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A global foliation of Einstein–Euler spacetimes

with Gowdy-symmetry on T3

Philippe G. LeFloch∗ and Alan D. Rendall†

Abstract

We investigate the initial value problem for the Einstein–Euler equations of general relativity
under the assumption of Gowdy symmetry on T3, and we construct matter spacetimes with
low regularity. These spacetimes admit, both, impulsive gravitational waves in the metric (for
instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the
fluid (i.e., discontinuities propagating at about the sound speed). Given an initial data set, we
establish the existence of a future development and we provide a global foliation in terms of a
globally and geometrically defined time-function, closely related to the area of the orbits of the
symmetry group. The main difficulty lies in the low regularity assumed on the initial data set
which requires a distributional formulation of the Einstein–Euler equations.

1 Introduction

Background

We consider matter spacetimes with T3 Gowdy symmetry which, by definition, admit a two-
parameter group of isometries generated by two orthogonally transitive, commuting Killing
fields. (See Section 2, below.) Under this symmetry assumption, the initial value problem for
the Einstein equations has received much attention in recent years, both in the vacuum case and
in the matter case when the matter is governed by the Vlasov equation of the kinetic theory of
gases. In the present paper, we are interested in the evolution of perfect fluids, and in the context
of Gowdy symmetry, we aim at constructing a globally foliated, future development of a given
initial data set. The main novelty in this work lies in the presence of shock waves which appear
in the fluid and, in turn, generate curvature discontinuities propagating in the spacetime.

Recall that a spacetime is a (3 + 1)-dimensional differential manifold M that is endowed with
a Lorentzian metric g with signature (−,+,+,+), satisfying the Einstein field equations

Gαβ = κTαβ, (1.1)

whereκ > 0 is a constant and all Greek indices lie in the range 0, . . . , 3. Here, Gαβ := Rαβ−(Rγ
γ/2)gαβ

denotes Einstein’s curvature tensor, Rαβ the Ricci curvature, and Rγ
γ the scalar curvature of the

manifold. The stress-energy tensor Tαβ appearing in the right-hand side of (1.1) describes the
matter content of the spacetime which, for perfect fluids, reads

Tαβ := (µ + p) uαuβ + p gαβ, (1.2)
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where the scalar field µ represents the mass-energy density of the fluid and u its velocity vector.
The spacetime is assumed to be time-oriented and u is normalized to be a future-oriented, unit
timelike vector field. We also assume the linear density-pressure law

p := k2 µ, (1.3)

in which the constant k ∈ (0, 1) represents the sound speed in the fluid and does not exceed the
light speed normalized to be 1.

Under the assumption of T3 Gowdy symmetry made in the present paper and after introducing
areal or conformal coordinates (see Section 3, below), the Einstein field equations take the form of
a coupled system of nonlinear wave equations with differential constraints. Since the pioneering
work by Gowdy [14], (vacuum) Gowdy symmetric spacetimes have been extensively studied
[24, 11, 17, 7, 8, 5, 4, 18] and Penrose’s strong cosmic censorship conjecture [25, 16] was eventually
established by Ringström [31, 32]. A generalization of these spacetimes that contain matter
governed by the Vlasov equation was recently presented in [26, 28, 1, 2, 10, 33].

As far as compressible matter is concerned, the mathematical investigation of Gowdy-type
spacetimes was initiated by LeFloch and Stewart [22] (see also [3]), who introduced a converging
approximation scheme for the initial value problem and derived several a priori bounds in suitably
chosen coordinates. Therein, it was found necessary to cope with weak solutions to the Einstein
equations, understood in the distributional sense and containing propagating discontinuities
(shock waves). In [3, 22], the authors established a local-in-time existence result in the class of
spacetimes with bounded variation. The present work is a continuation of this work and is aimed
at constructing a global foliation of such spacetimes.

Recall that spacetimes with bounded variation were constructed by Christodoulou in his work
[6] that settled positively the weak version of Penrose’s cosmic censorship conjecture in the context
of spherically symmetric spacetimes and for scalar fields. Recall also that Groah and Temple [15]
established a local-in-time existence result for spherically symmetric matter spacetimes. In such
spacetimes, no gravitational waves are permitted and the matter equations are coupled with a
differential equation accounting for (non-evolutive) geometrical features.

The study of solutions of low regularity is motivated by the fact that these can arise from
smooth initial data. In the case of the Euler equations without gravity, this is well known and it is
physically plausible that adding gravity should not make a fundamental difference. A proof that
this loss of regularity occurs in general relativity was given in [30]. That result concerned plane
symmetric solutions of the Einstein–Euler equations, and they are a special case of the solutions
studied in what follows. A direct comparison is made difficult by the fact the time coordinate
used in [30], a constant mean curvature coordinate, is different from that used in the present
paper.

Objectives of this paper

The assumption of Gowdy symmetry made in the present paper allows us to address the prop-
erties of dynamical gravitational degrees of freedom. We consider the initial value problem, and
search for the spacetime as a future development of a prescribed initial data set. This amounts
to prescribing an initial hypersurface endowed with a Riemannian metric and its second funda-
mental form, together with the mass-energy density and current vector determined by the fluid
on this hypersurface. Our main result provides global existence for the Einstein–Euler equations
within a class of spacetimes with low regularity which may contain, both, impulsive gravitational
waves and shock waves:

• When a shock wave arises in the fluid, the fluid variables become discontinuous and, as a
consequence of Einstein’s equations, the spacetime curvature becomes discontinuous.

• In addition, our theory allows for distributional curvature singularities propagating at light
speed. Such waves are referred to as impulsive gravitational waves.
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• Our framework also encompasses the situation where the fluid contains low density regions,
even vacuum regions.

The theorem established in this paper can be regarded as a statement on the nonlinear stability
of (vacuum) spacetimes with Gowdy symmetry on T3 when compressible matter is included.
Indeed, our matter spacetimes can be made to be arbitrarily close (in a well-defined functional
norm) to vacuum spacetimes, by choosing the total amount of matter energy on the initial
hypersurface to be arbitrarily small.

More precisely, by combining geometrical and analytical arguments, we establish the existence
of a global foliation based on a geometrically defined time-function coinciding with the area of
the orbits of the symmetry group. Our approach is motivated by pioneering works by Moncrief
[24] (Gowdy spacetimes) and Berger, Chruściel, Isenberg, and Moncrief [4] (vacuum spacetimes
with T2 symmetry) which established the existence of such a foliation for vacuum spacetimes.
However, we bring in a conceptually new and mathematically challenging aspect in that we
consider solutions that have very low regularity. In the class under consideration, many (high-
order) estimates derived in [4] no longer hold and must be bypassed. The regularity of our
spacetimes is considerably lower than the one constructed in earlier works and, for this reason,
our analysis encompasses a larger class of spacetimes.

Concerning the regularity of the spacetimes constructed here, the following features should
be stressed:

• Natural estimates for the geometry. As we will show, it is natural to impose that the essential
metric coefficients belong to the Sobolev space H1 of functions which, by definition, are
square-integrable, together with their first-order derivatives. This regularity is dictated by
the energy-type functional associated with the problem under consideration.

• Natural estimates for the fluid. As we will also show, it is natural to impose that the energy
density and the current vector belong to the Lebesgue space L1 of integrable functions, but
no further regularity can be imposed on their derivatives. Our setting allows the fluid
variables to contain vacuum states and the essential velocity component to approach the
speed of light.

For further results on the existence and qualitative properties of spacetimes with matter when
very low regularity is assumed, we refer to LeFloch and Stewart [22, 23].

An outline of this paper follows. In Section 2, we present our assumptions and main results;
see Theorem 2.1. In Section 3, we express the Einstein–Euler equations first in a general foliation
and, then, in areal and in conformal coordinates. Next, in both the expanding and the contract-
ing directions handled in Sections 4 and 5, respectively, we introduce suitable notions of weak
solutions to the Einstein–Euler equations (Definitions 4.5 and 5.1) adapted to the setting under
consideration, and we derive analytic and geometric properties. Finally, having successfully de-
termined the natural weak regularity assumptions required on the initial data and enjoyed by the
solutions to the Einstein–Euler system, we conclude with the compactness framework established
in LeFloch [20] and presented in Section 6 below.

