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Abstract

We extend the discussion of Feng et al. (2011) [1] on massive Regge excitations on the first mass level
of four-dimensional superstring theory. For the lightest massive modes of the open string sector, universal
supermultiplets common to all four-dimensional compactifications with A" = 1, 2 and N = 4 spacetime su-
persymmetry are constructed respectively — both their vertex operators and their supersymmetry variations.
Massive spinor helicity methods shed light on the interplay between individual polarization states.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

String theory as seen from the point particle perspective contains an infinite number of mas-
sive, higher spin states. As known already from the early days of string theory, these massive
states lie on the so-called Regge trajectories that display the linear relation between the (mass)>
and the spin J of all states. The existence of the infinitely many higher spin states is essential for
the ultra-violet behavior of string scattering amplitudes. It unitarizes all string amplitudes among
the massless modes in the UV via the exchange of the infinite tower of massive states, as it was
first shown in the famous Veneziano amplitude that describes the scattering of four massless open
string states. In addition the consistency of quantum gravity in string theory completely relies on
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the massive higher spin states. Since the size of a string grows with its excitation energy, larger
and larger states are produced at higher and higher energies. Hence, the UV properties of string
scattering amplitudes are non-Wilsonian, which is also manifest in the UV-IR mixing in string
theory. As it was argued in [2] this might lead to a reformulation of the Heisenberg uncertainty
principle in string theory with the result that the string scale appears at the shortest possible
length scale, which can be dissolved in string scattering experiments.

The existence of massive higher spin states in string theory is not only crucial for the con-
sistency of the theory, but is possibly also interesting from the phenomenological point of view.
Since the masses of the higher spin states are all multiples of the string scale M; = Vo'~ !,
D-brane compactifications with a low string scale M in the TeV region and with large extra di-
mensions offer the exciting possibility that the lightest Regge excitations of massless open strings
can be directly produced and detected at the LHC. As it was shown in [3,4], four- and five-point
string scattering amplitudes among standard model gauge bosons (gluons, W-, Z-bosons, pho-
tons) and at most two external massless fermions (quarks or leptons) are completely independent
from any geometrical details of the underlying D-brane model in four dimensions. Hence, the
production of the first heavy colored string states (e.g. excited gluons with J = 0, 2) from gluon
fusion and their subsequent decay into two or three hadronic jets leads to completely model inde-
pendent cross sections and decay rates at the LHC. Based on these calculations the recent LHC
searches for non-standard dijet events due to heavy new resonances can now exclude massive
string states with masses below about 4 TeV.

This paper is not so much concerned about the phenomenological implications of massive
higher spins states, but we rather like to exploit some of the basic supersymmetry properties of
higher spin states in four dimensions, originating from supersymmetric type II compactifications.
In [1] we already computed string scattering amplitudes not only with massless external string
states, but also three- and four-point amplitudes with one massive excited open string state as ex-
ternal field. For this purpose we constructed in [1] the corresponding covariant vertex operators
for the lowest massive open states in four dimensions,' focusing in particular on those universal
open Regge states, which are present in any D-brane compactification to four dimensions (ex-
cited gluons and gluinos). Working within the world-sheet NS-R formalism, physical, massive
states belong to the cohomology of the BRST operator. In addition, besides world-sheet confor-
mal invariance, supersymmetry plays a key role for the consistency of string theory, both on the
world-sheet as well as in target space. In ten spacetime dimensions, the type IIB(A) superstring
exhibits extended (non-)chiral A/ = 2 spacetime supersymmetry with in total 32 supersymmetry
charges. It follows that all massless as well as all massive closed string states are organized in
supermultiplets of the ten-dimensional A/ = 2 supersymmetry algebra. This leads to a very subtle
interplay between massive string excitations with different higher spins that belong to common
supersymmetry multiplets. In fact, the covariant world-sheet vertex operators of the higher spin
states must transform into each other when acting on them with the supersymmetry charge op-
erators. Hence, spacetime supersymmetry must be reflected in the structure of the world-sheet
BRST cohomology on each mass level of the higher spin excitations.

Going from ten to lower dimensions, parts or all of spacetime supersymmetry can be pre-
served during the compactification process. As it is known already for several years [11-14],
there exists a deep relation between the number of spacetime supersymmetries, preserved by the
compactification, and the number of world-sheet supersymmetries of the corresponding inter-

1 Additional and previous work on vertex operators for massive higher spin excitations includes [5-10].
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nal superconformal field theory. Specifically, for type II compactifications on six-dimensional
Calabi—Yau spaces, which correspond to ¢ = 6 SCFT’s with (2, 2) world sheet supersymmetry,
one obtains in the closed string sector four-dimensional A/ = 2 effective supergravity theories
with 8 preserved supercharges in the bulk. Second, type II compactification on K3 x T2 with
four-dimensional A/ = 4 spacetime supersymmetry (16 bulk supercharges) can be described by
the direct product of two SCFT’s with central charges ¢ = 4 and ¢ = 2, where the ¢ = 4 part pos-
sesses (4, 4) supersymmetry on the world-sheet. Finally, compactifications on a six-dimensional
torus leads to effective type II supergravity theories with maximal AV = 8 supersymmetry (32
bulk supercharges).

However, when also including D-branes and open strings, the number of spacetime supersym-
metries is reduced by half compared to the closed string bulk sector, we just discussed above.
First, the effective, four-dimensional Yang—Mills theories of type IIB, Calabi—Yau orientifolds
with D3/D7-branes or with D5/D9-branes (or type IIA Calabi—Yau orientifolds with intersecting
D6-branes) possess just A = 1 supersymmetry. Next the IIB K3 x T orientifolds with D5/D9-
branes lead to ' = 2 supersymmetric Yang-Mills theories in four dimensions.> And finally,
toroidal compactifications of type II superstrings lead to Yang—Mills open string sectors with
N =4 supersymmetry in D = 4.

It is the aim of this paper to extend the work of [1] in order to systematically construct the
covariant vertex operators of the lowest massive open string supermultiplets for all three cases of
N = 4,2, 1 spacetime supersymmetry on the corresponding D-branes. We will focus in particular
on those massive supermultiplets and their SUSY transformations in the universal sector, which
are always present in any four-dimensional orientifold models:

e For N =4 super Yang-Mills, there is a single massive, spin two supermultiplet with 128
bosonic as well as 128 fermionic degrees of freedom.

o The supermultiplets of the universal ' = 1 sector contains one spin two supermultiplet and
two spin 1/2 representations with in total 12 + 12 bosonic and fermion degrees of freedom.

o Finally, for ' = 2 super Yang-Mills we are dealing with 40 + 40 massive open string states,
being organized in one spin two plus two spin one massive supermultiplets.

In this way we extend the analysis of [14] about the relation between world-sheet and spacetime
supersymmetries and their closed string (massless) supermultiplet structure to the case of the
massive, open string supermultiplets. At the same time we are giving here a massive version
of the SUSY multiplet analysis in [15], where it was shown that SUSY Ward identities among
scattering amplitudes are valid to all orders in &', and where the spinor helicity methods were
applied to make efficient use of these Ward identities.

The paper is organized as follows. As a warm-up case, in Section 2 we first construct the
covariant NS and R vertex operators of the ten-dimensional type I open string states at the first
mass level. They comprise in total 128 4 128 bosonic as well as fermionic states. We verify
that these states form a massive representation of the ten-dimensional (type I) A" =1 SUSY
algebra. Next, in Section 3 we consider the SCFT’s of string vacua in four dimensions, and
discuss the relation between the extended world-sheet superconformal algebras and the spacetime
N =4,1,2 SUSY algebras and the covariant vertex operators for the corresponding supercharge

2 These theories originate upon compactification on T2 from D = 6, IIB theories on K3 with (1, 1) spacetime super-
symmetry.
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operators. Sections 4, 5 and 6 are devoted to construct the massive open string supermultiplets,
their vertex operators and their supersymmetry transformations for the three cases of N = 4,
N =1 and N = 2 supersymmetry in four dimensions respectively. Finally, in Section 7 we
study in more detail in helicity structure of the various on-shell supermultiplets.

2. The first mass level in D = 10

The lightest Regge excitations of open superstring theory in ten-dimensional Minkowski
spacetime were firstly constructed in 1987 [5]. Let us briefly review the general method to con-
struct heavy string excitations as well as the explicit results of [5] and then offer a covariant
approach to the excited Ramond sector states.

2.1. The general method

Physical states belong to the cohomology of the BRST operator Oprst. In the world-sheet
variables of the RNS formalism, it splits into three pieces of different superghost charge:

OBrsT = Qo + Q1 + Q2, 2.1
dz
Q0= ?§ E(C(T + Tp,) + bcdc), (2.2)
d d
O1=—¢ —yG=—¢ —eG, 2.3)
27i 2
1 dZ 2 1 dZ 2
=~ —byi=— ¢ —be**nan. 2.4
Q==3 P55 4§'€2m'e'777 24

We denote the ¢ = 15 stress tensor and supercurrent of the matter fields® ig X™, Y" by T and G,
respectively, whereas Tg ,, captures the 8, y superghost system of ¢ = 11. The latter is partially
bosonized in terms of exponentials e?? (with ¢ denoting a free chiral boson) and completed by
a pair of & = 1, 0 fermions 7, &. The Grassmann odd ghost system (b, ¢) is well-known from the
bosonic string.

States of uniform superghost charge are BRST closed only if they are annihilated by Qq, O
and Q> separately. Closure under Q( forces vertex operators to be a Virasoro primary of unit
weight, while Q> does not contribute in the ghost pictures considered in this paper. Hence, given
a vertex operator ansatz of suitable conformal weight, only the Q; constraint involving the su-
percurrent

G(z) = 10X ()Y (2) (2.6)

1
24/2a’

has to be evaluated separately.

