ Ω+,0〉 =
∣∣∣∣a,+1

2
; ε(η̄ε̄ξ̄ θ̄ )εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄CL̄

L

〉
, (7.83)

and finally we have

Q̄−
(
θ̄ L̄

)∣∣∣∣a,+1

2
; ε(η̄ε̄ξ̄ θ̄ )εĪ J̄ K̄L̄η̄Ī ε̄J̄ ξ̄ K̄CL̄

L

〉
= ∣∣Φ+,0; [ε(η̄ε̄ξ̄ θ̄ )

]2〉
. (7.84)

This completes the chain of transformations that take the Clifford vacuum |Φ+〉 into its anti-
Clifford counterpart |Φ−〉.

8. Conclusions & outlook

The main purpose of this paper is the explicit construction of vertex operators and SUSY
transformation of universal multiplets of the first mass level. In Sections 4, 5 and 6, we have iden-
tified the α′m2 = 1 particle content of superstring compactifications to four dimensions whose
presence is implied by N = 4,1,2 SUSY respectively. The universality arguments are based on
Ramond sector SCFT operators which necessarily enter the SUSY charges and are available for
building vertex operators, see Section 3 and [12–14]. Then, using subleading terms of OPEs,
we have explicitly evaluated all the SUSY transformations and found that the 24 (80) first mass
level states in N = 1 (N = 2) scenarios are aligned into three supermultiplets. This has to be
contrasted with the maximally supersymmetric case where the 256 states form one single N = 4
multiplet.

The multiplet structure of all the cases is investigated using spinor helicity methods and the
results are summarized in Figs. 8, 9 for N = 1, Figs. 10, 11, 12 for N = 2 and Fig. 13 for
N = 4. We worked out the transformation properties of helicity eigenstates along a covariantly
chosen quantization axis, see Section 7 for the main results and Appendix C for some background
information on spinor helicity methods.

This work motivates a lot of further studies. It would be desirable to determine the universal
particle content at higher mass levels, i.e. to classify the SO(3) and R-symmetry quantum num-
bers of universal N = 1 and N = 2 SUSY multiplets of any mass level along the lines of the
SO(9) analysis in [27]. Explicit vertex operators on the second mass level are available in ten [8]
and four dimensions [10]. These results suggest an investigation of subleading Regge trajecto-
ries, i.e. closed form expressions for vertex operators of non-maximal spin n,n − 1, . . . at mass
level n.

Having a good control over vertex operators is necessary to gain further insight into the S
matrix of massive string excitations. The leading Regge trajectory is a good example where
cubic and quartic interactions could be discussed for all mass levels, see [7] for bosonic string
theory and [28] for the superstring. The simple structure of the N -point open superstring disk
amplitude of massless states [29,30] suggests that also the amplitudes of heavy vibration modes
enjoy a hidden harmony. It would be desirable to work out the kinematic building blocks and the
most natural basis of world-sheet integrals for their tree and loop amplitudes.

Supersymmetry is certainly a key ingredient for investigating scattering amplitudes of massive
states. An efficient way of constraining (or in some cases even determining) massive superampli-
tudes via supersymmetric Ward identities is explained in [31,32]. For the purpose of a full-fledged
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superstring computation, the pure spinor formalism [33] is a very useful approach to take advan-
tage of manifest supersymmetry. Unfortunately, the only explicitly known vertex operators in
pure spinor superspace are at mass levels zero and one [6,9], so determining and applying their
higher mass counterparts is an open challenge. Also, there exists a manifestly N = 1 super-
symmetric approach in four dimensions known as the hybrid formalism [34], see [35,36] for a
treatment of the first mass level in this framework. In any case, understanding the super Poincaré
multiplet structure of massive states is the indispensable first step to exploit the power of SUSY
for scattering amplitude, this was a key motivation for the present article.
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Appendix A. Notation and convention

Various types of indices appear in this article, so it is essential to keep the notation as clear and
unambiguous as possible. Here is a list of occurring index classes together with the preferably
used alphabets and letters:

• In ten dimensions, vector indices of SO(1,9) are taken from the middle of the Latin alphabet
m,n,p, . . . . The corresponding Weyl spinor indices are Greek letters from the beginning of
the alphabet, α,β, γ, . . . for left-handed spinors, and their dotted version α̇, β̇, γ̇ , . . . for the
right-handed counterparts.