2 Global foliations of matter spacetimes

Symmetry and regularity assumptions

First, we need to specify the symmetry and regularity conditions characterizing the class of
spacetimes (M, g) under consideration. Throughout we consider matter spacetimes satisfying the
Einstein–Euler equations (1.1)–(1.3). We assume that they admit an Abelian T2 isometry group
with spacelike orbits generated by two linearly independent, commuting, spacelike Killing fields
K, L whose twist constants vanish, that is,

cK := ǫαβγδK
αLβ∇γKδ = 0, cL := ǫαβγδK

αLβ∇γLδ = 0, (2.1)
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where ǫαβγδ denotes the totally anti-symmetric elementary tensor. This latter condition expresses

the assumption that the frame of covectors
(
g(K, ·), g(L, ·)

)
is integrable in the sense of Frobenius,

and was identified by Chruściel [7] in order to single out (vacuum) Gowdy spacetimes [14] within
the larger class of T2 symmetric spacetimes. Note in passing that the scalars cK, cL must be constant
throughout any T2 symmetric vacuum spacetime, as was observed by Geroch [12, 13]. Matter
spacetimes satisfying the conditions above are said to have Gowdy symmetry. The topology of
the manifold, denoted by M, must also be specified, and we assume here that the spatial slices
have the T3 topology. All of the above conditions determine the class of spacetimes with Gowdy
symmetry on T3, under consideration in the present paper. In the vacuum case, these are precisely
the so-called Gowdy spacetimes first studied in [14].

We are interested in the future Cauchy development of a given initial data set, and the
global topology will turn out to be M = [c0, c1)× T3 for some c0 < c1 ≤ ∞, and the spacetime to be
foliated by spacelike hypersurfaces along which a time-function (denoted below by t or τ) remains
constant. The main unknowns of the theory are the Lorentzian metric g describing the geometry,
together with the scalar field µ and the vector field u characterizing the matter content (via (1.2)).
In local coordinates x = (t, xa) (a = 1, 2, 3), Einstein’s field equations (1.1) will be decomposed into
evolution and constraint equations for the metric coefficients which should also be coupled with
the Euler equations for the evolution of the fluid variables (see (3.1), below). It will be convenient
to express the Euler equations as evolution equations for the mass-energy density ρ and the
momentum j, measured by an observer moving orthogonally to the hypersurfaces determined
by the time-function. By construction, j is tangent to the leaves of the foliation, and prescribing
the fields ρ, j is equivalent to prescribing the fields µ, u (see (3.2), below).

We now discuss the regularity of the spacetimes under consideration. Our regularity assump-
tions must allow for propagating discontinuities and, in view of the expression of the energy
functional associated with the Einstein–Euler equations (see Lemma 4.1, below), it is natural to
require that on each slice labeled by the parameter t, both fields ρ(t, ·), j(t, ·) belong to the space
L1(T3). In short, we write

ρ, j ∈ L∞loc([c0, c1), L1(T3)). (2.2)

All the Lebesgue and Sobolev spaces under consideration are endowed with the volume form
induced by the Lorentzian metric. By definition, for almost every t the function ρ(t) is well-
defined and integrable, and the function t 7→ ‖ρ(t, ·)‖L1(T3) (i.e. the integral of the function ρ(t))
is bounded uniformly for almost all t in any compact subinterval of [c0, c1). As we show later,
the regularity (2.2) is sufficient to formulate the Euler equations in the sense of distributions. In
addition, following the general theory of nonlinear hyperbolic systems [9, 19], we impose that
ρ, j satisfy certain entropy inequalities (see (4.12), below) which select the physically meaningful
solutions to the Euler equations.

On the other hand, again in view of the expression of the energy functional we impose that
on each slice the essential metric coefficients belong to the Sobolev space H1. In short, we write

g ∈ L∞loc([c0, c1),H1(T3)). (2.3)

It should be noted that our precise definition, given in Sections 4 and 5 below, are (slightly) more
general and allow certain components of the metric to be less regular than H1.

Due to the assumed symmetry, it will turn out that (2.3) implies that the metric coefficients
remain locally bounded, that is, g ∈ L∞

loc
, and our regularity condition suffices to express Einstein’s

equations in a weak sense. Indeed, the Riemann curvature of g and all of its traces and, therefore,
the Einstein tensor are then well-defined as distributions [21]. Note finally that the regularity
described here may in principle depend on the foliation under consideration, and may not be as
geometric as one may wish.

We refer to such a set (M, g, ρ, j) having the regularity (2.2)-(2.3) as a finite energy spacetime
with Gowdy symmetry on T3.
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The initial value problem

To formulate the initial value problem we prescribe a Riemannian metric g on T3 together with a

2-covariant symmetric tensor field k, both of them satisfying the assumption of Gowdy symmetry
on T3. By definition, the Lie group T2 acts as an isometry group on the torus T3 generated by two
(linearly independent, commuting) vector fields,

LX g = LY g = 0, [X,Y] = 0,

satisfying the condition of vanishing twist constants (2.1). We also prescribe a scalar field ρ and

a vector field j defined on T3, also satisfying the Gowdy symmetry assumption, and we require
the regularity

g ∈ H1(T3), k ∈ L2(T3), ρ, j ∈ L1(T3). (2.4)

(As already pointed out, we actually cover slightly more general data in which certain components

of the fields g, k are less regular.) Finally, we assume that these data satisfy Einstein’s constraint
equations

R +
(
tr k

)2
−

∣∣∣k
∣∣∣2 = 2κρ, tr

(
∇ k

)
− ∇

(
tr k

)
= κ j, (2.5)

where ∇ and R denote the covariant derivative operator and scalar curvature of (T3, g), respec-
tively, and the trace and norm are determined from the metric g. Under the regularity (2.4), the

curvature terms R, tr
(
∇ k

)
, and ∇

(
tr k

)
are well-defined as distributions [21], while the remaining

terms in (2.5) belong to L1(T3). Of course, (2.5) actually implies that the scalar field R is more
regular and, actually, integrable in space. In fact, we will not use directly the definition from
[21]; instead, later in this text, a complete definition of weak solutions appropriate to the problem
under consideration will be introduced.

We refer to
(
g, k, ρ, j

)
as a finite energy, Gowdy symmetric, initial data set on T3 for the

Einstein–Euler equations.
We are now in a position to state the main result of the present paper. Recall first that an

important quantity associated with Gowdy-symmetric spacetimes is the area function R (defined
up to a multiplicative constant) of the orbits of the symmetry group generated by the Killing
fields. Since the metric coefficients are only in H1, the gradient ∇R may only be defined almost
everywhere for the Lebesgue measure. However, using the Einstein equations we will prove
later (cf. Proposition 5.2, below) that ∇R is actually continuous. In addition, a standard argument
showing that ∇R is a timelike vector field remains valid under our regularity condition and
even for compressible matter. This condition on the area function can be expressed explicitly in
terms of the initial data: when the spacetime metric is sought for in conformal coordinates (see
(3.26), below), the initial data prescribed for the time derivative of the area function (denoted by

R0 below in Section 5) should be everywhere positive (expanding case) or everywhere negative
(contracting case).

This property allows us to distinguish between two cases, depending whether the spacetime
is expanding or contracting, that is, the area of the orbits of symmetry is increasing or decreasing
toward the future, respectively. Furthermore, without genuine loss of generality we assume
that the initial hypersurface has constant area function, which imposes certain restrictions on the
initial data set but, experience with (vacuum and regular, at least) Gowdy symmetric spacetimes
tells us that this is not a restriction on the class of spacetimes themselves, only a minor restriction
on the choice of the initial hypersurface.

The following main theorem encompasses both the expanding and the contracting cases.

Theorem 2.1 (Einstein–Euler spacetimes with Gowdy symmetry on T3). Let
(
g, k, ρ, j

)
be a finite

energy, Gowdy symmetric, initial data set on T3 for the Einstein–Euler equations, and assume that these
initial data have constant area, and are everywhere expanding or everywhere contracting. Then, there
exists a finite energy, Gowdy symmetric spacetime (M, g, ρ, j) satisfying the Einstein–Euler equations
(1.1)–(1.3) in the distributional sense, and the following properties hold. The manifold (M, g, ρ, j) is (up
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to diffeomorphisms) a Gowdy-symmetric future development of
(
g, k, ρ, j

)
, which is globally covered by a

single chart of coordinates t and (θ, x, y) ∈ T3, with

M =



{
(t, θ) / 0 < c0 ≤ t < ∞

}
× T2, expanding case,

{
(t, θ) / c0 ≤ t < c1 ≤ 0

}
× T2, contracting case.