3 Our normalization conventions for the world-sheet matter fields are fixed by

! mn mn

2
e YU ) ~

i0X"(2)idX (w)wm z—w

T @5)
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2.2. The NS sector

The lowest mass m?> = —k? = 1/a’ for Regge excitations assigns conformal weight & = —1
to the plane wave e’** which introduces spacetime momentum into vertex operators. In the NS
sector of canonical superghost charge —1, it can combine with the & = % fielde=® and an h = %
combination of idX™, ¢" oscillators to form a Virasoro primary of unit conformal weight in
total. (Hence, neglecting the plane wave e/ X contribution, the massive states at first mass level
always correspond to vertex operators with conformal dimension 7 = 2.)

The most general & = 1 ansatz for the first massive NS sector states involves three* 1 = %
operators i d X" ", " " P and 9™ along with polarization wave functions By, Epnnp, Hp:

VOB, E, H, k,2) = (Buni X" Y" + Ennp "™ ¥"¥P + Hpdy™)e PelFX. (2.7)

The BRST constraints arising from @ admit two physical solutions,” namely a (traceless and
symmetric) spin two tensor By, and a three-form Ey;,,p:

1 .
VDB k,2) = —==Buni0X"y"e %X K" Buy=Bu" = Bpum =0, (2.8)

V2a
1 .
VENE k,2) = gEmnpl//"’w"x/fPe—"’e'k'X, K™ Epnp = 0. (2.9)

Both polarizations are transverse and therefore naturally fall into representations of the stabilizer
group SO(9) of massive momenta. The number of degrees of freedom is 9'—210 — 1 =44 for By,
and % = 84 for Ejp, i.e. we have 44 + 84 = 128 bosonic states in total.

Some of the solutions to the BRST constraint turn out to be Qgrst exact:

[QBRrsT. € > Zpm ¥ ¥" 05’ X | ~ (2Z0mnji 0X"™Y" + Zimnkpyp "y yrP e~ e X,
[QBrsT, € i 0X™3E™ X ~ (W dY™ + Tmknid X" " )e PeF X,

[QBrsT, de 2P dEeiX] ~ ([ ';’"’,’ + 2kmk,1}i8X'” Y+ 3km8wm>e¢eik'x. (2.10)
o

These spurious states parametrized by a two-form X, a vector 7, and a scalar of SO(9) (i.e.
subject to k™ X,,,, = k"1, = 0) decouple from physical states.

2.3. Excited spin fields

In the R sector, the canonical superghost vacuum is created by the h = % field e~%/2. Masses
m? = 1/a’ allow for an h = % operator to complete fermionic vertex operators for the first mass

level. The matter sector of the R ground states corresponds to & = % spin fields S, transforming
as left-handed spinors of the Lorentz group [16,17]. The right-handed chirality is forbidden by
GSO projection. The role of S, to open or close branch cuts for the ¢ is reflected in the OPE

m

" (2) Se(w) ~ LS%}H---. (2.11)
¢ V2(z — w)1/2

4 The addition of Em 1//’"3¢e_¢ is neglected because it can be absorbed into a total derivative.
5 Throughout this paper, we are setting the vertex operator normalization factor go = v/2a/gyMm from [3,4] to unity.
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The nontrivial three-point interactions between ¢ and S, render their covariant correlation
functions inaccessible to the Wick theorem, one has to use techniques of [18-20] instead to
compute higher order correlators. Only by breaking SO(1,9) to its SU(5) subgroup, one can
relate the ¢ and S, to a free field system of chiral bosons Hj 2, 5:

i0Hi(2)id Hy(w) ~ +idHy(w)io Hj(w) + - - (2.12)

Skl
(z—w)?
This technique is known as bosonization® [17]:

i Hy i H1 /2 gti Hy /2 goki Hy /2 o i Hy 2 o i Hs 2. (2.13)

Y e Sq <€

It is clear from this bosonized representation that the subleading term ~ (z — w)!/? of the OPE
(2.11) involves e*3#k/2 primary operators, in addition to the derivatives de* /2, The covariant
description of these new excited primary fields requires an irreducible vector spinor

Sfl <> i 2 ki /2 FiHa /2 i Ha 2o xi Hs /2. m g _ (2.14)
aﬁ m
of weight h = 8 , where the gamma tracelessness condition subtracts the descendant compo-

nents 9, <> (et H1/2etiHa/2e+iH3/2oEiHa/2o%iHs/2) The introduction of S,‘Z and 0S8, is the
covariant way to disentangle the primary field- and descendant components within the operator

Y™ Sy y,f‘ P used in [5]. The completion of the OPE (2.11) to the subleading level reads

m VoS ) 12| gm 2 ;g 2.1
v (Z)Sa(w)wm-F(Z—w) |:Sa (w)+ﬁ)’a,f335 (w):|+"' (2.15)

in D = 10. A more exhaustive list of OPEs involving ¥, S, and Sﬁ (and their counterparts
of opposite SO(1, 9) chirality) can be found in Appendix B.1. A covariant treatment of generic
higher spin primary fields will be given in [21].

2.4. The operator content of the R sector

After the GSO projection the most general vertex operator for spacetime fermions at the first

mass level involves the h = operators i0X™S,, S and BSa and therefore two vector spinor

wave functions v%,, p" 5 as Well as spinor wave function u“:

VEYD W, puk,2) = (v2i9X™ Se + pgs,ﬁ +u3Sy)e ¢/ 2k X, (2.16)
—-m. ﬂa

Since p is contracted with the excited spin field S,/Z, we can regard it as y traceless, i.e. p’! G ¥m =
0. The independent Q1 BRST constraints for (2.16) can be summarized as

6 We should admit that our discussion neglects Jordan—Wigner cocycle factors [17]. These are additional algebraic
objects accompanying the exponentials to ensure that e Hi and e* HI associated with different bosons k # [ anticom-
mute. We drop cocycle factors to simplify the notation, it suffices to remember that they are implicitly present and that
the bosonized representation of ¥# still obeys Fermi statistics. The instance where they contribute a phase is commented
on above (6.39).



W.-Z. Feng et al. / Nuclear Physics B 861 (2012) 175-235 181

1
0=20"v3Kop + 25, 5+ S Ve (2.17)
3
_ N R
O—Zﬁkﬂpﬁ. —iu“kaﬂ. (2.18)

Disentangling the SO(1, 9) irreducibles of the former allows to express u® and ,6/’;1 in terms of v,

_ _ﬁa/<vmakaﬁ, m p(ky % ) }3)7 (2.19)
20/
u® = ?vfi (ky™) 5%, (2.20)

whereas (2.18) yields an extra constraint on the only independent polarization vy, :

UV =2a'k" vy - (2.21)

As recognized in [5], there is a physical solution v{, = x of spin 3/2
1 .
V(—I/Z)(X’k)z (XmlaXm \/_Ol/Xmaka‘gS'B) ¢/Zezk.X’

\/ZOl/ 1/4
0=k"xp=xo V;,ls' (2.22)

and one spurious state associated with the gamma trace choice v, =k, @ + % o8 Kym) 5°
[QBrsT. e ?/20EO K, 4 Sﬁeikx]
1
- ([km@a + Z@ﬁ(kym)ﬁ“}iaxmsa

1 1 6 ‘
- 72[0/1(’"@“;{ + 100“ m}sﬁ + 50“35 ) —$/2¢ik-X (2.23)

which allows to gauge away the u* wave function.
2.5. Ten-dimensional SUSY transformations

The SUSY charge in open superstring theory is given by the massless gaugino vertex at zero
momentum [11]:

1 d
o = — 7§ ﬁzisae—q’/z. (2.24)
It transforms R sector states in their canonical —1/2 superghost picture into canonical NS vertex
operators ~ e~?. The contour integral is evaluated by performing OPEs between the S, and
e~%/2 fields from the supercharge at point z and the vertex operator V(~1/2)(w) of the fermion
in question. Appendix B.1 gathers the required OPEs for the D = 10 case.

The inverse transformation from the NS sector to the R sector requires the 41/2 picture
representative of the SUSY generator

1

(+1/2) _
Q 20{’3/4

dz
75 = —i0 Xy Sﬁ +9/2, (2.25)

The latter allows to write down the ghost neutral A" = 1 SUSY algebra in ten dimensions,
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(+1/2) A1/ _ _ dz .
{olr”?, 94 = (1"C) 5P Po= § 5 i X, (2.26)
Let us list the SUSY variations of the physical D = 10 vertex operators. The NS sector states
(2.8) and (2.9) have already been discussed in [5]

_ _ 1
[n7 Q2 v (B, k)] = v/ (x,‘ii = _an(nky”)“), (2.27)
NG
1
o Y (+1/2) (-1 _y(=1/2) o __ np\%
[t vE(E b=V (xm— lzﬁ[Emnp(ny )
1 o
= 3 Emq (nymy"™1)" — 3 K Enpa (nkaf””")“D. (2.28)

In addition, we use the covariant OPEs from Appendix B.1 to compute the SUSY variation of
the massive gravitino (2.22):

[7* Q2 vEYD (4, b]
o 1

:V(—l)(anz m kn mAn )
ﬁ(flk)(( ) >+ﬁ(m/( Xn))

B 3
+ vED (Emnp = 3a/1/2(ny[an)kP] - Ea/l/z(ny[npk)(m])>' (2.29)

3. CFTs of supersymmetric string vacua in four dimensions

In this section we will first review some basic facts about extended supersymmetry algebras in
four spacetime dimensions and about the general relation between extended spacetime supersym-
metries and world-sheet supersymmetries. In part, we are following the work in Refs. [12—14].
Our conventions for indices w.r.t. Lorentz symmetry SO(1, 3) and R-symmetries SO(6) or SU(2)
are gathered in Appendix A.