• Vectors in four-dimensional Minkowski spacetime have indices from the middle of the Greek
alphabet μ,ν,λ,ρ, . . . . Spinor indices of SO(1,3) are lower case Latin letters a, b, c, . . . for
left-handed Weyl spinors and upper case ȧ, ḃ, ċ for right-handed Weyl spinors.

• The R-symmetry group of N = 4 spacetime SUSY is SO(6) ≡ SU(4). We will use
m,n,p . . . as vector indices and I, J,K (Ī , J̄ , K̄) as left-handed (right-handed) spinor in-
dices. Confusions with the D = 10 vector indices are excluded by the context.

• In case of N = 2 spacetime SUSY, we denote the fundamental indices of the SU(2) R-
symmetry by i, j, k and the corresponding adjoint indices by A,B,C.

• Chan Paton generators carrying the color degrees of freedom of the vertex operator are sup-
pressed throughout this work since they are the same for all members of the SUSY multiplet.

• Also, the coupling gA = √
2α′gYM of vertex operators is suppressed, i.e. set to unity.

All these symmetry groups involve their metrics ηmn,ημν, δ
(6)
mn as well as gamma matrices and

charge conjugation matrices as Clebsch–Gordan coefficients:
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• γ m

αβ̇
, γ̄

α̇β
m and Cα

β̇,Cα̇
β in D = 10,

• σ
μ

aḃ
, σ̄ ȧb

μ and εab, ε
ȧḃ in D = 4,

• γ I J̄
m , γ̄ m

ĪJ
and CI

J̄ ,CĪ
J for the internal SO(6) of N = 4 SUSY,

• standard Pauli matrices τA
i
j and εij for the SU(2) R-symmetry of N = 2 SUSY.

Our conventions for the slash notation is

/kαβ̇ = kmγ m

αβ̇
, /kβ̇α = kmγ̄ β̇α

m in D = 10,

/kaḃ = kμσ
μ

aḃ
, /kḃa = kμσ̄ ḃa

μ in D = 4.
(A.1)

The totally antisymmetric ε tensors are normalized to having nonzero ±1, e.g. εμνλρ for D = 4
vectors and εABC for the adjoint representation of SU(2).

The signature of the Dirac algebras is negative in lines with the Wess & Bagger conventions:

γ m

αβ̇
γ̄ nβ̇γ + γ n

αβ̇
γ̄ mβ̇γ = −2ηmnδγ

α , (A.2)

σ
μ

aḃ
σ̄ νḃc + σν

aḃ
σ̄ μḃc = −2ημνδc

a, (A.3)

γ I J̄
m γ̄nJ̄K + γ I J̄

n γ̄mJ̄K = −2δ(6)
mnδ

I
K. (A.4)

On the other hand, the SU(2) Pauli matrices obey the multiplication rule

(τA)ij (τB)j k = δABδi
k + iεABC

(
τC

)i
k. (A.5)

Useful material on spinors in various spacetime dimensions can be found in [37–39], the present
conventions closely follow [18–20].