Here, c1 ∈ (c0, 0] is a constant, and the time variable is chosen to coincide with the area of the surface of
symmetry in the expanding case, and with minus this area in the contracting case.

The above theorem relies on a notion of weak solution which will be described in full detail in
this text (in Sections 4 and 5); importantly, this definition incorporates the initial data in a weak
sense as well.

It is interesting to ask if c1 can be taken to be equal to zero. Note for comparison that if the
perfect fluid occurring in the theorem is replaced by collisionless matter described by the Vlasov
equation then the analogous theorem does hold with c1 = 0, as was established in [35]. For a
fluid with a linear equation of state there are solutions for which the theorem does not hold with
c1 = 0 as follows from the discussion in Section 12.2 of [29]. At the same time it seems, as will be
discussed in more detail in Section 3, that these solutions are exceptional in this regard.

The above statement provides a global foliation of the constructed spacetimes. Due to the time
irreversibility of discontinuous solutions to the Euler equations, compressible matter spacetimes
can only be defined in the future of the initial hypersurface. This is in contrast with vacuum
spacetimes and Vlasov spacetimes which can be defined in both time directions.

An important and very challenging open problem is to establish the strong cosmic censorship
(that is, the inextendibility of the future Cauchy development) for the spacetimes constructed in
Theorem 2.1. In the expanding case, the future inextendibility of the spacetime follows from the
fact that the area function tends to infinity along every future timelike direction. The generic
inextendibility of (vacuum) Gowdy spacetimes in the contracting direction was established in
major contributions by Chruściel, Isenberg, and Moncrief [8] (polarized case) and Ringström [31,
32], and recently also established by Dafermos and Rendall for the Vlasov model [10] (cf. Theorem
4.1 therein).

Observe that the uniqueness issue is not addressed here, since within the functional frame-
work under consideration such a result is not even known for the Euler equations in the flat
Minkowski geometry. The entropy inequalities are however fully motivated, and are known
to imply uniqueness for certain restricted classes of initial value problems or smaller classes of
regularity of solutions; we refer the reader to [9, 19] for details. Note also that although the areal
foliation constructed in Theorem 2.1 is geometric in nature, it is tied to the Gowdy-symmetry as-
sumption, and it would be interesting to investigate the existence of a global foliation by constant
mean curvature (CMC) slices.

3 Einstein–Euler equations

A (3 + 1)-decomposition of the Euler equations

We present here a formulation of the Euler equations in a divergence form, which we will later
use to define a notion of weak solutions. All calculations in the present section are carried out in
the smooth setting. Recall that the Bianchi identities for the geometry implies the Euler equations
for the fluid

∇αT
β
α = 0, (3.1)

in which the energy-momentum tensor determined by (1.2). We will eventually express these
equations in local coordinates adapted to the Gowdy symmetry but, as a preliminary step, we
consider a general foliation by spacelike hypersurfaces, determined as the level sets of a time-
function t. Choosing a vanishing shift vector and introducing the future-oriented unit normal
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nα, the lapse function N > 0, vanishing shift-vector, and the second fundamental form kαβ to the
foliation, we can write

nα := −N∇αt, N−2 := −g(∇t,∇t),

k(X,Y) := g(∇XY, n) = −g(∇Yn, x).

Here, for each hypersurface, X,Y denote arbitrary vector fields tangent to any given hypersurface
(with Y arbitrarily extended to a neighborhood of that slice).

Using the normal n we determine the projection operator hαβ := gαβ + nαnβ, satisfying the
obvious conditions hαβnα = 0 and hαβXα = Xβ whenever nαXα = 0. We decompose the matter
tensor Tαβ into its normal and tangential components, as follows:

ρ := Tαβnαnβ, jα := −Tβγhαβnγ, Sαβ := Tγδhαγh
β

δ
, (3.2)

so that Tαβ = ρnαnβ + jαnβ + jβnα + Sαβ. The scalar ρ is the mass-energy density measured by an
observer moving orthogonally to the slices of the foliation and j is its momentum vector which
is tangent to the hypersurfaces. Using the expression (1.2) of the energy-momentum tensor, we
find

ρ = (µ + p)
(
uαnα

)2
− p, jα = −(µ + p)

(
uβn

β
)
uγhαγ.

Note that Tαβuαuβ = µ, so that µ is the mass-energy density measured by a (Lagrangian) observer
moving with the fluid.

In coordinates (t, xa) (a = 1, 2, 3) adapted to the foliation so that t is constant on each slice, we
have (gαβ) = −N2 dt2 + (gab) and

n0 = −N, na = 0, kab = −
1

2N
∂tgab,

ρ = N2 T00, j0 = 0, ja = N T0a,

S00 = 0, S0a = 0, Sab = Tcdha
ch

b
d.

(3.3)

Since uαnα = u0n0 = −N u0 and −1 = uαuα = −N2(u0)2 + gabuaub, we thus find

ρ = (µ + p)N2(u0)2 − p, ja = (µ + p)Nu0ua,

Sab = (µ + p) uaub + p gab.
(3.4)

Now, writing the Euler equations (3.1) as

0 = ∇αT
β
α = ∇

α
(
ρ
(
nα + jα

)
nβ + jβnα + S

β
α

)

= nβ∇α
(
ρnα + jα

)
+ ∇αS

β
α + (∇α jβ)nα + ∇

αnβ
(
ρnα + jα

)
+ jβ∇αnα,

and decomposing them into normal and tangential components, we find

0 = −∇α
(
ρnα + jα

)
+ nβ∇

αS
β
α + nαnβ(∇

α jβ),

0 = h
β
γ∇

α jγnα + h
β
γ∇

αS
γ
α + h

β
γ∇

αnγ
(
ρnα + jα

)
+ jβ∇αnα.

At this juncture, we observe that in order to define a concept of solution to the Einstein–Euler
equations as we will do later, it is important to keep these equations in divergence form. The
suitable form of the equations consistent with the definition of distributional geometry presented
in [21] will be obtained provided we take into account the volume element associated with the
Riemannian metric (3)g induced on the slices, as well as the volume element associated with the
Lorentzian metric g. With this aim in mind, we introduce the rescaled matter fields defined as
follows:

ρ̃ := ωρ, ω := (det (3)g)1/2,

ĵ := N j̃ := Nω j, Š := N2 S̃ := N2ωS.
(3.5)
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The scalars µ and p are rescaled in the same way as ρ, with an obvious notation. Observe that
scalar, vector, and 2-tensor fields are scaled differently.

After some further calculations, the Euler equations (3.1) take the form

∂tρ̃ + ∂a ĵa = Σ1,

∂t ĵa + ω (3)∇b

(
ω−1Šab

)
= Σa

2,
(3.6)

where (3)∇ is the connection induced on the hypersurfaces, and

Σ1 := N−1
(
− ∂aN ĵa + kab Šab

)
,

Σa
2 := N−1

(
∂tN ĵa + ∂bN Šab

)
+ 2N ka

b ĵb − ρ̃N∇aN.
(3.7)

This completes the derivation of a general (3 + 1)-decomposition of the Euler equations. Note
that the equations (3.6) have a divergence form.

Now, under the Gowdy symmetry assumption the Euler equations simplify, provided we
use coordinates x = (t, x1, xB) (with B = 2, 3) adapted to this symmetry, so that the coordinates
(x2, x3) ∈ T2 describe the 2-surfaces spanned by the Killing fields K, L. In agreement with the
derivation of (3.6)-(3.7), our choice of coordinates (t, x1) is made so that g01 = 0 (see the metric
expression (3.13) and (3.26), below). Furthermore, imposing

u2 = u3 = 0 (3.8)

is compatible with our symmetry assumptions. So, recalling that uα is a future-oriented, time-like,
unit vector, we find

N2(u0)2 − g11(u1)2 = 1. (3.9)

The velocity vector is determined by the single function u0.
The (non-vanishing) components of the matter tensor then take the form (with B,C = 2, 3)

ρ = (µ + p)N2(u0)2 − p, j1 = (µ + p)Nu0u1,

S11 = (µ + p) (u1)2 + p g11, S1B = 0, SBC = p gBC.

From their definition, we easily obtain the Christoffel symbols

Γ1
BC = −

1

2
g11∂1gBC, Γ1

11 =
1

2
g11 ∂1g11,

and we are in a position to compute explicitly a key term in (3.6):

ω (3)∇b

(
ω−1Š1b

)
= ∂1Š11 + Γb

bcŠ
1c + Γ1

bcŠ
bc − ω−1∇bωS1b

= ∂1Š11 + Γ1
11Š11 + Γ1

BCŠBC.