3.1. The D =4 spacetime supersymmetry algebra

The N supercharges Qé as well as the complex conjugate operators Q‘If satisfy the N-
extended supersymmetry algebra (I, 1 =1,..., N

{Qé, Ql}} = C}(a“s)abPM,
{2, 9]} =ean 2. 3.1

P* is the momentum operator and the Z// are central charges, which are antisymmetric in I, J
and can therefore appear in the N > 2 supersymmetry algebra only.

Next let us discuss the representations of the extended supersymmetry algebras, namely how
the supercharges in general act on massless and on massive states. Let us first recall the case
of massless states. Here we can choose a frame where the momenta are k* = (E, 0,0, E), the
supercharges are

Q{ = Ql, Q; =0Q;, whereas0= Q% = Q?— (3.2)

In terms of Q' and Q; the supersymmetry algebra takes the form
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[0, 0,} =48],
{Q'. 9"} ={01,Qs}=0, (3.3)

where we have rescaled the supersymmetry charges by ~/E. The 2\ supercharges Q' and Q;
build an SO2N) Clifford algebra

Dy =9"+ 95, Dy =i(Q" - 9j),
(LY =28, i j=1,....2N (3.4)

whose representations have dimension 2N The generators for SO(2\) rotations are

1
Ajj = E[Fiv Il (3.5)
This group contains an SU(N') x U (1) subgroup specified by the following generators

1 _
Ay=3[9".9j]- QX, 0] for SUW),

.N'SJ[
1 _
= Z[Q’, Q] forU(1). (3.6)

For massless states, this SU(N') commutes with the SO(2) helicity group. Hence this group clas-
sifies massless states. The eigenvalue of the supercharge under the U (1), which is called intrinsic
helicity, is the same as under spacetime helicity. Therefore one can define a new generator A’
through a shift by the z component ;3 of the spin, called superhelicity,

A=A, (3.7)

which commutes with Q.

Next let us consider massive states rotated into their rest frame k* = (m, 0, 0, 0). Now also the
second helicity components of the supercharge spinors become active, i.e. give rise to nonzero
supersymmetry transformations on massive states. We will denote them as follows:

ol=0!, Qi=9; (3.8)
The supersymmetry algebra between the Q looks like
{9, 95} =mci, [0, 07} ={01, Qs}=0. (3.9)

Now the (97, Q 7) and (Q’ s Q 7) build an SO(4N) Clifford algebra on the states without central
charges. Consequently, the dimension of massive representations is a multiple of 22N The max-
imal subalgebra that commutes with the SO(3) little group of the massive states is USp(2N).
Therefore massive states without central charges build representations of USp(2/N). As for the
massless states one can consider an SU(N) x U(1) subgroup with generators Ay, = A + A
where the A are defined from the Q as in Eq. (3.6). In Section 7 we will introduce an organi-
zation scheme for massive SUSY representations based on spinor helicity methods which keeps
track of the spin quantum numbers along a reference axis of choice.

However, in the presence of central charges Z!7 | the operators Q' and Q' generate a smaller
SOQ2N) Clifford algebra, whose maximal subalgebra is SO(3) x Sp(N). Therefore states with
central charges only build representations of Sp(N).
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3.2. CFT realization of extended D = 4 SUSY

As it is well known, there is a beautiful relation between the A -extended spacetime super-
symmetry algebras and the n-extended internal superconformal algebras with corresponding
Kac—Moody symmetry g. We will assume in the following that we are dealing with holomor-
phic spacetime supercharges that all originate from the right-moving sector of the compactified
string theory, as it is always the case for heterotic string compactifications. As we will discuss,
for purely holomorphic supercharges, the massive BPS states with non-vanishing central charges
are of perturbative nature. However in type II compactifications, the supercharges can originate
from the left-moving as well as the right-moving sector of the string theory. In this case, some
of the massive BPS states with central charges are non-perturbative, as they are given in terms of
wrapped type II D-branes. These non-perturbative states will not be discussed in this paper.

In SCFT, the holomorphic supercharges Q! and Q 7 can be always realized by the world-sheet
fields of the uncompactified four-dimensional Minkowski spacetime together with those of the in-
ternal Kac—Moody symmetries. This fact allows for a completely model-independent realization
of the spacetime supersymmetry algebra without any reference to “geometrical” details of the
internal SCFT. To be more specific, compactifications to four-dimensional Minkowski spacetime
which allow for a CFT description, still have SO(1, 3) vectors id X* and {* in their world-sheet
theory, the first four components of the ten-dimensional ancestors i X" and ™. Similarly, the
ten-dimensional SO(1,9) spin field S, factorizes into separate h = % and h = % primaries S,
and X, the former being a Weyl spinor of SO(1, 3) and the latter falling into representations of
the R-symmetry. In fact, both SO(1, 3) chiralities can occur, i.e.

Se=S.5" @ sP 5. (3.10)

The number of (X, X;) species coincides with the number of spacetime supersymmetries, we
will discuss the N' =4, 1, 2 cases below. In each case, the (left- and right-handed) supercharges
in their canonical ghost picture are given by

iy _ 1 dz e ~—1/26 1 dz = _gp
» _a—/1/4?§2mSaZ‘e , QJ- =174 P 2 Xje . (3.1D

Independent on the fate of the internal spin fields X I ¥, the interactions of the & = % spacetime
spin fields S,,, S” with the NS fermions is governed by

Uﬂbsb(w) 1/2 1 b
Y (2)Sa(w) ~ W +(z—w) / |:Sé‘(w) + EGZ&S (w):| +..- (3.12)
7 —

In lines with the discussion of Section 2.3, one can bosonize the left- and right-handed spin fields
as et (H1+H2)/2 and e (Hi—H2)/2 regpectively. In order to reconcile bosonization techniques
with SO(1, 3) symmetry, we align e*3 /2 components showing up in the subleading term of
the OPE (3.12) into covariant excited spin fields Sb Sk of weight h = %:

w +3iHy /2 +iH)/2 b +3iH /2 . FiH/2 ~bagu _ I ob _
Si<e e , S, <e e , 0, Sy _GahSM_O' (3.13)

A large list of OPEs between (¥*,S,, S’; , Sﬁ, SH including subleading singularities can be
found in Appendix B.2.
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3.3. CFT operators in N = 4 compactifications

The internal SCFT in maximally supersymmetric N = 4 compactifications to D = 4 dimen-
sions can be understood in terms of free fields idZ™, ¥™ with m = 4,5, ..., 9 which represent
the internal components of the ten-dimensional 79 X m=0,1,...9 wm:(), 1....9 and transform as vec-
tors of the internal rotation group SO(6). The corresponding 7 = % spin fields ¥/ and ¥ 7
responsible for branch cuts of Y™, transform as spinors of the SO(6) = SU(4) with left-handed
(right-handed) index 1 ). They enter the dimensional reduction SO(1,9) — SO(1, 3) x SO(6)
of the D = 10 SUSY charges

yr _ 1 dz Ie—9/2. (~1/2)b _ %

a —W¢2 S Xe Q = /1/4 S (314)
where the internal SO(6) = SU(4) is interpreted as the R-symmetry group. The ten- dimensional
bosonization prescription can be straightforwardly applied to ¥, X!, j (eg. X !

e A H/2) “and excited spin fields X, and 27 of weight 7 = % are constructed in
close analogy to their ten- and four-dimensional counterparts (2.14) and (3.13):

2’711 < 3 Hs/2gki Hy/2 ki Hs /2. )/JIEI jz-_ —0. (3.15)
,9

The internal supercurrent is built from the m = 4,5, .
ancestor (2.6)

components of its ten-dimensional

| m
Gint Nﬁzazmw (3.16)
and gives rise to internal central charge’ ¢ = 9. OPEs among the ¥*, ¥/ % 7 and Z‘,{l, ) ;f’ are
gathered in Appendix B.3. Identities between six-dimensional gamma and charge conjugation
matrices can for instance be found in the appendix of [19]. The following Fig. 1 aims to give an
overview of the conformal fields in the spacetime and NV = 4 internal CFTs.%
The higher ghost picture version of the SUSY generators (3.14) is given by

F1/2.1 1 dz w b 17 +/2
20[/3/4%271’ [10X,0,;8" " + Said 2"y, Z7]et?”, (3.18)
1 d
Q(+1/2)b 2()(/3/4¢A2Z [laXM baS EJ+S laZmV ) ] +¢/2’ (3.19)

their anticommutator with the (—1/2) picture analogues (3.14) yields the following ghost-neutral
SUSY algebra with nontrivial central charges Z!/ and Z ij

(+1/2).1 5(=1/2.b I b _ 1 dz .
{ a ,QJ— }ZC J(O'Mg)a PM’ PM—E Elaxuy (3.20)
7 The underlying OPEs are
256 5O
19Zm (20 Zn(w) ~ T U (W (w) ~ 3.17)
(z—w) —w

8 The fermionic bilinear states ¥"y* and ¥"WP at weight i = 1 by themselves should be eliminated by the GSO
rojection, but trilinear combinations ¥™ ¥ * and ¥* W WP which mix between spacetime components and internal
proj P p
fields would survive after the GSO projection. That is why we include the bilinears into the bookkeeping.
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Fig. 1. Conformal fields in the spacetime CFT and the internal CFT of N/ = 4 supersymmetric compactifications.