Appendix B. Operator product expansions

This appendix gathers the operator product expansions needed to evaluate the BRST con-
straints and SUSY variations. Before taking a closer look at the interacting SCFTs, let us display
the free field OPEs for the sake of completeness, namely

i∂Xμ(z)eik·X(w)

∼
[

2α′kμ

z − w
+ i∂Xμ(w) + (z − w)i∂2Xμ(w) + · · ·

]
eik·X(w), (B.1)

i∂Xμ(z)i∂Xν(w)eik·X(w)

∼
[

2α′ημν

(z − w)2
+ 2α′kμi∂Xν(w)

z − w
+ i∂Xμi∂Xν(w) + · · ·

]
eik·X(w), (B.2)

as well as

ψμ(z)ψν(w) ∼ ημν

z − w
+ ψμψν(w) + (z − w)∂ψμψν(w) + · · · . (B.3)

They are valid in any number of compactification dimensions. Another universal feature is the
superghost CFT, governed by
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eq1φ(z)eq2φ(w) = (z − w)−q1q2

[
e(q1+q2)φ(w) + q1(z − w)∂φe(q1+q2)φ(w)

+ 1

2
(z − w)2[q1∂

2φ + q2
1 (∂φ)2]e(q1+q2)φ(w) + · · ·

]
. (B.4)

The following subsections consider the interacting RNS CFT of the ψ fermion and its spin fields
S as well as its excited versions. The OPEs were pioneered in [17] and can be checked by means
of correlation functions gathered in [18–20], and a broader discussion of the RNS operator alge-
bra in various dimensions will be given in [21].

B.1. Spacetime CFT in D = 10

Evaluating the BRST conditions on the most general fermion vertex operator at the first mass
level requires OPEs

ψm(z)Sα(w) ∼
γ m

αβ̇
Sβ̇(w)

√
2(z − w)1/2

+ (z − w)1/2
[
Sm

α (w) +
2γ m

αβ̇√
25

∂Sβ̇(w)

]
+ · · · , (B.5)

ψm(z)∂Sα(w) ∼
γ m

αβ̇
Sβ̇(w)

2
√

2(z − w)3/2
− Sm

α (w)

2(z − w)1/2
+

4γ m

αβ̇
∂Sβ̇(w)

5
√

2(z − w)1/2
+ · · · , (B.6)

ψm(z)Sβ̇
n (w) ∼ ηmnS

β̇(w)

(z − w)3/2
+ γ̄

β̇α
m Snα(w)√
2(z − w)1/2

− 2ηmn∂Sβ̇(w)

5(z − w)1/2
+ · · · (B.7)

in D = 10. The corresponding SUSY variations are computed by means of

Sβ̇(z)ψm(w) ∼ γ̄
β̇α
m Sα(w)√

2(z − w)1/2
+ (z − w)1/2

[
Sβ̇

m(w) + 3γ̄
β̇α
m ∂Sα(w)

5
√

2

]
+ · · · , (B.8)

Sβ̇(z)ψmψnψp(w) ∼ −1

2
√

2(z − w)3/2
γ̄ β̇α
mnpSα(w) − 3

2(z − w)1/2
(γ̄[mn)

β̇
α̇Sα̇

p](w)

+ 1

10
√

2(z − w)1/2
γ̄ β̇α
mnp∂Sα(w) + · · · , (B.9)

Sβ̇(z)∂ψm(w) ∼ γ̄
β̇α
m Sα(w)

2
√

2(z − w)3/2
− S

β̇
m(w)

2(z − w)1/2
+ 7γ̄

β̇α
m ∂Sα(w)

10
√

2(z − w)1/2
+ · · · (B.10)

for the NS sector and

Sα(z)Sβ(w) ∼ (γ mC)αβψm(w)√
2(z − w)3/4

+ (z − w)1/4 (γ mC)αβ∂ψm(w)

2
√

2

− (z − w)1/4 (γ mnpC)αβψmψnψp(w)

12
√

2
+ · · · , (B.11)

Sα(z)Sβ̇
m(w) ∼ Cα

β̇ψm(w)

(z − w)7/4
− Cα

β̇∂ψm(w)

2(z − w)3/4
− (γ npC)α

β̇ψmψnψp(w)

4(z − w)3/4
+ · · · , (B.12)