Recalling that µ̃ and p̃ are defined by rescaling as ρ̃ in (3.5), we arrive at the formulation

∂tρ̃ + ∂1 ĵ1 = Σ1,

∂t ĵ1 + ∂1Š11 = Σ2,
(3.10)

the right-hand terms being given by

Σ1 :=N
(
k11 (µ̃ + p̃) (u1)2 + (tr k) p̃

)
−N ∂1N (µ̃ + p̃) u0u1,

Σ2 = Σ
1
2 :=N

(
∂tN (µ̃ + p̃) u0u1 + ∂1N

(
(µ̃ + p̃) (u1)2 + p̃ g11

))

−
N2

2

(
g11∂1g11

(
(µ̃ + p̃)(u1)2 + p̃ g11

)
− g11gBC∂1gBCp̃

)

+ 2 N3k1
1 (µ̃ + p̃) u0u1 − ρ̃ g11 ∂1N.

(3.11)

8



Denoting by (2)g the determinant of the surface of symmetry and observing that

gBC∂1gBC =
1

det((2)g)
∂1(det (2)g),

tr k = −
1

2N

1

det((3)g)
∂t(det (3)g) = −

1

2N
∂t(lnω),

(3.12)

we conclude that in order to express the right-hand sides Σ1,Σ2 of the Euler equations (3.10), we
need compute only the zero-order terms

N, g11, g11, det (3)g, det (2)g,

and the first-order terms

∂tN, ∂1N, ∂1g11, ∂1(det (2)g), ∂1(det (3)g), k1
1.

Based on (3.10)–(3.12), we are now in a position to write the field equations in local coordinates.

Areal coordinates

Recall that this discussion is carried out in the smooth class; weak solutions in areal coordinates
will be discussed in Section 4, below. We begin with the so-called areal coordinates (t, θ, x2, x3)
in which the metric is determined by four scalar functions U,A, η, α, depending on the variables
(t, θ) only:

g = e2(η−U) (−α dt2 + dθ2) + e2U(dx2 + A dx3)2 + e−2U t2 (dx3)2 (3.13)

and the variables θ, x2, x3 range over the interval [0, 2π] and are 2π-periodic. The coordinates t, θ
parameterize the quotient manifold M/T2, while ∂/∂x2 and ∂/∂x3 denote the Killing fields and
x2, x3 are coordinates on the torus T2. By construction, the area of the two-dimensional spacelike
orbits of symmetry coincides with the time variable, since

det

(
e2U A e2U

A e2U e−2U t2 + A2 e2U

)
= t2.

The fields of 1-forms

e0 := α1/2e(η−U) dt, e1 := eη−Udθ, e2 := eU (dx2 + A dx3), e3 := e−U t dx3

determine an orthonormal frame, whose associated dual frame is

α−1/2e−(η−U) ∂

∂t
, e−(η−U) ∂

∂θ
, e−U ∂

∂x2
, eU 1

t

(
− A

∂

∂x2
+

∂

∂x3

)
.

Returning to the matter variables and recalling the “projected” energy-momentum tensor Sab

introduced in (3.2), we extract its essential components

P1 := S(e1, e1) = e2η−2U S1,

P2 := S(e2, e2) = e2U
(
T22 + 2 A T23 + A2 T33

)
,

P3 := S(e3, e3) = e−2U t2 T33, P23 := S(e2, e3) = t T23 + tA T33.

(3.14)

From now on, we use subscript indices to denote partial derivatives with respect to t, θ. After
a tedious calculation, Einstein’s evolution equations extracted from (1.1) take the form of three
nonlinear wave equations for the metric coefficients U,A, η

Utt − αUθθ =
(
−

1

t
+
αt

2α

)
Ut +

αθ
2

Uθ +Ω
U(α, t) + αΠU(t),

Att − αAθθ =
(1

t
+
αt

2α

)
At +

αθ
2

Aθ +Ω
A(α) + α tΠA,

ηtt − αηθθ =
αt

2α
ηt +

αθ
2
ηθ +

1

2
αθθ −

α2
θ

4α
+Ωη(α, t) + αΠη(t),

(3.15)
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in which the lower-order metric terms are

ΩU(α, t) :=
e4U

2t2
(A2

t − αA2
θ), ΩA(α) := −4(UtAt − αUθAθ),

Ωη(α, t) := (−U2
t + αU2

θ) +
e4U

4t2
(A2

t − αA2
θ),

and the lower-order matter terms are

ΠU :=
1

2
e2(η−U) (ρ − P1 + P2 − P3), ΠA := 2 e2(η−2U) P23,

Πη(t) := −
1

t2
A2 e2(η+U)P2 − e2(η−U)P3 −

2

t
A e2ηP23.

On the other hand, Einstein’s constraint equations extracted from (1.1) provide us with three
first-order differential equations for the metric unknowns η and α, that is,

1

t
ηt = U2

t + αU2
θ +

e4U

4t2
(A2

t + αA2
θ) + e2(η−U)αρ,

1

t
ηθ = −

1

2tα
αθ + 2 UtUθ +

e4U

2t2
AtAθ − e3(η−U)α1/2 j1,

1

t
αt = −2α2 e2(η−U)(ρ − P1).

(3.16)

To finally express the Euler equations, we need the zero-order metric quantities:

g00 = −N2 = −α e2(η−U), g11 = e2(η−U), g11 = e−2(η−U),

N = α1/2 eη−U, det((2)g) = t2, det((3)g) = t2 e2(η−U),

as well as first-order ones:

tr k = −α−1/2 e−(η−U)
(1

t
+ ηt −Ut

)
,

k11 = −α
−1/2eη−U(ηt −Ut),

k1
1 = g11k11 = −α

−1/2e−(η−U)(ηt −Ut).

These expressions allow us to rewrite the equations (3.11) in areal coordinates:

(ρ̃)t + ( ĵ1)θ =Σ1,

( ĵ1)t + (Š11)θ =Σ2,
(3.17)

with now

Σ1 = − e2(η−U)(ηt −Ut)(µ̃ + p̃) (u1)2 −
(1

t
+ ηt −Ut

)
p̃

−
1

2
∂θ

(
αe2(η−U)

)
(µ̃ + p̃) u0u1

and

Σ2 =
1

2
∂t

(
α e2(η−U)

)
(µ̃ + p̃) u0u1 +

1

2
∂θ

(
α e2(η−U)

) (
(µ̃ + p̃) (u1)2 + p̃e−2(η−U)

)

− α (ηθ −Uθ)
(
e2(η−U) (µ̃ + p̃)(u1)2 + p̃

)

− 2αe2(η−U)
(
ηt −Ut

)
(µ̃ + p̃) u0u1 −

1

2
ρ̃
(
αθ + 2α(ηθ −Uθ)

)
.

Finally, to “close” the system it is necessary to have explicit expressions of the conservative

and flux variables ρ̃, ĵ1, Š11 (arising in (3.17)) in terms of the energy density µ and the velocity
function

V := α−1/2 u1

u0
.

10



Noting that α (u0)2 − (u1)2 = e−2(η−U), we obtain

e2(η−U) (u0)2 =
1

α(1 − V2)
, e2(η−U) (u1)2 =

V2

1 − V2
.

In view of ρ = µ + (p + µ)e2(η−U)(u1)2, the rescaled mass-energy density reads

ρ̃ = t e(η−U)
(
µ + (p + µ)

V2

1 − V2

)
. (3.18)

For the momentum we find j1 = e−(η−U) (µ+p)V(1−V2)−1, so that the rescaled momentum variable
reads

ĵ1 = tα1/2eη−U (µ + p)
V

1 − V2
. (3.19)

Finally, from Š11 = tαe3(η−U)
(
(µ + p)(u1)2 + pg11

)
we obtain

Š11 = te(η−U)α
(
(µ + p)

V2

1 − V2
+ p

)
. (3.20)

Consequently, we can express Σ1 and Σ2 in terms of µ,V and obtain

Σ1 = − eη−U

(
t (ηt −Ut)(µ + p)

V2

1 − V2
+ (1 + t(ηt −Ut)) p

)

− tα1/2eη−U
(αθ
2α
+ ηθ −Uθ

)
(µ + p)

V

1 − V2

and

Σ2 =
t

2
α−1/2eη−U

(
αt + 2α(ηt −Ut)

)
(µ + p)

V

1 − V2

+
t

2
eη−U

(
αθ + 2α(ηθ −Uθ)

)(
(µ + p)

V2

1 − V2
+ p

)

− 2tα (ηθ −Uθ) eη−U
(
(µ + p)

V2

1 − V2
+ p

)

− 2tα1/2eη−U
(
ηt −Ut

)
(µ + p)

V

1 − V2
,

which completes the derivation of the Euler equations in areal coordinates

(
t e(η−U)

(
µ + (µ + p)

V2

1 − V2

))

t

+

(
t eη−Uα1/2 (µ + p)

V

1 − V2

)

θ

=Σ1,

(
t eη−Uα1/2 (µ + p)

V

1 − V2

)

t

+

(
te(η−U)α

(
(µ + p)

V2

1 − V2
+ p

))

θ

=Σ2.