1 dz

{ é"t‘l/z),l’ 92—1/2),1} =8abZIJ, ZIJ — _/ _'iazm(ymc)l.]’ (321)
200 2mi
A(+1/2).a  F(=1/2).b ibh 3 = 1 dz . _
{7 97 V=627, Zp5= 5o %zazm(y’"c)ﬁ. (3.22)

The central charges arise due to poles in the operator product expansion of QE,H/ D1 and

Q}(;]/ 27 caused by internal free fermions and bosons ¥ and 9Z,,. The latter appear in the
internal supercurrent Gip ~ i9Z,, " and generate an internal Kac—Moody algebra

g =50(6) x [UD]° (3.23)
with dimension one currents
]§10rl(6)(Z) = wmlpn(Z)a ];}1(1)6(2) :lazm(Z) (3.24)

The fields Z,,(z) can be viewed as the coordinates of a (holomorphic) torus compactification
on a six-dimensional torus 7. Their world-sheet superpartners ¥ generate a U (1)° spacetime
gauge symmetry, and the six spacetime gauge bosons are the six graviphotons, which arise in any
compactification on a (holomorphic) six-torus. States that carry non-vanishing internal momenta
p"™ on the (holomorphic) six-torus always have the following field as part of their vertex operator:

|p") ~ e Zn@) (3.25)

Switching to the more convenient bispinor basis, the six central charge operators (in the zero
ghost picture) of the ' = 4 supersymmetry algebra are nothing else than the free bosons Z™:

1
2 ()= @(ymC)”iazwz). (3.26)

It follows that the internal momentum states |p™) are precisely those states that carry non-
vanishing N = 4 central charges. They break the internal world-sheet SO(6) symmetry to SO(5).
At the same time, states with non-vanishing momenta p™ build representations of the spacetime
automorphism group for massive states with central charges, which is Sp(4) = SO(5). On the
other hand, states with vanishing internal momenta, |p™ = 0), build internal SO(6) representa-
tions, respectively at the same time representations of the group USp(8), which classifies massive
states without central charges. The subsequent discussions only take into account the states at
zero internal momentum (p™ = 0).
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3.4. CFT operators in N = 1 compactifications

In this subsection, we summarize universal aspects of internal ¢ =9 SCFTs describing D =4
superstring compactifications which preserve A’ =1 SUSY in spacetime [12-14]. The existence
of one supercharge species

1 _ 1 ﬁ +.—¢/2 S(=1/2)b _ 1 dz o—®/2
a _a_/l/‘*%z lSa): e ¥/7, Q = 2mS x (3.27)

with h = % spin fields X* implies that the world-sheet supersymmetry is enhanced to N = 2.
This can be traced back to the existence of a U (1) Kac—-Moody current 7 of 2 = 1 which emerges
from the mutual OPEs of spin fields with opposite charge:

1 V3

TE)ET(w) ~ GwpAt g e w)! AT w) 4. (3.28)

The internal supercurrents Giim can be split into two components of opposite U (1) charge,

1
Gint = ﬁ (Gl_;t + Gmt) (3.29)
subject to the superconformal N = 2 algebra’
1
J@)T (w) ~ - )2 +J(wW)JT (w) +- (3.30)
i ()
J (@G w) ~ iﬁ + TG w) + -+, (3.31)
mt(Z)Gmt(w) mt(w)Gmt(w) + (332)
3/2 V3T (W) | 2Ti(w) £ /307 (w)
lm(Z)Gmt(w) w0y + 3G —w)? pYE— + (3.33)

with internal ¢ = 9 energy momentum tensor Tjn;. The OPE of alike spin fields gives rise to new
h = 3 Virasoro primary operators

SEQEEw) ~ @ —w)Y O w) +- - (3.34)

with twice the U (1) charge of the spin fields, and iterated OPEs with X * create an infinite tower
of further conformal primaries with higher weights and charges.

A large sector of the internal CFT can be captured by bosonization. Let H (z) denote a canon-
ically normalized free & chiral boson, then we have the following representation for some for
the aforementioned operators:

J=idH,  SE=ctVIH2  of S FHVEH (3.35)

However, the internal supercurrent (or energy momentum tensor) cannot be fully bosonized.
Instead, we can represent Gmt

9 In contrast to [12-14], we normalize J such that it has canonical two-point functions (J (z)J (w)) =1-(z — w)~2.
This simplifies (subleading) OPE coefficients and normalization factors in vertex operators.
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Fig. 2. Conformal fields in the ' = 1 internal CFT, together with their weight & and U (1) charge q.

3 £ H
an—\fz ittt (3.36)

where the & = % operators g% are local with respect to H and satisfy

1 0

+ ¥ ~ . 3.37

g (g™ (w) w0 + @ w)f + (3.37)
+ +
g~ (w)g™(w)
g (@egE(w) ~ o T (3.38)
On these grounds, we can understand the OPE of the supercurrent with internal spin fields,
- 3 IF(w)
G () ZF(w) ~ 2w +-, (3.39)
5i
G () ZE ) ~ (@ —w) g™ Wi w) + - - (3.40)

which introduces excited spin fields X+ of h = % in case of opposite U (1) charges Git <~ XF,

5 = gFeFal, (3.41)

Fig. 2 gives an overview of the universal Virasoro primaries in the internal ¢ = 9 SCFT. More
detailed OPEs including subleading singularities can be found in Appendix B.4.
From these OPEs, we obtain the following +1/2 ghost picture version for the SUSY charge

2 dZ \/5 ~ 1
é—H/ ) =¢‘ o |: 7 Sa2+ + o ,3/418X O' sz-i- +¢/2’ (342)
- A dZ «/g o~ 1
Q(“/z)b=7§%[a/1/4sb2 + St X" ab“S z- ] et?/?, (3.43)

which yield the /=1 SUSY algebra

1 dz

+1/2) A(=1/2).b\ _ ) —
{77, QAP = (ae) P Py, Pu=5-9 5

i0X,. (3.44)
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3.5. CFT operators in N = 2 compactifications

In superstring compactifications which preserve N/ = 2 spacetime SUSY, it can be shown
along the lines of [13,14] that the internal CFT splits into two decoupled sectors with central
charges ¢ = 6 and ¢ = 3, respectively. Starting point are the two supercharges

1.0 _ 1 ie=¢/2, 517250 _ 1 b i -0/2,
a _a/1/4f2 -SaZ'e Q =1 P 5 ZshSie (3.45)
containing two species of spin fields »i=12 and £'=12, The latter turn out to factorize into
decoupled primaries A’ and e*'#/2 from the ¢ = 6 and ¢ = 3 sector, respectively:

2[ :)\,ie+iH/2, Z_‘i :)\,ie_iH/Z. (346)

The ¢ = 3 part can be represented in terms of a single free chiral boson H subject to (2.12).
Its contribution %(iaH )2 to the ¢ = 3 energy momentum tensor assigns conformal weight
h(e*""/2) = 1/8 (or more generally, 2(e'1"') = g*/2). Moreover, OPEs of the partial spin fields
et H/2 introduce h = % fermions e and excited spin fields e™>#/2 of weight h = %.

On the other hand, the A’ fields from the ¢ = 6 sector have weight 2(A') = 1/4 and form an
SU(2) doublet. Their operator algebra'? gives rise to an SU(2) triplet of & = 1 currents 7 4=123:
L+L(z—w)l/z(tAg)ijjA(w)+-~- (3.48)
@—w'? " 2 ' '

The 74 denote the standard (traceless) SU(2) Pauli matrices {((1) (1)) , (? _()i) , (é _01 )} subject

A (DM (w) ~

to the multiplication rule T4t =34p + i€aBC €.
The currents obey the SU(2) current algebra at level k = 1, we use normalization conventions

SAB iﬁsABCjC(w) N

T2 T B (w) ~ 5 + (3.49)
(z—w) Z—w
in which their interaction with the spin fields is governed by
. ANi )Lj .
T ) ~ W) V2(e4) 50T (w) 4+, (3.50)
\/_ (z—w)
; @ M w) 1 P
Al A —(¢1)" o0/ 3.51
@F A w) ~ = = () o )+ (3.51)

Note that also the A’ and J4 fit into a bosonization scheme according to

JA=3 —i0H;, jA 1 +i74= =2 _ \/_e:tz«/—H3 =12 =e:I:iH3/ﬁ (3.52)

with H3 being nonsingular with respect to the ¢ = 3 boson H. This fixes the choice of the SU(2)
Cartan subalgebra.

10° The contraction rules for the antisymmetric gl &;j tensors introduce signs in some of the OPEs:

A (A ~ +8ij A (2 ~_ Cij M (A ~ 75.3' 3.47
i (DA (w) m, i(2) _1(w) m, (2) _,(w) m (3.47)
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The world-sheet supercurrents associated with the two decoupled CFTs,
Gint=Gc=3 + G=6, (3.53)

can be split according to their charges under the 2 = 1 currents. In the ¢ = 3 sector, we find a
free field representation in terms of internal A = 1 coordinates!! i9Z%,

Gems = (iazte M +iaze'). (3.55)

1
2420’
The fermions ¥*(z) = @ together with the free bosons Z* generate an internal Kac—
Moody algebra

g=502) x [UMD] (3.56)

with dimension one currents

jso@ =¥t @ =idH@)., i@ =i0Z5@). (3.57)

As for the N =4 case, the fields Z4(z) can be viewed as the coordinates of a (holomorphic)
torus compactification on a two-dimensional torus 7.