Sα(z)∂Sβ(w) ∼ 3(γ mC)αβψm(w)

4
√

2(z − w)7/4
+ 7(γ mC)αβ∂ψm(w)

8
√

2(z − w)3/4

+ (γ mnpC)αβψmψnψp(w)

48
√

2(z − w)3/4
+ · · · (B.13)

for the R sector.
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B.2. Spacetime CFT in D = 4

In D = 4 spacetime dimensions, h = 1
4 spin fields Sa,S

ḃ of both chiralities are present. The
OPEs between spinors and vectors or p-forms treat both chiralities on equal footing, e.g.

ψμ(z)Sa(w) ∼ σ
μ

aḃ
Sḃ(w)√

2(z − w)1/2
+ (z − w)1/2

[
Sμ

a (w) + σ
μ

aḃ√
2
∂Sḃ(w)

]
+ · · · , (B.14)

ψμ(z)Sḃ(w) ∼ σ̄ ḃa
μ Sa(w)√

2(z − w)1/2
+ (z − w)1/2

[
Sḃ

μ(w) + σ̄ ḃa
μ√
2

∂Sa(w)

]
+ · · · (B.15)

that is why we only display one chiral half of further OPEs:

ψμ(z)∂Sa(w) ∼ σ
μ

aḃ
Sḃ(w)

2
√

2(z − w)3/2
− S

μ
a (w)

2(z − w)1/2
+ σ

μ

aḃ
∂Sḃ(w)

2
√

2(z − w)1/2
+ · · · , (B.16)

ψμ(z)Sḃ
ν (w) ∼ ημνS

ḃ(w)

(z − w)3/2
+ σ̄ ḃa

μ Sνa(w)√
2(z − w)1/2

− ημν∂Sḃ(w)

(z − w)1/2
+ · · · . (B.17)

Four-dimensional SUSY variations of NS operators require

Sḃ(z)ψμ(w) ∼ σ̄ ḃa
μ Sa(w)√

2(z − w)1/2
+ (z − w)1/2Sḃ

μ(w) + · · · , (B.18)

Sḃ(z)ψμψν(w) ∼ −(σ̄μν)
ḃ
ȧS

ȧ(w)

2(z − w)
+ √

2σ̄ [ν|ḃaS|μ]
a (w) + 1

2
(σ̄μν)

ḃ
ȧ∂Sȧ(w) + · · · , (B.19)

Sḃ(z)ψμψνψλ(w) ∼ −1

2
√

2(z − w)3/2
σ̄ ḃa

μνλSa(w) − 3

2(z − w)1/2
(σ̄[μν)

ḃ
ȧS

ȧ
λ](w)

+ 1√
2(z − w)1/2

σ̄ ḃa
μνλ∂Sa(w) + · · · , (B.20)

Sḃ(z)∂ψμ(w) ∼ σ̄ ḃa
μ Sa(w)

2
√

2(z − w)3/2
− Sḃ

μ(w)

2(z − w)1/2
+ σ̄ ḃa

μ ∂Sa(w)√
2(z − w)1/2

+ · · · . (B.21)

With two R sector states involved, the OPEs are sensitive to their relative chirality:

Sa(z)Sb(w) ∼ εab

(z − w)1/2
− 1

4
(z − w)1/2(σμνε

)
ab

ψμψν(w) + · · · , (B.22)

Sa(z)S
ḃ(w) ∼ (σμε)a

ḃψμ(w)√
2

+ (z − w)
(σμε)a

ḃ∂ψμ(w)

2
√

2

− (z − w)
(σμνλε)a

ḃψμψνψλ(w)

12
√

2
+ · · · , (B.23)

Sa(z)S
ḃ
μ(w) ∼ (σ νε)a

ḃψμψν(w)√
2(z − w)1/2

+ · · · , (B.24)

Sa(z)S
μ
b (w) ∼ εabψ

μ(w)