(3.21)

Finally, assuming the linear equation of state (1.3) we conclude that the fluid variables µ,V
satisfy the nonlinear hyperbolic system of two balance laws

(
t eη−U 1 + k2 V2

1 − V2
µ

)

t

+

(
t eη−U α1/2 (1 + k2)V

1 − V2
µ

)

θ

= tµeη−UΣ′′1 ,

(
t eη−Uα1/2 (1 + k2)V

1 − V2
µ

)

t

+

(
t eη−Uα

k2 + V2

1 − V2
µ

)

θ

= tµeη−UΣ′′2 ,

(3.22)

with coefficients depending upon the metric functions U, η, α, and

Σ′′1 := −

(
k2

t
+ (ηt −Ut)

k2 + V2

1 − V2

)
− α1/2

(
αθ
2α
+ ηθ −Uθ

)
(1 + k2)V

1 − V2
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and

Σ′′2 =α
−1/2

(αt

2
− α(ηt −Ut)

) (k2 + 1) V

1 − V2
+

(αθ
2
− α(ηθ −Uθ)

) V2 + k2

1 − V2
.

As we will see later the second equation in (3.22) should still be multiplied by α−1, leading to the
final form of the Euler system

(
t eη−U 1 + k2 V2

1 − V2
µ

)

t

+

(
t eη−U α1/2 (1 + k2)V

1 − V2
µ

)

θ

= t eη−U S1

1 − V2
µ,

(
t eη−U α−1/2 (1 + k2)V

1 − V2
µ

)

t

+

(
t eη−U k2 + V2

1 − V2
µ

)

θ

= t eη−U S2

1 − V2
µ,

(3.23)

with

−S1 :=
k2(1 − V2)

t
+ (ηt −Ut) (k2 + V2) + α1/2

(
αθ
2α
+ ηθ −Uθ

)
(1 + k2)V

and

−S2 :=α−1/2
( αt

2α
+ ηt −Ut

)
(k2 + 1) V +

(αθ
2α
+ ηθ −Uθ

)
(V2 + k2).

Observe that the metric coefficient A does not arise in the Euler equations.
It remains to compute now the expressions of P1,P2,P3,P23 required in the right-hand side

of (3.15). Computing the coefficients of the inverse of the metric, specifically the coefficients
g22 = t−2e2UA2 + e−2U, g23 = −t−2e2UA, and g33 = t−2e2U, we find

P1 =
µV2 + p

1 − V2
=

V2 + k2

1 − V2
µ, P2 = P3 = p = k2 µ, P23 = 0

and, therefore, by recalling that ρ = (µ + pV2)/(1 − V2),

ΠU :=
1

2
e2(η−U) (µ − p) =

1 − k2

2
e2(η−U) µ, ΠA := 0,

Πη(t) := −e2η k2
(
e−2U +

A

t2
e2U

)
µ.

(3.24)

Note also that the expression of the right-hand of the equation for αt

1

t
(1/α)t = 2(1 − k2) e2(η−U) µ

= 2
(1 − k2)(1 − V2)

1 − k2V2
e2(η−U) ρ.

(3.25)

Conformal coordinates

Recall that this discussion is carried out in the smooth class; weak solutions in conformal coordi-
nates will be discussed in Section 5, below. One may also use coordinates (τ, θ, x, y) in which the
metric has the “isothermal” form

g = e2(η−U) (−dτ2 + dθ2) + e2U(dx + A dy)2 + e−2U R2 dy2 (3.26)

and thus depends on the four scalar functions η,U,A, and R of the variables (τ, θ), only. The area
R of the surfaces of symmetry is now an independent unknown function. Formally, the function
α is replaced by 1, and the variable t is replaced by R, and one therefore still has to determine four
metric coefficients.
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In comparison with the areal coordinates, the Einstein–Euler equations take a somewhat
simpler form in conformal coordinates. There are now four evolution equations:

Uττ −Uθθ = Ω̃
U + Π̃U,

Aττ − Aθθ = Ω̃
A(1) + R Π̃A,

ηττ − ηθθ = Ω̃
η + Π̃η,

Rττ − Rθθ = Π̃
R,

(3.27)

where

Ω̃U := −
1

R
(RτUτ − RθUθ) +ΩU(1,R),

Ω̃A :=
1

R
(RτAτ − RθAθ) +ΩA(1), Ω̃η := Ωη(1,R),

and
Π̃U := ΠU(R), Π̃A := ΠA, Π̃η := Πη(R),

Π̃R := Re2(τ−U)(ρ − P1).

Hence, the lower-order terms are given by (essentially) the same expressions as in Section 3, the
t-derivatives being replaced by τ-derivatives, and α, t replaced by 1,R, respectively. In conformal
coordinates, there are only two constraint equations

Rθθ
R
=

1

R
(ητRτ + ηθRθ) − (U2

τ +U2
θ) −

e4U

4R2
(A2

τ + A2
θ) − e2(η−U) ρ,

Rτθ
R
=

1

R
(ητRθ + ηθRτ) − 2 UτUθ −

e4U

2R2
AτAθ + e2(η−U) j1,

(3.28)

which can be regarded as first-order differential equations for Rθ. Furthermore, the Euler equa-
tions (3.23) can similarly be written in conformal coordinates.

Spatially homogeneous solutions

In this section the equations will be expressed in areal coordinates. A special type of solutions are
those for which all variables are independent of the coordinateθ and so all the evolution equations
reduce to ordinary differential equations. These are what are known as spatially homogeneous
solutions. They admit an action of a three-dimensional Abelian group by symmetries and so in the
usual terminology of general relativity they are of Bianchi type I. It follows from the momentum
constraint that u1 = 0. By a linear transformation of the spatial coordinates the initial data A(0)
and ∂tA(0) for the variable A can be set to zero. It then follows from the evolution equation for
this quantity that A vanishes at all times. The transformation is naturally defined on the universal
covering of M and need not project to M itself. This fact is, however, irrelevant for the study of
the dynamics. Thus in the homogeneous case it may be assumed without loss of generality that
A vanishes identically so that the metric is diagonal. The Bianchi type I solutions of the Einstein
equations can be determined explicitly provided a new time coordinate T is introduced which is
a function of the areal time coordinate t. The explicit form of the metric is (see for instance [34],
p. 199)

− a2k2

dT2 + T2p1a2q1 dθ2 + T2p2 a2q2 dx2 + T2p3 a2q3 dy2, (3.29)

where the pi and qi are constants for i = 1, 2, 3 which satisfy the Kasner relations p1 + p2 + p3 = 1,

p2
1
+ p2

2
+ p2

3
= 1, and qi =

2
3 − pi. The function a(T) is defined by a1−k2

= α + m2T1−k2
where α and

m are positive constants. Comparing this with the general form of the metric in areal coordinates
reveals that

t = T−p1+1
(
α +m2T1−k2

) p1−2/3

1−w
.
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This can not be solved explicitly so as to get T as a function of t and thus an explicit expression for
(3.29) in areal coordinates. It is nevertheless clear that the mapping from T to t can be inverted
uniquely. The initial singularity occurs at T = 0. The parameter p1 belongs to the interval [−1/3, 1].
Provided p1 < 1 it can seen that t goes to zero as T → 0 and this corresponds to the situation c1 = 0
in the theorem.

An exception occurs when p1 = 1 since in that case c1 is strictly positive. The behavior of the
geometry as t → c1 in this case has been analysed in [29]. The Kretschmann scalar RαβγδR

αβγδ

tends uniformly to infinity so that this is really a curvature singularity. On the other hand the
metric can be extended to t = c1 in such a way that it remains continuous and non-degenerate.
Moreover, with repect to this extended metric the hypersurface t = c1 is null. This is what is
known as a weak null singularity. Note that the above calculations show that within the class of
spatially homogeneous solutions the exceptional solutions are nowhere dense. It is not clear what
will happen with more general inhomogeneous solutions but all available information indicates
that further solutions of this kind will be at best rare and possibly not exist at all.