Also the supercurrent of the ¢ = 6 sector cannot be fully built from the bosonization pre-
scription (3.52), it additionally requires the introduction of an SU(2) doublet of h = 5/4
fields g;:

1 . . 1 .
Gemo = E(e’*’“”g +e IV g,) = e (3.58)
The g; decouple from the Al and J4, and their OPE!2

Eij 0
(Z _ w)5/2 + (Z _ w)3/2

makes sure that the supercurrents satisfy the required N' = 4 superconformal algebra at ¢ = 6.
A summary of operators in the internal SCFTs common to N = 2 compactifications are presented

gi(2)gj(w) ~ +--- (3.60)

in Fig. 3.
The internal supercurrent yields the following higher ghost picture SUSY charges:
i L fdzf 1 Wohyi iH/2 | it ia—iH)2
a _ﬁd/3/4f2ni[ﬁlaxuaabs Ae +idZtS,\e
) ZngSaeiH/z]eM’ (3.61)

11 Ag usual, the OPEs between i0Z * are normalized as

2a’

+oey, P0ZE@IVZEW) ~idZEW)IIZEW) + - (3.54)
(z — w)?

i0Z%(2)idZF (w) ~

12 ¢ contractions yield signs opposite to the A j case:
+8t ij j

g (g (w) ~ ﬁ gi ()8! (w)~

L(2)e: (W) ~ J i
g (2)g;(w) G w)i P (3.59)
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Fig. 3. Universal operator content of the internal CFT associated with A = 2 spacetime SUSY, including weight # and
charges g3, ¢ under ;9 H3 and id H, respectively.

_ . 1 dz [ 1 . o .
(+1/2),bi __ . n=ba i ,—iH/2 . —¢gbqiiH)/2
Q = —ﬁa’3/4 f i |:—ﬁ18X 0, Sqah'e +i0Z" S°M'e

- ZJa/giSbeiH/z]ed’/z. (3.62)

The anticommutator of equal chirality generators gives rise to a complex central charge operator,
which can be written in terms of the free bosons Z*:

(+1/2),i A(=1/2),] ij T dz .. 4
{Qa , Q) V=ew2¥,  ZU= — P 57" (3.63)
o
{Q(+1/2),a;’ Q(—l/Z),Bj} _ Sdl}éi./’ Fij _ gl d—z.iaZ_. (3.64)
20’ 2mi

It again follows that the internal momentum states | p*) of the two-torus are precisely those states
that carry non-vanishing N = 2 central charges. They completely break the internal world-sheet
SO(2) symmetry. On the other hand, states with vanishing internal momenta, |p* = 0), build
internal SO(2) representations, resp. representations of the group USp(4), which classifies the
N =2 massive states without central charges.

3.6. Summary of CFT operators

To conclude this section on the internal SCFTs associated with D = 4 compactifications of
different supercharges, Fig. 4 summarizes the field content of the different sectors. This is a good
reference to build the most general ansatz for physical vertex operators.

4. Massive supermultiplets for A" =4 SUSY

Having introduced the CFT setup for the construction of massive string state, let us now turn to
explicit vertex operators on the first mass level. We will first of all examine the four-dimensional
field content of maximally supersymmetric superstring compactifications to D = 4 with N' =4
SUSY. This is the dimensional reduction of the ten-dimensional multiplet, so we will again find
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Fig. 4. Conformal fields together with their weight in various decoupling CFT sectors.

all the 256 states which have been discussed from the D = 10 viewpoint in Section 2. They
form a massive N' = 4 multiplet in four dimensions for which we will work out the spin and
R-symmetry content as well as the SUSY transformations.

4.1. NS sector

With the internal CFT operators from Fig. 1 at hand, the following & = 3/2 combinations
must be considered in the most general NS vertex operator at first mass level:

VD = (i dX Y + eyun " YW + by + Bid XMW,
+ Y V0 Zm + A Y Y Wy + Y O + ) Y W,
+ E D L Wy + 2P Wy W )e PR X 4.1

Requiring vanishing Q; variation for (4.1) implies the following on-shell constraints for the ten
wave functions above:

O=o " +k hy, + ", 0=2a"Y" +kMy,
0= o] + Sk)hekw}, 0= ,3:7 — VIT + 2k)LU)TM»
0="20ctppk” +hy,  O=Fk'dp" +¢lm, (4.2)
This leaves the following 128 physical solutions
e one transverse and traceless spin two tensor
1 .
vih = @ id X e Pt X kMo, = g =@, * =0. (4.3)

“ V20!

e 27 transverse vectors (in the vector and two-form representations of the R-symmetry SO(6))

oy 1 ,
vith = Edl'j"wlpm e Pk X kid" =0, 4.4

1 .
(-1) _ +om{: . .y A —¢Lik-X
Ve = 2@'3“ M(0X Wy 4+ i0ZnyY " i eV P kYW )e PR

kg™ = 0. 4.5)
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e 42 scalar degrees of freedom (scalars, spin two and three-form with respect to SO(6))

=D _

ot = 2—@¢i[(

N + 2k, k)i d X Py 4 20k, 0yt

io
+ ?swxpdf”w v k”] et X, (4.6)
_ 1 ;
vl = 7;’””iE)ZmlI/ne“”e”“X, ¢l =¢m, =0, (4.7)
A LU
vy = g, w,w,e el kX (4.8)

The 46 spurious NS sector states from ten dimensions are aligned into six representations of
SO(1,3) x SO(6). They can be constructively obtained as BRST variations of ghost charge —2
objects, see (2.10):

Vi~ [muky + kum)id Xty + 2m,09+Je X ki, =0, 4.9)
Viam ~ RZpunid X"y 20 Spnkuytyytle0et X, ks, =0, (4.10)
Vi oy ™~ At [ (10 + 40k k) )id X P + 60k 09" + 102, 0" Je e, 4.11)
V/(b(ls)p) AL (ky [10X Wy, + i3 Zyn Y] + 20W, )Pk, 4.12)
Vit ~ AY[i0Z0 0 + o Ky Wy o0, 4.13)
VO~ AR (10X W, — 10 Zy " — 20 kY Wy e P,

K AG =0, 4.14)

Each spurious state corresponds to a gauge freedom. The first one (4.9) admits to gauge away the
longitudinal component of the rank two tensor o, whereas the second one (4.10) identifies the
antisymmetric part e[, together with the longitudinal three-form e, 5 ~ kj,, 2] as unphysical.
Similarly, (4.12), (4.13) and (4.14) eliminate the longitudinal components of (ﬂ”‘ +Vu ), d’”” nd
uv as well as the antisymmetric parts B/ — v,/ and {[pn). The trace of ay,, can be gauged away
using (4.11).
Once the three- and two-forms e, and “’;kw are reduced to there transverse part, contraction

with a’“’“’kp dualizes them to a scalar and a vector, respectively. As we will see below, super-
symmetry suggests to include these dualized states into the complex combinations (4.5) and (4.6).

4.2. R sector

In the R sector, the SCFT operators of appropriate weight give rise to a vertex operator ansatz
with six wave functions:

v = = (vs ,id X" SE[—i—pb[SbE[—i-u‘}BSaZ‘[
+ Y80 ST 47 07" SP Sy + 5T S, Em)e kX, (4.15)

The same set of states also exists with opposite chiralities with respect to both SO(1, 3) and SO(6)
(e.g. v 1 Sa P ILEPEN vﬂ Sby- 7). However, the BRST constraints for the polarizations in (4.15)
decouple from those of the other chirality sector which we did not display, so the discussion will
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be limited to the six wave functions shown in (4.15) for the moment. The full list of physical

and spurious states follows from doubling the solutions of the on-shell constraints. Imposing
invariance under Q yields the following three independent constraints:

_ 1

0=20'v)" "ty + V20 + 5

7 P 1
0= 2a’rnj1’};kb“ + \/Es,‘jfj — Ey?yn]/,

141 b’

I ;7 _
+ — pm.
22 mbhIl
The first two equations can be further disentangled into a trace and a traceless part with respect

to the o# and y,, matrices. Since excited spin fields are o and y traceless, the associated wave

functions satisfy p ¥ 5“ =5y y = 0 by construction. Hence, the aforementioned projections

simplify the BRST constraints to

0=kup} , + (4.16)

u, =« vu’,(ké )b

_ 1 N
B ==V (4 hy ot (65 ) )

20 2T om ybaa,J _ a1 T b
R N L ol U I G T
P 5V =20k vy Ry — vy g0l (4.17)

where p, u,y and s are expressed in terms of v and 7. It turns out that both spin 3/2 and spin
1/2 components of the vector spinors v; as well as the y traceless components of 7 give rise
to an independent physical solution. The former is the D = 4 analogue of the ten-dimensional
spin 3/2 state (2.22). But additionally, we find spin 1/2 Dirac fermions (a’, Fon, a) both in the
fundamental spinor- and in the spin 3/2 representations of the R-symmetry 50(6) To summarize
the physical states built from (4.15) and its opposite chirality counterpart:

e cight transverse and o traceless spin 3/2 vector spinors

_%)

1 : .
v, Y= N x4 (10X" Sy — v 2ok SHP) BT e™ P2 X, (4.18)
=3 _ 1 e Iyab G\ 5 a—¢/2 ik X
v, \/_a/l/4)(“a(lax §% — V2o pib st) e P2k X, (4.19)
J —u,J
0=k"x,1=1x. ,G“ kuxb = X;; Gﬁ“ (4.20)

e 48 spin 1/2 fermions (eight in the fundamental and 40 in spin 3/2 representations of SO(6))

Vo ¥l=—5 ——ab (0, )p* Sai DX ™ — 43Sp) BT e =P/ 2k X 4.21)
l oV C o 4
i =5 (G astiox” — 4as") Zpemt e X, (4.22)
_1 1 : .
VY =t (027 215y~ By S, @23)
(04

1 b 3 —¢/2 ik-X
Sy Pl (102" £18% — V2a/ jib 5, Sm)e P 2k X, (4.24)
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The following spurious solutions have been subtracted to remove internal derivatives d X/ from
the vertex operators:

i _ |
VS ~ 05| (kasl + 4k,8h)i0 X1 5,57 — 2f< W+ 0 )sbzf
+63S, 2" +45,02" + ka,;y,f,jiazmSl;Z_‘i}eer”"x, (4.25)
_ T . . : 1_; -
(fj(s;; 6} (kb“a;j.l + 4k 80)ia X, 54 5; — 2f2<a’kﬂk”“ + Z&,‘ja)sgz,

+60SP S, + 4595 + by 102 Sa ¥ ] —$/2¢ikX (4.26)
They are the dimensional reduction of the ten-dimensional spurious state (2.23).
4.3. SUSY transformations

Now with all the higher order OPEs and physical spectrum in hands, we are able to compute
the SUSY transformations by acting with the supercharge operators on the physical states and
evaluating the corresponding contour integral.