(z − w)
− εab∂ψμ(w)

2
− (σνλε)abψ

μψνψλ(w)

4
+ · · · , (B.25)

Sa(z)∂Sb(w) ∼ εab

3/2
+ (σμνε)abψμψν(w)

1/2
+ · · · , (B.26)
2(z − w) 8(z − w)
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Sa(z)∂Sḃ(w) ∼ (σμε)a
ḃ∂ψμ(w)

2
√

2
+ (σμνλε)a

ḃψμψνψλ(w)

12
√

2
+ · · · . (B.27)

B.3. Internal CFT for N = 4 SUSY

The internal components of the ten-dimensional NS fermion are denoted by Ψm with vector
index m for the SO(6) R-symmetry. Accordingly, the associated h = 3

8 spin fields ΣI , Σ̄J̄ have
SO(6) spinor indices I, J̄ = 1,2,3,4. Their mutual OPEs can be covariantly expressed in terms
of SO(6) gamma matrices:

Ψm(z)ΣI (w) ∼ γ I J̄
m Σ̄J̄ (w)√
2(z − w)1/2

+ (z − w)1/2
[
ΣI

m(w) + 2γ I J̄
m

3
√

2
∂Σ̄J̄ (w)

]
+ · · · , (B.28)

Ψ m(z)Σ̄n

J̄
(w) ∼ δmn

(6) Σ̄J̄ (w)

(z − w)3/2
+ γ̄ m

J̄ I
Σn,I (w)√

2(z − w)1/2
− 2δmn

(6) ∂Σ̄J̄ (w)

3(z − w)1/2
+ · · · , (B.29)

Ψm(z)∂ΣI (w) ∼ γ I J̄
m Σ̄J̄ (w)

2
√

2(z − w)3/2
− ΣI

m(w)

2(z − w)1/2
+ 2γ I J̄

m ∂Σ̄J̄ (w)

3
√

2(z − w)1/2
+ · · · . (B.30)

We need the following OPEs for computing SUSY transformations of bosons:

Σ̄J̄ (z)Ψ m(w) ∼ γ̄ m

J̄ I
ΣI (w)√

2(z − w)1/2
+ (z − w)1/2

[
Σ̄m

J̄
(w) + γ̄ m

J̄ I

3
√

2
∂ΣI (w)

]
+ · · · , (B.31)

Σ̄J̄ (z)Ψ mΨ n(w) ∼ −(γ̄ mn)J̄
Ī Σ̄Ī (w)

2(z − w)
+ √

2γ̄ [n|J̄ IΣ
m]
I (w) + 1

6

(
γ̄ mn

)
J̄

Ī ∂Σ̄Ī (w) + · · · ,
(B.32)

Σ̄J̄ (z)Ψ mΨ nΨ p(w) ∼ −1

2
√

2(z − w)3/2
γ̄

mnp

J̄ I
ΣI (w) − 3

2(z − w)1/2

(
γ̄ [mn

)
J̄

Ī Σ̄
p]
Ī

(w)

+ 1

2
√

2(z − w)1/2
γ̄

mnp

J̄ I
∂ΣI (w) + · · · , (B.33)

Σ̄J̄ (z)∂Ψ m(w) ∼ γ̄ m

J̄ I
ΣI (w)

2
√

2(z − w)3/2
− Σ̄m

I (w)

2(z − w)1/2
+ 5γ̄ k

J̄ I
∂ΣI (w)

6
√

2(z − w)1/2
+ · · · . (B.34)

Again, OPEs between R sector states depend on the relative chirality:

ΣI (z)Σ̄J̄ (w) ∼ CI
J̄

(z − w)3/4
− 1

4
(z − w)1/4(γmnC)I J̄ Ψ mΨ n(w) + · · · , (B.35)

ΣI (z)ΣJ (w) ∼ (γmC)IJ Ψ m(w)√
2(z − w)1/4

+ (z − w)3/4 (γmC)IJ ∂Ψ m(w)