4 Expanding spacetimes

A weak formulation of the Einstein equations

We now discuss weak solutions to the Einstein–Euler equations, by relying on areal coordinates
and considering the case of expanding spacetimes, in which the area function R is increasing
toward the future from an initial value denoted by c0. Hence, the initial value problem is posed
with data prescribed on the hypersurface t := c0 > 0. Instead of η, it will be convenient to use the
new variable

ν := η +
1

2
lnα,

so that the geometry is now determined by the four scalar functions U,A, α, ν. The natural
regularity imposed on these functions is determined in the following lemma.

Lemma 4.1 (Energy estimate). In areal coordinates the total energy

E = E(t) :=

∫

S1

Eα−1/2 dθ,

E := (U2
t + αU2

θ) +
1

4t2
e4U (A2

t + αA2
θ) + e2(ν−U) ρ,

is a monotone decreasing function of the variable t ≥ c0 and, more precisely, satisfies

d

dt
E = −

2

t

∫

S1

D dθ,

D := α−1/2 U2
t +

1

t2
e4Uα1/2A2

θ +
1

2
α−1/2e2(ν−U)(ρ + P3) ≥ 0.

The underlying structure is analogous to two quasilinear wave equations for the variables
U,A, taken to have finite total energy

∫

S1

(
(α−1/2U2

t + α
1/2 U2

θ) +
1

4t2
e4U (α−1/2A2

t + α
1/2 A2

θ)
)

dθ,

coupled to the “first” Euler equation for ρ taken to have finite total mass-energy

∫

S1

ρ e2(ν−U) α−1/2 dθ.

Even in the class of weak solutions, the relations in the above lemma hold as equalities in the
sense of distributions.
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In view of the expression of E, as long as α, α−1,U, ν remain bounded, i.e.

|α| + |α|−1 + |U| + |ν| . 1, (4.1)

and provided the initial energy E(c0) is finite, which we now assume on every compact subset of
[c0,+∞), Lemma 4.1 allows us to control the L2 norm of the functions Ut,Uθ,At,Aθ on every slice
of the foliation, as well as the L1 norm of the mass density, from the same quantities evaluated on
the initial slice. Recalling the expression (3.18) of the density in terms of the fluid variables µ,V,
we see that the energy estimate imposes

Ut,Uθ,At,Aθ ∈ L∞t (L2
θ), M :=

µ

1 − V2
∈ L∞t (L1

θ), (4.2)

at least on every compact set in time. In view of (3.15), we see that U and A satisfy (second-order)
wave equations and that two initial conditions must be prescribed for each variable, that is,

Ut(c0) = U
0
∈ L2

θ, U(c0) = U ∈ H1
θ,

At(c0) = A
0
∈ L2

θ, A(c0) = A ∈ H1
θ.

The initial data for ν is then computed from the constraint equation (3.16); see (4.13) below.
Next, in view of the constraint equation (see (3.16))

1

t
νθ = 2 UtUθ +

1

2t2
e4U AtAθ − e2(ν−U)α−1/2 j1, (4.3)

and since | j1| . ρ we deduce that νθ ∈ L1
θ
. Similarly, for the time derivative we have

1

t
νt = U2

t + αU2
θ +

e4U

4t2
(A2

t + αA2
θ) + e2(ν−U)P1 ≥ 0, (4.4)

and using |P1| . ρ ∈ L1(Σt) we obtain νt ∈ L1(Σt). It is natural to assume the regularity

νt, νθ ∈ L∞t (L1
θ). (4.5)

Instead of these differential constraints, we can also use the evolution equation for νwhich follows
from (3.15), in which case two initial conditions are required on the variable ν

νt(c0) = ν
0
∈ L1

θ, ν(c0) = ν ∈W1,1
θ
.

Finally, the constraint equation on the function α (see (3.16) again) shows that

αt

1 − V2
∈ L∞t (L1

θ), (4.6)

while no regularity condition can be imposed on the spatial derivative αθ. One should prescribe
α on the initial slice, that is,

α(c0) = α ∈ L1
θ.

Having identified the basic functional spaces of interest for each variable, we now consider
the algebraic structure of the equations. We must reformulate the Einstein equations in a form
that makes sense under the limited regularity above, only. The following key observation can be
checked by direct calculation from (3.15).

Proposition 4.2 (Weak form of the Einstein equations). The evolution equations for the functions U,
A, and ν take the form

(
tα−1/2Ut

)
t
−

(
tα1/2 Uθ

)
θ
=

e4U

2tα1/2
(A2

t − αA2
θ) + tα1/2ΠU,

(
t−1 α−1/2At

)
t
−

(
t−1 α1/2 Aθ

)
θ
= −4t−1 α−1/2 (UtAt − αUθAθ) + α1/2ΠA,

(
tα−1/2

(
ν + (1/2) logα

)
t

)
t
− (tα1/2 νθ)θ = tα−1/2 (−U2

t + αU2
θ)

+
e4U

4tα1/2
(A2

t − αA2
θ) + α1/2Πν,

(4.7)
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where Πν = Πη.

Finally, we supplement (4.7) with an equation for the function α

α(t, θ) = α (θ) exp
(
− 2(1 − k2)

∫ t

0

t′
(
e2(ν−U)M (1 − V2)

)
(t′, θ) dt′

)
, (4.8)

where α is a prescribed data in L∞θ satisfying α > 0. Clearly, since |P1| . ρ the function α is
globally bounded: 0 < α ≤ α .

Importantly, in the proposed setting the Einstein equations (4.7) now make sense under the
regularity conditions (4.2)–(4.6). For instance, α−1/2Ut is the product of an L∞ function by an
L∞t (L2

θ
) function, and its derivative is defined in the distributional sense.

Remark 4.3. 1. The function ν may be also determined by the constraint equation, that is,

ν(t, θ) =

∫ θ

0

(
2t UtUθ +

1

2t
e4U AtAθ − t(1 + k2)eν−U M V

)
(t, θ′) dθ′, (4.9)

which is an integral equation for the unknown ν.
2. We emphasize that, instead of the equation for ν, the original evolution equation for η can not be used

to derive a priori estimates, since it would require second-order derivatives of α – which can not be obtained
in general for the non-vacuum Einstein equations. This is clear from the equation in αt: it involves the
fluid density which generically contains jump discontinuities and, therefore, is not sufficiently regular to
allow us to control second-order derivatives of α.

Finite energy solutions

Let us further discuss the matter variables and introduce a suitable notion of solutions to the Euler
equations. Recalling that M = µ/(1 − V2), and using the variable ν instead of η, the equations
(3.23) become

(
tα−1/2eν−U(1 + k2 V2)M

)

t

+

(
t eν−U (1 + k2)V M

)

θ

= t eν−Uα−1/2 S1 M,

(
t eν−U α−1(1 + k2)V M

)

t

+

(
t eν−U α−1/2(k2 + V2) M

)

θ

= t eν−Uα−1/2 S2 M,

(4.10)

with

−S1 :=
k2(1 − V2)

t
−
αt

2α
(k2 + V2) + (νt −Ut) (k2 + V2) + α1/2 (νθ −Uθ)(1 + k2)V

and
−S2 :=α−1/2

(
νt −Ut

)
(k2 + 1) V + (νθ −Uθ) (V2 + k2).

The selection of physically admissible solutions to the Euler equations will be based on the
conservation law of the number of particles

∇αNα = 0

satisfied by sufficiently smooth solutions, where the vector field Nα has the form Nα = r uα with

dr

r
:=

dp

µ + p(µ)
=

k2

k2 + 1

dµ

µ
,

hence
r = µk2/(k2+1).
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For simplicity, we have assumed here that a single thermodynamical variable suffices to determine
the state of the fluid under consideration. According to this approximation, for the theory to
encompass discontinuous solutions, we must relax the above equality and impose that solutions
satisfy the inequality

− ∇αNα ≤ 0, (4.11)

which we refer to as the fundamental entropy inequality.
More generally, an infinite list of (mathematical) entropies is available.

Definition 4.4. A vector field F is called an mathematical entropy flux for the Einstein–Euler equations
if every smooth solution to these equations satisfies the balance law

∇αF
α = G,

where Fα and G both contain lower-order terms only, that is, zero- and first-order terms in the metric
variables and zero-order terms in the fluid variables. It is said to be convex if the component F0 is convex

in the conservative variables of the Euler equations (that is, in the variables (ρ̃, j̃1)).