In V= 4 SUSY, the SUSY parameters n?, ﬁa{ are chiral spinors of both the SO(1, 3) Lorentz
group and the internal SO(6) R-symmetry group. For our convenience, we choose these SUSY

. . 1l . .
parameters to have mass dimension [M ™ 2]. As we verify case by case, action of the supercharges

Qé and Q};- given by (3.14) and (3.18), (3.19) takes bosonic (fermionic) vertex operators exactly

into fermionic (bosonic) vertex operators, including their couplings. The polarization wave func-

tion of the Q image state is expressed in terms of 17, 7] é and the pre-image wave function.'?

Once we perform the SUSY variations, besides physical fields in the spectrum, we will also
get certain spurious states. As an example, let us consider the anti-supercharge acting on the
pm—— fermionic state Xu ;- Evaluating the contour integral yields

o =D 7
[néQ 2 ,a 2 ] V( 1)<alw=7 é(o'(MXv)al'i‘ak k(uXv)aI)C )
1 Ja ;
+ vy )(d,[{"” =——nék““xu,a,f(y[’"y"]C),->
i o
+ V:E(spi( T4 IkaaXM a1C; )

) L 7 4 ; I
+ Vi <va1 == (674 Xot.a. = a’k““kavLaJ)Ci>-

As we can see, we obtain two physical states — a spin two boson «,,, and a vector d,[[""] from
(4.3) and (4.4), plus two spurious states — 7, and X|;,,, see (4.9) and (4.10) for their full vertex
operators. We will drop out all these spurious states in our final results for simplicity.

13 In our settings, all the wave functions of bosonic fields have mass dimension 0, and all the wave function of fermionic

fields have mass dimension % see Appendix C for their explicit construction in terms of (massive) spinor helicity
variables.
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Q rY r Q
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Fig. 5. N'=4 SUSY multiplet: action of the left-handed SUSY charge Qé transforms a state into (a combination of) its

left neighbors, whereas Q_}} action maps states into right neighbors.

All the physical states form one big supermultiplet of A" = 4. The structure of the explicit
SUSY variations listed in this section is summarized in Fig. 5. This diagram will be refined in
Section 7 to take helicity quantum numbers into account.

The pattern of SUSY variations depicted in Fig. 5 justifies the complex combinations (4.5) of
vectors and (4.9) of scalars: The complex conjugates appear on widely separated positions of the
multiplet (i.e. the BT and B~ are separated by four Q actions whereas @ <> @~ requires eight
supercharge applications). Also, the internal scalar £2""7 splits into self-dual and anti-self-dual
components 217 which sit at different points of the multiplet.

There are group theoretic selection rules for the possible outcome of a physical state’s SUSY
variations, based on the SO(1, 3) x SO(6) symmetry. Firstly, according to its eigenvalue under
diagonal Lorentz currents, Q can only change the spin by :l:%. Secondly, transformations have
to compatible with the SO(6) quantum numbers involved. Representation of the SO(6) = SU(4)
R-symmetry group are referred to using their Dynkin Labels [k, p, ¢].'* The SUSY variation of
a state € [k, p, g] aligns into the tensor product with [0, 1, 0] 5 ol or [0,0,1]> QJ- of the SUSY
charge. Table 1 gives an overview of the R-symmetry representations involved (see the following
subsection for the 2% splitting).

4.3.1. SUSY transformation of bosonic states

In this subsection, we will analyze supercharge acting on the bosonic states. The spin two
field ey, transforms into left- and right-handed spin—% fermions Qo — x and Oa — X in lines
with [0,0,0] ® [0, 1,0] — [0, 1, O] for the R-symmetry scalar o,,,,. The SUSY variations of this
field are parallel to (2.27) in ten dimensions:

HHa -H 1 -
CA AR B (Xil:\_ﬁ”%‘w(ko”)ab)’ @30
O N hH(_;5 1 _; .
05 v = vy 2 (7 = b k)'s ) 432

14 Our conventions for the Dynkin labels [k, p, g] are such that [1, 0, 0] labels the vector representation, and [0, 1, 0]
and [0, 0, 1] are left- and right-handed spinor. A generic representation with labels [k, p, ¢g] has dimension

1
Dy, p.q1= E(k +p+qg+3)k+p+2)k+qg+2)k+D(p+D(g+1), (4.27)

and tensor products act as follows on Dynkin labels:

[k, p,ql®1[0,1,0l=[k, p,g—1]1® [k, p+1,ql®k+1,p—-1,q]®k—-1,p,qg+1], (4.28)

[k, p,ql®[0,0,11=[k,p, g+ 11®[k,p— L ql®lk+1,p.g—11®[k—-1,p+1,4q], (4.29)

[k, p,ql®[1,0,0]=[k,p+1,q—-11®[k,p—-1,q+1]1®[k+1,p,q]
@lk+1,p—-1,qg-11®k—-1,p,ql®lk—-1,p+1,g+1]. (4.30)
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Table 1

R-symmetry content of the massive A = 4 multiplet in SO(6) Dynkin label notation.

Spin Wave functions SO(6) rep. Spin Wave functions SO(6) rep.
2 apy [0,0,0] 3/2 XZJ [0,1,0]

1 g™ (1,0,0] 3/2 xg"j [0,0, 1]

1 aj™ [0.1,1] 12 o [1,1,0]

0 ¢ (mn) [2,0,0] 12 F;-)”'j (1,0, 1]

0 .Q;:nl [0,2,0] 1/2 a? [0,1,0]

0 2 [0,0.2] 1/2 aj [0,0.1]

0 ot [0,0,0]

The spin one fields fall into vector and two-form representations [1, 0, 0] and [0, 1, 1] of the
R-symmetry, so their SUSY image belongs to [0, 1,0] ® [1,0,0] — [1,1,0] & [0, 0, 1] and
[0,1,0] ® [0,1,1] — [0, 1,0] & [0, 2, 1] & [1, 0, 1], respectively (note that [0, 2, 1] does not
occur in our multiplet). This implies that /Si M can transform into an internal left handed

fermion r;; ; €[1, 1, 0], and right-handed spln-— fermions X . ora Spll’l-— fermions a ab in short:

QB* — ¥ +a + r. For the SO(6) two-form d""1, we will get the opposite chirality configura-
tion, Qd — x + a + r. The explicit results for the left-handed Qé are given as follows,15

[0y VD]
-Ly/ 5 1 m m m -
=V’ (X;i,b 3f"1[ B " i — ku/f’;,r;, - k%)b;;]%fll)
D e m _
+V, 2 <rn,1= e i (BT"E), [65,51625/+(ymyn)11]>, (4.33)

(+3).1

-/ 7 1 _
(70, > v =v, (ag_ 2\/_;7, bb%,{/), (4.34)
[ Q(+ )l Vd(—l)]

_l) 1 B , _
vV (i - 6—ﬁnf; (385 + ("5 + k™), Tom )

-3 6
+V; 2 < b= 6J_n1 Z";Vn”[@( )51 + Im¥)f ]) (4.35)
whereas the action of right-handed Qb_ yields
(+1).6 1 «hH 1
[an V’B(-F )] Va 2 (al Zﬁnbﬂ+ o bbym ][) (436)

- 1 _
70y v

- ;2)<Xﬁ,1 3[”b[3ﬂu P kP (ﬁ_’mk(}“)l;b]);m’i')

15 There is a subtlety in these computations (and also for some later ones) related to the fact that gamma matrices
associated with spacetime and internal dimensions are anticommuting.
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VD (Fle ==l oo + ], @37)
(71072 v
_yP (;}{,é _ 6%/_/73;; 3785 + (@™ 010 + o k) e ) 7 )
+ Vr(_%) <r[17,p 6¢_ﬁl;¢m'l bbfn 71[685558" 1 + ()/mfp)lf])' (4.38)

Then we are left with the SO(1, 3) scalar fields &%, e mn) and §2,,n. The internal states $2,,u1
represent both self-dual and anti-self-dual three-forms of SO(6). We will denote their irreducible
components as .Qm ; €10,2,0] and £2,, € (0,0, 2], for the self-dual and anti-self-dual part,
respectively. Their defining 1rredu01b111ty constraint is

L (Y™ 1= 21, (7™ =0, (4.39)

The SO(6) selection rules constrain Q7¢ " €[0,1,0] ®[2,0,0] — [2,1,0]1 @ [1,0, 1] as well
as QI.Q+ . €10,1,0] ®[0,2,0] — [0,3,0] & [1,1,0] and QI.Qn;nl €[0,1,0] ® [0,0,2] —
[0, 1,2] @ [0, O, 1]. Thus, we expect the internal spin—% fermion 7 or r by performing the SUSY
transformation Q¢ — r, and Q¢ — r. Three-forms, on the other hand, are mapped to either r or

a, depending on the self-duality property Q2% — r or Q2 — a. The supercharges acting on
@* and ¢ yield

(CE N S _FAEDD (1
[, ¥ vyiP]=0.  [@}0; " v "] =0, (4.40)
[ AEDD (<1 (3 (=T L4 F
[0, " v =v, P (al =~/ "2 0% i), (4.41)
+4).1 1 1
[ v =y (dh = —a o), (4.42)
and
b 1 Hfomi 1 ] i
[, " vV =v,2 (;””=7§n’;;<’””kbl;yn”>, (4.43)
_FAGDE 1 () b1 b —
[7,Q; 2" v =V 2 (r;" = 5" ) (4.44)
On the three-forms an;n ;> WE obtain
(+3 )1 &) I
[ Q ((ZJFI)]ZV" : <rll<7,J: 4\/—’71‘anl(ykymnl) J) (445)
+1.b 1 -5 1
[anI V( )]ZVH ’ <a? 2«/—% mnlk mnl 1) (4.46)
and
[ER SN S (-7 1 bo 1
[ Q V- ] Vi’ <“5:2ﬁ” mnlkbb (4.47)
+3)b (1) (=7 Ly g I
[an v =v; 2 <k,5=—4ﬁ’759mnz(ykym" )I- ) (4.48)
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4.3.2. SUSY transformation of fermionic states

In this subsection, we investigate the (anti-)supercharge acting on the fermionic states. Fol-
lowing the strategy outlined before, we first derive a selection rule from group theory and then
perform SUSY variations to get the expression of the bosonic wave functions explicitly. All the
transformations are symmetric under simultaneous exchange of chiralities on the supercharges
and the states (where @1, 7, 27 < ®~, 7, £27). We will only comment on one out of two
inequivalent cases in the text but also give the formulae for the images under chirality rever-
sal.