2
√

2

− (z − w)3/4 (γmnpC)IJ Ψ mΨ nΨ p(w)

12
√

2
+ · · · , (B.36)

ΣI (z)ΣJ
m(w) ∼ (γ nC)IJ ΨmΨn(w)√

2(z − w)3/4
+ · · · , (B.37)

ΣI (z)Σ̄m

J̄
(w) ∼ CI

J̄ Ψ m(w)

5/4
− CI

J̄ ∂Ψ m(w)

1/4
− (γnpC)I J̄ Ψ mΨ nΨ p(w)

1/4
+ · · · , (B.38)
(z − w) 2(z − w) 4(z − w)
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ΣI (z)∂Σ̄J̄ (w) ∼ 3CI
J̄

4(z − w)7/4
+ (γmnC)I J̄ Ψ mΨ n(w)

16(z − w)3/4
+ · · · , (B.39)

ΣI (z)∂ΣJ (w) ∼ (γmC)IJ Ψ m(w)

4
√

2(z − w)5/4
+ 5(γmC)IJ ∂Ψ m(w)

8
√

2(z − w)1/4

+ (γmnpC)IJ Ψ mΨ nΨ p(w)

16
√

2(z − w)1/4
+ · · · . (B.40)

B.4. Internal CFT for N = 1 SUSY

Most of the OPEs relevant for the internal c = 9 SCFT described in Section 3.4 can be derived
from the CFT of a free boson:

i∂H(z)eiqH (w) ∼
[

q

z − w
+ i∂H(w) + · · ·

]
eiqH (w), (B.41)

eiqH (z)i∂H(w) ∼
[

q

z − w
+ (

q2 − 1
)
i∂H(w) + · · ·

]
eiqH (w), (B.42)

eiq1H (z)eiq2H (w) ∼ (z − w)q1q2
[
1 + q1(z − w)i∂H + · · ·]ei(q1+q2)H (w). (B.43)

This allows to reproduce (3.28) and (3.34) from the bosonized representations (3.35) of the op-
erators J , Σ± and O±. Moreover, we have

Σ±(z)J (w) ∼ ±√
3Σ±(w)

2(z − w)
∓ ∂Σ±(w)

2
√

3
+ · · · , (B.44)

Σ±(z)O∓(w) ∼ (z − w)−3/2Σ∓(w) − (z − w)−1/2∂Σ∓(w) + · · · . (B.45)

The excited spin fields Σ̃± = g∓e±iH/
√

12 are canonically normalized

Σ̃±(z)Σ̃∓(w) ∼ 1

(z − w)11/4
± i∂H(w)

2
√

3(z − w)7/4
+ · · · , (B.46)

Σ̃±(z)Σ̃±(w) ∼ g∓g∓e
± iH√

3 (w)

(z − w)1/4
+ · · · (B.47)

such that the mutual singularities between standard and excited spin fields are given by

Σ̃±(z)Σ±(w) ∼ (z − w)1/4g∓e
± 2i√

3
H

(w) + · · · , (B.48)

Σ̃±(z)Σ∓(w) ∼
√

2

3

G∓
int(w)

(z − w)1/4
+ · · · . (B.49)

Moreover, in presence of the internal supercurrents G±
int =

√
3
2 e±iH/

√
3g±,

G±
int(z)Σ̃

±(w) ∼
√

3

2

Σ±(w)

(z − w)5/2
+

√
2

3

∂Σ±(w)

(z − w)3/2
+ · · · , (B.50)

G±
int(z)Σ̃

∓(w) ∼
√

3

2

g±g±e
± i

2
√

3
H

(w)

(z − w)1/2
+ · · · , (B.51)

Σ̃±(z)J (w) ∼ ± Σ̃±(w)

2
√

3(z − w)
+ · · · . (B.52)
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Appendix C. Spinor helicity methods for massive wave functions