Physically admissible solutions should then be characterized by the entropy inequalities

∇αF
α ≤ G (4.12)

understood in the distributional sense, for every convex entropy pair that vanishes on the vacuum.
As presented in [20], the family of convex weak entropies can be described by an explicit formula
which can be used to establish a compactness result for sequences of solutions.

We are now in a position to state precisely our notion of solutions.

Definition 4.5 (Finite energy solutions). 1. A finite energy initial data set for the Einstein–Euler

equations is a family of measurable functions U
0
,U,A

0
,A, ν

0
, ν, α , M,V satisfying

inf
S1
α > 0, M ≥ 0, |V| ≤ 1,

together with the regularity conditions

U
0
,A

0
, ∈ L2(S1), U,A ∈ H1(S1), ν

0
,M ∈ L1(S1),

ν ∈W1,1(S1), α ,V ∈ L∞(S1),

and the constraint equation

ν(θ) =

∫ θ

0

(
2 c0 U

0
Uθ +

1

2c0
e4U A

0
Aθ − c0eν−U (1 + k2)M V

)
(θ′) dθ′. (4.13)

2. A finite energy solution to the Einstein–Euler equations (in areal coordinates) is a family of
measurable functions U,A, α, ν,M,V defined on [c0,∞) × S1 and satisfying the following conditions:

• The functions α,M,V satisfy (for all t1 > c0)

inf
[c0,t1]×S1

α > 0, M ≥ 0, |V| ≤ 1.

• The geometric coefficients U,A, α, ν satisfy the regularity conditions

Ut,At, ∈ L∞loc([c0,+∞), L2(S1)), U,A ∈ L∞loc([c0,+∞),H1(S1)),

νt, νθ ∈ L∞loc([c0,+∞), L1(S1)), M S1,M S2 ∈ L1
loc([c0,+∞) × S1).

• The functions U,A, ν, α satisfy the evolution equations (4.7) and the constraint equation (4.8) in the
distributional sense.
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• The fluid variables M,V satisfy the entropy inequalities

∇αF
α ≤ G

in the distributional sense for all convex weak entropy flux Fα to the Euler equations.

• The prescribed initial data are assumed in the sense of distributions.

To be more explicit, let us for instance state the first equation in (4.7) in the distributional sense:

∫ +∞

c0

∫ 2π

0

(
ψttα

−1/2Ut − ψθtα1/2 Uθ + ψ
e4U

2tα1/2
(A2

t − αA2
θ) + ψtα1/2ΠU

)
dθdt

+

∫ 2π

0

ψ(c0, ·) c0 α
−1/2U

0
dθ = 0

(4.14)

for every smooth, compactly supported and spatially 2π-periodic function ψ : [c0,∞) × [0, 2π]→
R. Observe that the initial data is taken into account in this statement.

Under the condition in the above definition, we will also use the phrase “spacetimes with finite
energy”. It is important to observe that, under the regularity assumptions under consideration
all the terms arising in the equations under consideration do make sense, at least as distributions.
In particular, the right-hand sides of the equations (4.10) belong to L1 on every compact subset.

5 Contracting spacetimes

A weak formulation of the Einstein equations

We continue our discussion of weak solutions to the Einstein–Euler equations, using now confor-
mal coordinates in the case that the spacetime is contracting. Recall that, in conformal coordinates,
the metric is determined by the four functions U,A, η,R, while the fluid is determined by the func-
tions M,V.

It is convenient to pose the problem on a hypersurface of constant negative τ0.

Definition 5.1 (Finite energy solutions in conformal coordinates). Given τ0 < 0, an initial data set
with finite energy for the Einstein–Euler equations in conformal coordinates is a set of functions

U
0
,A

0
, ∈ L2(S1), U,A ∈W1,2(S1), η

0

∈ L1(S1), η ∈W1,1(S1),

R
0
∈ L∞(S1), R ∈W1,∞(S1), inf

S1
R > 0

and
M ∈ L1(S1), V ∈ L∞(S1), M ≥ 0, |V| ≤ 1.

Given an initial data set as above, a set of functions U,A, η,R,M,V defined on some interval [τ0, τ1] ⊂
[τ0, 0) is called a finite energy solution to the Einstein–Euler equations in conformal coordinates if the
following conditions hold:

1. The functions have the regularity

Uτ,Aτ ∈ L∞([τ0, τ1], L2(S1)), U,A ∈ L∞([τ0, τ1],W1,2(S1)),

ητ ∈ L∞([τ0, τ1], L1(S1)), η ∈ L∞([τ0, τ1],W1,1(S1)),

Rτ ∈ L∞([τ0, τ1], L∞(S1)), R ∈ L∞([τ0, τ1],W1,∞(S1)), inf
[τ0,τ1]×S1

R > 0

and
M ∈ L∞([τ0, τ1], L1(S1)), V ∈ L∞([τ0, τ1], L∞(S1)),

M ≥ 0, |V| ≤ 1, M S1, M S2 ∈ L1([τ0, τ1] × S1).
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2. The Einstein equations (3.27), (3.28) hold in the distributional sense.
3. For every convex weak entropy flux Fα to the Euler equations, the entropy inequality

∇αF
α ≤ G

holds in the distributional sense.
4. The following initial data are assumed in the distributional sense:

(Aτ,A)(τ0, ·) = (A
0
,A), (Uτ,U)(τ0, ·) = (U

0
,U),

(ητ, η)(τ0, ·) = (η
0

, η), (Rτ,R)(τ0, ·) = (R
0
,R),

M(τ0, ·) =M, V(τ0, ·) = V.

The notion of distributional solution is analogous to the one already used in the previous
section; see in particular the statement (4.14) for a specific statement. It is important to observe that
our regularity conditions are sufficient (and essentially necessary) to define in the distributional
sense, all of the terms appearing in the Einstein–Euler equations.

Monotonicity property of the area function

From now on we consider a finite energy solution in the sense of Definition 5.1 and we investigate
its geometric properties. In particular, by definition, the area function R remains bounded and
bounded away from zero. We consider the largest region D+

conf
of the future Cauchy development

of the given initial data set which can be covered by a single chart in conformal coordinates.
Specifically, following earlier work on classical solutions, we investigate the properties of the

gradient∇R and, by combining the evolution and constraint equations satisfied by R, we establish
that second-order derivatives of the area function R belong to L∞τ (L1

θ
), which, in turn, implies that

the gradient ∇R is continuous.

Proposition 5.2. The area function R satisfies the following properties:

1. The functions Rτ,Rθ are continuous in both variables and satisfy one of the following alternatives:

Case (a) : Rτ < −|Rθ| for all τ, θ,

Case (b) : Rτ > |Rθ| for all τ, θ,

Case (c) : R is constant and the spacetime is flat and vacuum.

2. In Cases (a) and (b) the gradient of the function R is always timelike.

3. In Case (a) the components of the gradient ∇R are uniformly controlled in L∞:

|Rθ| ≤ −Rτ ≤ 2 sup
S1

|Rτ|.

4. The second-order derivatives Rθt and Rθθ are uniformly controlled in L∞τ L1
θ
:

sup
τ≥τ0

∫

S1

(|Rτθ| + |Rθθ|)(τ, ·)| dθ .

∫

S1

(|Rτ| + |Rθ|)(τ0, ·)| dθ+

∫

S1

ρ(τ0, ·) dθ. (5.1)

In Case (a) (Case (b), respectively) the spacetime is contracting (expanding, resp.) in the future
timelike direction. Our primary interest in this section is on the case of contracting spacetimes;
expanding spacetimes were handled directly in areal coordinates, as discussed in the previous
section.
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Proof. 1. We generalize arguments due to Chruściel [7] in the case of smooth vacuum spacetimes.
Consider the functions R′± := Rτ ± Rθ. We obtain

R′±θ + (ητ − ηθ) R′± = F±,

F± := R(Uτ ±Uθ)2 +
e4U

4R
(Aτ ± Aθ)2 + Re2(η−U)

(
ρ ∓ j1

)
.

These equations, by assumption, hold in the sense of distributions. However, let us examine
the regularity of the various terms involved, as follows. Our regularity assumptions show that
(ητ − ηθ) and F± belong to L∞τ (L1

θ
), so that from our assumption that R′± ∈ L∞τ (L∞

θ
) we deduce the

stronger regularity property

R′± ∈ L∞τ (W1,1
θ

).