Since both the spin-% fermions (x, x) and the spin-% states (a, a) fall into (anti-)fundamental
R-symmetry representations, the SO(6) content of their SUSY variation is [0, 1,0] ® [0, 1, 0] —
[0,2,0] & [1,0,0] and [0,0, 1] ® [0, 1,0] — [0,0,0] & [0, 1, 1]. The (anti-)supercharge acting
on XZ ,( )ZI .) will give us vectors ﬁi ™ In the cases Q x ;i ;, and Q 7 XZ’ ; of opposite chirality,

[mn]

the spin two field «;,, and the vector d;;""" can emerge. Indeed,

G AN M) 1 1
[77111 a : ’VX 2] V( )</3P- —771Xu a.l(y C) (449)
\/_
A = - 1 7
[U,{Qi : u’ Vy : ] = VOE b <(X/w = _277‘{(0% Xv),a,lto k k(,uXu) a, I)CI)
/o

(=D glmn] _ _

Tk Xpar (7"C) ;! ) , (4.50)

a DI =hey ) g cad o saly ol
[’71 a Vg ]—Va O‘uv—_nl(U(ﬂlalev) +aKaa (X )Cj

V2
+V;_1)<dlgm”]=—{ 1 (y m”c)’,—), 4.51)
fa-ba ) 1
iy Vv Y =i 1)<ﬂ+m=ﬁn£xﬁ’( '"C),—,—). (4.52)

The supercharge action on aﬁ’ and Ezl{ follows the same selection rules with respect to SO(6) but
different ones with respect to spacetime spin. The corresponding SUSY transformations read

[ Q( 2)1’ a(,%)] (1><ﬂ+m_£n§[kﬂabf+(kau)bc]ac,J(y’”C)”)
+v$ 1)<~anz 1 ——=nab, 1 Ymn €)' ) (4.53)
12v2
[ﬁ}iQ(—%)B’ (—1] Vi (@~ «/_n,,kb”ath) (4.54)
and
0y v = vt (@ = Vapat ) 55)

16 The notation MM,LZ.N(MH.MFI‘,LJ..NMHMHI...m),..#n indicates we symmetrize over the indices u;,...,
Hj—1,allowbreakppyy, ..., Hy, but not over the indices p, ..., 1k enclosed between the bars.
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S=Db (=1 e N e ) e T
[an WV V= V( 1)<:3 ) ['[ku‘sbi‘+(k%)bé]ac'1(ymc)ij>
1 = + =
Do~ . -
+ Voo (9, Tﬁnga T G O ]>. (4.56)

in the SUSY transformations, although it is allowed by

Notice we do not get a vector " i

SO(1,3) x SO(6).

Now we are left with the internal spin-% fermions r and 7. Group theory admits SUSY
variations in [0,1,0] ® [1,1,0] — [1,2,0] & [2,0,0] & [0,1,1] and [0,0,1] ® [1,1,0] —
[1,1,1]1 @ [1,0,0] & [0, 2, 0] corresponding to vectors d,&m"] and internal scalars §<’""> in the
former case and Qr — B* + 27 in the latter. The left-handed supercharge yields

b b - va! ’ ”
[17Qa 7.V P = Vd( l)<dl[‘mn] - T’ﬁ[ku‘sab + (0uk)a ]rIEnJ (»"1€)
B 1
v 1><§<mn) ﬁn‘;rémj( n)c)”>, (4.57)
_fA=0a (=) -1 U _7i-a i
Qv = v (= il kb e

A

n V((ZZI)<‘QTHI " (7 nl]C)I_l)’ 4.58)

and the right-handed counterpart reads

bt = - 1 s I
[niQa > v, P =v," l)<ﬁ = 51 (Onai +“’kukaa)rin’ac’l)
’ -
+vED (92“” - —@U?kudilml’a’l (Vn”C)Ii)v (4.59)
fAaha o=h 1 Vo'
(1o v = vy >(d,g e RO e C),-J-)
1

n V;_l) (C(mn) ﬁﬁlr(ml .a, Jl( n)c)I_J_)_ (4.60)

This completes the list of SUSY transformations within the A" = 4 multiplet. We will revisit
these results from the spinor helicity viewpoint in Section 7.

5. Massive supermultiplets for A = 1 SUSY

This section is devoted to the universal SUSY multiplets common to all D = 4 superstring
compactifications which preserve A/ = 1 spacetime SUSY. It was already observed in [1] that 24
universal states exist, and the reference also investigates their three- and four-point couplings to
massless states. We will show that they gather in three multiplets: one spin two representation of
8 + 8 states and two spin 1/2 representations of 2 + 2 states each. The first subsections review
the construction of these states and the third one contains their SUSY variations.
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5.1. NS sector

201

By assembling & = 3/2 combinations of the conformal fields of Fig. 2, one arrives at the

following general form of an NS state at mass m> = 1/a’:

VO = (nid X"y + ey " Yyt + by, a¢“+§uwﬂj
+ 2,0+ 207 + ;G + G, )e PeF X

int

This is BRST invariant if the polarization tensors satisfy

3
o ML 2 _ )
O=oa," +k"hy, + 2\/(7(C++C—)» 0= o) + 3epnnk”,
\/§
0==FkME, + c_ —cy), 0=2d"a, k" + hy.
éu 2\/(7( +) j7ay "

Twelve physical states solve this system of equations:

e one transverse and traceless spin two tensor

o
o

e One transverse vector
VitV —d,ytge?e® X kta, =o0.

e two complex scalars

:I:
vl = Worri [(n,w +2a'k, k)i XYY + 20k, 9y
io

+ ?guv)\pw'uwvwkkp]e_(peik.xa
V(—l) — QFOFe ik X
ot = :
In addition, we have spurious solutions to the BRST constraints:

Vi ~ ks + kum)io X!y + 2w, 09 e 0 X ki, =0,

VED ~ [2Zpmid X1y 42 Skt y vt e e ® X, kB, =0,

2(sp)
V/(x;(ls)p) ~ AO[(Gmt mt) V3a'k '(ﬂ”'j] ’k‘X’
Vi iy ™~ M [ (aw + 40k ki )id Xy + 60k, 09, +2V (G, + Gy ) Je ™

1 .
v = \/Toz,wiaX“w e Pelk X, kfay, =apw =a,t =0.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

5.7
(5.8)
(5.9

(5.10)

The last two spurious states allow to gauge away both the ¢* scalars and the longitudinal com-

ponent of the massive vector &, ~ k.
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5.2. R sector

For D = 4 fermions at mass m? = 1/a’, the most general vertex operators built from A = 1

internal SCFT fields reads
VED = (iaX"S, EF + 5l Sh Y +utas, ot
+ yuSaaE+ + @5552~+)e*¢/26ik~X7

see Fig. 2. Invariance under Q yields three independent BRST constraints:

1
0=20"v" K5 +~2p} + ~u’c",

2 ab
1 /3
0= kﬂpb 2 20 /a)b’
0=y"+2, 3a)bk

They allow to express any wave function in terms of v},
u® :a’vz (ko—.l/-)ba’
_ 1 -
Pub = —ﬁa(vﬁm + v (kffkffu)a;;)

- o'
@ =1/ ?(Za/k”v,ﬁkab - vl‘iafb.),

2
¥ = ;l( (04)," — 2k"v").

(5.11)

(5.12)

(5.13)

The same set of states exists with opposite SO(1, 3) chirality and internal U (1) charge. Including
them, we have four physical solutions to (5.13) and four solutions to the conjugate system of

equations:

e two transverse and o traceless spin 3/2 vector spinors

(=3) 1 . b st a—¢/2 ik-X

VX 2= WXZ(!BXMSQ —x/iot/ka};S“ )Z € ¢/ e ,

b i /5. 1yab ——$/2.ikX

Vi = g (10X, 8" — N2} S,) B e 9/ 2R X,
ll ab

Ozk'uXM_X;,L ab_kﬂxa _Xll ’
e two spin 1/2 fermions
=3 _ o'/ b ag iqayi +—¢/2 ik-X
vV, ¥ = 5—a ((0uk)p” Said X" — 405p) X e P12/ X,
Ol/l/4

a; (G aS 0 X" — 408P) e ?/2eik X

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

Spurious solutions can gauge away the internal excitations with wave functions y* and w;,:
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Rt «— b — o

Xﬁ, > auy ®dy <«— )Eg'

ot «— 4y <«— -

Fig. 6. The three disconnected A/ = 1 SUSY multiplets at the first mass level: As before, Q (Qb' ) action takes states
along a left (right) arrow.