Before we proceed to introduce the massive version of the spinor helicity formalism, we will
make a short review for the helicity formalism of massless spinors. For massless spin- 1

2 spinors,
we use the following notations,

|i〉 = |ki〉 = u+(ki) = v−(ki) =
(

0

k∗ȧ
i

)
, (C.1)

|i] = |ki] = u−(ki) = v+(ki) =
(

ki,a

0

)
, (C.2)

[i| = [ki | = ū+(ki) = v̄−(ki) = (
ka
i ,0

)
, (C.3)

〈i| = 〈ki | = ū−(ki) = v̄+(ki) = (
0, k∗

i,ȧ

)
. (C.4)

Here the momentums with spinor indices denote two component commutative spinors. They are
defined by

P ȧa = pμσ̄μȧa = −p∗ȧpa, (C.5)

Paȧ = pμσ
μ
aȧ = −pap

∗̇
a, (C.6)

where p∗ȧ = (pa)∗ and p∗̇
a = (pa)

∗. Spinor indices could be increased (lowered) by εab (εab) or
a, b with dots,

pa = εabpb, p∗ȧ = εȧḃp∗̇
b
. (C.7)

Then we can define the notations for the spinor products,

〈pq〉 = 〈p|q〉 = ū−(p)u+(q) = p∗̇
aq

∗ȧ , (C.8)

[pq] = [p|q] = ū+(p)u−(q) = paqa, (C.9)

so that simply we have

[pq] = −[qp], 〈pq〉 = −〈qp〉, (C.10)

〈pq〉∗ = −[pq], 〈pp〉 = [pp] = 0, (C.11)

and

〈pq〉[qp] = −2(p · q). (C.12)

C.1. Massive spin one boson

A spin J particle contains 2J + 1 spin degrees of freedom associated to the eigenstates of Jz.
The choice of the quantization axis z can be handled in an elegant way by decomposing the
momentum k into two arbitrary light-like reference momenta p and q:

kμ = pμ + qμ, k2 = −m2 = 2pq, p2 = q2 = 0. (C.13)

Then the spin quantization axis is chosen to be the direction of q in the rest frame. The 2J + 1
spin wave functions depend of p and q , however this dependence drops out in the amplitudes
summed over all spin directions and in “unpolarized” cross sections.

The massive spin one wave functions ξμ (transverse, i.e., ξμkμ = 0) are given by the following
polarization vectors [22,23], up to a phase factor,



232 W.-Z. Feng et al. / Nuclear Physics B 861 (2012) 175–235
ξ
μ
+(k) = 1√

2m
p∗̇

aσ̄
μȧaqa, (C.14)

ξ
μ
0 (k) = 1

2m
σ̄μȧa

(
p∗̇

apa − q ∗̇
a qa

)
, (C.15)

ξ
μ
−(k) = − 1√

2m
q ∗̇
a σ̄ μȧapa. (C.16)

C.2. Massive spin two boson

The massive spin two boson αμν satisfies the following conditions,

αμν(k,λ) = ανμ(k,λ), (C.17)

kμαμν(k,λ) = 0, (C.18)

gμνα
μν(k,λ) = 0, (C.19)

where λ expresses the helicity of αμν . We do the same decomposition of the momentum, and the
wave function of a spin two boson can be written as [22],

αμν(k,+2) = 1

2m2
σ̄ μȧaσ̄ νḃbp∗̇

aqap
∗̇
b
qb, (C.20)

αμν(k,+1) = 1

4m2
σ̄ μȧaσ̄ νḃb

[(
p∗̇

apa − q ∗̇
a qa

)
p∗̇

b
qb + p∗̇

aqa

(
p∗̇

b
pb − q ∗̇

b
qb

)]
, (C.21)

αμν(k,0) = 1

2
√

6m2
σ̄ μȧaσ̄ νḃb

[(
p∗̇

apa − q ∗̇
a qa

)(
p∗̇

b
pb − q ∗̇

b
qb

)