In particular, both R′± and, therefore, Rt,Rθ are continuous in θ. This observation justifies the
following calculations.

Fix some time τ. Take any point θ1 ∈ S1 at which the function R(τ, ·) achieves a local extremum
value; then, since the function Rθ is continuous, we must have Rθ(τ, θ1) = 0 and, therefore,

(R′−R′+)(τ, θ1) = Rτ(τ, θ1)2 ≥ 0.

The case of equality is studied as follows.
For almost every time τ and every θ0 ∈ [0, 2π], we can write

∂

∂θ

(
R′±(τ, θ) e

∫ θ
θ0

(ητ−ηθ)(τ,θ′) dθ′
)
= F±(τ, θ) e

∫ θ
θ0

(ητ−ηθ)(τ,θ) dθ′
≥ 0,

where we have observed that, since |J| ≤ ρ, the functions F± are non-negative. It follows that

R′±(τ, θ0) ≤ R′±(τ, θ0 + 2π) e
∫ θ0+2π

θ0
(ητ−ηθ)(τ,θ′) dθ′

=: R′±(τ, θ0) H(τ),

Recall that the functions have just been proven to be continuous and observe that H is a positive
quantity. Therefore, from the two inequalities

R′−(τ, θ0) ≤ R′−(τ, θ0) H(τ), R′+(τ, θ0) ≤ R′+(τ, θ0) H(τ),

valid for all θ0, we deduce
R′−(τ, θ0) R′+(τ, θ0)(1 −H(τ))2 ≥ 0.

We recover the fact that the product (R′−R′+)(τ, ·) remains non-negative in the interval [0, 2π].
However, if now R′+(τ, θ0) = 0 (for instance) for some θ0, then from

R′+(τ, θ) e
∫ θ
θ0

(ητ−ηθ)(τ,θ′) dθ′
)
=

∫ θ

θ0

F+(τ, θ′) e
∫ θ′
θ0

(ητ−ηθ)(τ,θ′′) dθ′′
dθ′

and the fact that F+(τ, ·) is non-negative, we conclude that R′+(τ, ·) changes sign only once, going
from non-positive to non-negative values across θ0, which is impossible for a periodic and
continuous function, except in the special case that R′+(τ, ·) is constant in θ and, in addition,
F±(τ, ·) vanishes identically.

The above arguments show that the function (R′−R′+)(τ, ·) is either positive on [0, 2π] or else
vanishes identically.

2. The functions R′± (and therefore Rτ,Rθ) are continuous in both variables. Indeed, we already
know that Rθθ ∈ L∞τ (L1

θ) and, in view of the equation satisfied by the function R,

Rττ = Rθθ +MR(R) ∈ L∞τ (L1
θ).
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This leads us to distinguish between three different cases for all times:

Case (a) : R′− < 0, R′+ < 0,

Case (b) : R′− > 0, R′+ > 0,

Case (c) : R′− ≡ 0 or R′+ ≡ 0.

Suppose that, for instance, R′−(τ, ·) ≡ 0 and thus R′+(τ, ·) = 2Rθ(τ, ·). From the first part of
this proof, we know that the function R′+(τ, ·) is either positive, or negative, or identically zero.
But, since Rθ(τ, ·) is 2π-periodic and continuous, it must vanish identically. Consequently, both
R′±(τ, ·) ≡ 0 and the function R(τ, ·) is constant in θ. We also deduce from the expression of F± that
this is the case if and only if Uτ,Uθ,Aτ,Aθ, ρ vanish at the time τ0. Moreover, it is not difficult
to check that the functions U,A must be constant and ρ be identically zero everywhere in their
domain of definition in the future of the hypersurface τ = τ0. The only non-trivial component the
is the function η which then satisfies a linear wave equation

ηττ − ηθθ = 0,

whose solution takes the form η(τ, θ) = f−(τ+θ)+ f+(τ−θ) with f± ∈W1,1. By setting u± := τ±θ,
the metric takes the form

g = e−2U f−(u−) f+(u+)du−du+ + e2U(dx + A dy)2 + e−2U R2 dy2,

where the coefficients A,U,R are constants. Hence, the metric is flat.

3. Finally, excluding Case (c) of the proposition, we can compute the norm of the gradient of the
function R and we find

|∇R|2 = e2(η−U)
(
R2
τ − R2

θ

)
= −e2(η−U) R′−R′+ < 0.

From the conditions in Cases (a) and (b) we deduce that the component Rτ can not vanish and
therefore by continuity must keep a constant sign through the spacetime.

Moreover, in Case (a) we can integrate the equation in R

(∂τ ∓ ∂θ)R′± =MR ≥ 0.

This yields the sup norm control of both R′±, and in turn a control of both Rτ and Rθ.

4. The estimate (5.1) follows directly from (3.28), by noticing that the right-hand side of (3.28) is
uniformly bounded in L1(S1). The latter indeed is easily checked from the fact that Uτ,Uθ,Aτ,Aθ

are uniformly bounded in L2(S1) while ρ is uniformly bounded in L1(S1).
�

In Case (a), that is, when the spacetime is contracting in the future direction, it will follow
from our compactness framework in the next section that solutions in conformal coordinates do
exist up to τ→∞, as long as the function R does not vanish. As in the case of smooth spacetimes,
one can distinguish between two situations:

(a1): (U,A, η,R,M,V) is a finite energy solution to the Einstein–Euler equations in conformal
coordinates whose domain of definition D+

conf
coincides with [τ0,+∞) × S1. In this case, the

conformal coordinates do cover the whole of the Cauchy development.

(a2): (U,A, η,R,M,V) is a finite energy solution to the Einstein–Euler equations defined on a
region strictly contained in [τ0,+∞)× S1. Here, R admits a constant limit value Rmax which
determines the boundary of the spacetime.
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6 Compactness properties

In the previous sections, we have successfully determined the natural weak regularity assump-
tions required on the initial data and enjoyed by the solutions to the Einstein–Euler system. The-
orem 2.1 now follows from the compactness framework developed in [20]. The main property,
stated below, is that any sequence of spacetimes satisfying the natural bounds on the geometry
and fluid variables must subconverge in a suitably strong sense so that the limit is a space-
time with the expected regularity. The compactness property holds for exact solutions as well
as approximate solutions (which should be dealt with by allowing for suitably controlled error
terms).

Proposition 6.1 (Pre-compactness property for the Einstein equations under Gowdy symmetry).
Consider a sequence of spacetimes with finite energy determined by the geometric coefficients U(a), A(a), η(a),
R(a) in conformal coordinates (or U(a), A(a), ν(a), α(a) in areal coordinates) together with the (rescaled) fluid
components M(a), V(a). Suppose that the regularity conditions stated in Definition 5.1 (or Definition 4.5)
hold, with the corresponding functional norms of the initial data being uniformly bounded in the parameter
a = 1, 2, . . .. Then, the following pre-compactness property holds: there exists a subsequence (still labelled
with the upper script a) converging in the natural functional spaces and the limit is a solution with finite
energy to the Einstein equations.

To conclude, we consider briefly the case of the Euler equations in the flat geometry, that is,
in the simplified situation that the coupling between the matter and the geometry is neglected.
Hence, we focus first on the fluid evolution governed by the Euler equations:

(
µ

1 + k2 V2

1 − V2

)

t

+

(
µ

(1 + k2) V

1 − V2

)

θ

= 0,

(
µ

(1 + k2) V

1 − V2

)

t

+

(
µ

k2 + V2

1 − V2

)

θ

= 0,

where µ ≥ 0 and V ∈ (−1, 1) are the unknown fields, and k ∈ (0, 1) is a constant. Equivalently, in
terms of the rescaled density M := µ/(1− V2) we have

(
M (1 + k2 V2)

)
t
+

(
M (1 + k2) V

)
θ
= 0,

(
M (1 + k2) V

)
t
+

(
M (k2 + V2)

)
θ
= 0.

(6.1)

According to our definition, a pair of functions (M,V) defined on some set Ω ⊂ (t1, t2) × S1 and
satisfying M ∈ L∞t (L1

θ
) and V ∈ L∞ with V ∈ [−1, 1], is called an entropy solution to the Euler

equations (6.1) if the entropy inequalities

(F0)t + (F1)θ ≤ 0

hold in the distributional sense for convex weak entropy pairs (F0,F1). Note that, in the proposed
formulation, the velocity may reach the limiting values ±1.
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