1
V(()(Sgi [(kaa‘“”+4k $D)iax" s, Et — 2ﬁ(a i+ 20, )S”z+

+ 608,21 +48,0X — 24/3a k,,sb Tt [e9/2e1k X (5.19)

©(sp)

e ?/2eh X, (5.20)

_1 _
v 2)~(~)[,[(k”“ K 4kESL)i0X 50 5 — 2«/5(04 k™ 4~ 'bf’)SMz—
16385 +48Pox— — 2V 3alpbas, 5 }

5.3. SUSY transformations

The notation for the A" = 1 multiplets can be kept lighter because of the abelian R-symmetry
group U (1). The supercharge operators do not carry any R-symmetry indices, only an abelian
charge of £+/3/2. After performing SUSY variation on all the bosonic and fermionic states in
N =1 SUSY, we find that these states split into three separate massive supermultiplets — a spin
two multiplet {a, x, X, d}, two spin—% multiplets {®1,a, 27} and {2, a, @}, see Fig. 6. We
will show our results of the SUSY transformations in order.

5.3.1. SUSY variation of the spin two supermultiplet
The spin two multiplet includes a spin two boson a,,, a vector d,,, and two spin-% fermions
Xji> Xu,a With opposite chirality. The SUSY transformation of the bosonic states are:

[ QS Vi) = vy 2)(Xﬁ=%n“alw(k5”)ab>, (5.21)
- . 1 B

(3004 v = (£ = Zyentbo)'s) o
+3) (= =5 -1, - /

[0, 2, viV]=v, 2 (Xizzﬁ" [3dﬂaab+(¢oﬂ+akﬂ¢k)ab]>, (5.23)

- AEha yED v (5
[7.QF 2% v, ]_VX Xub= 2Fﬂa[

The SUSY transformation of the fermionic states are:

3d,8%; (dau—ka/kﬂdk)d,;]). (5.24)

ol viP 2o, (5.25)
_ G — I _ ;
(704 v, P =V 1)<auv=E"d(a&axv)a+O/k“”k<u><v>,a)>

_ V3o -
+V ‘><dﬂ= > nak““xﬂ,a>, (5.26)
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=1 =D - 1 _ _a
[1°Qa > Vg ] =Vy ”(%Fﬁﬂ“(%maXf>+a’kaak<u><3>)>

_ 3o’ .
+Vas 1)(dll:_ ) N“Kaa a)

(5.27)

72024, (2)] 0. (5.28)

Note that the signs of the SUSY transformations between spln-— and spin one are sensitive to
the chirality, see the relative signs between (5.23) and (5.24) as well as (5.26) and (5.27). This is
necessary for consistent closure of the SUSY algebra and can be neatly represented by a chirality
matrix > when passing to Dirac spinor notation.

5.3.2. SUSY variation of the spin 1/2 supermultiplets
The first spin-% multiplet {® 7, a, 27} includes a right-handed spin-% fermion a and two
scalars @1, 2. It is governed by the following SUSY transformations:

[ Q(+ ) V(—l)]zo’ (5.29)

[i; 5 V= -(_%)(_;;=_0‘/7%¢+ﬁ13)’ (5.30)

[ (+§) V(fl)]z a( 2)(%—9 n kbb) (531)

[77 Q(+ )b V( 1)] 0. (5.32)
and

_1 A

0¥ v )= vt (0 = Vet 39

(7,00 v )= v (@ = iya). 634
For {2, a, @~} multiplet of opposite R-symmetry charges and fermion chirality, we obtain

[ ng D y] - V(—%>(ab:_a/—%¢,—,7b), (5.35)

[77 Q(+ )b ( 1)] 0. (5.36)

[ (+ ) V( 1)] 0, (5.37)

- -1 A

[7, 0 +3).b. V( 1)] v, 2)(ab=~(2+7_lbkbb)’ (5.38)
and

[7] Q( 2), (- 2)] V(:_I)(Q+=7]bab), (539)

[0V~ ] =V (07 = Ve, (5-40)

We will explore the helicity structure of these results in Section 7.
6. Massive supermultiplets for A/ =2 SUSY

In this section, we will show that the first mass level in compactifications with A = 2 space-
time SUSY is populated by 80 universal states which are aligned into one 24 + 24 state multiplet
of highest spin two and two 8 + 8 state multiplets of maximum spin one.
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6.1. NS sector

According to the CFT operator content shown in Fig. 3, we make the following general ansatz
for an NS state at the first mass level'’:

VD = (i XYY + eyt + byt + Yidel 4+ y_ge '
+plioxre + prioxte M 4y Yozt +y Yo Z”
+E YO H + dE Ty + QA Tae ! + 24 Jpe7
+opyioz e v _idz7e M 4o gz e 4y _igzte
+ ol e + o ytyteT ! 4ol ) g )e et X, (6.1)
Requiring BRST invariance under Q; yields the following on-shell conditions:

Ozauﬂ _|_th“ SRy SRy _a/71/2cii’

1 i ;
. v _ i gA AL L
0=2a"ay k" +hy, 0=k du—l—m(t )jc, ,
0= + 3euw\kk, 0=Ys+ 20/)/51{“,
0=B —yF+2k0E,,  0=k"E +( 4 — L. 6.2)

These BRST constraints admit 40 physical solutions:

e one transverse and traceless spin two tensor

1 .
Vil = SaewidX e ek X play, = ap) = et =0, 6.3)
e cight transverse vectors three of which form an R-symmetry triplet (note the sign difference
in the pseudovector parts of AT and w™®)
Vi =gytigHe %R kg, =0, (6.4)
VitV =adyr gaete X prat =0, (6.5)
1 : . .
(=D _ +(; +iH | ;g% : A +iH\,—¢ .ik-X
Vee ' = 2@/3“ (iaX"e™ T +idz gy Lid ek Yy e M)e Pt X,
kB =0, (6.6)
_ 1 . . .
Vii" = S (X i 2y i ke,
k' ws =0, (6.7)

e cleven real scalar degrees of freedom

-y_ o*
N
ia

+ TSWW"l/f”t/ﬂkp]e“”e"k'X : (6.8)

[(n,w + 20k k) )id XYY + 20k, APt

17 Recall that we have nonabelian R-symmetry SU(2) in this setting, and i, j = 1, 2 denote its spinor indices whereas
A =1,2,3 are adjoint indices.
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1 ) ) . )
=D _ cogt —iH | iq7— iH i 1= ik-X
Vs _—qu[zaz e M +idzZ7eM + VG i]e %, (6.9)
Vi) = @fetit ghedelk X, (6.10)
1 . .
=D _ toa,t +iH —¢ik-X
V =—=("i0Z7e " e e, (6.11)
V2!
In addition, we have numerous spurious states:
v;;S;; ~ [(uky + k)i d X " 4 2m, 8y e Pe Xk, =0, (6.12)

Vi ~ R2Zpnid Xyt 420 Skt ytytle Pt X, kg, =0, (6.13)

V/(\g(ls)p) ~ Af I:kaMjA + \/F(TA)jiGiji|e_¢eik'X, (6.14)
107

VD~ A (ny + 40k k)i 0XP Y + 60k 99

+idzTe 1 igz7e — 2V G Je Pl X, (6.15)
Vigap ~ A3 k(0 Z5y " +iax1et ) + 2aeil”]e*¢’elk'x, (6.16)
V/(h(sp) A3[2' k" idH +idz" e i8Z+e_iH]e_¢e”"X, (6.17)
Vst ™ A2y yrte i x et oz gt e tel X,

+

kM AL, =0. (6.18)

They allow to eliminate the longitudinal components of six vectors and of the two-forms w/fv.
The latter therefore dualize to transverse pseudovectors entering the ﬂljf and w,f states. By com-
bining with the A; spurious state, one can transform the ¢ solution into a form without internal

¢ = 6 supercurrents:

_ 1
v, V= @¢[(nw +4a'ky k)i d X Y + 60k, 9yt
+3(i9z%e ™ +igz e )]e 0t X, (6.19)
6.2. R sector

In the R sector of the first mass level in A/ = 2 scenarios, the vertex operator ansatz in one
chirality sector includes nine SCFT operators:

VD = (vl ia xS, 1 4l shalel 2 udas,aiel ! 47 ozt sPale i
+7 BliazfsbkiefiH/Z_’_a)?sa)\iaeiH/Z_}_qusaa)\ieiH/Z
+ ;8% /2 4yl g ale 3 /2 om0 2k X, (6.20)

The system of BRST constraints can be reduced to the following independent set:

= I b
0:2kﬂ,0;;,+r+i)i—1/—ﬂbi, 0=ow! +2v2a'F 5k,

0= 20/v/" Y 5+ V25! + u“o“b, 0=y +v2a'7_ %,

— V2 (6.21)



W.-Z. Feng et al. / Nuclear Physics B 861 (2012) 175-235 207

Adding a sector of opposite chirality and internal charge gives rise to 40 physical solutions. All
of them transform in the fundamental representation of the SU(2) R-symmetry:

e four transverse and o traceless spin 3/2 vector spinors

_1 1 I i s .
v = gty K (10X Sa = V20l S )1 e 2e 02X, (6.22)
o
-»_ b 1 yba i —iH/2 —$)2 kX
Ve _mxé’i(zaxﬂs — 22, ) 1 e e ?/2eik X (6.23)
i _ b
0 =KX = Xpios; = ku X, = X,0° (6.24)
e six spin 1/2 fermions:
Ch oA . .
Va ' = ——a} ((0uk)p" Said X" — 405y) e 1/2e70 20X, (6.25)
INNVAVE o N .
v, = aa,i ()5 SPid X" — 4989l e~ H/2e=0/2eik X, (6.26)
1 1 . - . .
v = Wri” (1027 Sue' /2 — 20/} SPe3H12) )60/ 26k X (6.27)
(04
_1 1 ;. : . . .
! Z)ZT i (1027 87T — a