− p∗̇
aqaq

∗̇
b
pb − q ∗̇

apap
∗̇
b
qb

]
, (C.22)

αμν(k,−1) = 1

4m2
σ̄ μȧaσ̄ νḃb

[(
q ∗̇
a qa − p∗̇

apa

)
q ∗̇
b
pb + q ∗̇

apa

(
q ∗̇
a qa − p∗̇

b
pb

)]
, (C.23)

αμν(k,−2) = 1

2m2
σ̄ μȧaσ̄ νḃbq ∗̇

apaq
∗̇
b
pb. (C.24)

C.3. Massive spin 1/2 fermions

Massive spin 1
2 fermions satisfy the Dirac equation,

(/k + m)u(k) = 0, (C.25)

(/k − m)v(k) = 0, (C.26)

where u(k) and v(k) are positive and negative energy solutions with momentum kμ, which cor-
respond to fermion and anti-fermion wave functions respectively. Since we do not deal with the
wave functions of the negative energy solutions, we will only present u(k) wave function here.
u(k) satisfies the spin–sum relations, orthogonal condition and the normalization condition,∑

spin

u±(k)ū±(k) = −/k + m, (C.27)

ū±(k)u∓(k) = 0, (C.28)

ū±(k)u±(k) = 2m. (C.29)

Writing the four component spinor u(k) as
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u =
(

χa

η̄ȧ

)
(C.30)

and plugging it into the Dirac equation, we get

kμ

(
0 σ

μ
aȧ

σ̄ μȧa 0

)(
χa

η̄ȧ

)
= −m

(
χa

η̄ȧ

)
. (C.31)

The Dirac equation is decomposed to,

kμσ̄μȧaχa = −mη̄ȧ, (C.32)

kμσ
μ
aȧη̄

ȧ = −mχa. (C.33)

Making the same decomposition of the momentum kμ = pμ + qμ, we can obtain the wave
function of the massive spin 1

2 fermion [23],

u+(k) =
( 〈qp〉

m
qa

p∗ȧ

)
, (C.34)

u−(k) =
(

pa

[qp]
m

q∗ȧ

)
. (C.35)

C.4. Massive spin 3/2 fermions

A massive spin 3
2 fermion are described by a Rarita–Schwinger spinor-vector Ψ A,μ which

satisfies equations,

(i/∂ − m)ABΨ B,μ = 0, (C.36)

(γμ)ABΨ B,μ = 0, (C.37)

∂μΨ B,μ = 0, (C.38)

where A and B are spinor indices. Again we only consider the positive energy solution U , it
satisfies,

(/k + m)ABU(k)B,μ = 0, (C.39)

ŪA,μ(k,λ)UA,μ
(
k,λ′) = 2mδλλ′ . (C.40)

The wave function of U can be written as [23],

UA,μ

(
+3

2

)
= 1√

2m

( 〈qp〉
m

qa

p∗ȧ

)(
p∗̇

b
σ̄ μḃbqb

)
, (C.41)

UA,μ

(
+1

2

)
= σ̄ μḃb

√
6m

[( 〈qp〉
m

qa

p∗ȧ

)(
p∗̇

b
pb − q ∗̇

b
qb

) +
( 〈qp〉

m
pa

−q∗ȧ

)(
p∗̇

b
qb

)]
, (C.42)

UA,μ

(
−1

2

)
= σ̄ μḃb

√
6m

[(
pa

[qp]
m

q∗ȧ

)(
p∗̇

b
pb − q ∗̇

b
qb

) +
( −qa

[qp]
m

p∗ȧ

)(
q ∗̇
b
pb

)]
, (C.43)

UA,μ

(
−3

2

)
= 1√

2m

(
pa

[qp]
m

q∗ȧ

)(
q ∗̇
b
σ̄ μḃbpb

)
. (C.44)
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